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1 EXECUTIVE SUMMARY 

1.1 Project Deliverables 

• Task 1. Develop a prototype of pipeline/tank inspection data management and the integration 
module.  

o 1.1. Design and implement the proposed module, which allows access, retrieve, and 
visualize inspection data (in image, point cloud, and text data formats). The 3D 
graphical user interface was implemented based on Google Maps API.  

o 1.2. Test and evaluate the proposed module using hypothetical georeferenced pipeline. 
 

 Originally proposed deliverable: A conference paper to describe the developed 
application and the demo application. 

 Actual deliverable: The proposed data management module was implemented, tested, 
and evaluated using hypothetical inspection data (hypothetical means that the defect 
data are real inspection data of the PRCI pipe but the locations of the defects are merged 
into one section of the real pipe for easy demonstration purpose without affecting the 
actual function of the application. The demonstrated locations of the defects in the 3D 
model are hypothetical). Details are described in section 4.1.   
A conference paper was not written about the development (as originally planned) due 
to 1) there being not enough technical challenges in the development to warrant a 
conference paper; and 2) the Covid pandemic negatively affected conference 
availability.   

 

• Task 2. Develop the quality-based 3D coverage path planning (CPP) algorithm.  
o 2.1. Identify and investigate the appropriate parameters and their value ranges to 

balance the UAS inspection efficiency and photogrammetry model quality. Identify 
appropriate optimization algorithms for pipeline/tank 3D coverage path planning.  

o 2.2. Implement and test the developed 3D CPP algorithm through simulations and 
outdoor flight tests.  
 

 Originally proposed deliverables: One peer-reviewed journal paper and one peer-
reviewed conference paper on the topic of quality-based 3D CPP. 

 Actual deliverables: Two peer-reviewed high-quality journal papers, on the 
proposed technology/algorithms were submitted and published in 2022 and 2023 
respectively. The two journal papers were cited widely in such a short period of time.  
Please see section 1.3 for the detailed publication accomplishments.  
As indicated earlier, due to the pandemic no conference paper was written on the topic. 
But the team did One invited Webinar to ASCE T&DI UAS Committee on April 6, 
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2023, about the developed CPP technology. 
Task 2 is the technical core foundation of the proposed project. Two 3D CPP algorithms 
were developed to deal with different types of inspected structures, including truss 
structure, which was a challenging task to have a full coverage inspection of truss 
structure due to the number of linear structure members and occlusion.  

 

• Task 3. Develop a 3D profile change identification and quantification module.  
o 3.1. Identify and evaluate the out-of-the-box photogrammetry software in terms of its 

capability and accuracy in processing a large inspection pipeline dataset and create 
demonstrative before-and-after 3D pipeline/route models.  

o 3.2. Develop a 3D profile change identification and quantification module to allow 
automatic before-and-after event comparisons of 3D models to identify the change 
locations and change quantities. The changes can include land movement, third-party 
excavation, pipe displacement, scour erosion, etc.  
 

 Originally proposed deliverables: One conference paper on the topic about 
algorithm and coding of the application. 

 Actual deliverables: A free opensource software Cloud Compare was identified and 
evaluated (https://www.danielgm.net/cc/ ) to be used to identify 3D profile changes 
between and after potentially hazardous events to pipelines and the associated right-of-
way. Since the application has a GNU General Public License (GPL), the application 
including the source code (https://github.com/cloudcompare/cloudcompare ) is free to 
use for public. As a result, no conference paper is needed to report on the 
development of the topic, including the algorithm and the source code. 
 

• Task 4. Develop an infrared image processing module enabling pipeline/tank leak detection 
and mapping on the geo-referenced 3D models.  

o 4.1. Develop a deep learning-based infrared image processing module to automate 
above-ground leak detection based on the Joule-Thomson effect, the gas spectral 
response effect, and the temperature difference between the gas and the ambient 
temperature.  

o 4.2. Map leaks. By fusing the infrared detecting results and the 3D pipeline model 
generated in Subtask 3.1, the detected leaks will be automatically mapped on the 
surface of the 3D pipeline model.  
 

 Originally proposed deliverables: (1) Validation results of the deep-leaning-based 
detection model; (2) mapping algorithm codes; (3) one conference paper and one 
journal paper to report the outcomes. 

 Actual deliverables: (1) the originally proposed deep learning-based gas leakage 

https://www.danielgm.net/cc/
https://github.com/cloudcompare/cloudcompare
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detection method was not developed due to the demonstrated effectiveness of the new 
method. Instead, a direct infrared image-based detection method was developed.  (2) 
the deliverable of mapping leakage spots of the pipeline was merged and achieved in 
Task 1. A note is added at the end of Page 40. (3) a conference paper is still under 
development on the infrared image-based gas leakage detection technology based on 
the preliminary data. A journal paper publication is still expected when more data is 
collected and processed. 

 

• Task 5. Field Validation, Performance Evaluation, Closeout Subtask  
o 5.1. Conduct a full-scale field validation and performance evaluation of the developed 

modules in Tasks 2, 3, and 4. A Subject Matter Expert and partners from Black Hills, 
Kiewit, and/or METEC will be included to provide input. Subtask  

o 5.2. Final report.  
 

 Originally proposed deliverables: (1) Final report; (2) Commercialization Plan. 
 Actual deliverables: (1) the Final Report is completed, which includes the field 

validate tests conducted at PRCI at Houston. PRCI worked as a Subject Matter Expert 
as suggested by PHMSA. Please note: the field test in PRCI did not include a UAS-
based gas leakage test due to the PRCI facility constraints (PRCI did not have a gas 
leakage facility at the time of the field tests). (2) More investigations are needed to 
determine which part of the research outcomes can be feasibly commercialized if any.  

1.2 Education Accomplishments (student engagement) 

• Undergraduate researcher 

(1). Gabriel Clark, software engineering major, NASA and Microsoft interns, had been 
working on the project from September 2019 to July 2023. Gabriel established his own 
start-up company that works on UAS and image processing, and 3D reconstruction of 
civil infrastructure inspections. 
 

• PhDs in Construction Engineering 

(1) Houman Kosarirad, PhD student at University of Nebraska-Lincoln, worked on this 
project in Spring 2022. 

(2) Chongsheng Cheng, Associate Professor, Chongqing Jiaotong University, had 
worked on this project from September 2019 to June 2020 

(3) Zhexiong Shang, Associate Professor, Hainan University, had worked on this project 

from January 2019 to December 2019 

• Postdoc fellows 

(1) Chongsheng Cheng, Associate Professor, Chongqing Jiaotong University, had 
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worked on this project in from July to December of 2020 

(2) Zhexiong Shang, Associate Professor, Hainan University, had worked on this project 

from January 2020 to December 2022 

 

1.3 Publications 

• Journal/conference publications. 

1. Shang, Zhexiong, and Zhigang Shen. 2022. "Flight Planning for Survey-Grade 3D 
Reconstruction of Truss Bridges" Remote Sensing 14, no. 13: 3200. 
https://doi.org/10.3390/rs14133200  

2. Shang, Z., Shen, Z. 2023. “Topology-based UAV path planning for multi-view stereo 
3D reconstruction of complex structures”. Complex Intell. Syst. 9, 909–926. 
https://doi.org/10.1007/s40747-022-00831-5  

 

• Conference presentations/posters/invited talks, etc. 

3. Shang, Z., Shen, Z. Webinar to ASCE T&DI UAS Committee on April 6, 2023, 
“Topology-based UAV path planning for automated multi-view stereo 3D 
reconstruction of complex structures”  

4. Shang, Z., Cheng, C., Clark, G., Shen, Z. (2020) “Detecting, locating, and mapping 
internal gas pipeline corrosion using thermography and photogrammetry” poster at 
the 2020 PHMSA Pipeline R&D Forum, February 19-20, Arlington, VA 
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2 INTRODUCTION 

2.1 Problem Statement 

Maintaining the safe and efficient operation of 2,734,580 miles of gas pipelines (including 
1,356,358 Distribution Main, 965,167 Distribution Service, 112,120 Gas Gathering, and 300,936 
Gas Transmission) in the US is a daunting task, especially when faced with aging gas 
transportation infrastructure and increased demands on gas usage. Unmanned Arial Systems 
(UAS) mounted with various types of sensors and cameras can substantially extend pipeline 
operators’ view ranges, especially in locations that are normally difficult to access. As a result, 
UAS-based pipeline/tank inspections have attracted many attentions with anticipations of 
improving safety and efficiency in inspecting hazardous areas, reducing maintenance costs, 
reaching difficult and/or remote locations[1], and dispatching emergency responses [2]. Equipped 
with 4K/8K visual cameras and high-resolution infrared cameras, UAS provides opportunities for 
highly efficient and frequent asset surveying without endangering inspection staff or suspending 
operations. Not only has UAS demonstrated its value in inspections under API-570/653 in 
detecting faults such as hairline cracks, corrosions, gas leakage, and others, but UAS has also 
proven to be an efficient data collection tool for risk-based inspections of oil/gas assets under API 
579/580 [3] 
 
Despite these clear advantages, current UAS inspections are constrained by line-of-sight and 
complex path specification issues when inspecting complex 3D objects [4]. Current 2D/2.5D 
waypoint paths planning, which allows UAS to fly beyond line-of-sight autonomously, has 
difficulties handling the detailed inspection tasks of complex 3D structures [4] in which UAS 
needs to closely follow the surface shapes of each individual structure.  
 
Numerous 3D coverage path planning (CPP) methods were proposed [5]to automatically generate 
inspection paths to cover all or most surfaces of the inspected 3D structures, and the applications 
of these CPP can be found in ship hull inspection [6], powerline inspection [7], wind turbine 
inspection [8], and other areas [9]. Typical UAS pipeline/tank inspection procedures include 
multiple iterative steps (Fig. 1) such as mission planning (what to inspect), path planning (how to 
inspect), image capturing, defect detection and localization, and inspection data storage and 
management. While there has been some siloed progress in autonomous pipeline inspection (e.g., 
automatically identifying right-of-way encroachment), a systematic autonomous UAS 
pipeline/tank inspection platform that addresses the full-loop pipeline/tank inspection procedure 
as shown in Figure 1 has yet to be seen.  

 
Figure 1 Iterative UAS pipeline facility inspection procedures 

 
The lack of such an end-to-end autonomous UAS solution has hindered the oil/gas pipeline 
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industry from realizing its full potential in enhancing pipeline safety and reducing methane 
emissions due to leakage. When a pipeline leak has exuded gas with infrared absorption rates 
different from ambient air, thermographic patterns of gas leaks can be tracked by infrared images 
[10].  
 
Many existing studies have established the validity of optical gas imaging (OGI) methods in 
detecting leaks from valves, pipes, and other equipment in both above ground [11] and buried 
conditions [12]. Other studies have suggested that thermographic imaging can further be used to 
evaluate oil spills [13]. Despite the progress in OGI detections, most OGI leak detection studies 
were based on stationary or handheld camera-base, the effectiveness and performance of UAS-
based OGI in gas leak detection have yet to be systematically investigated. Studies indicated that 
the standoff distance and shot angle between the infrared camera and the damaged pipe or tank 
spots significantly affects the performance of OGI leak detection measured by the minimum 
detectable leak rate (MDLR) [14]; however, even for experienced UAS operators it is a demanding 
task to control UAS at consistently close distances along the complex 3D surfaces of the inspected 
pipelines or tanks, either manually or using 2/2.5 D waypoints. Clearly, to achieve consistent, high-
quality thermographic inspection outcomes, high-quality 3D path planning tools are a must.  
 
 
Challenges associated with UAS-based multi-view stereo (MVS) 3D reconstruction. 
 
Significant growth of unmanned aerial vehicle (UAV) applications has been witnessed in land 
surveying [15], urban surveillance [16] post-disaster evaluation [17], and structural inspections 
[18]. High-accuracy 3D reconstruction is often required for many UAV applications. Meanwhile, 
multi-view stereo (MVS) [19] was recognized as a viable tool for reconstructing high-quality 
three-dimensional (3D) models utilizing images from different viewpoints. However, using aerial 
MVS to reconstruct 3D models of large complex structures remains a challenge primarily due to 
the lack of appropriate path planning tools to determine the optimal UAV cameras’ poses to 
acquire MVS images of the surveyed structures.  
 
In this project, a topology-based UAV path planning method is presented and tested to improve 
both the scalability and reconstruction quality of the existing 3D path planning methods. The 
proposed method outperforms existing methods in the presented cases in terms of the 
computational cost, the reconstruction quality, and the camera initialization. Unlike the prior works 
that recursively select/adjust the cameras from a user-defined discrete candidate set, the proposed 
method continuously optimizes a set of randomly sampled cameras in the continuous space.  
 
The core of the technique lies in introducing the topology parameters to guide the maximization 
of the two-view quality metric at each model surface solely based on the closely located cameras. 
The method designs one admissible camera to cover each model surface and, at the same time, 
cluster its neighbor cameras based on the topology of the surface connectivity. The global view 
planning problem is then decomposed into a collection of local optimization problems to find the 
optimal matched camera positions/orientations within each cluster such that the MVS quality is 
maximized. The reformulated optimization is computationally tractable and inherently parallel. 
Therefore, an adapted particle swarm optimization (PSO) framework is used to seek optimal 
solutions (i.e., camera views) efficiently. The result is an optimized camera trajectory that a 
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rotorcraft UAV can fly for high-quality 3D reconstructions of the inspected structure. 
 
 
Challenges associated with UAS-based truss-structure 3D reconstruction. 
 
UAV inspections, either through remote control or simple automated waypoint flight paths (i.e., 
orbit, lawn mowing, etc.), are challenging to achieve the desired quality and completeness of the 
3D reconstruction of truss structures [20]. The primary challenge is how to handle the 
complexity and self-occlusion problem of the truss geometry under the constraints of camera 
field-of-view (FOV), safety clearance, and flight duration. 
 
A new UAV flight planning method is proposed to overcome these challenges by finding the 
optimal trajectories that maximize the reconstruction quality at truss surfaces.  Unlike the NBV 
methods [21][22][23] where the vantage viewpoints were selected from a pre-determined discrete 
candidate set, the proposed method iteratively resamples the whole candidate set in the continuous 
space, increasing the searchability of finding the optimal viewpoints subset. Additionally, the 
method computes the shortest flight paths subject to the UAV capacity constraints (i.e., battery 
capability, autopilots limitation), enabling the more automated truss bridge reconstruction by 
single/multiple UAVs. Evaluation of the proposed method includes both a synthetic and a real-
world truss bridge. The results showed that the proposed method outperforms both the recent 
sweep-based method [24] and the state-of-the-art NBV [23] in terms of the higher model quality 
with the increased automation and the fewer images/distance traveled in the air. 
 

2.2 Related Studies 

In MVS, images must satisfy quality criteria [25] to obtain high-quality models. These criteria may 
vary slightly in different MVS algorithms, but there are some standard criteria such as the 
coverage/visibility, resolution, incidence angle, baseline, and parallax [26][27][28].When a 3D 
model of the surveyed structure is available (i.e., 3D Computer-aided Design (CAD), building 
information modeling (BIM), 2.5D digital elevation model, rough photometric reconstruction), the 
UAV’s camera views/paths can be designed in a model-based fashion where the optimal 
trajectories can be computed by maximizing the MVS quality at each observed surface of the 3D 
structures [29].  
 
Among the model-based path planning methods, Next-Best-View (NBV) was recognized as the 
state-of-the-art [30][31][32][33]. NBV is a recursive view selection process: at each step, NBV 
selects the best view from an ensemble of candidate camera views based on a quality criterion. 
This approach has been used in several existing studies: from the early works where the focus was 
the indoor active range imaging in a controlled environment [34][35], to the more recent 
applications of the outdoor aerial MVS reconstruction [36][37][38][39][40]. Roberts et al. [38] 
modeled the MVS quality of a UAV trajectory as to how well the cameras cover the structure’s 
surface light field. The method formulated the coverage function as submodular and found the 
near-optimal trajectories by (1) finding the best orientation at each candidate camera and (2) 
selecting the best subset of the camera positions based on the UAV constraints. Hepp et al. [39] 
also employed the sub modularity and used the information gain (IG) to quantize the goodness of 
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each camera viewpoint. Based on the volumetric representation of the structure’s geometry, the 
method combined the optimization of camera positions and orientations into an integrated view 
selection process.  
 
One issue in these NBV methods is that the greedily selected viewpoints do not guarantee the 
optimal quality. In addition, these methods assumed that a single camera view could determine a 
point in 3D space, which contradicts the basic MVS quality assurance principle that at least two 
different views are required. Smith et al. [41] studied a reconstruction heuristic that measured the 
MVS quality based on the two-view geometric analysis [26] [42]. The two-view quality heuristic 
measures not only the visibility/coverage of the cameras to the surface points but also the 
geometries concerning other views. Based on the heuristic, the method adaptively adjusted the 
cameras from a user-defined flight path for high-quality reconstruction of urban scenes.  
 
