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Project Activities for Reporting Period:  

Task 1. Design and Synthesis of Multi-compound Green Inhibitors 

During current reporting period, our team has made substantial progress in developing and 
assessing of green inhibitors. We have concentrated particularly on enhancing and analyzing the 
performance of pectin as a corrosion inhibitor. The primary activities are summarized as follows: 
 
● 1.2: Synthesis and Characterization of Green Inhibitors from Renewable Feedstock  

o Developed innovative methods for the chemical modification of pectin, which could 
significantly enhance its anti-corrosion properties through a process of cross-linking. 
Furthermore, we refined adhesion techniques to reinforce its resilience and 
effectiveness in harsh conditions. 

 
 
● 1.3: Corrosion Testing for Verification and Validation 

o Employed Tafel polarization, a sophisticated electrochemical testing method, to 
evaluate the effectiveness of pectin in mitigating corrosion and to gain insights into its 
electrochemical behavior. 

o Implemented Electrochemical Impedance Spectroscopy (EIS), an advanced 
electrochemical testing method, to assess the efficacy of pectin in reducing corrosion 
and to derive insights into its electrochemical behavior. 

o Conducted long-term weight loss experiments to evaluate the durability and protective 
properties of pectin, quantifying the material degradation and affirming its suitability 
for industrial applications. 
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Task 2. Simulation-Based Inhibitor Optimization in Gas Gathering and Transportation Pipelines 

In current reporting period, we have achieved substantial advancements in Task 2, with a primary 
focus on developing a neural network framework to enhance the efficiency of flow regime 
predictions. The pivotal activities undertaken are summarized as follows:  
 
2.1: Prediction of Wall Shear Stress with Uncertainty Quantification 

o Improved the Fourier neural operator model to predict the distribution of wall shear 
stress under different roughness profile.  
 

o Incorporated Bayesian method into the Fourier neural operator model for uncertainty 
quantification.  

 
● 2.2: Multi-fidelity Approach 

o   Constructed 2-D and 3-D pipe models for specific cases, enabling the collection and 
analysis of low-fidelity and high-fidelity results. 
 

o  Implemented a convolutional neural network to discern the variations in Fluent 
parameters, thereby enabling the prediction of high-fidelity data based on provided 
low-fidelity information. 

 
A comprehensive report detailing the aforementioned tasks is provided in the appendix. 
Additionally, the presentation file for the quarterly report, prepared for the Technical Advisory 
Panel (TAP) members and PHMSA program managers, is also enclosed in the appendix.  
 
Project Financial Activities Incurred during the Reporting Period: 
 
For Task 1, we supported 1 RA at ASU 
For Task 2, we supported 2 RAs at ASU 
 
Project Activities with Cost Share Partners: 
 
Engaged in discussions with members of the Technical Advisory Panel to solicit recommendations 
for our team's research activities.  
 
Project Activities with External Partners: 
 
Conducted regular discussions with the Technical Advisory Panel, in addition to several separate 
meetings and email communications with individual advisory members.  
 
Potential Project Risks: 
 
Nothing to report. 
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Future Project Work: 

For Task 1: 

o Implementing the chemical functionalization of pectin using an established method 
o Creating a corrosive medium to enhance the simulation of pipeline corrosion 
o Verifying A36 and API 5L steels exhibit similar corrosion performance 
o Performing corrosion tests using API 5L steel to replicate real-world conditions 
o Evaluating the efficacy of our developed bio-inhibitors in comparison to benchmark 

inhibitors commonly used in the industry 
o Designing a setup to emulate pipeline flow and assess the impact of this flow on steel 

corrosion, thereby providing a more accurate representation of real-world conditions 
 

For Task 2: 

o In the proposal, we proposed to use a Physics-Informed Neural Network (PINN) for 
the simulation of pipe flow and inhibitor injection behavior. During the research, we 
found that another physics-guided machine learning approach called Fourier Neural 
Operator (FNO) seems to give good simulation capability, and we invested in this 
method first. The method is mainly for flow simulation and wall shear stress estimation 
for corrosion loss prediction. In the future, we will apply a similar methodology for 
inhibitor injection simulation (e.g., multiphase flow). 

o Continue the investigation of reduced order modeling to enhance the efficiency of pipe 
flow simulation 

o Explore other multi-fidelity approaches for balanced prediction accuracy and 
computational complexity 

o Include uncertainty quantification for multi-fidelity modeling and calculate the 
confidence bounds for model predictions 

o  Explore literature data for corrosion rate data to demonstrate and validate the proposed 
inhibitor degradation model 

o Collaborate with task 1 group to develop new testing procedures to obtain in-house 
experimental data for model validation 

 

 



4 
 

 

 

 

 

 

 

Appendix 1 
Technical Progress Description for Task 1 

 



5 
 

Task 1. Design and Synthesis of Multi-compound Green Inhibitors 

 
Background:   
 
In the initial phase of this project, we embarked on research and experimentation to develop eco-
friendly corrosion inhibitors. Our focus was on utilizing citrus peels and shrimp shells as primary 
raw materials, with the objective of creating sustainable strategies to counter pipeline corrosion in 
industrial settings. Our overarching goal was to repurpose waste materials, thereby fostering 
environmental sustainability. 

During the first quarter, our team undertook an exhaustive review of the literature to pinpoint 
potential eco-friendly inhibitors. This stage was pivotal in comprehending the potential and 
constraints of various natural resources. We also joined forces with industry frontrunners to 
ascertain that our methodology adhered to safety and compatibility norms. A notable 
accomplishment during this timeframe was the successful extraction of pectin from orange peels, 
a renewable resource recognized for its corrosion inhibiting potential. In the second quarter, we 
amplified our efforts to fine-tune the synthesis processes and enhance the functional attributes of 
our bio-based inhibitors. Our focus was on optimizing the extraction and functionalization of 
pectin to augment its interaction with metal surfaces, thereby improving its corrosion inhibition 
capabilities. In addition, we initiated the synthesis of chitosan from shrimp shells, thereby 
broadening our array of eco-friendly inhibitors. We also established stringent corrosion testing 
protocols, including weight loss measurement and electrochemical testing, to assess the 
effectiveness of these inhibitors with greater precision.  

 
Quarter’s Objectives 
 
Our primary objective for the past quarter was to enhance the long-term effectiveness of pectin as 
a corrosion inhibitor. Building upon promising initial results, we aimed to conduct a series of long-
term corrosion inhibition tests using pectin. This included comprehensive evaluation through 
advanced electrochemical methods to ascertain the durability and effectiveness of pectin in varying 
corrosive environments. 

Additionally, we planned to delve deeper into the electrochemical properties of pectin by 
employing sophisticated testing methods such as Tafel polarization and Electrochemical 
Impedance Spectroscopy (EIS). These tests were crucial for understanding the intricate 
mechanisms of electrochemical corrosion inhibition by pectin and provided valuable insights into 
the interaction between pectin and metal surfaces under corrosive conditions. 

Furthermore, our team focused on improving the physical interaction between pectin and metal 
substrates. We explored chemical modification techniques aimed at enhancing the adhesion of 
pectin coatings to metal surfaces, thereby improving their protective efficacy against corrosion. 
This approach was expected to not only extend the lifespan of metal components but also optimize 
pectin’s application as a sustainable corrosion inhibitive layer in industrial settings.
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Task 1.2: Synthesis and Characterization of Green Inhibitors from Renewable Feedstock 
 
Developed innovative methods for the chemical modification of pectin, which could 
significantly enhance its anti-corrosion properties through a process of cross-linking. 
Furthermore, we refined adhesion techniques to reinforce its resilience and effectiveness in 
harsh conditions.  

 
For Task 1.2, we focused on establishing a method for enhancing pectin's corrosion efficiency 
performance through a series of chemical modifications. These modifications aimed to augment 
pectin’s protective properties through cross-linking techniques and optimizing adhesion 
capabilities to improve performance in harsh environments. 