Zhou et al.’s [43] study started with a dense camera set sampled along the normal of the urban 
structures. Based on the quality heuristic, the method greedily selected and adjusted vantage 
cameras in sequence to reduce the image redundancy while increasing the MVS quality. One major 
limitation of these studies is that the final reconstruction heavily relies on the quality of the 
initialized cameras because the methods only adjusted the cameras locally in space.  
 
Therefore, the camera initialization can be a challenge when dealing with more complex 
geometries (such as residential buildings, chemical plants, etc.) where sharp corners, concave 
regions, and uneven surfaces exist across the model, making the initialization of good camera 
viewpoints difficult. Furthermore, the quality heuristic was evaluated based on all available 
cameras in the existing methods, which makes it computationally expensive since it requires 
quadratic operations to find the best quality matches at each point. The path optimization based on 
this heuristic requires re-evaluating the model surface quality at each iteration. These optimization 
methods often include infeasible view candidates per multi-view stereo criteria, where 
computation time can grow significantly as the size of the surveyed objects increases.  
 
 
Over the past years, advanced flight planning solutions have been proposed for the automated 
inspection and 3D reconstruction of bridges. Most of the works configured the camera viewpoints 
to back-and-forth sweep the structural surfaces efficiently [27][28][29][30][31]. For example, 
Morgenthal et al. [16] densely reconstructed bridge piers in three steps: First, the method sliced 
each pier structure vertically at given intervals. Then, a dense set of horizontal camera views was 
sampled at each slice. Finally, the camera views across the sliced structures were connected 
vertically by a spiral path. Phung et al. [29] configured the orthogonal viewpoints along bridge 
surfaces based on the required ground sampling distance (GSD) and image overlapping. Discrete 
particle swarm optimization (DPSO) was employed to find the shortest path to connect these 
viewpoints. Bolourian and Hammad [31] scanned the bridge deck with varied densities of the 
camera views based on the critical level of defects at the deck surface. The method used the ray-
tracing algorithm to avoid the occlusion caused by the on-site obstacles, which guarantees the 
quality of the collected images. A limitation of these sweep-based techniques is that the methods 
assume the structures majorly consist of planar surfaces (for viewpoints to scan along). This 
assumption does not hold for the truss structures due to the geometrical variances and the 
complexity of the truss components. In addition, sweeping the image views along the structural 
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surface often encourages collecting overly redundant images, which reduces the efficiency during 
both the inflight image acquisition and the post-flight image processing without increasing the 
reconstruction quality. 
 
A notable limitation of these NBV techniques is that the methods relied on user-defined discrete 
candidate viewpoints. Unlike the 3D reconstruction of buildings where the candidate set can be 
defined as Overhead views naively surrounding the building geometries, trusses are composed of 
many slim, self-occluded, and non-planar components (i.e., beams, girders, connectors, etc.). Thus, 
it is difficult to determine a suitable-sized candidate set while ensuring complete coverage at every 
truss side. 
 

2.3 The Project Objectives  

 
In this project, an autonomous UAS-based pipeline inspection and gas-leak detection platform is 
proposed: 
 
(1) to substantially enhance the quality and efficiency of UAS pipeline/tank inspections so that it 

can be widely adopted in a large amount of routine inspection tasks.  
 

(2) to evaluate the performance of UAS-based passive optical gas imaging (OGI) in gas leak 
detections.  

 
(3) to enhance the performance of UAS-based OGI through quality-based 3D path planning. The 

developed UAS-OGI platform is also expected to be able to conduct autonomous leak-
detections of buried gas pipelines.  
 

The first objective was achieved through an integration of a Google-Map-based 3D pipeline/route 
inspection database, a quality-based 3D UAS path-planning module, and a 3D photogrammetry 
model-based profile-change analysis module.  
 
The second objective was achieved through experiments in outdoor thermographic leak detection 
using a high-performance thermal camera (FLIR A8303sc).  
 
The third objective was achieved by using the path planning algorithms developed in objective 2 
with the outcome of an outdoor gas leakage detection experiment. 
 
The intended main target is in-service above-ground transmission or gathering gas pipelines/tanks 
and their routes. Using the proposed autonomous UAS inspection platform, not only are leaks and 
locations expected to be detected and mapped, but the platform itself can also be used in numerous 
areas of interest to the Office of Pipeline Safety such as identifying and quantifying geological 
impacts, right-of-way encroachments, river-crossing changes, land movements, third-party 
excavations, and pipeline mapping verification. The outcomes of the proposed autonomous UAS 
inspection, detection, and localization platform are anticipated to significantly enhance pipeline 
safety and transform pipeline inspection and maintenance operations through autonomous UAS 
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inspection and leak detections. In reference to the identified pipeline technology and general 
knowledge gaps in the Event Summary Report of the PHMSA 2018 Pipeline R&D Forum [44], 
the proposed approach is expected to address all three (technology and general knowledge) gaps 
identified by Work Group 2 – Remote Sensing/Leak Detection-Mitigation:  
 
Gap 1 – Remote Sensing and Leak Detection Platforms that can deploy multiple sensor types,  
 
Gap 2 – Further Validation of Remote Sensing and Leak Detection Technologies under realistic 
and differing operating conditions, and  
 
Gap 3 – Improving Data Collection, Normalization, and Integration methods to enhance risk 
assessment tools for decision-making. 
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3 EXPERIMENTAL PROGRAM 

3.1 Experimental Design and Test Procedure 

The primary experimental design in this project is to use a combination of numerical simulations, 
lab tests and field validations, depending on the nature of the specific tasks.   
 

3.1.1 Task 1 

In Task 1, the main task is to develop a prototype application to show the concept of integrating 
inspection data with 3D models of the inspected pipeline systems. As such, the experiments are 
focused on coding and debugging of the application and the user interface of the application. The 
focus of this task is more on the functionality of the application, and not on how user-friendly the 
interface is. The experimental design of the system is shown in the following figure. 

 

Figure 2: The system design of the developed application in Task 1.  

We developed the pipeline asset management system by using 3D pipeline models to manage 
pipeline inspection data. Figure 3 shows the general framework of the implemented system. 
Sketchup was used as the 3D graphic interface to interact (input, output, selection, visualization, 
and geo-referencing) with pipeline inspection data. This type of technology is called digital twin 
by some groups of researchers in the civil engineering field. The identified pipeline defects, such 
as dents, deformation, leakage can be geo-referenced to the 3D model using Google Map API, so 
that a more informed and more accurate evaluation can be conducted. 
 
The system is developed with three major segments, they are (1) database; (2) 3D graphical user 
interface; and (3) system control unit. 3D graphical user interface is the major component to 
visualize the 3D model and provide user intersection. SketchUp is selected as the base engine for 
3D model representation. The system control unit is the core component of this system. It is 
developed as a set of callback functions such that the interaction between data management stack 
and system user interface can be achieved. A screenshot of the system’s UI is shown in Fig. 3 of 
the proposal. System control unit is a web-based API. The API files are developed with Ruby 
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language where the major functions to query the database, interact with web interface, and 
manipulate the 3D model are developed. 

 

Figure 3 The system overview of the implemented 3D pipeline inspection data management system. 

3.1.2 Task 2 

Task 2 was focused on developing 3D coverage path planning (CPP) algorithms, which can be 
used to control the UAS to conduct autonomous pipeline inspections while maximizing the 
inspection quality. The experimental design of this task is through 1) numerical simulations 
using digital 3D environment and 3D object models; and then 2) through field tests to compare 
the field results to the ground truth if available.   
 
3.1.2.1 Task 2.1 Topology-based Path Planning Method for pipeline structure, gathering 

facility, and buildings [127] 
The building models used in this section are just examples of 3D solid geometric objects with 
complex topographical structures (in Figure 4, Figure 5, and Figure 12 etc). The CCP algorithms 
developed and tested in this project are not expected to perform differently when applied to 
pipeline facilities, which are typically geometrically simpler than the tested building examples, 
except in the case of truss structures that will be covered separately in Section 3.1.2.2. As such, 
we expected same or better 3D reconstruction results when applied to pipeline facilities in terms 
of accuracy, consistency, and robustness performance. Another important reason to use these 
published building models in the projects is for benchmarking our developed algorithms against 
the existing CCP algorithms to demonstrate the quality improvement of our algorithms compared 
to the existing algorithms. So, apple-to apple-comparison can be conducted between algorithms. 
Figure 4 is an overview of the proposed method. Given a rough model of the target structure and 
the selected UAV, the method starts by processing the input model into a triangular surface mesh. 
The processed mesh contains the desired number/size of the surfaces, enables the per surface 
coverage planning. A topology-based coverage algorithm is then proposed to design one 
admissible camera to cover each model surface while clustering the candidate matching cameras 
to choose from. Based on the presented coverage algorithm, optimal camera views are found by 
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simultaneously maximizing the two-view quality metric within each cluster. The proposed 
optimization method integrates an approximated camera model and a two-view reconstruction 
metric into a parallelizable PSO, enables a randomly initialized camera set been optimized in an 
efficient and continuous way. After the optimization, a fast algorithm is presented to assess the 
MVS performance of the optimal cameras and adaptively generate complementary cameras, 
guaranteeing reconstruction quality even at the challenging regions. Finally, the cameras are 
converted into a shortest flight trajectory, which is then uploaded into the ground control stations 
for the automated UAV inflight mission execution and the postflight multi-view stereo 
reconstruction. In the following, the detail at each step is discussed. 
 

 
Figure 4. Overview of the proposed method for aerial 3D reconstruction 

Input model Triangulation. 
A rough 3D model is needed as an input model for the coverage planning. The rough model can 
be downloaded from Google Earth/Map, or can be reconstructed from a simple nadir (2D) flight 
if a Google Earth/Map model is not available.  Then, the raw input model needs to be triangulated 
such that each model surface can be covered by one viewpoint with the specific sensor model 
[45][46]. Thus, preprocessing of the input model is needed to convert the raw model (in point-
cloud format or 3D CAD/BIM format) into a triangulated surface mesh, and to make the sizes of 
triangulated surfaces more evenly to be covered by the selected cameras. The proposed 
triangulation method is an iterative mesh resampling algorithm and is developed based on two 
criteria: (1) the triangulated model must be geometrically consistent with the raw input model; (2) 
each triangulated surface must fit into the camera’s FOV at the required distances (i.e., GSD); The 
first criteria guarantees the high fidelity of the processed model compared to the inputs while the 
second criteria ensures the baseline quality of the collected images. 
Starting with a baseline surface size, the method incrementally resamples the input model into a 
triangular mesh (with the reduced surface sizes) until the mesh reaches the required fidelity. In this 
study, model fidelity is computed as an error metric that measures the nearest neighbor distance 
(NND) of the point correspondences between the resampled mesh and the input model. Based on 
this metric, a residual map is generated, and the ratio of outliers is computed based on a distance 
measurement 𝜔𝜔. If the ratio is less than a pre-defined threshold 𝜏𝜏, the mesh is considered as of 
high-fidelity. Otherwise, the surface size is reduced (at certain step 𝜆𝜆) and the above steps are 
repeated until the stopping criteria is satisfied. In this study, the Approximated Centroidal Voronoi 
Diagrams (ACVD) [47] is employed for the model surfaces resampling at each iteration, and the 
Poisson disk sampling [48] is used to represent the point set (for fidelity measurement). The 
baseline surface size is estimated based on the covered area of the selected camera FOV and the 
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baseline GSD [49]. Based on the experiments on various input geometries, we set 𝜔𝜔 as 1 meter 
and 𝜏𝜏 equals to 15% which preserves the major geometric components (e.g., façade, roof, etc.) of 
building-scale structures (normally at scale 100 𝑚𝑚2~5000 𝑚𝑚2). Noted that the algorithm outputs 
a mesh with a relatively small number of surfaces (i.e., larger surfaces size), thus encourage to 
generate less camera views which increases the efficiency of the inflight images acquisition and 
the post-flight 3D reconstruction. Figure 4 presents an example of the proposed method on 
triangulating an orbit flight reconstructed residual building. The result model contains significantly 
less surfaces while guaranteeing the baseline GSD at each image. 

 
Figure 5 Workflow of the model preprocessing algorithm on a residential building 

(a) The input model contains over 50,000 surfaces (resampled for visualization purposes, each triangle surface is 
color-coded); (2) The residual map between a resampled model and the input when the stopping criterion is met 

(points in blue denotes the inliers; points in red denotes the outliers); (c) Resampled model only contains 122 
triangles. Noted the major structural components of the buildings are preserved. 

Topology-based Coverage Modeling  
The proposed coverage algorithm defines the MVS camera search spaces based on the topology 
of the model surfaces. The algorithm includes two major steps: (1) sampling a set of overlapped 
cameras with each camera covering an unique set of mesh surfaces; and (2) clustering the 
neighborly located cameras as the candidate matches for the 3D triangulation at each surface. 
Sampling Overlapped Cameras  

For each mesh surface 𝓈𝓈 (𝓈𝓈 ∈  𝒮𝒮), an admissible camera view 𝓋𝓋𝓈𝓈 must be within a hemisphere 
centered at the centroid of the mesh surface (𝒸𝒸𝓈𝓈) with the camera FOV covers the adjacent triangles 
of 𝓈𝓈 (as in Figure 6). It is also required that each admissible view satisfies the camera gimbal 
constraints (e.g., camera pitch rotation constraint) and the UAV safety clearance from the surveyed 
object [29]. Eq.1 presented the constraints that formulates the camera search space: 

𝒹𝒹(𝓋𝓋𝓈𝓈, 𝒸𝒸𝓈𝓈) ≤ ℛ 

𝒹̇𝒹(𝓋𝓋𝓈𝓈, 𝓈𝓈) ≥ 𝒹𝒹𝑠𝑠 

𝜃𝜃(𝓋𝓋,𝓃𝓃𝓈𝓈) ≤ 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 

𝜋𝜋�𝓋𝓋𝓈𝓈, 𝛾𝛾𝓀𝓀(𝓈𝓈)� = 1 

(1) 
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Where 𝒹𝒹 measures the Euclidean distance between 𝓋𝓋𝓈𝓈 and 𝒸𝒸𝓈𝓈, ℛ is the radius of the hemisphere 
which is defined by the baseline GSD given the camera focal length. 𝒹̇𝒹 computes the perpendicular 
distance between the camera and the surface, and 𝒹𝒹𝑠𝑠 is the safety tolerance for the aircraft. 𝜃𝜃 
measures the observation between the camera ray and the surface normal 𝓃𝓃𝓈𝓈, and 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 indicates 
the maximal acceptable observation angle. 𝜋𝜋 is the Boolean function that denotes the complete 
coverage of a camera view to the mesh surfaces. 𝛾𝛾𝓀𝓀(𝓈𝓈) is a collection of the neighborly connected 
mesh surfaces centered at 𝓈𝓈. We set 𝓀𝓀 equals to 1 to ensure the minimal overlapping between the 
sampled cameras. The definition of 𝛾𝛾𝓀𝓀(𝓈𝓈) and the selection of 𝓀𝓀 are detailly discussed in the next 
section. 

 
Figure 6 Each admissible camera view 𝓿𝓿𝓼𝓼 must cover a neighborhood of the surfaces 𝜸𝜸(𝓼𝓼) (colored in gray) 

centered at 𝓼𝓼 (colored in blue) 

Clustering Candidate Matchings  
In MVS, triangulating 3D points from the closely located images can reduce the cost of the 
redundant image selection while filters out the erroneous points [25][26][27]. In this study, the 
topology of the mesh surface connections is used to guide the clustering of the neighbor cameras 
for the per surface MVS quality maximization. Given the mesh, we define a graph 𝒢𝒢(𝒮𝒮,ℰ) with 
each node denoted as a triangle surface and each edge as the edge connection between the surfaces. 
By defining every edge as a unit distance, the proximity of the surfaces can be computed by 
counting the minimal number of edges traversed between the surfaces. As shown in Eq. 2, the 
neighborhood of 𝓈𝓈 is defined as the collection of the mesh surfaces with the proximity distance 
less than 𝓀𝓀. 

𝛾𝛾𝓀𝓀(𝓈𝓈) = � 𝓈𝓈′
 𝓈𝓈′∈𝒮𝒮

,    𝑖𝑖𝑖𝑖  𝒹̂𝒹(𝓈𝓈, 𝓈𝓈′) ≤ 𝓀𝓀,𝓀𝓀 ∈ ℤ+ (2) 

 

Where 𝒹̂𝒹 is the distance of the shortest path between 𝓈𝓈 and 𝓈𝓈′, and 𝓀𝓀 is a coefficient that controls 
the number of the neighbor surfaces. Due to one camera view is defined at each surface, thus the 
topological structure (i.e., neighborhood) of the surfaces (i.e., 𝒢𝒢) can be used to map the closeness 
of the sampled cameras (as in Eq. 3).  
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𝛾𝛾𝓀𝓀(𝓋𝓋𝓈𝓈) ↔ 𝛾𝛾𝓀𝓀(𝓈𝓈𝓋𝓋) (3) 

Where 𝓈𝓈𝓋𝓋 and 𝓋𝓋𝓈𝓈 respectively denotes the correspondent mesh surface and the camera. 𝛾𝛾𝓀𝓀(𝓋𝓋𝓈𝓈) as 
a cluster of closely located cameras within each one covers a surface in 𝛾𝛾𝓀𝓀(𝓈𝓈𝓋𝓋).  Because the 
influence of a camera is spatially limited (i.e., FOV, GSD), there is a large chance that the best 
camera views for triangulating 𝓈𝓈𝓋𝓋 belong to 𝛾𝛾𝓀𝓀(𝓋𝓋𝓈𝓈). With greater 𝓀𝓀 means more cameras are 
clustered, which increases the possibility of covering the real best matches. The extreme case is 
that all cameras are included in each cluster which is identical to perform the stereo-matching 
globally. In this study, 𝓀𝓀 = 3 is used empirically to ensure the good matching results for complex 
scenes and, at the same time, keeps the computational load small (i.e., search the best matches in 
each cluster). Figure 6 (a) shows an example of the clustered neighbor surfaces with 𝓀𝓀 = 2 for 
demonstration purposes.  

 
Figure 7 (a) Top: the current model surface (in red) and the clustered neighbor surfaces (in blue); Bottom: the 
topology graph, denoting the current view (in red) and the clustered candidate matches (in blue); (b) surface 

selection when more than one surface is connected by an edge. Top: the condition where 𝓼𝓼𝒏𝒏𝒏𝒏 is considered as the 
neighbor, while 𝓼𝓼𝒏𝒏𝒏𝒏 is neglected due to the intersection between the line 𝒑𝒑𝟏𝟏 and 𝒑𝒑𝒏𝒏𝒏𝒏; Bottom: both 𝓼𝓼𝒏𝒏𝒏𝒏 and 𝓼𝓼𝒏𝒏𝒏𝒏 are 

neglected due to the existence of intersections in both conditions. 

In most cases, the growth of cluster size follows the properties of the triangular mesh (i.e., each 
mesh surface connects at most three other surfaces). However, there are cases when the surface 
edge is connected through more than one surface plane, such as at the concave area. Under this 
condition, a simple mechanism is defined to select the neighbor surfaces. As shown in Figure 6 
(b), the current surface (𝓼𝓼𝟏𝟏) is edge connected with two candidate surfaces (𝓼𝓼𝒏𝒏𝒏𝒏 and 𝓼𝓼𝒏𝒏𝒏𝒏). By 
connecting the points along the normal of the current (𝒑𝒑𝟏𝟏) and the candidate surface planes (𝒑𝒑𝒏𝒏𝒏𝒏 
and 𝒑𝒑𝒏𝒏𝒏𝒏), the surface with no intersection within the connection is selected as the neighborhood of 
𝓼𝓼𝟏𝟏. Noted due to the clusters are only determined based on the model topology, which is given in 
advance, thus we can cluster the surfaces/cameras ahead of the planning.  
 
Multi-view Optimization 
Problem Formation 
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Given a model (i.e., triangular mesh) and a designed number of camera views, the objective is to 
find the optimal camera views (𝒱𝒱∗) in terms of the positions and the orientations where the MVS 
quality at each surface of the model is maximized (Eq. 4): 

𝒱𝒱∗ = argmax
𝒱𝒱

 �� �𝒽𝒽(𝓋𝓋,𝓊𝓊, 𝓈𝓈)
𝓊𝓊∈𝒱𝒱𝓋𝓋∈𝒱𝒱𝓈𝓈∈𝒮𝒮

 (4) 

Where 𝓋𝓋,𝓊𝓊 (𝓊𝓊 ≠ 𝜈𝜈) consist of the potentially matched cameras and 𝒽𝒽 is the metric that models 
the MVS quality based the matched views. The computational complexity of finding the optimal 
solution is 𝛰𝛰(|𝒮𝒮||𝒱𝒱|2) since we need to traverse through every camera combination to find the 
best one [22]. This formation, based on the proposed coverage algorithm (Section 2.2), can be 
reformulated as (in Eq. 5): 

𝒱𝒱∗ = argmax
𝒱𝒱

 �𝒽𝒽(𝓋𝓋𝓈𝓈, 𝛾𝛾𝓀𝓀(𝓋𝓋𝓈𝓈),𝓈𝓈 )
𝓈𝓈∈𝒮𝒮

 (5) 

Noted due to 𝓈𝓈 and 𝓋𝓋𝓈𝓈 are exclusively correlated, and 𝓀𝓀 is a constant, the complexity of the 
problem is reduced to linear 𝛰𝛰(|𝒮𝒮|). This strategy regularizes the search space needed to find the 
best matches, makes the multi-view optimization problem computational tractable even in 
continuous space.  

 
Figure 8 Overview of the multi-view optimization (The camera rays in red conceptually denotes the best matches 

selected from the candidates (camera rays in black) at each iteration) 

Multi-view Optimization  
Figure 8shows the overview of the optimization. In this study, the optimization is built on a priorly 
developed PSO framework [46]. The framework is adapted in this method for efficient and 
continuous MVS cameras optimization. The main steps of the optimization can be divided into six 
steps: 

• Step 1: Initialize a population of particles with each particle denotes a set of randomly 
sampled admissible camera views.  
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• Step 2: Evaluate the cost of each particle through the fitness function defined by a 
reconstruction metric (𝒽𝒽)  

• Step 3: Record the particle with the maximal fitness as the best particle. 
• Step 4: Sequentially update the cameras within the best particle by switching the cameras 

belong to other particles in population [46]. Update the global best if the particle shows a 
better result. 

• Step 5: Update the camera positions in each particle using the PSO mechanism. Recompute 
the camera view based on the coverage constraints. The camera is rejected if the 
recomputed positions/orientations do not lie in the admissible spaces. 

• Step 6: Repeating steps 2-5 a number of iterations, or the global best record does not 
increase for at least 3 iterations (i.e., convergence).  
 

The output is the camera views with the highest MVS quality. Noted that while Step 4 avoids the 
optimization been trapped at the local optima, this step is expensive because the cameras need to 
be sequentially rendered/evaluated, resulting in the long processing time. In the following sections, 
we firstly discuss how the reconstruction metric is calculated and then present an approximated 
camera model that significantly accelerates the optimization (especially at Step 4).  
Reconstruction Metric 
 

In this subsection, we quantify the reconstruction quality 𝓱𝓱 at each surface given a set of cameras. 
The metric is an estimation of the MVS quality based on the two-view geometric analysis [41]. 
Technically, the metric is composed of two terms: the view-to-surfaces observation and the view-
to-views triangulation. We discuss each term in detail as follows.  

View-to-surfaces observation (𝓱𝓱𝓸𝓸): The view-to-surface observation measures the distance and 
the incidence angle between each camera view to the covered mesh surfaces (as presented in Eq. 
6). 

𝓱𝓱𝓸𝓸(𝓋𝓋, 𝓈𝓈) = � 𝓱𝓱𝑟𝑟𝑟𝑟𝑟𝑟(𝓋𝓋𝓈𝓈, 𝓈𝓈+) 𝓱𝓱𝑎𝑎𝑎𝑎𝑎𝑎(𝓋𝓋𝓈𝓈, 𝓈𝓈+)
𝓈𝓈+∈𝛾𝛾1(𝓈𝓈)

 

𝓱𝓱𝑟𝑟𝑟𝑟𝑟𝑟(𝓋𝓋, 𝓈𝓈)  = 𝑚𝑚𝑚𝑚𝑚𝑚 �1 −
𝒹𝒹(𝓋𝓋, 𝒸𝒸𝓈𝓈)

ℛ
, 0� 

𝓱𝓱𝑎𝑎𝑎𝑎𝑎𝑎(𝓋𝓋, 𝓈𝓈)  = 𝑚𝑚𝑚𝑚𝑚𝑚 �1 −
𝜃𝜃(𝓋𝓋,𝓃𝓃𝓈𝓈)
𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚

, 0� 

(6) 

Where 𝓱𝓱𝑟𝑟𝑟𝑟𝑟𝑟 is the image resolution factor that measures the camera to surface distance, and 𝓱𝓱𝑎𝑎𝑎𝑎𝑎𝑎 
is the image distortion factor that indicates the incidence angle between the camera direction and 
the surface normal. We constrain both factors within the range of [0, 1]. Noted we do not provide 
the visibility check in Eq. 6 because the sampled cameras must already satisfy the coverage 
constraint (Eq. 1).   

View-to-views triangulation (𝓱𝓱𝓽𝓽): For each camera view, the view-to-view triangulation factor 
seeks the 𝓂𝓂 best matches from the candidate matching cameras in terms of the sufficient 
overlapping, the appropriate parallax, and the small baseline (as in Eq. 7):  
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𝓱𝓱𝓽𝓽(𝓋𝓋, 𝓈𝓈,𝓂𝓂) = max
𝛾𝛾�(𝓋𝓋)⊂𝛾𝛾(𝓋𝓋)
|𝛾𝛾�(𝓋𝓋)|=𝓂𝓂

� 𝝅𝝅(𝓋𝓋+, 𝓈𝓈)𝓱𝓱𝑏𝑏𝑏𝑏𝑏𝑏(𝓋𝓋+, 𝑠𝑠)𝓱𝓱𝑝𝑝𝑝𝑝𝑝𝑝(𝓋𝓋,𝓋𝓋+, 𝓈𝓈)
𝓋𝓋+∈𝛾𝛾�(𝓋𝓋)

 

𝓱𝓱𝑏𝑏𝑏𝑏𝑏𝑏(𝓊𝓊, 𝓈𝓈) = 𝑚𝑚𝑚𝑚𝑚𝑚 �1 −
𝒹𝒹(𝓊𝓊, 𝒸𝒸𝓈𝓈)

ℛ
, 0� 

𝓱𝓱𝑝𝑝𝑝𝑝𝑝𝑝(𝓋𝓋,𝓊𝓊, 𝓈𝓈) = exp�
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2

2𝜎𝜎2
� 

(7) 

Where 𝓱𝓱𝑏𝑏𝑏𝑏𝑏𝑏 evaluates the baseline effects of a camera pair and 𝓱𝓱𝑝𝑝𝑝𝑝𝑝𝑝 models the parallax 
dependency on the depth error. The 𝓱𝓱𝑝𝑝𝑝𝑝𝑝𝑝 is measured as a Gaussian function defined based on. 
We empirically set 𝜌𝜌 as 28° for additional tolerance at large angles and let 𝓂𝓂 equal to 4 as 
suggested in [25]. 
Finally, we concatenate the defined terms (Eq. 6 and Eq. 7), and the reconstruction metric at each 
camera view/model surface is obtained as in Eq. 8.  

𝓱𝓱(𝓋𝓋, 𝓈𝓈) = 𝓱𝓱𝓸𝓸(𝓋𝓋, 𝓈𝓈) 𝓱𝓱𝓽𝓽(𝓋𝓋, 𝓈𝓈,𝓂𝓂) (8) 

 
Approximated Camera Model 
In general, the camera model that renders the visibility detection has been considered as the most 
expensive step for multi-view optimization [39][41]. Given a set of cameras and the surface points, 
the visibility of each camera is computed through the ray casting operation at every surface point 
in two steps: (1) measuring if the point is located within the camera FOV; (2) checking whether 
there is an obstacle between the camera and the surface point. The time complexity of this 
operation is quadratic in terms of the number of the cameras and the surface points. The proposed 
camera model reduces the computation cost while assures the visibility detection quality by 
actively restricting the camera visible points within 𝛾𝛾(𝓈𝓈𝓋𝓋). To ensure the approximated camera 
does not exclude the good quality points, a photometric metric [51] is used for the evaluation. As 
shown in Figure 9, comparing to the original camera, the approximated camera only takes 16% of 
the computation, but covers more than 80% of the regions with the best observation quality. Noted 
that this strategy would perform even better for large-scale structure because the visibility 
calculation does not grow as the model increases.  
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Figure 9 Evaluation of the approximated camera model: (a) the mesh geometry at a selected (in pink) and its 

neighbors (in blue and 𝓴𝓴 = 𝟑𝟑); (b) visibility detection using the original camera model and the computation load; (c) 
visibility detection using the approximated camera and the computation load; (d) the observation quality of the 

original camera model; (e) the observation quality of the approximated camera model. 

Based on the approximated camera model, the optimization can be facilitated by simultaneously 
evaluating the non-overlapped cameras. Given the graph 𝒢𝒢 , we construct a new graph 𝒢𝒢′ where 
each node denotes a cluster of surfaces/cameras in 𝒢𝒢. Then, the edges in 𝒢𝒢′ are denoted as the 
connections between the clusters. Based on the approximated camera model, the non-overlapped 
cameras can be incrementally identified by breadth-first searching (BFS) through the disconnected 
nodes in 𝒢𝒢′. To avoid the order dependency of the selected cameras, a random seed is used as the 
starting node at each iteration. After each search, a set of non-overlapped cameras is obtained. 
Then, we subtract the correspondent nodes in 𝒢𝒢′, and use the same strategy to recursively select 
the non-overlapped cameras from the rest nodes. The recursion terminates until the number of 
unselected cameras is less than 𝜀𝜀. For a mesh model containing 100 triangular surfaces, normally 
this procedure reduces 6-9 times of the optimization when compared to the existing framework 
where the camera views are evaluated/updated sequentially. Based on this strategy, our method 
can compute the optimal cameras in minutes even on a personal PC with limited computational 
resources (e.g., memory, GPU, etc.). 
 
Sampling Complementary Cameras 
In most cases, we obtain high-quality dense reconstruction from the optimized results. However, 
for complexity scenes where there are locally sharp corners or deeply concave regions, 
complementary camera views may be needed for the sufficient coverage and depth estimation [39]. 
To account for this issue, a heuristic is proposed to adaptively sample complementary cameras at 
those regions. A workflow of the proposed heuristic is shown in Figure 9. First, the reconstruction 
quality at each mesh surface, given a set of optimal camera views, is evaluated. The model surfaces 
with insufficient reconstruction quality (i.e., 𝒽𝒽 < 0.15) are identified. For each extracted surface, 
we add a complementary camera which forms the good geometric reasoning with the existing 
camera. To achieve that, we sample several admissible cameras at the surface through the coverage 
model with the constraints of the parallax angle 𝜑𝜑 and baseline distance 𝒹𝒹 between each newly 
sampled view and the existing camera for the good images matching. Next, we evaluate the quality 
of each admissible camera based on the observation quality 𝓱𝓱𝓸𝓸. The camera view with the best 
quality at the mesh surfaces is selected as the complementary camera. We iterate this procedure 
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until complement camera views are provided at every extracted surface. Finally, we merge the 
complementary cameras into the optimized camera set and output the merged cameras. In theory, 
we can repeat this process several times to enhance the reconstruction quality at those complex 
regions. However, adding redundant cameras often results in the diminished returns. Thus, we 
perform this process only once for all the experiments in this study. 

 
Figure 10 Workflow of sampling complementary cameras for global reconstruction: (a) identify the model surface 

with insufficient reconstruction (in dashed box); (b) sample admissible cameras (in light green) based on multi-view 
stereo geometric criterion, and the camera view with the best observation quality is selected (in green); (c) merge the 

newly sampled camera into the optimal camera set 

Trajectory Generation 
For automated aerial reconstruction of real-world structures, the computed camera viewpoints 
need to be converted into a safe and efficient trajectory for aerial images collection. The process 
of the trajectory generation can be divided into three steps (as in Figure 11). First, we construct a 
complete graph with each node representing a camera position, and each edge indicating the 
Euclidian distance between the cameras. The start and end positions are determined based on the 
UAV take-off/landing spots. The shortest path travels through all the camera positions without 
considering the existence of the site obstacles is computed through the LKH-TSP solver [52].Then, 
the collision detection is performed at each path segment using the hierarchy OBBTree [53]. If the 
collision is found in a path segment, the rapidly exploring random tree star (RRT*) [54] [55] 
employed to reroute each segment. We define the search space using the ellipsoidal heuristic as in 
[35] to speed up the path finding process. Finally, we employ the B-spline Curve interpolation [56] 
to convert the collision-free path into a trajectory that can be safely followed by a rotary UAV. 