Initially, a significant amount of pectin, precisely 10 grams, was dissolved in 300 mL of deionized 
water. To this solution, 50 mmol of EDC (1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide) and 
16.7 mmol of NHS (N-Hydroxysuccinimide) were added. This mixture was then stirred 
magnetically for three hours in an ice bath. This step was crucial as it served to activate the 
carboxyl groups of pectin, making them more reactive for the subsequent modification process. 

Following the activation, 50 mmol of an amino acid was dissolved in an additional 300 mL of 
deionized water. This amino acid solution was then combined with the activated pectin solution. 
The pH of the combined mixture was carefully adjusted to 5 using a 1 mol/L hydrochloric acid 
solution, setting the stage for the grafting reaction. 

The grafting reaction was induced by stirring the mixture magnetically for 24 hours under the same 
ice bath conditions. This prolonged stirring was vital to ensure a complete reaction, leading to the 
formation of a modified pectin with enhanced adhesive properties and increased molecular 
stability. 

After the reaction period, the mixture was treated with 600 mL of anhydrous ethanol to precipitate 
the modified pectin. The solution was then centrifuged to separate the precipitate, which was 
subsequently dialyzed against a 7000–14000 Dalton molecular weight cut-off membrane for 72 
hours at room temperature. This step was necessary to remove residual reactants such as EDC, 
amino acids, and NHS, ensuring that the final product was pure and suitable for further testing. 

The dialyzed product was finally freeze-dried to obtain a chemically modified pectin powder. This 
powder represents a refined version of the original biopolymer, now equipped with enhanced 
corrosion-inhibitive properties due to the introduction of new functional groups and a strengthened 
molecular structure. 

The efficacy of this chemically modified pectin will be evaluated in subsequent corrosion tests in 
the next quarter. 
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● Task 1.3: Corrosion Testing for Verification and Validation  
 

o Employed Tafel polarization, a sophisticated electrochemical testing method, to 
evaluate the effectiveness of pectin in mitigating corrosion and to gain insights into its 
electrochemical behavior. Utilized Tafel polarization as an advanced electrochemical 
test to measure pectin's corrosion mitigation effectiveness and gather electrochemical 
behavior insights. 
 

o Implemented Electrochemical Impedance Spectroscopy (EIS), an advanced 
electrochemical testing method, to assess the efficacy of pectin in reducing corrosion 
and to derive insights into its electrochemical behavior. Utilized electrochemical 
impedance spectroscopy (EIS) as an advanced electrochemical test to measure pectin's 
corrosion mitigation effectiveness and gather electrochemical behavior insights. 
 

o Conducted long-term weight loss experiments to evaluate the durability and protective 
properties of pectin, quantifying the material degradation and affirming its suitability 
for industrial applications. 
 

 
1.3.1 Tafel Polarization in Electrochemical Corrosion Testing 

 
Tafel polarization, a cornerstone of electrochemical analysis, plays a critical role in assessing the 
durability and lifespan of metals under corrosive conditions. This technique, based on Tafel 
extrapolation, provides vital insights into the corrosion mechanisms of metals, making it 
indispensable in fields ranging from infrastructure engineering to the development of marine 
vessels. 

The method derives its name from Julius Tafel, who, in the early 20th century, first described the 
relationship between the overpotential and the logarithm of the current density during 
electrochemical reactions. This foundational work laid the groundwork for using these 
relationships to probe the kinetics of electrochemical reactions, particularly corrosion processes. 

Corrosion, an electrochemical phenomenon, involves the deterioration of materials due to 
interactions with their environment. In metals, this typically manifests as the oxidation of metal 
atoms, which lose electrons and form ions. The susceptibility of metals to corrosion depends on 
their environment and material properties, posing significant risks to their structural integrity and 
functionality. 

 
Relevance of Tafel Polarization in Modern Applications 

 
In practical terms, Tafel polarization allows engineers and scientists to quantitatively measure the 
rate of corrosion using the corrosion current density derived from Tafel plots. These plots graph 
the potential versus the logarithm of the current density, revealing key information about the 
anodic and cathodic reactions that occur on the surface of the electrode. 
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The significance of Tafel polarization extends beyond simple measurement. The technique is 
critical for: 

● Material Selection and Design: Helping select materials with better corrosion resistance 
for specific applications. 

● Corrosion Inhibitor Evaluation: Testing the efficacy of various corrosion inhibitors to 
find the most effective compounds for protecting metals. 

● Predictive Maintenance and Life Prediction: Providing data that aid in forecasting the 
need for maintenance or replacement of corroded components, thereby averting potential 
breakdowns.  

 
Technical Overview of the Tafel Polarization Method 

 
Technically, the Tafel polarization test involves several steps, starting with the measurement of 
the open circuit potential (OCP) to establish a baseline for the electrochemical system at 
equilibrium. The subsequent application of varying potentials helps mapping out the complete 
electrochemical behavior of the test material, capturing phenomena like passivation or activation 
that are critical to understanding its corrosion behavior. 

During the test, both anodic (oxidation) and cathodic (reduction) reactions are explored. The 
anodic reaction involves the metal losing electrons, while the cathodic reaction involves the gain 
of electrons. The slopes of the lines in the Tafel plot, known as Tafel slopes, are indicative of the 
energy barriers for these reactions. Accurately determining these slopes is crucial for extrapolating 
the corrosion current density (icorr), which directly correlates to the metal's corrosion rate. Figure 
1.1 shows the Tafel plot and measured corrosion parameters.  
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Figure 1.1. Graphical Representation of the Tafel Polarization Corrosion Test Results 

 

A detailed analysis of the Tafel plot allows researchers to pinpoint the corrosion potential where 
the anodic and cathodic currents balance, a key metric in evaluating the stability of the metal in its 
operational environment. The intersection point of the extrapolated anodic and cathodic Tafel lines 
provides a precise measure of the corrosion rate, which is essential for assessing the protective 
qualities of corrosion inhibitors and the overall resilience of the metal. 

Thus, Tafel polarization is more than just a testing method; it is a comprehensive approach that 
offers a deep understanding of corrosion processes. This knowledge is crucial for developing 
strategies to mitigate corrosion, enhance material performance, and ensure the longevity and safety 
of metal components across various industries. 

 

Methodology for Conducting the Tafel Polarization Test 

Equipment Setup and Preparation 

For the Tafel polarization test, a controlled electrochemical setup was utilized, typically 
comprising a potentiostat, a three-electrode cell, and software for data acquisition and analysis. 
The three-electrode system consisted of a working electrode (the metal under test), a reference 
electrode, and a counter electrode. 

Stabilization of Open Circuit Potential (OCP) 

The metal sample was immersed in the test solution, and the system was allowed to equilibrate to 
the open circuit potential (OCP). This step was crucial as it established a stable baseline condition 
for the electrochemical system. The OCP is the potential where the net current at the electrode 
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surface is zero, indicating that the rates of the anodic and cathodic reactions have reached 
equilibrium. 

Test Medium Preparation 

To assess the impact of pectin as a corrosion inhibitor on A36 steel, a low-carbon steel used in the 
manufacturing of oil and gas pipelines, two distinct media were prepared: 

● Medium 1 (Control): A pure 1M HCl solution served as the control to assess the corrosion 
impact on unprotected A36 steel in a highly corrosive environment. 

● Medium 2 (Pectin Mixed): A 1M HCl solution containing 2g of pectin per liter of 
medium. This medium aimed to investigate the protective effects of pectin against steel 
corrosion in acidic conditions. 

In this quarter (Q3), only A36 metal coupons were utilized in the corrosion tests. We are in the 
process of preparing metal coupons from a gas pipe material (API 5L). We aim to verify whether 
both A36 and API 5L exhibit similar corrosion performance. To better replicate real-world 
conditions, we plan to use API 5L in all future tests. 

Test Parameter Configuration 

The configuration of the test parameters was performed through the software interface of the 
potentiostat. Key parameters entered included: 

● Initial Potential (Einitial): Set 10 mV negative relative to the OCP. This was the starting 
point for the potential sweep. 

● Final Potential (Efinal): Set 10 mV positive relative to the OCP. This defined the endpoint 
of the potential sweep. 

● Scan Rate: Determined to be approximately 0.125 mV/s. The scan rate was crucial for 
ensuring that the system did not deviate significantly from equilibrium during the test. 