 
Figure 11 Workflow of the trajectory generation: (a) Find the shortest TSP path without considering the on-site 

obstacles; (2) Find the path segments collided with the obstacles and reroute the segments using RRT*; (3) Smooth 
the path into the flight trajectory using B-Spline curve interpolation. 
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Experimental Setup 
The Selected Scenes 
As shown in Figure 11, three synthetic scenes and one real-world structure are selected for the 
evaluation of the proposed method. Using the synthetic scenes for evaluation has two advantages: 
1) the ground truth models of the synthetic scenes are noise-free as opposed to other measurement 
tools (e.g., ground control points, GNSS-based measurement or laser scanning), enables the precise 
evaluation of the reconstruction quality (i.e., accuracy and completeness). 2) the synthetic 
environment is controlled so ensures the image quality is consistent and not affected by the random 
real-world environment factors (e.g., sunlight direction, shadows, wind, and moving objects in the 
field). In this way, the performance evaluation of different path planning algorithms can be 
compared on the algorithms themself without concerning random impact from environmental 
factors. Due to the two advantages synthetic models are widely adopted in performance evaluation 
in MVS reconstruction [38][39][41][43].To evaluate the robustness of our algorithm a real-world 
building case is also used.  
The selected synthetic scenes are from free online sources and rendered in Unreal Engine 4: a 3D 
game engine with rich support of photo-realistic scenes. It is noted that these scenes were not 
originally designed for multi-view reconstruction, thus we adjust the original modular template 
such that sufficient salient features can be extracted from the rendered cameras. The three synthetic 
scenes are objects of (a) Res. [57], (b) Com. [58], and (c) Ind. [59] (as in Figure 9 (a) – (c)), each 
with unique geometrical properties. Specifically, (a) is a two-story residential house. It is a small 
building structure contains many geometrical complex regions, such as the gable roof, the dormers, 
as well as the balcony, that are hard to be fully covered by the aerial images; (b) is a commercial 
building with flat roof and rich surface textures. The model contains a concave area with sharp 
corners that is difficult to triangulate due to the large parallax. The last scene, (c) is an industrial 
oil/natural gas facility. It contains both the texture-less twin tank structures and the surrounding 
slim pipelines that are considered challenging geometries for multi-view reconstruction. To test 
the applicability of the proposed method on real-world applications, a catholic church located at 
the south of Lincoln, Nebraska (as in Figure 9 (d)) is used. The building is large scale and contains 
rich geometrical details and surface variations across the building façades/roofs, makes it a 
challenging task for high-quality reconstruction using UAV.  

 
Figure 12 The selected case studies in this study: (a) Res., (b) Com., (c) Ind., and (d) Church. 
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Selected Input Models  
In this study, different types of input models are selected to evaluate the proposed method. For the 
Res. and Church, image reconstruction from an orbit flight path is used to obtain the rough 
geometries of the structures. However, we found the orbit paths fail to generate complete models 
for Com. and Ind (i.e., missing walls at the concave regions and the low coverage of the self-
occluded pipe structures). Thus, we manually create the 2.5D models of these structures based on 
a rough estimation of the occupied area and the height of the model. Noted these input models 
only provide the coarse estimations of the ground truths, which needs to be further refined using 
the presented methods. 
Images Acquisition 
For the synthetic scenes, we render images at the designed cameras through UnrealCV[60] We set 
the camera at the resolution of 4000x3000 with the horizontal FOV as 90°. The sunlight shadows, 
the light reflection, and the camera exposure are disabled through the images collection.  
For the real-world application, the first step is to convert the computed trajectories from the local 
coordinates to the World Geodetic System (WGS-84). Next, the converted geographic coordinates 
are imported into Ground Station Software. In this study, we select UgCS [61] due to its flexibility 
to import a sequence of waypoints with designated camera motions and the support of various 
types of drones. DJI Mavic 2 Zoom is selected as the aerial platform for the automated waypoints 
following and images acquisition. Due to the limited battery capacity as opposed of the designed 
flights, multiple flights are needed to travel through every designed waypoint. We manually set 
the drone return to home when the battery level is less than 30%. After the battery replacement, 
we fly the drone to the last visited waypoint and continue the mission until every waypoint is 
visited. 
3D Reconstruction 
After the images acquisition, the collected images are imported into Agisoft Metashape [62]  for 
the 3D dense reconstruction. The positions of the cameras (GPS for the real-world environment) 
are used to facilitate the photo alignment steps. Noted the repeated textures in the synthetic scenes 
can cause false alignments between the images. Such alignments need to be reset and re-aligned 
to avoid the mis-aligned models. We set the quality as high both in the image alignment and dense 
point cloud reconstruction steps. For the 3D surface reconstruction, the interpolation mode and 
hole fillings are disabled to perverse the geometric details. Noted we only output the dense point 
cloud for the Ind. scenes since it is very costly to convert the slim structures (i.e., railings, pipelines, 
joints, ladders, etc.) into surface meshes without producing additional artifacts. Table 1 presents 
the general information and statistics of the selected structures, the type of the input geometry, and 
the reconstruction output.  

Table 1 Statistics of the selected structures: (from left to right) the areas, the height, the input type, the triangular 
surface number of the resampled mesh, as well as the reconstruction pipelines. 

Scene Type Area (m2) Height (m) Input Geometry  Reconstruction 
Output 

Res. 
Synthetic 

296.22 9.87 Orbit Flight 
Reconstruction Triangular Mesh 

Com. 1,344.29 9.12 2.5D Triangular Mesh 
Ind. 1,422.41 15.11 2.5D Dense Point Cloud 
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Comparisons  
 
To evaluate the performance of our results, two methods are selected for the comparison: (1) the 
baseline Overhead and (2) the state-of-the-art NBV. Overhead is a commonly used path planning 
method for UAV photogrammetry and is widely used for benchmarking path paling algorithms 
[63]. Same as the prior work [38], the Overhead flight is designed as a lawnmower flight at a safety 
height above the scene followed by an orbit path to capture the oblique images. We uniformly 
distributed the camera views on both the lawnmower and the orbit path with camera views oriented 
towards the center of the scene. The 80/80 image overlapping between the adjacent views is 
required to ensure the complete reconstruction.  
In this study, we implement a naive NBV method as presented in [38][39][63] which greedily 
select the vantage camera viewpoints from an ensemble of candidate cameras. The two-view 
quality evaluation [41] is used to guide the view selection process such that the compared results 
are majorly affected by the optimization methods instead of the quality criterion been used. To 
make a fair comparison and avoid the unbounded images collected in NBV, the number of camera 
views estimated in our method is used as an additional termination condition in NBV optimization.  
Evaluation Methods 
To quantitatively evaluate the reconstruction quality, the 3D models need to be initially 
transformed to the same coordinates of the ground truth. In this study, such transformation 
computed in a coarse-to-fine fashion: First, we roughly algin the two models based on several well 
distributed points (e.g., corners) both from the reconstructed model and the ground truth. Next, we 
refine this rough alignment through the iterative closest point (ICP) registration [64] provide a 
robust registration result, we embed the RANSAC [65] into the ICP to remove the outliers as well 
as guarantee the registration convergence. Based on the aligned models, we compare the quality 
of the reconstruction models based on two indicators: accuracy and completeness as in the 
previous works [41]. Accuracy (also denoted as precision) measures the maximal geometric 
distance between the reconstruction to the ground truth, given a percentage of the points. To 
measure the accuracy, we compute the Euclidean distance between each point on the surface of 
the reconstructed model to the closest point on the ground truth. Then, we collect the distances 
from the whole point set, and compute the histogram map at 90%, 95% and 99% of the point set. 
The completeness (also denoted as recall) measures the coverage ratio of the reconstruction to the 
ground truth, given a distance threshold. To calculate the completeness, we use the same strategy 
to compute closest-point distance between the point sets, but count the percentage of the points 
within the pre-defined distance. We empirically set the thresholds as: 0.02m, 0.05m, and 0.2m, to 
evaluate the completeness at different levels of details (LoDs).  
 
3.1.2.2 Task 2.2 Path Planning Method for Truss Structures [66] 
 
Method Overview 
 Figure 13 shows the overview of the truss bridge reconstruction using the proposed flight planning 
method. The method assumes an existing rough geometrical model of the bridge, which can be 
extracted from the web (Google Map in our case) using third-party tools (e.g., OpenStreetMap). 
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The extracted model is an unstructured triangular mesh (KMZ format) containing both the bridge 
and the surroundings. The model is further processed to explore the camera/UAV search space 
around the bridge and the observable truss surface points for the subsequent view and path 
planning. The proposed method first computes the optimal viewpoints that maximize the 
reconstruction quality at each observable surface point by selecting the best subset from an 
iteratively resampled candidate set. The candidate is a set of densely sampled oblique viewpoints 
(i.e., multiple orientations at each position) initialized within the UAV free space while 
considering the camera/inspection parameters. After the optimization, the method converts the 
discrete viewpoints into single or multiple smooth flight trajectories subject to UAV constraints 
(i.e., aerodynamics, battery capacity, memory usage, and safety distance to the on-site objects) . 
These trajectories are then transformed into the world coordinates (e.g., WGS84) and uploaded to  
the onboard autopilot system for the automated inflight image acquisition using single or multiple 
UAVs. A photogrammetric reconstruction software will use the acquired high-quality images to 
generate a truss bridge's geo-referenced, high-fidelity 3D model. 

 

Figure 13. Overview of truss bridge reconstruction based on the proposed method. 

 Initialization 
 Input Parameters 
Several important parameters must be defined as the inputs of the proposed method. In this study, 
we classify these parameters into four categories: (1) the UAV parameters, (2) the camera 
parameters, (3) the inspection requirements, and (4) the safety concerns. The UAV parameters 
include the physical properties of the selected UAV, such as the overall flight duration, the 
designed inflight speed, and the maximal number of executable waypoints in each flight. The 
camera parameters describe the properties of the onboard camera system, including the horizontal 
angle-of-view (AOV), the resolution of the onboard camera, and the gimbal pitch rotation limits. 
Due to the in-plane rotations do not change the image contents, we lock the gimbal roll angle as 
0° and align the gimbal yaw with the UAV orientation. The inspection requirements are factors 
that control the quality of the collected images: they are the maximal/saturated ground sampling 
distance (GSD) and the incidence angle. The safety concerns are parameters that define the UAV 
flyable space. It includes the safe clearance to site objects, the minimum height above ground level 
(AGL), and whether the UAV is enabled to fly through the truss. Flying-through-truss is a binary 
coefficient that defines whether the spaces within the truss structure are available for UAVs to pass 
through. These spaces enable the UAVs to inspect the truss bridge's interior surfaces better. 
However, most consumer-grade UAVs cannot fly closely around metal structures (e.g., steel truss) 
because electromagnetic disturbances can affect the onboard sensing system (i.e., compass) and 
corrupt the GPS positioning capabilities. Therefore, for safety, we enable the flying-through-truss 
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option only when the UAV onboard navigation system can handle the signal interference. The 
symbols, descriptions, and the default values of the parameters are listed in Table 2 below.  

Table 2. Summary of the input parameters, the symbols, the descriptions, and the default values 

Categories Parameters (Symbols) Description Value 

UAV 

Parameters 

Flight speed (A) 
The designed travel speed 
between waypoints 

1.5 m/s 

Flight duration (B) 

The maximum duration of each 
flight constrained by the onboard 
battery capacity (Data from DJI 
Inspire 1). 

15 mins 

Number of waypoints 
(W) 

The maximum number of 
waypoints can be uploaded to the 
autopilot system at once (Data 
from DJI Inspire 1). 

99 

Camera 

Parameters 

Horizontal angle of 
view (HAOV) 

The horizontal angle of view of 
the onboard camera 

90° 

Image resolution (R) 
The resolution of the camera 
captured images 

[4000, 3000] 

Gimbal pitch limits 
([𝜑𝜑−,𝜑𝜑+]) 

Lower and upper bounds of the 
gimbal pitch rotation 

[−90°, 30°] 

Inspection 

Requirements 

Maximal ground 
sampling distance 
(GSD𝑚𝑚𝑚𝑚𝑚𝑚) 

The largest acceptable size of the 
scene represented by each pixel 
for feature extraction and 
matching 

8 cm/pixel 

Saturated ground 
sampling distance 
(GSD𝑠𝑠𝑠𝑠𝑠𝑠) 

The satisfied size of the scene 
represented by each pixel for 
feature extraction and matching 

1 cm/pixel 

Maximal incidence 
angle (𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚) 

The largest acceptable angle 
between the camera ray and the 
normal of the scene for feature 
extraction and matching 

65° 

Saturated incidence 
angle (𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠) 

The satisfied angle between the 
camera ray and the normal of the 
scene for feature extraction and 
matching 

15° 

Safety 

Concerns 

Safe distance tolerance 
(D𝑠𝑠) 

The minimal distance between 
the center of the UAV and on-site 
object considering the GPS 
positioning error and signal 
interference 

5 m 

Minimal height AGL 
(H𝑚𝑚𝑚𝑚𝑚𝑚) 

The minimal height above 
ground to avoid the ground effect 
and the potential site objects (e.g., 
trees, vehicles) 

7 m 
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Flying-through-truss (𝜌𝜌) 

A user-controlled parameter 
defines whether the selected UAV 
can fly at the interior of the truss 
bridge 

0 

 
 Preprocessing 
Based on the input parameters, the initial model extracted from Google Map is pre-processed to 
define the UAV configuration space, the search space of the admissible viewpoints, and the truss 
surface points for visibility/quality evaluation. 
UAV Configuration Space 
UAV configuration space is the free space accessible by a UAV. Due to the external noise (e.g., 
GPS errors, wind, signal interference, etc.), a safety tolerance (Table 2) between the model and the 
selected UAV must be maintained. Since the input model format is a triangular mesh, the space 
inaccessible by a UAV can be defined by extruding the safety tolerance along the normal at every 
surface of the mesh. New mesh surfaces (highlighted as orange in Figure 13 (a)) that cover every 
side of the bridge with the defined tolerance are then constructed by connecting the adjacent extruded 
points. Positions located within this mesh or intersected with the mesh surfaces are considered collisions. 

To define the free space within the truss, another surface mesh that covers the interiors of the truss 
structure (highlighted as yellow in Figure 13 (a)) is developed. This mesh can be manually created 
or downscaled from the convex hull. It is worth noting that this mesh is created only when the fly-
through-truss option is disabled.  
Viewpoints Search Space 
The viewpoints search space is a subset of the UAV configuration space where the baseline 
observation quality of the collected images is guaranteed. Thus, only the free spaces surrounding 
the truss surfaces within certain distances should be considered. To achieve that, we perform the 
Quickhull algorithm [67]to generate a watertight convex hull that tightly covers the input truss. 
The convex hull is then resampled into a uniformly distributed triangular mesh using ACVD [68]. 
Figure 13 (b) shows the triangle mesh for generating the candidate viewpoints set. For each 
triangular surface, a candidate viewpoint can be generated using the sampling-based coverage 
algorithm [69]. This strategy encourages the uniform sampling of the candidate set, which provides 
a good initialization for the subsequent optimization. 
Please note that the candidate set only covers the exterior of the truss. To also sample the candidate 
viewpoints at the interior of the truss (when the fly-through-truss mode is activated), we reverse 
the normal of the convex hull and resample the surface mesh. The result is a double-sided 
triangular mesh where viewpoints can be sampled within the free space at both sides of the truss. 
In this study, we set the interior/exterior convex hull to contain 100/500 triangle surfaces 
respectively for the candidate viewpoints sampling. 
 
Truss Surface Points 
The surface points are visible points located at the surface of the bridge truss structure. These 
points are utilized to measure each viewpoint's visibility and quality. Given the input model of the 
truss structure, Poisson disk sampling [70]is employed to sample the surface points at the model 
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surfaces evenly. The normal of each point is computed as the average of the surface normal at each 
local Poisson disk. Figure 13 (c) shows the sampled surface points at the truss surface. 

 
Figure 14. Model preprocessing of truss structure 

(a) the surface meshes that define the UAV configuration space (colored in orange) and whether UAVs are 
allowed to fly within the truss (colored in yellow); (b) the resampled convex hull for candidate viewpoints 
sampling (only the exterior mesh is shown); (c) the truss surface points (randomly colored) that guides the 

subsequent viewpoints planning. 

View Planning 
 
The proposed view planning method finds the optimal viewpoints in a sampling-based iterative 
optimization schema: Initialized with a quasi-randomly sampled candidate set of oblique 
viewpoints, the method iteratively resamples the candidate set until the termination condition is 
met (e.g., number of iterations). At each iteration, the method finds a viewpoints subset from the 
candidate set based on the quality-efficiency metric, an efficient view selection algorithm, and 
viewpoints refinement process. The selected subset is utilized to guide the resampling of the 
candidate set in the next iteration. In this study, we wrap the candidate resampling process into 
the accelerated particle swarm optimization (APSO) [72] due to its lightweight and fast 
convergence speed, enables the selected subsets efficiently converge to the global optimal. 
Figure 15 shows the workflow of the proposed view planning method. The details of each step of 
the proposed method are discussed in the following paragraphs. 
 