Execution of the Potentiodynamic Polarization Test 

Once the parameters were set, the potentiodynamic polarization test was initiated. The software 
controlled the potentiostat to apply a linear sweep of potential from the initial to the final set values. 
During this sweep: 

● The potential was incrementally increased from Einitial to Efinal. 
● The current response of the system was continuously measured as the potential was varied. 

Data Acquisition and Plotting 

The current and potential data collected during the tests were automatically recorded by the 
software. This data was used to generate the Tafel plot, which graphed the potential (E) on the Y-
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axis versus the logarithm of the current density (log I) on the X-axis. The Tafel plot was essential 
for analyzing the electrochemical behavior of the metal under the test conditions. 
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Identification of Linear Regions and Extrapolation 

The Tafel plot typically exhibited linear regions corresponding to the anodic and cathodic 
branches. These regions were critical for the analysis as they reflected the kinetics of the oxidation 
and reduction reactions. Using the software: 

● The linear portions of the anodic and cathodic curves were identified. 
● These linear regions were extrapolated back to their intersection at the corrosion potential 

(Ecorr). 

Calculation of Corrosion Current Density (icorr) 

The intersection point of the extrapolated anodic and cathodic lines provided the value of the 
corrosion current density (icorr). This value was crucial as it directly related to the corrosion rate of 
the metal. The software facilitated the conversion of icorr into the corrosion rate using pre-defined 
constants and material properties such as the equivalent weight of the metal and its density. Finally, 
the corrosion rate (CR) and efficiency of pectin on inhibition of corrosion (IE) were calculated 
using the following formulas.  

𝐶𝐶𝐶𝐶 =
𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.𝐾𝐾.𝐸𝐸𝐸𝐸

𝜌𝜌.𝐴𝐴
  (1) 

𝐼𝐼𝐼𝐼 =
𝐶𝐶𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝐶𝐶𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐶𝐶𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
× 100 

(2) 

Where:  

CR = Corrosion rate 
IE= inhibition efficiency  
k= Constant that depends on the units used for corrosion rate 
Icorr = Corrosion current density (A/cm²) 
EW = Equivalent weight of the corroding metal 
ρ = Density of the metal (g/cm³) 
A = Exposed surface area of the metal (cm²) 

 
Result of the Tafel Polarization Tests 

 

The Tafel polarization tests, carried out in two separate media, revealed unique corrosion 
properties for A36 steel, thereby highlighting the effectiveness of pectin as a corrosion inhibitor. 
The results of these tests produced Tafel plots, from which crucial parameters like corrosion 
potential (Ecorr), corrosion current density (icorr), and corrosion rate were extracted. The raw data 
from the Tafel plots indicated the following outcomes for each medium: 
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Table 1.1 Raw data from the Tafel plots for each medium 

Medium Ecorr 
(mV) 

icorr (μA/cm²) CR (mmpy) Inhibition Efficiency 

1M HCl (Control medium) -453.05 18.94 0.219 N/A 
1M HCl+2g/L pectin  -456.29 12.86 0.1487 32% 

 
The comparative analysis of the data from the two media reveals a clear decrease in both the 
corrosion current density and the corrosion rate in the presence of pectin. Specifically, the 
incorporation of pectin resulted in a reduction of icorr by approximately 32%, indicating a 
significant decrease in the rate at which corrosion progressed. 

The effectiveness of pectin as a corrosion inhibitor can be attributed to its ability to form a 
protective barrier on the metal surface. This barrier likely impedes the access of corrosive agents 
(HCl ions) to the steel surface, thereby reducing the electrochemical reactions that lead to 
corrosion. The slight shift in corrosion potential (Ecorr) in the presence of pectin (from -453.05 mV 
to -456.29 mV) supports the notion that pectin modifies the electrochemical environment at the 
steel surface. 

The results underscore the potential of pectin as a viable, environmentally friendly corrosion 
inhibitor for A36 steel in acidic environments. The 32% inhibition efficiency indicates a 
substantial protective effect, which could translate into significantly increased lifespan and 
reduced maintenance costs for steel structures. 

The Tafel polarization tests clearly demonstrated the efficacy of pectin as a corrosion inhibitor. 
The significant reduction in corrosion rate and the alteration in electrochemical behavior of the 
steel surface suggest that pectin or similar organic inhibitors could play an essential role in 
corrosion protection strategies, particularly in industries where steel is exposed to acidic 
conditions. Further research could explore the molecular interactions between pectin and metal 
surfaces to optimize the formulation and application methods for industrial use. 

 

1.3.2 Electrochemical Impedance Spectroscopy in Electrochemical Corrosion Testing 
 

Electrochemical Impedance Spectroscopy (EIS) is a powerful and sensitive analytical technique 
widely used in the field of electrochemical corrosion testing. By measuring the impedance of a 
system over a range of frequencies, EIS provides detailed insights into the electrochemical 
processes occurring at the interface between a metal and its environment. This methodology has 
become indispensable for researchers and engineers involved in the development of corrosion-
resistant materials and the assessment of protective coatings. 

The theoretical foundation of EIS is rooted in the early 20th-century developments in 
electrochemistry and electrical engineering. However, it was not until the advent of modern 
electronics and computers in the latter half of the century that EIS evolved into the sophisticated 
tool it is today. Initially used for studying battery systems and fuel cells, the application of EIS in 
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corrosion science began to gain prominence as it provided a non-destructive means of analyzing 
corrosion mechanisms. 

Theoretical Principles of EIS 

Electrochemical Impedance Spectroscopy operates on the principle of applying a small amplitude 
AC voltage to an electrochemical cell and measuring the resulting current. The response of the 
system is analyzed across a spectrum of frequencies to determine the impedance, a complex 
quantity comprising resistive and reactive (capacitive and inductive) elements. The impedance of 
a metal/environment interface is influenced by various factors, including the properties of the 
metal, the nature of the electrolyte, and the presence of any corrosion products or coatings. 

Components of an EIS System 

An EIS setup typically includes: 

● Electrochemical Cell: Contains the working electrode (material under test), a reference 
electrode, and a counter electrode. 

● Frequency Response Analyzer: Generates the AC signal and measures the response. 
● Potentiostat: Controls the potential of the working electrode against the reference 

electrode. 

Advantages of EIS in Corrosion Testing 

EIS offers several advantages over traditional corrosion testing methods: 

● Non-Destructive: EIS does not alter the sample during testing, allowing for real-time 
monitoring of corrosion processes. 

● Sensitivity to Surface Changes: EIS can detect minute changes in the electrochemical 
properties of the interface, making it ideal for evaluating the effectiveness of corrosion 
inhibitors and coatings. 

● Wide Range of Applications: From monitoring corrosion in reinforced concrete to 
assessing the integrity of coatings on aircraft, EIS's versatility makes it a valuable tool 
across diverse industries. 

EIS Data Interpretation 

The interpretation of EIS data is typically facilitated through the use of Nyquist and Bode plots, 
which graphically represent the impedance characteristics of the system. These plots can reveal: 

● Charge Transfer Resistance: Related to the ease with which electrons can move across 
the electrode/electrolyte interface. 

● Double Layer Capacitance: Reflects the capacitive behavior at the interface, influenced 
by the thickness and properties of the electrochemical double layer. 
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● Warburg Impedance: Indicates diffusion-controlled processes, often seen in porous 
coatings or corrosion layers. 

Applications in Corrosion Science 

In corrosion science, EIS is used to study: 

● Corrosion Kinetics: Understanding how the corrosion rate changes with time under 
various environmental conditions. 

● Evaluation of Corrosion Inhibitors: Assessing how different inhibitors affect the 
electrochemical behavior of the metal. 

● Coating Degradation: Monitoring the degradation of protective coatings over time to 
predict failure and maintenance needs. 

Methodology for Electrochemical Impedance Spectroscopy 

Electrochemical Impedance Spectroscopy (EIS) tests were conducted to evaluate the efficacy of 
pectin as a corrosion inhibitor on A36 steel. These tests were performed in two different media: 

● Medium 1 (Control): Pure 1M HCl solution. 
● Medium 2 (Pectin Mixed): A 1M HCl solution containing 2g of pectin per liter of 

medium. 