 
Figure 15 Workflow of the proposed view planning method. 

(a) Sampling a set of oblique viewpoints (i.e., multiple orientations at each view position); (b) Selecting the subset 
of the viewpoint from the oblique set (non-selected viewpoints are gray out); (c) Refining the selected subset based 
on resampling operation (highlighted in black) and the mutation operation (highlighted in dashed circle); (d) The 
refined viewpoints subset can be used to guide the resampling of the oblique viewpoints in the next iteration or 

outputted when termination condition is met. 

 
Oblique Viewpoints Generation 
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The process of generating the set of oblique viewpoints is divided into two steps: 1) sample one 
admissible viewpoint at each surface of the mesh (i.e., subsampled convex hull); 2) spawn 
oblique orientations at each sampled viewpoint to enhance the searchability at each position.  
 
Sampling Admissible Viewpoints 
Mathematically, let 𝒎𝒎 (𝒎𝒎 ∈𝓜𝓜) be a surface of the mesh, we define a viewpoint 𝒗𝒗 (𝒗𝒗 ∈ 𝑽𝑽), is 
admissible if the following constraints are satisfied (Eq. 9): 
 

𝜆𝜆(𝒗𝒗,𝒎𝒎) ≤ GSD𝑚𝑚𝑚𝑚𝑚𝑚  

(9) 
𝜃𝜃(𝒗𝒗,𝒎𝒎) ≤ 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 

𝜑𝜑(𝒗𝒗,𝒎𝒎) ∈ [𝜑𝜑−,𝜑𝜑+] 
𝜋𝜋(𝒗𝒗,𝝆𝝆) = 1 
𝒽𝒽(𝒗𝒗) ≥ H𝑚𝑚𝑚𝑚𝑚𝑚 

 
Where 𝜆𝜆 computes the GSD of a viewpoint to the surface given the camera FOV and image 
resolution, 𝜃𝜃 measures the incidence angle between the viewpoint and the normal of surface 
plane, and 𝜑𝜑 is the gimbal rotation angle. We set the initial orientation of each viewpoint as a ray 
casting from the viewpoint to the center of the mesh surface. 𝜋𝜋 is a binary function that measures 
if the designed viewpoint is located within the UAV configuration space (i.e., no collision). 𝒽𝒽 
ensures the altitude of the viewpoint is AGL. These constraints formulate the viewpoint search 
space at each mesh surface.  
 
 
Spawning Oblique Orientations 
Due to the limited camera FOV and the complex truss geometry, the sampled viewpoint may be 
insufficient to cover every truss surface. Thus, we spawn extra orientations at each sampled 
position to increase the searchability. Given the initial orientation of the admissible viewpoint, 
the oblique orientations are symmetrically generated based on two parameters: 𝛼𝛼 and 𝛽𝛽. 𝛼𝛼 
measures the adjacent angles between the extra orientations. The smaller of 𝛼𝛼, the more oblique 
orientations are generated. 𝛽𝛽 denotes the angle between the original and the oblique orientation. 
The larger 𝛽𝛽 indicates the increased exploration ability of the oblique orientation. Noted the 
oblique orientations must also follow the gimbal constraints, the orientations with the pitch angle 
located outside of the gimbal limits must be rejected. Fig. 15 illustrates the oblique orientations 
(arrows in yellow) generated under the selection of different 𝛼𝛼 and 𝛽𝛽. In this study, we set 𝛼𝛼 =
90° and 𝛽𝛽 = 30° based on the experiments. 
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Figure 16 The collection of oblique orientations (arrows in yellow) from the initial one (arrow in cyan) based on the 

combination of different 𝜶𝜶 and 𝜷𝜷. Highlighted is the selected combination based on the experiments. 

 
Viewpoints Subset Selection 
For dense modeling in MVS, only the geometric consistent images contribute to the final 
reconstruction [73]. Thus, in this section, we describe how to incorporate the geometric priors in 
MVS and select the viewpoints subset from a candidate set (i.e., oblique viewpoints). In the 
following paragraphs, we first present a quality-efficiency metric that measures the multi-view 
reconstruction quality given a set of viewpoints. The metric also identifies/ranks the contributed 
quality from each viewpoint. Second, we propose a greedy view selection algorithm to 
efficiently select the best viewpoint subset from a set of oblique viewpoints based on the 
presented quality-efficiency metric.  
 
Quality-efficiency metric 
The quality-efficiency (𝐹𝐹𝑄𝑄𝑄𝑄) metric is formulated as the weighted sum of the reconstruction 
quality (𝐹𝐹𝑄𝑄) and the reconstruction efficiency (𝐹𝐹𝐸𝐸) as Eq.10 below: 
 

𝐹𝐹𝑄𝑄𝑄𝑄(𝑷𝑷,𝑽𝑽) = 𝜎𝜎𝐹𝐹𝑄𝑄(𝑷𝑷,𝑽𝑽)  +  (1 − 𝜎𝜎)𝐹𝐹𝐸𝐸(𝑽𝑽) (10) 
 
Where 𝜎𝜎 ∈ [0,1] is a constant coefficient that balances these two terms. In this study, we set 𝜎𝜎 =
0.8 based on a thorough experiment. The presented metric encourages to obtain high-quality 
reconstruction from a small set of viewpoints. In the following, we discuss the computation of 
each term in detail. 
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Reconstruction Quality: The quality term predicts the reconstruction quality at each surface point 
on the truss, given a set of viewpoints. Due to the absence of the pixel-level contents at the 
planning phase, the metric is computed only based on the geometric priors at the image level 
[73]where the following principles are considered: 
 
Principle 1: Each surface point must be covered by at least two high-quality images in terms of 
the sufficient GSD and the incidence angles for features matching. 
 
Principle 2: Small baseline between the matched images can cause large triangulation errors for 
the depth interpretation. 
 
Principle 3: Redundant images are uninformative views that do not reduce the depth uncertainty 
while can increase the computation workload. 

 
Based on the above-mentioned principles, we formulate the quality metric as Eq. 11 below: 
 

𝐹𝐹𝑄𝑄(𝑷𝑷,𝑽𝑽) =
∑ 𝑄𝑄(𝒑𝒑,𝑽𝑽)𝒑𝒑∈𝑷𝑷

|𝑷𝑷|  (11) 

𝑄𝑄(𝒑𝒑,𝑽𝑽) = max
𝑘𝑘

� 𝜏𝜏(𝒑𝒑,𝒗𝒗) ∙ 𝑞𝑞(𝒑𝒑,𝒗𝒗)
𝒗𝒗∈𝑽𝑽𝒑𝒑

  

𝑽𝑽𝒑𝒑 = { 𝒗𝒗 | ∠𝒗𝒗𝒗𝒗𝒗𝒗� ≥ 𝜇𝜇 ;  𝒑𝒑 ∈ 𝑷𝑷;𝒗𝒗,𝒗𝒗� ∈ 𝑽𝑽;𝒗𝒗 ≠ 𝒗𝒗�}  

𝑞𝑞(𝒑𝒑,𝒗𝒗) = (1 − 𝜔𝜔)�1 −
|𝒹𝒹(𝒑𝒑,𝒗𝒗) − 𝒹𝒹𝑠𝑠𝑠𝑠𝑠𝑠|

𝒹𝒹𝑚𝑚𝑚𝑚𝑚𝑚
� + 𝜔𝜔�1 −

|𝜃𝜃(𝒑𝒑,𝒗𝒗) − 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠|
𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚

�  

 
Where 𝑄𝑄 measures the quality of a truss surface point 𝒑𝒑 (𝒑𝒑 ⊆ 𝑷𝑷) as the sum of the k best 
observations (Principle 3). We set k equals to 3 due to the increased robustness of the three-view 
reconstructions at texture-less surfaces [107]. 𝜏𝜏 is a binary function that detects if the point 𝒑𝒑 is 
visible from 𝒗𝒗. 𝑞𝑞 measures the observation quality of each viewpoint which is computed as the 
average (𝜔𝜔 = 0.5) of two factors: 1) the view-to-point distance; and 2) the view-to-point 
incidence angle (Principle 1). These two factors are normalized and saturated based on the input 
parameters. 𝑽𝑽𝒑𝒑 denotes the subset of viewpoints 𝑽𝑽 �𝑽𝑽𝒑𝒑 ⊆ 𝑽𝑽� where the baselines at 𝒑𝒑 follows 
the stereo-matching constraints (Principle 2). Based on [108], we empirically set 𝜇𝜇 = 15° in this 
study. Fig.16 illustrates the geometries of the viewpoints to a surface point. 
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Figure 17 The geometry between a set of viewpoints 𝒗𝒗𝒊𝒊 and a surface point 𝒑𝒑 where 𝒗𝒗𝒊𝒊 ∈ 𝑽𝑽𝒑𝒑, 𝒊𝒊 = 𝟏𝟏,𝟐𝟐,𝟑𝟑,𝟒𝟒. 

Reconstruction Efficiency: The efficiency term measures the ratio of the non-selected viewpoints 
over the complete viewpoints set 𝑽𝑽 (as in Eq. 12). This metric encourages to reduce the 
redundant images for the efficient aerial reconstruction.  
 

𝐹𝐹𝐸𝐸(𝑽𝑽) = 1 −
|𝑽𝑽∗|
|𝑽𝑽|  (12) 

𝑽𝑽∗ = � 𝒗𝒗 | 𝐹𝐹𝑄𝑄(𝑷𝑷,𝒗𝒗) > 0;𝒗𝒗 ∈ 𝑽𝑽 �  
𝐹𝐹𝑄𝑄(𝑷𝑷,𝒗𝒗) = 𝐹𝐹𝑄𝑄(𝑷𝑷,𝑽𝑽) − 𝐹𝐹𝑄𝑄(𝑷𝑷,𝑽𝑽 − 𝒗𝒗)  

 
Where 𝐹𝐹𝑄𝑄(𝑷𝑷,𝒗𝒗) is the quality of the viewpoint 𝒗𝒗 to every surface point 𝑃𝑃. 𝑽𝑽∗ is the subset of 𝑽𝑽 
that contributes to the reconstruction quality 𝐹𝐹𝑄𝑄 (with 𝐹𝐹𝑄𝑄(𝑷𝑷,𝒗𝒗) > 0). 
 
Greedy views selection 
Selecting the viewpoints subset from an oblique set involves the selection of the viewpoint 
positions as well as best orientation at each position. Clearly, enumerating every possible 
combination is expensive. To make the problem tractable, we propose a greedy algorithm which 
includes three steps as follows:  
 

Step 1: Measuring 𝐹𝐹𝑄𝑄𝑄𝑄 of the oblique viewpoints with the initial orientation at each viewpoint 
position. The output subset 𝑽𝑽∗ is considered as the baseline for the view selection in the next 
step. 

 
Step 2: Selecting one viewpoint in the baseline and substitute the current orientation to one 
oblique orientation. The current orientation of the viewpoint is updated if the overall 𝐹𝐹𝑄𝑄 is 
increased. Iterative this process to all oblique orientations at the position. 
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Step 3: Repeating the step 2 at every viewpoint in the 𝑽𝑽∗. Stop the operation until every 
viewpoint has been visited or the overall quality does not increase a certain number of times 
(i.e., 5). 

 
Clearly, the sequence of the viewpoint being selected (as in Step 2) significantly affects the final 
selection. To avoid the results being biased to a bad sequence, we perform multiple runs of step 2 
in parallel with the viewpoints selected in a random order at each run. Among the different runs, 
the viewpoints subset 𝑽𝑽∗ with the maximal 𝐹𝐹𝑄𝑄 is chosen as the output of the algorithm.  
 
Viewpoints Subset Refinement 
 
The selected viewpoints subset can be further refined to exploit the better solution in the search 
space. The main idea is to adjust the viewpoint 𝒗𝒗∗ in 𝑽𝑽∗ where 𝐹𝐹𝑄𝑄(𝑷𝑷,𝒗𝒗∗) is low. The proposed 
viewpoints refinement is performed in two operations in sequence (as in Fig. 3 (c)): In the first 
operation, we resample the viewpoint with quality 𝐹𝐹𝑄𝑄(𝑷𝑷,𝒗𝒗∗) less than a pre-defined threshold 
(i.e., 0.2). The viewpoints are updated if 𝐹𝐹𝑄𝑄(𝑷𝑷,𝑽𝑽∗) is increased. In the second operation, a ratio 
(i.e., 25%) of the viewpoints with the lowest quality in 𝑽𝑽∗ are selected and incrementally 
mutated at positions within a defined radius (i.e., 5m). We update the mutated viewpoint if the 
𝐹𝐹𝑄𝑄(𝑷𝑷,𝑽𝑽∗) is increased. Preliminary results showed that this refinement step can improve the 
𝐹𝐹𝑄𝑄(𝑷𝑷,𝑽𝑽∗) at an average 6-8% in each iteration, while without increasing the size of 𝑽𝑽∗. 
 
 
Oblique Viewpoints Resampling 
 
In this subsection, we discuss the process of wrapping the oblique viewpoints sampling 
processed into APSO [104], based on the selected subset at each iteration. Compared to the 
conventional PSO, APSO is selected due to the increased convergence speed in solving 
multimodal optimization problems. Specifically, we define each set of oblique viewpoints as a 
particle and the presented quality-efficiency metric of the refined viewpoint subset as the fitness 
function. Eq. 13 shows the viewpoints update function adapted from the APSO.  
 

𝒗𝒗𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡+1 ← 𝒗𝒗𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 + 𝒖𝒖𝑡𝑡+1 (13) 

𝒖𝒖𝑡𝑡+1 ← 𝒖𝒖𝑡𝑡 + 𝛿𝛿1𝝌𝝌 + 𝛿𝛿2∇�𝒗𝒗𝑝𝑝𝑝𝑝𝑝𝑝
𝑔𝑔 ,𝒗𝒗𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 �  

∇�𝒗𝒗𝑝𝑝𝑝𝑝𝑝𝑝
𝑔𝑔 ,𝒗𝒗𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 � = �𝒗𝒗𝑝𝑝𝑝𝑝𝑝𝑝

𝑔𝑔 − 𝒗𝒗𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 , 𝑖𝑖𝑖𝑖  𝒗𝒗𝑔𝑔 ∈ 𝑽𝑽∗𝑔𝑔 
0,                            𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 
 

 
Where 𝒗𝒗𝑝𝑝𝑝𝑝𝑝𝑝 is the position of a viewpoint, and 𝒖𝒖 is the particle velocity at the 𝒗𝒗. 𝑡𝑡 denotes the 
number of iterations, and 𝑔𝑔 is the global best particle (i.e., viewpoint subset 𝑽𝑽∗ with maximal 
𝐹𝐹𝑄𝑄(𝑷𝑷,𝑽𝑽∗)). 𝛿𝛿1 and 𝛿𝛿2 (𝛿𝛿1 = 0.8, 𝛿𝛿2 = 0.5 ) are coefficients that controls the update behavior at 
each viewpoint. 𝝌𝝌 is a standard normal distribution 𝑁𝑁(0,1) along each axis of the Euclidean 
space. ∇(∙) is the function that measures the difference between the position of a viewpoint in a 
particle and the correspondent position in the global best (i.e., viewpoints correspondent to same 
mesh surface). We set the function to return 0 if the viewpoint is not belonging to 𝑽𝑽∗, thus 
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encourages to resampling the viewpoint in the next iteration. Noted the presented equation (5) 
only updates/resamples the positions of the viewpoints. The initial and oblique orientations at 
each updated position need to be recomputed afterwards with the same strategy as discussed 
above. 

Trajectories Planning 
 
In this section, we connect the output viewpoints into the UAV executable trajectories. Our 
method begins with constructing a complete, undirect graph with each node indicating the 
position of a viewpoint and each edge as the distance of the collision-free path between every 
pair of the view positions. As shown in Fig. 17, the collision-free path between each pair of the 
viewpoints is computed in three steps: 1) we connect the viewpoints with a straight line and 
check if this line is collided with the on-site obstacles; 2) If a collision is found, the informed 
𝑅𝑅𝑅𝑅𝑅𝑅∗ [109] is employed to efficiently reroute the path. If the path does not converge a given 
number of iterations, we recognize the path segment as not accessible, and a large penalty is 
assigned to the edge. 3) For each rerouted path, B-spline curve interpolation [[110] is 
implemented to further smooth the path segment for UAV following at the desired speed. The 
distance of the smoothed path is then measured as the cost of the edge between the viewpoints. 
 