The EIS measurements utilized a standard three-electrode cell setup: 

● Working Electrode: A36 steel specimen with polished surface using sand #80, #200, 
#400, #800, #1200. The sample surface was polished as per test protocol for higher 
accuracy of corrosion test results. 

● Reference Electrode: Saturated Calomel Electrode (SCE). 
● Counter Electrode: Platinum wire. 

Instrumentation and Measurement Parameters 

The EIS was conducted using a frequency response analyzer coupled with a potentiostat, which 
maintained the electrode potential and measured the impedance response. The specific parameters 
used in the EIS tests are summarized in the table below: 

Table 1.2. Parameters used in the EIS tests 

Parameter Value Description 
AC Signal Amplitude 10 mV The amplitude of the alternating current 

signal. 
Frequency Range 100 kHz to 10 mHz The range over which impedance was 

measured. 
Potentiostat Mode Potentiostatic (constant 

potential) 
Maintains a constant electrode potential 
during measurements. 
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Equilibration Time At least 3 hours Allows the system to stabilize before 
measurements. 

Data Acquisition 

EIS measurements were initiated after a stabilization period, during which the electrochemical 
system reached a steady state. Impedance data were acquired across the specified frequency range, 
capturing the complete electrochemical response. 

Data Analysis 

The impedance data were analyzed by fitting them to an equivalent circuit model to extract key 
parameters such as solution resistance (Rs), charge transfer resistance (Rct), and constant phase 
element (CPE). These parameters were derived from Nyquist plots, which graph the imaginary 
part of impedance (Z'') against the real part (Z'). 

Equivalent Circuit Model 

The equivalent circuit used for analyzing the impedance plots consisted of: 

 

Figure 1.2.  Equivalent Circuit Diagram Derived from EIS Corrosion Test Results 

● R1: Solution resistance (Rs). 
● R2: Charge transfer resistance (Rct). 
● CPE1: Impedance of the constant phase element. 

Steps for Measuring Solution and Charge Transfer Resistance 

1. Perform EIS Measurement: Conduct an EIS experiment over a broad frequency range. 
2. Analyze Nyquist Plot: Plot the Nyquist diagram and identify the intercepts and features 

corresponding to Rs and Rct. 
3. Calculation of Parameters: 

o Solution Resistance (Rs): High-frequency intercept on the real axis of a Nyquist 
plot. 

o Charge Transfer Resistance (Rct): Represents the electron transfer resistance at 
the electrode-electrolyte interface. 
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Figure 1.3. Nyquist diagram of electrochemical impedance spectroscopy test 

The impedance characteristics, such as the diameters of the semicircles in Nyquist plots, indicate 
the corrosion resistance. An increased diameter implies higher corrosion resistance and is a direct 
measure of the inhibitory effects of pectin. The results were quantitatively assessed using the 
collected EIS parameters, specifically focusing on the changes in Rs and Rct, to evaluate the 
performance of pectin as a corrosion inhibitor. 

This systematic approach provided a comprehensive understanding of the corrosion behavior of 
A36 steel in the presence and absence of pectin, underlining the effectiveness of EIS in evaluating 
corrosion inhibitors in various media. The following formula was used to measure pectin's 
inhabitation efficiency (IE).  

𝐼𝐼𝐼𝐼 =
𝑅𝑅𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑅𝑅𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑅𝑅𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
                                                   (3) 

Result of Electrochemical Impedance Spectroscopy Test 
EIS tests were performed on A36 steel in both control and pectin-infused media, yielding important 
impedance data. These data were examined using Nyquist plots. The findings underscore 
substantial variations in the electrochemical behavior of the steel when the pectin inhibitor is 
present versus when it is absent. 
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Interpretation of Nyquist Plots 

 

Figure 1.4. Comparative Nyquist Plots for Both Media  

Nyquist plots for both media displayed a single semi-circle, indicative of a charge-transfer 
controlled corrosion process. The key observations from the Nyquist plots include: 

● Uninhibited Solution (Control): 
o Smaller semi-circle diameter, indicating lower impedance values. 

● Inhibited Solution (Pectin Mixed): 
o Larger semi-circle diameter, suggesting increased impedance and thus enhanced 

resistance to corrosion. 

These observations imply that the presence of pectin at the carbon steel-electrolyte interface 
increases the impedance, thereby reducing the corrosion rate. 

Quantitative Analysis 

The EIS parameters extracted from the equivalent circuit model provided quantitative insights into 
the corrosion inhibition mechanism: 
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Table 1.3. EIS parameters extracted from the equivalent circuit model 

Parameter Control Pectin 
Mixed 

Unit Improvement with 
Pectin 

Solution Resistance (Rs) 2.1 1.9 Ω 
cm² 

Increased conductivity 

Polarization Resistance (Rct) 1046 1616 Ω 
cm² 

Improved by 54.5% 

Constant Phase Element 
(CPE) 

9.9×10-5 7.2×10-5 F/s Reduced capacitance 

Inhibition Efficiency - 54 % Significant improvement 

Key Observations: 

● Solution Resistance (Rs): A slight decrease in Rs in the pectin mixed solution indicates 
slightly better ionic conductivity. 

● Polarization Resistance (Rct): A significant increase in Rct from 1046 Ω cm² in the 
control to 1616 Ω cm² in the pectin mixed solution suggests a substantial improvement in 
corrosion resistance due to the inhibitory action of pectin. 

● Constant Phase Element (CPE): The decrease in CPE value reflects a reduction in the 
double-layer capacitance, possibly due to the formation of a more compact layer at the 
electrode surface. 

The enhanced polarization resistance in the presence of pectin indicates that pectin molecules 
adsorb onto the steel surface, forming a protective barrier that impedes the charge transfer process 
associated with corrosion. This barrier effect not only increases the overall impedance but also 
modifies the electrochemical environment at the interface, making the corrosion process less 
favorable. 

The slight imperfections in the semi-circle shape observed in the Nyquist plots, indicative of 
frequency dispersion, could be attributed to the roughness and heterogeneity of the metal surface. 
Such imperfections are typical in real-world scenarios and underscore the complexity of 
interpreting EIS data in practical corrosion systems. 

So, the EIS test results convincingly demonstrate the effectiveness of pectin as a corrosion inhibitor 
in acidic environments. The quantitative data from the impedance analysis corroborate the visual 
and qualitative interpretations from the Nyquist plots, providing a comprehensive picture of the 
inhibitory mechanism. These findings not only validate the use of pectin as an eco-friendly 
corrosion inhibitor but also illustrate the utility of EIS as a diagnostic tool in the study of corrosion 
processes and inhibitor performance. 
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1.3.3  Evaluating the Long-term Durability and Corrosion Inhibition Properties of Pectin  
 

o Conducted long-term weight loss experiments to evaluate the durability and protective 
properties of pectin, quantifying the material degradation and affirming its suitability 
for industrial applications. 
 

The corrosion tests employed A36 steel sheets, characterized by an unpolished (mill) finish, hot 
rolled, and conforming to ASTM A36 standards. The steel sheets, with a thickness of 0.06 inches, 
were cut using a CNC cutter into test coupons measuring 2.0 cm by 1.0 cm. A corrosive medium 
was prepared using 1M hydrochloric acid (HCl), formulated from 37 percent analytical reagent 
(AR) grade HCl. This solution aimed to simulate aggressive corrosion conditions. Two distinct 
mediums were prepared to evaluate the corrosion resistance of the steel coupons under varying 
conditions: 

 

Medium 1 (Control): Pure 1M HCl solution, serving as the control to assess the effect of the 
corrosive medium on unprotected A36 steel. 

 

Medium 2 (Pectin Mixed): A solution consisting of 0.2 g of pectin dissolved in 100 ml of water, 
mixed with pure 1M HCl. This medium aimed to investigate the influence of pectin presence in 
the corrosive media on steel corrosion. 

 

The differences in weight loss across the two media were analyzed to assess the efficacy of pectin 
in mitigating corrosion on A36 steel. 

 

Test Procedure 

For each test, the respective steel coupons were completely immersed in a 500 ml glass beaker 
containing one of the prepared test solutions. The experiments were conducted over several 
duration of 2 weeks, 4 weeks, and 6 weeks at a controlled temperature of 25 °C. To minimize the 
influence of oxygen and ensure consistent conditions, the beakers were placed in a fume hood. 
Before immersion, each steel coupon was accurately weighed to determine its initial mass. 
Following the exposure periods, the coupons were retrieved from their respective solutions. To 
remove any corrosion products formed during the test, each coupon was thoroughly scrubbed 
under running water using a bristle brush and cleaned with acetone. After cleaning, the coupons 
were dried in acetone to remove any residual moisture and reweighed to determine the final mass. 

The primary evaluation metric for this experiment was the weight loss of the steel coupons, 
calculated by subtracting the final mass from the initial mass of each coupon. This measurement 
provided a quantitative assessment of the corrosion rate experienced by the steel in each medium, 
thus allowing for the comparison of the protective effects of pectin against corrosion when mixed 
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in the solution. Tables 1.4 to 1.6 show the average result of the weight loss test on each medium 
and the efficiency of pectin’s corrosion inhabitation compared to the control samples. 

 
Table 1.4. Comparison of weight loss of metal coupons after 2 weeks 

 
 Condition W1(g) W2(g) W3(g) Average Weight 

Loss(g) 
Corrosio

n (%) 
2 

week
s in 
1M 
HCl 

Weight 
before 

corrosion 
3.77704 3.7651

6 
3.7932

6 3.778487 
0.3348 8.862 

Weight after 
corrosion 3.48571 3.3929 3.4523

6 3.443653 

2 
week
s in 
1M 
HCl 

+ 
Pecti

n 

Weight 
before 

corrosion 
3.80058 3.8036

3 3.7935 3.799237 

0.084 2.221 
Weight after 

corrosion 3.74578 3.6806 3.7181
5 3.714843 

 
     

 
Inhibitor  

Efficiency (%) 
74.993 

 

 

Figure 1.5. Visual Comparison of Metal Coupons Following Two Weeks of Corrosion Tests 
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Table 1.5. Comparison of weight loss of metal coupons after 4 weeks 
 

 Condition W1(g) W2(g) W3(g) Average Weight 
Loss(g) 

Corrosio
n (%) 

4 
week
s in 
1M 
HCl 

Weight 
before 

corrosion 
3.77715 3.7467

4 
3.7753

1 3.76454 
0.35407 9.405 

Weight after 
corrosion 3.3173 3.4360

3 
3.4781

8 3.410503 

4 
week
s in  
1M 
HCl 

+ 
Pecti

n 

Weight 
before 

corrosion 
3.79257 3.7804 3.8158 3.796257 

0.17692 4.660 
Weight after 

corrosion 3.56769 3.6238
3 

3.6664
9 3.619337 

 
     

 
Inhibitor  

Efficiency (%) 
50.451 

 

 

Figure 1.6. Visual Comparison of Metal Coupons Following Four Weeks of Corrosion Tests  
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Table 1.6. Comparison of weight loss of metal coupons after 6 weeks 
 Condition W1(g) W2(g) W3(g) Average Weight 

Loss(g) 
Corrosio

n (%) 
6 

wee
ks 
in 

1M 
HC

l 

Weight before 
corrosion 3.7611 3.7851

5 
3.7845

8 3.776943 

0.46791 12.39 
Weight after 

corrosion 3.2635 3.2902
5 

3.3733
5 3.309033 

6 
wee
ks 
in  

1M 
HCl 

+ 
Pec
tin 

Weight before 
corrosion 3.7308 3.7906 3.7784 3.7666 

0.2086 5.54 
Weight after 

corrosion 3.53846 3.5560
4 

3.5792
5 3.557917 

 
     

 
Inhibitor  

Efficiency (%) 
55.28 
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Figure 1.7. Visual Comparison of Metal Coupons Following Six Weeks of Corrosion Tests  

Based on the data provided in Tables 1.4, 1.5, and 1.6 and the corresponding figures in this report, 
it is evident that pectin has shown significant potential as a green corrosion inhibitor. It effectively 
reduces metal corrosion in aggressive acidic environments during testing. 

In the short-term test spanning two weeks, control samples immersed in 1M HCl exhibited an 
average corrosion percentage of 8.862% with a weight loss of 0.3348 grams. When pectin was 
introduced, the corrosion rate significantly dropped to 2.221%, with a weight loss of only 0.084 
grams. This translates to an inhibitor efficiency of approximately 74.993%, highlighting pectin's 
remarkable effectiveness at curbing corrosion in a short period. 

Extending the duration to four weeks, the corrosion in control samples slightly increased to a 
9.405% corrosion rate and a weight loss of 0.35407 grams. However, samples treated with pectin 
showed a lower corrosion rate of 4.660% and a weight loss of 0.17692 grams, resulting in an 
inhibitor efficiency of about 50.445%. Although the effectiveness of pectin decreased compared 
to the two-week test, it still provided significant protection against corrosion. 

For the long-term evaluation over six weeks, the untreated samples showed further increased 
corrosion, reaching 12.39% with a weight loss of 0.46791 grams. The pectin-treated samples 
maintained better resistance, showing a corrosion rate of 5.54% and a weight loss of 0.2086 grams, 
with an efficiency rate of 55.28%. Despite the longer exposure, pectin continued to offer 
considerable protection, albeit with a slight reduction in efficiency compared to the earlier 
intervals. 

The visual evidence from Figures 1.5, 1.6, and 1.7 corroborates the quantitative data, showing that 
metal coupons treated with pectin exhibited considerably less surface corrosion than those left 
unprotected. This consistent trend across all test durations underscores pectin's capability to protect 
metal surfaces under varied conditions. However, despite the overall reduction in surface 
corrosion, some samples treated with pectin showed localized damage, such as piercing or the 
formation of ditches on the metal surfaces. This occurrence, while reducing the general corrosion 
rate, poses a significant risk if such a phenomenon were to occur in actual pipeline applications, 
where even minor structural failures can lead to severe consequences. 

The occurrence of pitting corrosion is likely attributed to the presence of chloride in the testing 
medium. Typically, chloride can induce pitting corrosion when the metal surface undergoes 
passivation, as seen in this test that included an additional corrosion inhibitor. The chloride has the 
potential to integrate into the protective film formed by the inhibitor and compromise the metal 
surface at points where the film is weak [1].  

In summary, while pectin has demonstrated its effectiveness as a corrosion inhibitor, particularly 
in the initial exposure stages, its performance shows a slight decline over time but still provides 
substantial protection compared to unprotected samples. These findings suggest that pectin holds 
promise as a sustainable alternative to traditional corrosion inhibitors, especially in scenarios 
where minimizing environmental impact is crucial. The next phase of research should focus on 
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addressing the observed localized damage to ensure the reliability and safety of pectin as a 
corrosion inhibitor in real-world applications. 

The use of 1M HCl, a highly concentrated acid, was initially chosen to accelerate corrosion for 
rapid testing outcomes. However, following the recommendations of industry experts, the weight 
loss tests were also conducted using a diluted 0.25M HCl solution to more accurately simulate the 
milder corrosive environments typically found in pipelines. Following the established procedure, 
these tests involved immersing metal coupons in both types of acidic media for six weeks to assess 
and compare the effects of different acid concentrations on corrosion rates. Table 1.7 shows the 
average result of the weight loss test on each medium and the efficiency of pectin’s corrosion 
inhabitation compared to the control sample. 