 
Figure 18 Collision-free path planning procedure: (a) connect start (dot in red) and end (dot in blue) waypoints with 

straight line, check if collisions exist (dot in green); (b) Perform informed RRT* (in green) to reroute the path (in 
purple); (c) smooth the collision-free path using B-spline curve interpolation 

Based on the constructed graph, the trajectory planning problem is then formulated as a 
capacitated vehicle routing problem (CVRP) [111]. To simplify the problem, we set the vehicles 
type and capacity as homogeneous, and let the routes start and end at the same spot (i.e., drone 
departure/landing). Two factors are considered as the major constraints of the problem. The first 
is the UAV battery capacity, which is a determinant on how long the UAV can stay in the air. 
The second is memory storage which limits the number of waypoints to be uploaded per flight. 
In this study, we employ the Lin-Kernighan-Helsgaun (LKH-3)[112] as the problem solver. The 
solver utilizes the improved symmetric transformation and 5-opt move generator to efficiently 
compute the paths while handling the battery/memory constraints. The output is a single or 
multiple routes, each route starts/ends at the same spot and travels through a partial of viewpoints 
under the imposed constraints. It is possible that the output paths still contain sharp corners that 
may not be tightly followed by the UAV with the desired speed. Under such conditions, the path 
can be either re-smoothed using the B-spline algorithm or manually checked/adjusted by the 
operator at the pre-flight stage. Noted while the presented method is initially developed for a 
single UAV to sequentially fly the paths (with replaced batteries). The method can be easily 
extended for multiple UAVs to fly in parallel by adjusting the flight speed of the UAVs at 
regions where the paths are intersected [113]. 
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Implementation Details 
 
In this section, we future discuss the implementation details of the proposed method, including 
the visibility detection for quality evaluation, the procedures of automated flight execution, and 
the 3D reconstruction pipeline. 
 
Visibility Detection 
 
The presented visibility detection not only considers the occlusions, but also the image 
triangulation properties.  Given the onboard camera parameters (as in Table 2), we construct a 
viewing frustum to simulate the camera FOV at each viewpoint. The visibility detection is then 
performed in three steps:  
 

Step 1. We examine every surface point by checking whether the point is located within 
the frustum. 

Step 2. We cast a ray from the viewpoint to each point within the frustum and check 
whether the ray is intersected with any truss members. The surface points without 
intersections are considered to be visible by the viewpoint. 

Step 3. For each visible point, we measure the incidence angle between the point normal 
and the camera ray. Only the points with the incidence angle small than a predefined 
angular threshold (𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚) are considered to be triangulable by the viewpoint. 

  
In this study, the visibility detection algorithm is implemented using VTK [114]. Fig. 18 
illustrates the visibility detection process of a single viewpoints on a synthetic truss bridge. 

 
Figure 19 visibility detection of a viewpoint to a truss bridge: The surface points in red are covered by the camera 

FOV (i.e., viewing frustum) but not visible (i.e., occluded); The surface points in blue are visible by the camera 
view, but the incidence angles are too large which often result in poor image triangulation; The points in green are 

visible and triangulable that passes the visibility detection. 

 
Flight Execution  
Due to the flight trajectories are originally computed in the local coordinates, they need to be 
transformed to the World Geodetic System (WGS84) in order to be executable by a UAV. To 
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achieve that, several ground control points close to the truss bridge to be inspected are manually 
surveyed using a GPS receiver. Then, these GPS positions are correlated to the correspondent 
points in the local coordinates. Due to the relatively small scale of most bridge, the linear 
transformation (i.e., assume the surface is flat) is used to map the local coordinates to the WGS84 
system.  
 
After the transformation, the viewpoints are uploaded into UgCS [115], which is a ground station 
software, for the automated mission execution. The software contains a hardware-in-the-loop 
simulator that can perform the pre-flight check before the field deployment. In this study, we use 
DJI Inspire 1 as the flight platform to execute the missions, and DJI Zenmuse X3 for the aerial 
images collection. Inspire 1 can fly around 15 minutes when the wind speed is moderate. We 
restrict each flight to only using at most 80% of the battery capacity (i.e., 12 minutes) for the safety 
concerns. Noted DJI drones have a limit of at most 99 waypoints to be uploaded per flight, which 
also need to be considered in the trajectory planning. 
 
3D Reconstruction 
After the flight executions, the collected aerial images are imported into a 3D reconstruction 
software. In this study, Agisoft Metashape [116] is selected since it has been previously used for 
the 3D reconstruction of bridge structures [117]When the GPS of each image is available, 
reference matching is enabled to accelerate the image alignment process. To obtain the detailed 
reconstruction, we set the quality of both the image alignment and dense point cloud as high with 
the depth map as aggressive to actively filter out the noises in the final reconstruction.  
 

Evaluation 
 
Experimental Setup 
Bridges Selection 
In this study, the performance of the proposed method is evaluated based on both a synthetic and 
a real-world truss bridge. Evaluation using the synthetic bridge has the advantage of controlling 
the environmental factors which are often considered as noises in image-based reconstruction (e.g., 
reflection, illumination change, shadows, moving objects, etc.). In this study, Unreal Engine 4 
(UE4) is selected to render the synthetic environment due to the ability of providing the photo 
realistic scenes at high levels of details (LoDs). UnrealCV [118], an open-source computer vision 
SDK, is employed to render the image at each camera footprint. The selected synthetic truss bridge 
(as shown in Fig. 8 (a)) is a highway bridge across a valley. The bridge truss structure, which is 
downloaded from the Unreal Marketplace [119], has the dimension of 66.7𝑚𝑚 × 16.1𝑚𝑚 × 12.0𝑚𝑚. 
Noted the original package only contains the bridge superstructures, we import the deck surface 
and the surrounding environment to simulate the real-world condition. Due to the synthetic 
environment is noise-free, the fly-through-truss option is enabled (𝜌𝜌 = 1) in the evaluation.  
 
The selected truss bridge for the real-world experiment is an abandoned railway bridge located 
near the City Campus of the University of Nebraska-Lincoln (UNL) (as shown in Fig. 19 (b)). The 
bridge has the dimension of 40𝑚𝑚 × 4.7𝑚𝑚 × 8.2𝑚𝑚 which is not accessible by the human at the time 
of the inspection due to the safety concerns. Noted the inner space of bridge is insufficient for the 
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UAV to pass through even without considering the magnetic interference. Thus, the fly-through-
truss (𝜌𝜌 = 0) is disabled in the real-world environment.  
 

 
Figure 20 (a) sysnethric truss bridge and the detailed views of the selected regions; (b) the abandoned truss bridge to 

be surveyed, which is restricted to human access due to safety concerns (the detailed view) 

Evaluation Methods 
Based on the authors’ knowledge, there is no reported flight planning method specifically designed 
for the 3D reconstruction of truss bridges. Thus, a baseline and a state-of-the-art method for 
building reconstruction are selected to evaluate the performance of the proposed method in the 
simulated environment. In this study, the Overhead flight, which is composed of an orbit path with 
the camera surrounding the center of the scene followed by lawnmower path providing the bird 
views, is selected as the baseline approach. This path can be easily reproduced using the 
commercial flight planning software [115][120][121]. The overlap between the adjacent 
viewpoints is set at 80% to ensure the dense images registration. For the state-of-the-art approach, 
the NBV method presented in [94] is employed. The method incrementally adds the viewpoints 
with the largest marginal reward from a graph of the candidate cameras. The orbit path obtained 
from the Overhead flight is used to initialize the optimization. Noted compared to our method, the 
original implementation of [94] used different strategies for the space representation (i.e., voxel), 
the collision detection/avoidance, and the visibility detection that might affect the result. To avoid 
the confusion, we implement the NBV with same strategy as in our work such that the results are 
only affected by the optimization algorithms. Noted that the method [94] limits the viewpoints 
planning in a single flight (i.e., battery constraints) that might result in the incomplete 
reconstruction. Thus, in the simulation, we set UAV flight time as unlimited, and leave the 
evaluation on the trajectory planning in the field experiment. 
 
For the field experiment, not only the reconstruction quality, but also the efficiency of the inflight 
images acquisition and the post-flight image processing are discussed. Thus, we select a sweep-
based, multi-UAV supported route planning method [122]as the previous state-of-the-art. The 
method designed three routes to tightly cover the structure from different perspectives while 
considering the photogrammetric constraints (i.e., GSD, camera angles, overlapping, and etc.). 
Due to only one UAV is available (i.e., DJI Inspire 1) in the field experiment, the planning 
adjustment step (for multi-UAV operation) as in the existing work is skipped. Due to the method 
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does not including the collision avoidance algorithm, manual check is needed to guarantee the 
safety of the mission.  
 
Quality Evaluation 
Evaluation on the reconstruction quality includes the visual and the quantitative comparison. The 
visual comparison focuses on the observations of the texture smoothness and the artifacts in each 
model, especially at the geometric complex regions (e.g., truss interiors, connections, and slim 
beams). The quantitative evaluation aims to measure the geometric fidelity between the 
reconstruction and the ground truth. The evaluation includes three major steps: First, the 
reconstruction model is cropped and filtered to only contain the regions covered in the ground truth 
(i.e., truss bridge). Second, a coarse-to-fine alignment is used to transform the coordinate of the 
reconstruction to the ground truth. The coarse alignment is performed by the rigid transformation 
from a set of correspondence points. Based on the coarse alignment, the fine transformation is 
computed using iterative closest point (ICP) registration [123][124]. It is noted that the 
reconstructed models might contain outliers, thus RANSAC [124] is employed such that the 
refined transformations are robust to such outliers. Third, the F-Score as presented in [125] is used 
to measure the fidelity of the finely aligned model to the ground truth. F-Score measures the 
harmonic mean of two indicators: Precision (𝒫𝒫) and Recall (ℛ), given a distance threshold 𝜒𝜒. In 
general, a high F-Score indicators a reconstruction that is both accurate and complete. We refer 
the readers to [125] for the details of the computation of the metric. Due to each F-Score is 
computed with a distance threshold, thus we report the quantitative evaluation based on the F-
Scores across a range of distance thresholds. 
 
For the synthetic bridge, the ground truth model is known. Thus, the F-score can be directly 
computed by comparing the reconstruction to the ground truth. For the field experiment, terrestrial 
laser scanning (TLS) is used to obtain the ground truth model of the bridge. In this study, the Leica 
BLK360 laser scanner was selected. The scanner can obtain millimeter accuracy at a distance less 
than 10 meters which is sufficient to obtain a high-fidelity 3D model of the truss bridge. Fig. 9 
shows the 2D view of TLS scanned truss bridge and the on-site scanning spots. The 3D model is 
registered from 27 scans with most of the scan are conducted on the bridge. The entire survey took 
around four hours for on-site data collection, and another five hours for the offsite data 
transmission and point cloud registration.  
 

x 

Figure 21 2D view of the terrestrial laser scanned truss bridge. The 27 red dots denote the positions at each scan, 
and the links indicate the registration between the scans. The colors of the links denote the overlapping quality 

between the scans (Green: at least 75% overlapping; Yellow: at least 50% overlapping). 

3.1.3 Task 3 

Task 3 is focused on developing or identifying an application, which has the functionality of 
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comparing 3D volume changes or shifting of the pipeline route profiles from time to time, 
especially comparing the volume changes before and after some major hazardous events 
happened. The experiment design of this task is 1) to identify existing open-source applications; 
if an open-source application is found, the application will be evaluated through some test cases 
relevant to the pipeline infrastructure and the corresponding right-of-way. 2) if no available 
open-source application is found, the PI will develop one.   
In our literature search for identifying 3D volume change calculation several applications were 
considered, including Autodesk Recap, MeshLab, and Cloud Compare. Although Autodesk 
Recap is free to academic users and we are more familiar, it is a proprietary software, not an 
opensource one. It was ruled out.  
Between the two open-source application MeshLab and Cloud Compare, Cloud Compare 
appeared more user friendly and was more focused on functions of comparing changes, instead 
of on meshing functions as MeshLab did.  The 3D cloud change comparison functions were 
evaluated and used in the two journal papers described in the experiments in Task 2 to compare 
deviations of laser-scanned cloud models to the UAS-based photogrammetry models[66][127]. 
Cloud Compare application was also evaluated in the PI’s inline pipeline inspection project for 
identifying dents. It proved to be able to handle both large and small point cloud models from 
different data sources. 

3.1.4 Task 4 

The experimental design for Task 4 is to test the hypothesis that if it is possible use high-
performance (in terms of image spatial resolution and temperature sensitivity) infrared camera, 
such as FLIR A8303sc or better, to identify the gas leakage. Two outdoor experiments were 
conducted at the UNL city campus. Both experiments were designed to use a household propane 
tank as a gas leaking source. In Experiment 1 two sets of infrared image data were gathered 
under different in-situ wind speed using the camera on a stationary tripod: 1) one image set of 
relatively small gas leakage and 2) another image set of a relatively larger leaking case.  The 
relatively small or large leakage is a qualitative description and not a quantitative description.  
After the experiment of using the stationary infrared camera, in Experiment 2, the FLIR A8303sc 
camera was mounted on a UAS of DJI-M600 Pro. Image data from two sources of gas leakage 
devices were captured from 16 feet above ground height while the UAS hovered vertically above 
the two leaking sources. Experiment 1 was conducted in summertime and Experiment 2 was 
conducted in wintertime. 
Section 4.4 describes the details of the two experiments conducted on UNL’s city campus. 

3.1.5 Task 5 

The experimental design of Task 5 is focused on the filed validation of the developed 
autonomous UAS inspection methods on both gas pipelines, and relevant structures. The 3D 
models created through the image data obtained by the autonomous UAS system were compared 
against the laser scanned models to evaluate their geometric accuracy. The accuracy level was to 
evaluate the developed UAS control CPP algorithms.  
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4 RESULTS AND DISCUSSIONS 
In this section the results of the experiments in each task were discussed.  

4.1 Task 1: Testing and the results of the prototype of pipeline inspection data 
management system  

 
The proposed 3D pipeline inspection data management system was implemented and tested using 
the partial PRCI field data to demonstrate the feasibility and the intended functions of the system. 
The test results indicated that the proposed system and the system components worked as expected. 
Figure 22 shows the graphical user interface of the implemented software application. There are 5 
tabs under the dashboard, each corresponding to a specific function as the tab name suggested. The 
Inspection tab will show the overall defect list of the implemented PRCI pipelines. Clicking on the 
3D point cloud tab will load the 3D point cloud models of the inspected pipelines. This tab can 
also load 3D point cloud models of the before and after-event to show the volume/distance changes 
of the objects (such as pipeline terrain ROW changes). Clicking on condition-based color-coding 
tab will bring up a color code 3D models with defects coded according to the predefined colors 
(Figure 26). The condition data is organized by the condition years. The dynamic defects selection 
tab allows users to sort and select by the defects’ predefined categories. Finally, the Geo-location 
tab allows users to load Google Map and show the pipeline according to the geo-locations of the 
pipelines on Google map using Google map as a background (Figure 28).  

 
Figure 22. A demonstrative field inspection case using PRCI inspection data. 

The Sketchup interface shows the documented Sketchup models of the two PRCI pipelines based 
on the 3D point cloud reconstructed using the developed drone flight path algorithm. Five 
illustrative defects were implemented in this model (shown as the blue clickable objects in 
Figure 23). The demonstrative defects (4 dents and 1 joint) were listed in the graphical interface. 
Clicking on the name of the defects will pop up the inspection report (text description and image 
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of the defects), as well as showing the location of the defects in the pipes. Please note although 
actual gas leakage detection was not conducted at PRCI, gas leaking can be documented the 
same way as other defects, such dents, with locations on the pipeline with color codes complying 
with the industry practices. 

 

Figure 23. The implemented hypothetical defects 

 
The reconstructed 3D point cloud model can be loaded and viewed (Figure 24) in a web browser 
by clicking on tab named “3D Point Cloud”.  Under this tab there are more sub-tabs for loading 
different 3D point cloud models, such as before-after and changes (Figure 25). The flood impact 
evaluation function under this tab used hypothetical data to demonstrate the intended 
functionality of the implemented system.  
Figure 26 shows the color-coded defects map on the 3D models. Clicking on the defect will pop 
up a detailed inspection data (image and text (as an example in Figure 27), and can also be a 3D 
point cloud model).   
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Figure 24. The point cloud model interface of PRCI field pipelines using UAS based photogrammetry.  
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Figure 25. Point cloud models of before (left), after (middle), and 3D changes (right) of a hypothetical flood 
event. 

 

Figure 26. Color-coded defect conditions by year (demonstration purpose only) 

 

Figure 27. Detailed data attached to the 3D clickable object 
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Figure 28. The Geo-referencing function of the system using Google Map 

 

We used a small sample database to implement this 3D data management system, and the results 

of the implementation proved the proposed system works as anticipated. The PI would like to 

point out that there are some restrictions or constraints to limit the open-source distribution of the 

implemented system. The first one is the license requirement from Sketchup, which is no longer 

free software, and users of this implemented system need to buy a software license from Trimble 

who now own the flatform. Second, Google Map geo-referencing from the web browser now 

requires a developer authentication using Google Map security key. So, if a user would like to 

deploy the implemented system, the user needs to register with Google Map to become a 

developer.  Third, the current databased system was built on MySQL free version, which might 

has some limitations or restrictions on the performance or data size. Any future updates either 

from Sketchup, Google Map or MySQL might affect the deployment of the implemented system. 