Table 1.7. Comparison of weight loss of metal coupons after 6 weeks in diluted corrosive media 
 

 Condition W1(g) W2(g) W3(g) Average Weight Loss(g) Corrosion 
(%) 

6 
wee
ks 
in 
0.2
5M 
HC

l 

Weight before 
corrosion 3.78612 3.7786

5 
3.7982

5 3.787673 

1.498 39.566 
Weight after 

corrosion 2.29125 2.3887
6 

2.1871
1 2.28904 

6 
wee
ks 
in  
0.2
5M 
HCl 

+ 
Pec
tin 

Weight before 
corrosion 3.8106 3.7564 3.8113

8 3.792793 

0.37686 9.936 

Weight after 
corrosion 3.51761 3.3682 3.3619

9 3.41593 

 
     

 
Inhibitor  

Efficiency (%) 
74.887 
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Figure 1.8. Visual Comparison of Metal Coupons Following Six Weeks of Corrosion Tests 

The results from the diluted 0.25M HCl tests reveal a significant level of corrosion in the absence 
of pectin. Initially, the average weight of the metal coupons was approximately 3.787673 grams, 
which decreased sharply to 2.28904 grams after exposure, resulting in a high corrosion percentage 
of 39.566%. This level of corrosion underscores the aggressive nature of even diluted acidic 
environments and emphasizes the necessity for effective corrosion mitigation strategies. It was 
observed that an increased concentration of chloride accelerates the onset of pitting. However, the 
impact of chloride concentration on corrosion weight loss remains uncertain, given the various 
corrosion mechanisms involved [2]. Further investigations are needed to elucidate the corrosion 
mechanisms at various chloride concentrations.  

Conversely, the addition of pectin to the diluted acid solution markedly improved the corrosion 
resistance of the metal coupons. With pectin, the initial average weight was slightly higher at 
3.792793 grams, and the weight after the six weeks was reduced to only 3.41593 grams. This 
corresponds to a significantly lower corrosion percentage of 9.936%, demonstrating pectin's 
effectiveness in reducing material loss under corrosive conditions. The calculated inhibitor 
efficiency of 74.887% highlights the substantial protective capabilities of pectin against corrosion. 

Figure 1.8 visually corroborates the quantitative data, showing that metal coupons treated with 
pectin exhibited considerably less surface damage compared to those immersed in the acid solution 
without any protective agent. The metal surfaces in the pectin-treated group showed fewer and less 
severe signs of surface corrosion, validating the effectiveness of pectin as a corrosion inhibitor. 
However, even in the diluted medium, occurrences of pierced and extensively corroded spots were 
observed on metals treated with pectin, which raises concerns about the potential detrimental 
effects of pectin, particularly its role in creating localized areas of significant damage. 

In summary, while the tests in diluted corrosive media highlight the severe impact of even mild 
acidic conditions on metals, they also demonstrate the notable protective effects of pectin. These 
results support the potential of pectin as an effective and environmentally friendly corrosion 
inhibitor for industrial applications, particularly under conditions that mimic real-world corrosive 
environments. The overall consistency of pectin’s protective performance across various 
conditions points to its appropriateness for broader industrial use. Nonetheless, the observed 
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localized damage necessitates further investigation into pectin's long-term stability and 
mechanisms to prevent such detrimental effects, ensuring its reliability and safety in practical 
applications. 



 

Task 2. Simulation-based Inhibitor Implementation Optimization in Gas Gathering and 
Transportation Pipelines 

 

Introduction 
 

Background 
 
In current protection approaches for pipeline systems, the application of corrosion inhibitors shows 
good efficiency and economics. Preventing the pipe wall from corrosive liquid or gas, corrosion 
inhibitors with reasonable implementation is able to largely expand the lifetime of the pipeline. 
However, the complicated near-wall flow regime leads to the difficulty of formulating the 
application scheme of inhibitors. Compared to static liquid, inhibitor particles suffer from more 
violent collision and erosion under the flow, which may accelerate the weakening and adhesion 
loss of the inhibitor protective film.  

The degradation process of existing inhibitors with respect to different flow conditions is usually 
ambiguous, and many improved products of inhibitors have been gradually spread. At this point, 
only by increasing the safety factor (supplementing corrosion inhibitors more frequently) can the 
protective performance of the film be ensured to reduce irreversible damage to the pipe wall. But 
this will cause unnecessary resource waste. This research aims to investigate the mechanism of 
flow-induced inhibitor degradation. 

Within the general pipeline of our project, the flow rate is always lower than 5 m/s that hardly 
leads to obvious near-wall turbulence. In the view of energy, the desorption of inhibitor particles 
from the wall can be assumed as the main reaction corresponding to inhibitor degradation, which 
is depicted in Figure 2.1. According to the Langmuir adsorption model, initially added inhibitors 
will reach the absorption-desorption balance, i.e., from (a) to (b) in Figure 2.1, in which only one 
layer of inhibitor film can strongly attach to the wall without a long time. This also conforms to 
the characteristics of inhibitor particles that cannot connect. The change from (a) to (b) will not 
largely impair protection performance. But as certain inhibitor particles gradually desorb from the 
pipe wall, i.e., from (b) to (c) in Figure 2.1, a part of the pipe wall surface will be exposed to the 
flow, leading to significant reduction of protection performance. The process from (b) to (c) is 
long-term and slow. Nevertheless, making clear the relationship between impact factors and 
inhibitor desorption can give the reference to the scheme of inhibitor application and thus improve 
its efficiency and economy. 



 

 

Figure 2.1. The assumed desorption process of inhibitor particles from the wall. 

In low-flow-rate pipeline, wall shear stress (WSS) serves as a key metric contributing to inhibitor 
desorption. Other factors, like the pipe size and flow rate, have proportional relation to WSS and 
can be totally considered by the latter. Therefore, the stability of the corrosion inhibitor film under 
fluid flow is evaluated using WSS as a pivotal reference, highlighting the critical relationship 
between flow dynamics and the integrity of corrosion protection.  

To derive the WSS distribution within the pipeline, we need to run a large amount of refined 
computational fluid dynamics (CFD), for the pipe wall roughness surface profile is at least at the 
scale of 0.1 millimeters. The work in the last phase revealed the probability of applying deep 
learning for predicting WSS, which aimed to build a surrogate model that replaces CFD to produce 
WSS data more efficiently. Focus on numerical simulations, we specially developed Fourier neural 
operator (FNO). The well-trained FNO is expected to yield the target WSS data with given 
roughness shape information. However, the FNO framework established in the last phase failed to 
predict those with the roughness that never occurred in the training set, which would be improved 
in the research of this quarter. 

As for the training of the applied neural network, another considerable issue is the acquisition of 
training data. In general, this data is derived by CFD in high fidelity that is helpful to increase the 
reliability of the surrogate model. However, concomitant much larger consumption of 
computational resource in the full high-fidelity flow field is not cost-effective, since only a small 
part of CFD results is needed, e.g., WSS in our research. To address this issue, we also aim to 
develop a multi-fidelity approach that learns the relationship between high-fidelity (HF) and low-
fidelity (LF) data, so that we can predict the required HF results from LF information, achieving a 
balance between detail and efficiency. 

The primary focus of task 2 is to improve the existing deep learning method to collect desired flow 
information, which serves to build a preliminary framework for specifying the relationship of 
protective film degradation and WSS under the use of different types of corrosion inhibitors.  

The outcomes of this study are expected to contribute significantly to the development of more 
effective strategies for pipeline protection, enhancing the longevity and safety of these critical 
components in the energy infrastructure.



 

Objectives 
 
The main objective of this research is to improve the surrogate model to predict WSS with different 
roughness information. The resulting WSS is further used to study inhibitor degradation under a 
flow condition. 
 
A key aim is to incorporate uncertainty quantification, including aleatoric uncertainty and 
epistemic uncertainty, into the surrogate model, providing reliability of predicted WSS. 
 
The research also seeks to develop the multi-fidelity approach that can derive HF information of 
3-D cases from given LF data of 2-D cases. The cross-fidelity prediction will balance the 
requirement on both detail and efficiency. 
 
Additionally, the study aims to establish an experience model for describing inhibitor degradation 
for WSS, time and types of inhibitors. The supporting test will be preliminarily designed. 
 
By achieving these objectives, the simulation project aspired not only to contribute to improving 
the longevity and safety of pipelines but also to demonstrate a scalable and efficient model for 
conducting simulations that traditionally require significant computational efforts from 
engineering design and analysis to research and development in fluid mechanics. 
 

Methodology 
 

WSS prediction 
 

In establishing the surrogate model for a fast prediction of WSS, the training data is derived from 
CFD, in which A series of 2-D pipe segments is analyzed under different shapes of wall roughness. 
Then, the framework of FNO is applied to build the mapping between WSS and wall roughness. 
First, a brief overview of previous work on WSS prediction will be provided, followed by a 
detailed explanation of the surrogate FNO model's progress. 