This is a software maintenance requirement to make the implemented system work for a longer 

term in the future.  
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4.2 Task 2: Develop the quality-based 3D CPP algorithm(s). 

4.2.1 Experimental Results of Task 2.1: Topology-based 3D CPP Algorithm  

Using Synthetic Scenes / Digital simulated Model 
 
In Fig 23, the input geometry, and the camera trajectories of the three synthetic scenes computed 
based on our method and the two comparison methods are presented. The exact UAV departure 
and landing spots are used such that the distances of the trajectories computed using different 
methods are comparable. Table 3 presents the statistics of the collected images and the distance of 
the flight trajectories on different scenes. The results show that Overhead produces relatively more 
images due to the required image overlay. NBV is clamped at the designated cameras before the 
convergence, which validates that our method keeps the number of the collected images small. 
Among the three methods, Overhead generates the shortest trajectory due to the closeness of the 
arranged cameras. Compared to the NBV, the trajectories generated from our method are slightly 
shorter even though we do not constrain the travel budget in either implementation.  
 

 

Figure 29 The input models (including the reconstruction from orbit flights and the manually designed 
2.5D) and the computed camera trajectories (in orange) of the three structures (in columns) using different 

methods: Top: Overhead, Middle: NBV, Bottom: Ours 
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Table 3 Statistic of the computed image views and the flight distance of the synthetic structures using the 
different methods. 

Overhead NBV Ours 

Scene #Images Distance 
(m) Scene #Images Distance 

(m) Scene #Images Distance 
(m) 

Res. 125 582.3 Res. 123 700.73 Res. 123 712.1 
Com. 169 1099.1 Com. 163 1358.3 Com. 163 1080.6 
Ind. 169 782.4 Ind. 164 1003.9 Ind. 164 816.6 

 
Fig 24 illustrates the 3D reconstructions of the synthetic scenes. One challenging region for 3D 
reconstruction (the yellow box) at each scene is picked to exemplify the details of the evaluations. 
Specifically, for Res., the selected region (as in Fig 25) is the front wall and balcony. It is observed 
that Overhead fails to reconstruct the walls beneath the roof and the balcony due to these regions 
being obstructed from the overhead flight; NBV presents better overall results than Overhead, 
especially for covering the wall sections. However, the balcony is still poorly reconstructed. In 
contrast, our method is capable of fully recovering these regions and shows the best result at both 
the ErrorAcc and ErrorComp maps. For Com., a concave area is chosen (as in Fig 26). Both NBV 
and our method present fewer errors at the building corners than Overhead. Compared to NBV, 
our method shows slightly better results in the model accuracy, especially in reconstructing the 
slope window awnings. For Ind., the gas tank (in Fig 27) is selected due to the geometric 
complexity and the texture-less at the structure surface. The slim structures (e.g., railing, ladders, 
pipelines) located around the tanks make it even harder for photogrammetric reconstruction. 
Compared to Overhead and NBV, our method shows the best results, especially at the model 
completeness. However, the method still fails to fully recover the detailed structures (e.g., ladders, 
railings). This might be caused by the relatively low detailed levels of the input geometries. Table 
4 summarizes the quantitative evaluations of the reconstructions as opposed to the ground truth. 
The results further validate the observations: Our method shows superior results at both Acc. and 
Comp., especially for the Res. and Com. scenes. We observe that the NBV shows slightly better 
Acc. (i.e., 95%, 99%) in the Ind. scene. It might be partially caused by the fact that more structures 
are recovered by our method (i.e., higher Comp.). In addition, both methods are primarily affected 
by the fidelity of the input geometry. The relatively lower Acc., especially at 95% marks compared 
to the other scenes, shows the potential improvements of the methods. Overall, the proposed 
method presents superiority on the all-around reconstruction quality in terms of the more visual 
details and the fewer artifacts. This can be attributed to the proposed view planning strategy that 
cohesively optimizes the surface coverage and the stereo-matching quality at each model surface.  
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Figure 30 3D reconstruction of the three scenes (in columns) using different methods: Top: Overhead, 
Middle: NBV, Bottom: Ours. A challenging region for aerial reconstruction is chosen in each scene for 

the detailed comparison. 

 

 

Figure 31 Detailed comparison at the highlighted region in Res. Top: Overhead, Middle: NBV, Bottom: 
Ours. (a) enlarged view of the 3D reconstruction; (b) enlarged view of the colored-coded ErrorAcc map;(c) 
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enlarged view of the color-coded ErrorComp map. The unit of the color maps legend is meter.   

 

 

Figure 32 Detailed comparison at the highlighted region in Com. Top: Overhead, Middle: NBV, Bottom: 
Ours. (a) enlarged view of the 3D reconstruction; (b) enlarged view of the colored-coded ErrorAcc map; 
(c) enlarged view of the color-coded ErrorComp map. The unit of the color maps legend is meter. 

 

 

Figure 33 Detailed comparison at the highlighted region in Ind.: Top: Overhead, Middle: NBV, Bottom: 
Ours. (a) enlarged view of the 3D reconstruction; (b) enlarged view of the colored-coded ErrorAcc map; 
(d) enlarged view of the color-coded ErrorComp map. The unit of the color maps legend is meter. 
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Table 4. Quantitative comparison of the reconstruction in terms of the model accuracy (Acc.) and the completeness 
(Comp.) 

Scene Method Comp. 
0.02m  

Comp. 
0.05m 

Comp. 
0.2m 

 Acc. 90% 
(m) 

Acc. 95% 
(m) 

Acc. 99% 
 (m) 

Res. 
Overhead 34% 40% 64% 0.041 0.099 0.392 
NBV 42% 50% 73% 0.029 0.064 0.283 
Ours 50% 57% 77% 0.020 0.042 0.268 

Com. 
Overhead 45% 54% 81% 0.028 0.078 0.421 
NBV 47% 56% 84% 0.024 0.041 0.409 
Ours 48% 58% 83% 0.023 0.036 0.384 

Ind. 
Overhead 27% 38% 61% 0.120 0.175 0.361 
NBV 31% 50% 68% 0.104 0.151 0.297 
Ours 38% 54% 68% 0.097 0.153 0.319 

4.2.2 Experimental Results of Task 2.2: 3D CPP Algorithm for Truss Structure 

Digital truss bridge 
Figure 34 shows the trajectories computed using the Overhead, NBV and our method (𝜌𝜌 = 0,1) 
on the digital bridge. To make fair comparison, we restrict the upper bound of NBV as the number 
of images generated with our method, such that the methods compute the same number of images. 
It observed that Overhead and NBV only generate the viewpoints surrounding the truss geometry. 
Instead, our method (𝜌𝜌 = 1) enables the trajectories to pass through the truss (detailed view in 
Figure 34), provides the better observations at the truss interiors. Table 5 summarizes the statistic 
of the number of images and the flight distance computed with each method. Clearly, for the sake 
of the better surface coverage, setting 𝜌𝜌 equal to 1 increases the overall number of images used. 
Figure 35 shows the visual comparison of the reconstructions between different methods. including 
the detailed views of two challenging areas as highlighted. The results showed that our method 
(𝜌𝜌 = 0) can generate more visual appealing results at truss connections and beams when compared 
to both the Overhead and the NBV. In addition, the textures at the interiors of the top chords are 
mostly recovered by our method, especially when 𝜌𝜌 equals to 1. Table 6presents the measured F-
score with varied distance thresholds (𝜒𝜒 = 0.05, 0.1, 0.2). The results validate the observations 
that our method outperforms the other two at every distance threshold. Enabling the fly-through-
truss option shows the best result which indicates that collecting the images from inside of the 
truss can indeed improve the overall reconstruction quality. 
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Figure 34 The viewpoints and the trajectories generated by different methods. 

 

Table 5. The number of images and the flight distance on the synthetic bridge 

Methods Number of Images Flight Distance (meter) 
Overhead 142 1039 
NBV 152 1212 
Ours (𝜌𝜌 = 0) 152 1346 
Ours (𝜌𝜌 = 1) 181 1522 
   

 

Table 6 Quantitative comparison of the synthetic truss reconstruction between different methods. 

Method 
F-Score (𝒫𝒫,ℛ) 

𝜒𝜒 = 0.05 𝜒𝜒 = 0.1 𝜒𝜒 = 0.2 

Overhead 55.11 (62.07, 49.55) 74.95 (89.99, 64.21) 88.60 (96.56, 81.86) 
NBV 57.51 (61.08, 54.34) 78.33 (90.10, 69.28) 90.93 (96.74, 85.79) 
Ours (𝜌𝜌 = 0) 62.25 (63.68, 60.88) 82.45 (91.85, 74.80) 92.86 (97.35, 88.77) 
Ours (𝜌𝜌 = 1) 𝟔𝟔𝟔𝟔.𝟓𝟓𝟓𝟓 (𝟔𝟔𝟔𝟔.𝟕𝟕𝟕𝟕,𝟔𝟔𝟔𝟔.𝟑𝟑𝟑𝟑) 𝟖𝟖𝟖𝟖.𝟒𝟒𝟒𝟒 (𝟗𝟗𝟗𝟗.𝟔𝟔𝟔𝟔,𝟕𝟕𝟕𝟕.𝟔𝟔𝟔𝟔) 𝟗𝟗𝟗𝟗.𝟕𝟕𝟕𝟕 (𝟗𝟗𝟗𝟗.𝟖𝟖𝟖𝟖,𝟗𝟗𝟗𝟗.𝟎𝟎𝟎𝟎) 
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Figure 35 Qualitative comparison on the 3D reconstruction of the synthetic bridge between different methods. 

 

4.3 Task 3: Develop a 3D profile change identification and quantification module 

Two sub tasks were included in this part: 1) Identify and evaluate the out-of-the-box 
photogrammetry software in terms of its capability and accuracy in processing a large inspection 
pipeline dataset and create demonstrative before-and-after 3D pipeline/route models; and 2) 
implement the module if necessary. 

 
We identified a free opensource software Cloud Compare [126] to be used to identify 3D profile 
changes between and after potentially hazardous events to pipelines and the associated right-of-
way. The quantitative volume changes can be used to evaluate the seriousness of pipeline, 
supporting structure, and earth moving, scour etc. which often cause unfavorable conditions to 
pipeline safety and operations. A threshold of volume change or relocation can be set to provide 
an automated alarm/alert to the pipeline operators. Figure 36 is an illustration of the comparison 
results of a hypothetical example of the generated 3D profile / volume change after a hazardous 
natural event. Figure 37 and Figure 25 show two examples using Cloud Compare software to 
identify 3D profile changes.  The identified free application has been widely used as a freeware in 
the computer visions community.   
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Figure 36. An example of quantifying and locating large scale volume change along the pipeline route 

 

Figure 37. Results of the Cloud Compare using the 3D profile changes of the riverbanks underneath the truss bridge 
described in Section 4.5.2  

4.4 Task 4: Develop an infrared image processing module for leak detection  

Given the success in the development of UAS close-range (15-30 feet) path planning algorithm, 
we can expect a UAS can take a close-range infrared video of the pipeline and potentially detect 
the gas leaking spots, either in the real-time or post-processing fashion. Real-time performance of 
gas leak detection capability will depend on the UAS on-board image processing hardware. To 
prove the idea, we conducted a field test to do a close-range infrared video recording of a leaking 
propane tank. As we expected we successfully observed the gas leaking pattern after processing 
the video clips. The following images (Figure 38) show the preliminary results of the test. 
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The infrared images used in the report were captured by the FLIR A8303sc camera (sensibility 
0.02 Kelvin; full-frame resolution 1280x720; maximum full-frame rate 60 HZ). 

 

Figure 38. Left: outdoor propane tank gas leakage detected under different environmental conditions. 

Two experiments were conducted to understand the feasibility and potential of using infrared 
images to detect gas leakage, which were expected to provide and fast and economical way to use 
UAS-based infrared camera to detect gas leakage. Experiment 1 was a ground-based experiment 
to use a stationary infrared camera to capture the infrared image. The stationary camera results 
would provide a good insight into the feasibility of the proposed method. Experiment 2 used a 
UAS-mounted infrared camera to capture the infrared images from 16-feet above ground to further 
evaluate the potential of this new approach in detecting gas leakage. The following are descriptions 
of the two experiments and their results.  
 
Experiment 1 was conducted on April 27th, 2019, around 11:30 AM. The distance of the stationary 
camera was about 10-feet from the gas tank.  The weather condition of the date was shown in 
Figure 40. At that time the average wind speed was about 28 mph NNW with a gust wind speed 
of about 43 mph. The ambient temperature was about 47 Fahrenheit degrees. On site weather 
station recording was not used in this experiment. Instead, local weather reporting data was used 
due to the qualitative evaluation nature of this study. In-situ wind speed was estimated between 25 
to 43 mph. So, the weak wind was estimated at around 25-28 mph, the medium wind speed was 
estimated at around 30-34 mph, and the strong wind speed was estimated at 40-43 mph. The 
propane tank used in the experiment is a Blue Rhino 20-lb Steel liquid propane tank (Figure 39) 
with Blue Rhino Brass Propane Fuel Level-Gauge regulator (Type 1 connection) that can maintain 
a 0.5-2.0 psi pressure at the outlet. The small leak rate was estimated roughly at 0.5 -0.8 psi at the 
outlet; the big leak rate was estimated at 1.5-2.0 psi. The estimated rates were based on the 
observed valve knob positions. Even though the external parameters of experiment are qualitative, 
the results can still lead us to draw a conclusion that the infrared imaging detection method can be 
used to detect gas leakages based on the temperature difference between the leaked gas and the 
background ambient air temperature, despite adversary environmental conditions, such as strong 
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gust wind.  
 

 
Figure 39. The Propane Tank Used in the Experiments 

 
Figure 40. Local weather conditions of the experiment 

The image processing employed a short time-series image processing algorithm by conducting 
pixel-to-pixel change comparisons between two raw infrared images captured at a 0.03-second 
time difference (at 30 fps). The pixel-by-pixel changes between the two frames (0.03 second apart) 
can clearly reveal the flume and the gas dispersion pattern even under the strong blowing wind (at 
a speed of 10-20 mph). The results of this experiment proved that the method worked theoretically 
with a satisfactory performance (clearly revealed the leakage and even the leaked gas profiles in 
the air) despite the adversary environmental conditions (strong wind).  
 
In Experiment Two, two sizes of leakage sources were used simultaneously to evaluate the leakage 
detectability from the UAS platform. In addition to the 20-lb Blue Rhino tank used in Experiment 
One, a much smaller Colemen portable propane bottle was added to the experiment to further 
evaluate the detectability performance of this approach.   
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Figure 41. The Colemen propane bottle used in Experiment 2 

 

The original plan is to use a DJI gimble mounted camera system for data acquisition, so that both 
UAS and camera angle/pose can be controlled simultaneously like we did in the Task 2 cases using 
the path planning algorithm to automatically acquire the image data. We originally planned to use 
our largest UAS (DJI M600 PRO) to carry the FLIR camera and all its accessories as shown. 

 

Figure 42. Originally planned UAS system 

However, since FLIR data acquisition system requires a computer connection while capture the 
image. The UAS needs to carry FLIR camera (10 lbs.), two batteries and a computer (6 lbs.), plus 
the DJI gimble system (5 lbs.). As such the total weight of the data acquisition system way exceed 
the safe payload of the DJI UAS (the known largest UAS on market during the project time).  As 
such, the research team needs to figure out an alternative way to carry the experiment. Eventually, 
a basketball net was used to replace the DJI gimble (Figure 43), so the total payload would not 
exceed the maximum payload of the M600. The price to pay is that we can only capture bird-view 
image with the FLIR camara axis perpendicular to the ground.  Even though this case was not the 
ideal case as originally planned, we expect it would still provide insights for us to evaluate the 
UAS-based leakage detectability since it was a tougher case that just relies on the bird-view 
images. 
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Figure 43. Basketball net mounted UAS data acquisition system 

 
Experiment 2 was carried out on May 2nd, 2019, at approximately 4:40 PM. The ambient 
temperature is approximately 60F, with a wind speed between 5-10 mph. The infrared videos were 
recorded from about 16 feet above ground.  
 
 

 
 

Figure 44. Arieal view of the experiment layout (from 16 feet above ground) 
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Compared to Experiment, the extra challenge for the image processing is the shaking and vibration 
of the UAS during the data acquisition process.  Unlike the image processing in Experiment 1, 
where pixel to pixel comparison between frames can provide a good profile of the leaked gas, the 
same method could provide false detection result because there was no longer a true pixel to pixel 
correspondence between frames caused by the UAS moving and vibrations. In order to use the 
same image processing method, which was proved to be effective, an image pre-processing was 
adopted to first register/align frames based on the image features. This part was done by algorithms 
to automate the pixel/frame alignments.  After the registration, the same method as the one used 
in Experiment 1 was used to extract the leaked gas profile after denoising to remove false pixels 
based on an estimated size threshold.   
 