 

Brief review 
 
In the last phase, wall roughness is set at a 0.05m-length boundary of the 2-D pipe with the 
remaining part of being totally smooth for each computational case of CFD, as shown in Figure 
2.2, which ensures the fully developed flow field in enough length. Specifically, each training or 
testing set contains the data at 200 continuous points, in which original values of x-coordinate and 
WSS are used, while the derivative of y over x (y'=Δy/Δx) replaces y values to form the dataset. 
Here, x and y' are set as the input of FNO, and WSS is calculated by CFD as the output.  



 

  
Figure 2.2. 2D pipe with wall roughness 

The comparison testing results with traditional fully-connected network demonstrated better 
adaptability of FNO in WSS prediction. However, we extracted training and testing data from the 
same roughness case in the previous work, and the existing FNO model was limited in prediction 
with the shape of wall roughness that never occurred in the training set. For this reason, we aim to 
improve the existing FNO model to predict WSS with different roughness information. 

 
Establishment of dataset 
 
Roughness profile is designed in trigonometric functions as y=a*cos(f*x)+a, where a and f denote 
the factors of amplitude and frequency, respectively. In the current research, a is considered in the 
series [0.12, 0.14, 0.16, 0.18] (millimeter), and f is in [0.05, 0.10, 0.15, 0.20, 0.25]. In total, twenty 
cases with different combinations of a and f are used. The roughness profile is integrated into the 
pipe segment shown in Figure 2.2 to run CFD in Ansys Fluent 2023, in which related settings 
about meshing and solution are similar to before. 
CFD results provide the WSS data corresponding to each point of roughness profile that is still set 
as the only output of the FNO model. Different from the previous work, y-coordinate is 
incorporated as the input. As a result, three dimensions of data (x, y and y'=Δy/Δx) are used to 
characterize location information. Figure 2.3 illustrates the data extraction approach that cuts out 
continuous points from a case and divides it into the “previous”, “middle” and “next” segments. 
Location information of these three segments is totally set as the input, while only WSS with 
respect to the middle segment is used as the output. This implementation is under the consideration 
that WSS is affected by roughness profile. Besides, the figure also shows that data points in each 
case are extracted by moving slicing, and the moving step is usually less than the length of the full 
segments to increase the available data. In our cases, the lengths of the previous, middle and next 
segments are 200, 50 and 200 points, respectively; The moving step is set as 50 points. 
 



 

  
Figure 2.3. Illustration of data extraction 

 
FNO setup 
 
To illustrate the surrogate model more clearly, Figure 2.4 depicts the framework of the applied 
FNO model suitable to our cases. Considering one batch of data, the initial input is a matrix with 
three rows. It would be first expanded to a new one with more rows, which can be regarded as an 
encoder process incorporating more information. Then, a series of fast Fourier transform (FFT) 
and inverse fast Fourier transform (IFFT) are applied to the row space. Later, two row linear 
transfers are performed to condense the data to a row vector. Traditional FNO only got the output 
with the same size as the input. Therefore, we try two types of transfer to adjust the column 
number: The one is column linear reduction, and another is to directly cut down the redundant 
points of the “previous” and “next” segments. The comparison shows the latter one is better and 
is chosen as the final reduction approach. This is reasonable since FNO attaches importance to the 
location arrangement of each point. But the column transfer would hurt this arrangement. It can be 
also seen that in the previous layer transfer, FNO learned the data relationship only from row 
transfers. 

 
Figure 2.4. Illustration of data flow in FNO 

 
Prediction results of WSS 
 



 

The roughness case with a=0.1 and f=0.15 is used as the testing set, and the datasets corresponding 
to the remaining nineteen cases as training sets. Figure 2.5 shows the prediction results of WSS 
for three sets. From the figure, we can see that the predicted values follow the similar trend of 
change as a target. Taking into accounts the most unfavorable situations, we focused on the peak 
values, which cannot be always accurately predicted. The first peak in the third set of Figure 2.5, 
for example, got an obvious difference between target and predicted values. This may mainly due 
to the uncertainty of the WSS data, as reflected in Figure 2.6, which shows that the computational 
WSS from CFD has patent fluctuation. The complexity of the flow lead to this uncertainty even in 
a regular periodic roughness profile, let alone more chaotic boundary shapes in practice. The 
uncertainty appeared in WSS prediction should be quantified and will be further discussed later. 

  
Figure 2.5. Prediction results with FNO 

 

 

Figure 2.6. Illustration of the uncertainty appeared in WSS data 

 

Contrastive study for WSS prediction 
 
To investigate the in-depth research about the application of FNO on WSS prediction, two groups 
of contrastive studies are performed. 

The first one is under a different data normalization approach. Figure 2.7 depicts the prediction 
results under four contrastive conditions: (a) all datasets conformed to the same mean values and 
variance, which are calculated from the integrity of the data in nineteen training cases, and this 
approach is applied by the FNO used in the last section; (b) data of each roughness case is 



 

individually normalized; (c) data of each training and testing set, i.e., cut-out segment, is 
individually normalized; (d) no normalization is performed. There is certain difference among the 
first three conditions. But as mentioned before, this may be due to the uncertainty of computational 
WSS. In total, the first three normalization approaches are accessible to achieve acceptable 
prediction results. On the contrary, the result in Figure 2.7(d) shows that non-normalization cannot 
lead to a good prediction in our case. 

 

  
(a)                                                       (b) 

 
(c)                                                       (d) 

Figure 2.7. WSS prediction results under different conditions of data normalization. 

 
Another contrastive study is applied to the traditional fully-connected neural network (FCNN) with 
the model shown in Figure 2.8. Except that the FFT and IFFT layers are eliminated, other network 
setups of this model are the same as the FNO used in our research. The WSS results predicted by 
FCNN are shown in Figure 2.9, which are much worse than those in Figure 2.5 (results with FNO). 
This comparison emphasizes the superiority of FFT-related layers in the FNO framework. 

 

Figure 2.8. Illustration of data flow in FCNN 

 



 

 

Figure 2.9. Prediction results with FCNN. 

 

Uncertainty quantification in FNO 
 
For further improvement, we introduce the uncertainty qualification approach into FNO that 
considers both aleatoric uncertainty (AU) and epistemic uncertainty (EU). In a word, the former is 
about measurement noise and inadequate accuracy, and the latter is mainly about untouched points 
in training data. At the stage of implementation, the loss function of FNO containing AU has the 
following expression: 

( ) ( ) 2
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i ii
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N

σ σ
=

= − − +∑    (4) 

Where N denotes the number of datasets; iy  and ( )if x  are the target value and the prediction 
output of the i-th dataset, respectively; The variance σ is produced from the full layers, that is, from 
the input to output. Another network with the same framework but additional sets of parameters is 
trained for σ. EU can be quantified by adding the dropout into a layer, i.e., randomly dropping 
some neurons for data transfer. In this study, the EU-related dropout with the value of 0.5 is set at 
the row reduction layer in Figure 2.4. 

The prediction results with uncertainty quantification are depicted in Figure 2.10, in which the 
blue areas show the 95% confidence interval of the prediction values. These results conform to the 
actual situation, that is, both AU and EU are larger when the actual prediction error is larger, such 
as those in the peak of WSS. But up to now, there is no specific method to determine to what extent 
the uncertainty qualification results can reflect the real uncertainty. It still needs more tests and 
clarity. 



 

 

Figure 2.10: Uncertainty quantification results with FNO 



 

2.2 Multi-Fidelity Approach 
 

The multi-fidelity approach is a powerful strategy used to enhance analysis and decision-making 
by integrating multiple data sets with varying levels of detail and accuracy. In obtaining precise 
fluent parameters, this approach has the following key benefits: 

● Cost Optimization: By using LF models for initial analyses and HF models for detailed 
validation, the overall cost of simulations is reduced. This balance allows for the efficient 
allocation of resources. 