Figure 45 shows the baseline frame for the pixel-to-pixel comparison. Figure 46 shows the 
detection outcomes using deferent times/frames. Even though the in-situ wind speed at the nozzle 
was not recorded using devices, the in-situ wind speed was suspected to be the likely primary 
factor that affected the profiles of the dispersed leaking gas (under stronger winds the leakage 
profiles was smaller in size (e.g. frame 35), while under milder wind speed the profile tended to 
be larger in size (Frame 41).  Heatmap was used to enhance the visual effects of the outcomes.  

 

Figure 45. Baseline frame 
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Figure 46. Detected gas leakage profiles from different times/frames 

 
Even though the research team was not able to use the gimble mounted UAS camera system to 
acquire the higher-quality infrared image data, the experiment still provided good insights into the 
feasibility and effectiveness of the proposed image processing methods and the developed UAS-
based image acquisition system. It is anticipated that infrared images from gimble mounted 
infrared camera can improve the leakage detection performance since the camera can be positioned 
at the optimal perspective angle and distance. Different or additional image processing methods 
need to be adopted to address the UAS systems’ movement and vibration issues, which posed extra 
challenges to the image processing method.  
 
 
The PI can reasonably expect similar leakage detection outcomes when using our developed path 
planning tool to conduct a close-range UAS pipeline inspection in real-world scenarios, since both 
experiments were carried out outdoors with significant environmental impact 

4.5 Task 5: Field Validation 

4.5.1 Results - Pipelines 

A 3-day field test was conducted in PRCI’s Houston facility to assess the field performance of the 
developed path planning algorithm. The developed quality based UAS path planning algorithm 
(described in Section 3.1.2.1) was tested on some real-world pipelines with defects. The 
preliminary assessment indicated improved 3D modeling quality compared to manually operated 
UAS flights. The image data were acquired by a DJI Mavic 2 Pro rotary UAS.  
Results from the preliminary field assessment indicated that the developed path planning method 
provide more reliable and higher quality image data for 3D reconstruction of pipelines, as Figure 
47 (experimental pipeline layout) & Figure 48 (UAS/Camera Paths) show.  
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Figure 47. The field test facility at PRCI, Houston 

 
Figure 48. UAS flight paths by three different methods (the automatic method is based on the path planning 

algorithm described in Section 3.1.2.1) 
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Figure 49. Prelim Visual quality comparison of photogrammetry-based 3D reconstruction using images from 
different path methods. 

Further comparisons of the 3D pipeline reconstruction qualities of deferent paths (Figure 49) 
demonstrated the quality superiority of our developed autonomous CCP approach compared to 
manual UAS operations. The reconstructed three 3D pipeline models were also compared against 
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the laser scanned model. The results (Figure 50)  also demonstrated the accuracy superiority of the 
developed method compared to the manual operations of UAS. 

 

 

Figure 50. Prelim geometry quality comparison of photogrammetry-based 3D reconstruction using images from 
different path methods when compared to the laser-scanning results. 

Notes: 
The field test did not include a UAS-based high-performance infrared camera leakage detection 
experiment that was originally proposed in the project due to two reasons: (1) Technology 
Development Center (TDC) of Pipeline Research Council International (PRCI) did not have an 
outdoor leaking pipeline in their Houston facility. (2) the high-performance thermal camera 
system (FLIR A8303sc) owned by the PI was heavier than the UAS systems’ payload. And 
buying a more powerful UAS by DJI was banned by the new federal grant rule. So, instead, only 
the ground-based leakage detection was conducted at the UNL campus, and the results are 
reported in this final report.  
 

4.5.2 Results - Truss Structure  

Figure 51 compares the flight trajectories computed with Zheng et al. [24] and our method. It is 
evident that the paths generated with our method is much closer to bridge as opposed to Zheng et 
al. [24]. Table 7 Comparison of the statistics on flight execution and 3D reconstruction using 
different  shows the statistics of both the inflight inspection and the post-flight reconstruction. 
Clearly, our method takes less images and spend number of flights/shorter time both during on-
site and the offsite.  
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Figure 51 The flight trajectories between the Zheng et al. [24] and our method. The colors denote 
the trajectories of different UAVs/flights for the mission execution. 

In Figure 52, a detailed comparison between the reconstructed bridges and laser scanned model 
is presented. Due to the TLS model is obtained by scanning at the bridge interiors, it shows 
different color intensity when compared to the photogrammetry. To make a fair comparison, it is 
required the models to be reconstructed from a similar number of images. Thus, we also select 
the reconstruction only from the images taken at route 1&3 in Zheng et al.’s method Figure 52. 
The selected routes is an efficient setup in the existing work, which generates a similar number 
of images as ours. It is evident that although both methods recover the major truss structures. The 
model obtained from routes 1&3 only shows the worst result in terms of recovering the model 
details (e.g., slim beams and truss interiors.). The low-density of the point cloud shows 
insufficient coverage at the truss surface. In contrast to the Zheng et al [24], our reconstruction 
preserves more structural details with much less noise. For example, the holes in the top chord 
and the boundaries of the diagonal beams are much better recovered by our method (detailed 
views in Fig. 13). Table 8 presents the F-score of the truss reconstructions as opposed to the 
TLS. The results showed that our method slightly outperformed the Zheng et al. [24] in terms of 
both the Precision and Recall with less than half of the images been used, which validates both 
the efficiency and effectiveness of the proposed method. 

Table 7 Comparison of the statistics on flight execution and 3D reconstruction using different methods. 

Methods Flights Number of 
Images 

Flight Duration 
(minutes) 

3D Reconstruction 
Duration (minutes) 

Zheng et al., 
[24] 

1 85 11.3 

156.2 
2 71 10.2 
3 77 10.4 
4 64 9.6 

Total 297 42.5 

Ours 

1 48 10.6 

63.4 2 39 8.4 
3 43 9.3 

Total 120 28.3 
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Figure 52 The full bridge view and the detailed views of the final reconstruction of the real-world 
truss bridge generated using Zheng et al., (ref) and our method. 

 

Table 8 Quantitative comparison of the real-world truss reconstruction 

Method 
F-Score (𝒫𝒫,ℛ) 

𝜒𝜒 = 0.05 𝜒𝜒 = 0.1 𝜒𝜒 = 0.2 
Zheng et al. [14] 
(Route1&3) 45.21 (35.66, 61.75) 55.89 (41.44, 85.81) 64.87 (48.90, 96.31) 

Zheng et al. [14] 

(Routes 1&2&3) 
56.07 (𝟒𝟒𝟒𝟒.𝟒𝟒𝟒𝟒, 79.14) 63.89 (49.12, 91.37) 71.23 (56.12, 97.47) 

Ours (𝜌𝜌 = 0) 𝟓𝟓𝟓𝟓.𝟑𝟑𝟑𝟑 (41.33,𝟖𝟖𝟖𝟖.𝟒𝟒𝟒𝟒) 𝟔𝟔𝟔𝟔.𝟓𝟓𝟓𝟓 (𝟒𝟒𝟒𝟒.𝟖𝟖𝟖𝟖,𝟗𝟗𝟗𝟗.𝟔𝟔𝟔𝟔) 𝟕𝟕𝟕𝟕.𝟕𝟕𝟕𝟕 (𝟓𝟓𝟓𝟓.𝟕𝟕𝟕𝟕,𝟗𝟗𝟗𝟗.𝟕𝟕𝟕𝟕) 
 
Computational Performance 
In this subsection, we evaluate the performance of several parameters based on the results from 
both the synthetic and the real-world bridges. First, the effects of the weight coefficients 𝜎𝜎 on the 
optimization performance is evaluated. Figure 53(a) shows the quality metric 𝐹𝐹𝑄𝑄 and the number 
of collected images |𝑽𝑽∗| under different 𝜎𝜎. The figure showed that in contrast to |𝑽𝑽∗| which 
increases monotonically as 𝜎𝜎, 𝐹𝐹𝑄𝑄 gradually decreases when 𝜎𝜎 close to 1. Such results might be 
affected by the fact that the over-redundant images cause diminished return. Due to a smaller 
number of images is preferred for the efficient reconstruction, thus we set the weight coefficient 
as 0.8 as a good trade-off between the reconstruction quality and the efficiency. Next, we 
evaluate the effects of the oblique orientations (𝛼𝛼,𝛽𝛽) to the quality-efficiency metric 𝐹𝐹𝑄𝑄𝑄𝑄. As 
shown in Figure 53(b), compared to the conventional viewpoints (𝛼𝛼 = 0 || 𝛽𝛽 = 0), the oblique 
viewpoints significantly improve 𝐹𝐹𝑄𝑄𝑄𝑄 for all test cases (for both 𝜌𝜌 = 0 or 𝜌𝜌 = 1). The result 
indicates that the oblique orientations indeed increase the reconstruction quality. Among the 
different combinations of 𝛼𝛼 and 𝛽𝛽, we found the combination of 𝛼𝛼 = 90° and 𝛽𝛽 = 30° shows the 
best result. Thus, we select it as the defaults in the experiments. 
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Figure 53 (a) The values of 𝑭𝑭𝑸𝑸 and |𝑽𝑽∗| when different 𝝈𝝈 are selected; (b) The values of 𝑭𝑭𝑸𝑸𝑸𝑸 under different 

combinations of (𝜶𝜶,𝜷𝜷). Noted the legend denotes [𝜶𝜶,𝝆𝝆]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



65 

 

 An autonomous UAS inspection platform for high-efficiency 3D pipeline/route modeling/change-detection  

5 CONCLUSIONS 
The primary goal of this project is to develop an autonomous UAS pipeline inspection 
technological framework to enable detection of pipeline gas leakage, potential damages of pipeline 
and the supporting structures, soil movement along the pipeline route. The secondary goal is to 
develop an easy-to-use inspection data management framework to enable users to manage the 
inspection data through 3D model user interface. The applicable pipelines are above ground 
facilities.   
There are two core parts in this project: 1) UAS-based accurate 3D structure reconstruction through 
photogrammetry. 2) UAS-based leakage detections method through infrared thermography (IRT).  
Our proposed approach is through novel UAS CPP algorithms to allow accurate, low-cost, and 
efficient photogrammetry 3D reconstruction of complex structures of pipelines and the associated 
structures.  The developed CCP algorithms also allow close-range UAS IRT imaging of the 
pipelines. The capability of the close-range IRT detection of pipeline gas leakage can only be 
achieved through the developed 3D CPP that controls the distance of the IRT camera to the 
inspected pipelines and detect the leaking spots within the IRT cameras’ best effective range. 
To this end, the PI developed two 3D autonomous UAS CPP algorithms to enable accurate 3D 
reconstruction of complex 3D pipeline structures including truss structure, a challenging structure 
for traditional UAS-based 3D modeling and reconstruction methods. The test results from both lab 
and field experiments indicated that accurate 3D structures in pipeline facilities can be 
reconstructed using the developed algorithms. The performance of the 3D reconstruction accuracy 
is comparable to traditional laser scanning method, but takes much less time compared to the time-
consuming stationary terrestrial laser scanning methods.   
IRT-based gas leakage detection tests were conducted in outdoor settings with different wind speed 
and gas leaking rates. The detecting results demonstrated that IRT video clips from high-
performance IRT cameras can be used to detect gas leakages under even adversary environmental 
conditions such as strong wind condition, when the video clips were recorded within cameras’ 
effective range, which can only be achieved through autonomous approach when scanning long 
distance pipelines in relatively short time.   
The results from both experiments allowed us to conclude that the proposed data acquisition 
system (UAS and high-performance infrared camera system), and the proposed infrared image 
processing method worked, as anticipated, in a UAS-based infrared gas leakage detection 
approach. Experiment 1, though a stationary camera, allows us to conclude that the side-view 
images work just as well as the top view images in Experiment 2. 
  The deep learning method originally planned appears not necessarily a must-have method based 
on the results of both Experiment 1 and Experiment 2 with regard to different infrared image 
processing approach. Based on the results from both 3D autonomous path planning methods and 
the gas leakage detection methods, the PI can draw a conclusion that the developed 3D CPP 
algorithms and the developed IRT based gas leakage detection approach can work together to 
allow detection of pipeline hazardous defects, changes, and gas leakages with accurate locations.  
One limitation in this research is that only propane type of gas leakage was experimented and 
evaluated. We are not able to conclude for sure that the same effectiveness of the detection can be 
extended to other type of gas leakages.  
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However, given the developed method is based on the temperature change and contrast against 
ambient environment, it should be able to apply to any type of gas leakages involving temperature 
contrast.  Since FLIR A8303sc camera can record full-frame images (1280x720) at 60 fps, it is a 
good fit for using this detection method from a fast-moving platform like a rotary UAS as we did 
in Experiment 2 in Task 4, even with just the top view of the pipelines if future heavier payload 
UAS is not available., 
In related to API 653, since the developed inspection method is based on the accuracy of the 
reconstructed 3D models with texture, it can be used to conduct tank settlement evaluations, such 
as factors of out-of-plane, body-tilting, edge settlement, and other body deformations when the 
body changes of geometry dimensions greater than 2 centimeters. This conclusion is based on the 
3D reconstruction results from both simulated (Figure 33) and real-world field cases (Figure 50). 
For larger complex structures such as cases involved truss structures (Figure 54), the deformation, 
displacement, and tilting of the inspected structures can be detected if the variances are greater 
than 5 centimeters based on the field test results of the truss bridge (Figure 52 and Table 8). The 
above-mentioned detection method is automated based on the 3D reconstructed models. This 
automated approach cannot be used to detect small size defects such hairline cracks due to 
geometry accuracy limitation.  With the UAS mounted infrared camera (such the one used in this 
research) the developed infrared-based leakage detection method is well-suited for detecting gas 
leakage and local dispersion from the tank given the experiment results shown in Figure 38. 
Although our method can be used to help identify visible corrosion and cracks, it can only be used 
to detect this type of defects manually. However, image-based automated detection of such texture-
based defects can be further developed based on our developed 3D reconstruction platform.  

 
Figure 54 An example of complex tank structure. 

In relation to API 570, we can draw the same conclusion since our developed method is based on 
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the accuracy level of the reconstructed visible 3D models. It does not matter if they are pipes or 
tanks or truss structures. The achieved level of geometry accuracy determines what kind of defects 
can be detected.   
In terms of  identifying Right of Way Encroachment, based on the field test result of the truss-
bridge case (Figure 51, Figure 52, and Table 8), encroachment or river scour sediment or soil 
movement can be detected if the distance (change) value is greater than 5 centimeters. 
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6 FUTURE WORK 
At this moment, the gas leakage detection results were generated through a post-processing image 
processing approach, which can be further improved in the future to allow real-time detections 
during the UAS autonomous flight mission. Achieving real-time gas leakage detection is critical 
to avoid catastrophic gas leaking accidents and save more lives.  
Another area for future development is the autonomous defect detection of pipeline and its 
associate assets through the newly emerged deep leaning methods such as the transformer methods 
and large language model. UAS-based pipeline inspections, while efficient and low-cost, will 
generate a large amount of image/video data, which are very difficult to process by human’s 
traditional manual approach. Given the rapid advancement of AI in image processing and the 
breakthrough in Large Language Model in the image areas, we can reasonably expect the 
autonomous AI based defect and leakage detections can be achieved soon based on the current 
progress made in the LLM fields. . 
Given the positive results from the research project, a full-scale inspection experiment on a real-
world operating pipeline facility can be helpful in drawing more solid conclusions. 
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7 LESSONS LEARNED 
There were some challenges encountered during the project’s duration.  

For example, in the original Task 4, the PI planned to develop a deep learning-based gas leakage 
detection method to detect gas leakages. However, as the project moved forward, we found there 
was no public validated gas leakage data in the form of infrared images. As a matter of fact, there 
was not many completed research on using infrared images to detect gas leakage, let alone the 
validated image data. Without a large quantity of validated infrared image data of gas leakage 
cases, it is very difficult, if possible, to develop a deep learning-based detection method. 
Fortunately, the research team found a video processing approach, which can provide a good 
detection result based on our preliminary study. As a result, the developed gas leakage detection 
method was based on a traditional image processing approach instead of the originally planned 
deep learning approach. 

The second challenge we encountered was how to mount the high-performance IRT camera and 
all its accessories on a market-available UAS with a gimble powerful enough to operate the 
heavy camera and the accessories. The payload of the PI possessed UAS was less than the 
weight of the camera plus all the camera controls. In this case, the risk of crashing the UAS and 
the IRT camera is very high while operating the gimble. However, the research team were able to 
find an alternative solution and carried out a key experiment to move  the project forward. The 
results from the solution proved to be insightful.   
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