● Computational Efficiency: LF models provide quick insights and preliminary results, 
reducing the need for extensive HF simulations in the early stages. This approach 
minimizes computational time and effort. 

● Enhanced Decision-Making: The integration of both HF and LF data provides a 
comprehensive understanding of the system. LF models highlight general trends, while HF 
models confirm detailed interactions, leading to well-informed decisions. 

● Iterative Improvement: Using LF models allows for rapid iterations and adjustments in 
the design process. HF models can then be applied selectively to verify critical aspects, 
ensuring a more robust and optimized design. 

● Risk Reduction: By identifying potential issues early with LF models and validating 
solutions with HF models, the risk of errors and costly design flaws is significantly 
reduced. 

This section will give detailed illustration for the application of the multi-fidelity approach in pipe 
cases. 

 

2.2.1 Data acquisition 
 
Initially, we sought to use a 2-D coarse mesh as low-Fidelity and 2-D fine mesh as high-Fidelity, 
however, we noticed that there wasn’t enough difference in results to consider them to be of 
different fidelity. For instance, in this scenario, a U-bend pipe is taken into consideration for a 
simple 2-D single phase, second-order turbulent flow CFD simulation. The K-epsilon model is 
used with a medium coarse mesh and a fine mesh. The two results produced highly similar results 
with a similar computational time, as shown in Figure 2.11, which is not ideal enough to be 
considered as cases with different fidelity.   

           



 

           

(a) LF case                                                                               (b) HF case 
Figure 2.11. Uncertainty quantification results with FNO. 

 

Then, we switched things up to 2-D and 3-D, and the corresponding CFD results of the 
computational maximum static pressures are listed in Table 2.1. It is noticed that we collect sparse 
HF data, while LF data is relatively comprehensive since our target is to predict ungiven HF 
information with the existing data. The obvious difference between LF results (2-D) and HF (3-D) 
results indicates the availability of using these cases for study. 

Table 2.1. Comparison of maximum static pressure between fidelity 

Velocity Maximum static pressure 
LF (2-D) HF (3-D) 

1 2601.12  
1.25 2549.56  
1.5 2890.36  
1.75 3270.16  

2 3669.73 4302.568 
2.25 4158.18  
2.5 4728.33 5435.338 
2.75 5323.68  

3 5994.28 6672.125 
3.25 6715.60  
3.5 7599.13 8469.341 
3.75 8346.92  

4 9158.34 10355.25 
4.5 11050.02  
4.75 12052.50  

5 13136.21  
 

2.2.2 Cross-fidelity prediction 
 
The architecture of the applied neural network is as follows: 

● Input Layer: Takes in multi-dimensional input that includes both LF and HF data points. 

● Convolutional Layer: Extracts features from the input data using a convolutional neural 
network (CNN). 



 

● Dense Layers: Comprises both a linear and non-linear path: 

● Linear Path: Directly estimates the HF response. 

● Non-linear Path: Captures the complex interactions between the LF and HF data. 

● Output Layer: Combines the outputs of the linear and non-linear paths to predict the HF 
response. 

The training of the neural network is accomplished in the Tensorflow module of Python, and 
Figure 2.12 shows the change of network loss over epochs. It can be seen that the training tends to 
converge after 100 epochs. As a result, Figure 2.13 depicts the curve for HF prediction (green 
line), which closely follows the trend of the high-fidelity actual values (red dots), indicating that 
the surrogate model effectively captures the detailed interactions and behaviors reflected in the HF 
data. The alignment of the model's predictions with the HF values demonstrates the success of 
integrating LF and HF data, leveraging the computational efficiency of LF data while maintaining 
the accuracy of HF data. 

 

Figure 2.12. Loss over epochs in the training process. 

 



 

 

Figure 2.13. Prediction results of high-fidelity data. 

 

2.3 Inhibitor desorption model 
 

With given WSS, an inhibitor degradation model is preliminarily built, which is expressed by 
desorption rate k of the inhibitor in Arrhenius Equation as: 

( ), , expn
Ek A s t i

RT
 = − 
    (5) 

Where A is the prefactor of desorption that is deemed to be related to s (WSS), t (time) and ni  (the 
n-th testing inhibitor); E denotes the reaction energy of desorption; R is the Molar gas constant; T 
denotes the temperature. To measure the desorption rate, the surface coverage rate θ of the inhibitor 
should be first recorded in the experiment as: 

0

0
,  =iCR CR d k

CR dt
θθ −

=
  (6) 

Where iCR  and 0CR  the corrosion rates with and without the inhibitor. With a series of points of 
θ, the desorption rate is accessible as the derivative of θ with respect to time. In general, the 
parameters E, R and T are accessible. Then, through measuring multiple values of k under different 
WSS, time and types of inhibitors, the relationship between inhibitor degradation and the three 
variables is expected to be clarified.  



 

 

3. Future research 
 

As the main task, we focus on establishing a specific degradation model for different types of 
inhibitors. In the current work, we focused on the pectin-based inhibitor, and our TAP member 
suggests to compare with traditional inhibitors. We will try at least two types and extend to other 
types of inhibitors if necessary. Fig. 3.1 schematically illustrates the concept for three inhibitors 
(maybe less or more depending on future research findings). This relies on the flow experiment 
that is expected to be implemented in the next phase. The later designed experimental device will 
be in the similar form as that shown in Figure 3.1. s1 to s4 in the figure represent different WSS 
applied to testing pieces, and i1 to i3 are different types of inhibitors, which at least include a 
traditional one for comparison. The flow is driven by a pump to output fluid with a stable flow 
rate. To provide various WSS, we can choose to change the wall roughness or the pipe diameter 
at certain pipe segments. More details about the device design will be referred to existing mature 
cases of flow experiments. 

 

Figure 3.1. Schematic diagram of the experimental flow device. 

 

Given the multi-fidelity approach, our future work will focus on exploring and refining various 
types of Convolutional Neural Network (CNN) architectures to achieve more precise and accurate 
predictions, while using an even more complicated set of input points. Instead of using the CFD 
points now, we aim to enhance the network framework with the usage of functions of varying 
dimensions to optimize the model’s prediction performance characterized by its generalizability 
power and computational efficiency.  

To reduce uncertainty in our predictions, we also plan to explore Bayesian layers and active 
sampling in cross-fidelity prediction. Bayesian layers will be implemented to provide probabilistic 
predictions by treating network weights as distributions rather than fixed values, which allows for 
capturing the uncertainty in model parameters, resulting in predictions with confidence intervals. 



 

Understanding the uncertainty associated with predictions is crucial for robust and reliable 
decision-making. Additionally, we will further improve active learning techniques to efficiently 
utilize computational resources. They have the potential to collect the most informative data points, 
iteratively refining the model by targeting areas where the model is most uncertain. This technique 
also reduces the amount of high-fidelity data required, optimizing the data collection process and 
ultimately lowering overall costs. 

Besides, we are also trying to introduce some constraints into both the multi-fidelity approach and 
roughness prediction model based on the idea of the physics-guided neural network (PGNN) that 
is expected to optimize parameter relationships among the frameworks to produce more reliable 
and explainable results.  

These advancements will push the boundaries of multi-fidelity modeling, leading to new levels of 
precision and reliability in our predictions, and opening new avenues for applications in complex 
system analysis and decision-making. 
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Progress made in Q3’2024

2

• Build prediction model under different type of roughness shape

• Incorporate uncertainty qualification into estimated wall shear stress (WSS)

• Establish the basic framework of Multi-Fidelity prediction from 2D to 3D simulation

• Establish preliminary form of degradation model of inhibitor under flow

Simulation-based Inhibitor Implementation Optimization 

in Gas Gathering and Transportation Pipelines



          
 
    
  

Reliability

Stress

Experimental recorded point

i1

i2

i3

Global/structural model for flow Simulation Local WSS simulation with roughness

WSS-assisted inhibitor loss modelReliability degradation with experiment calibration

Overview of AI-enhanced simulation framework
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Multi-Fidelity approach

3D Simulations (HF):

• Computational Time: Much longer run times due to the 
increased complexity and detail of the models.

• Resource Requirements: Requires substantial 
computational resources, including higher memory and 
processing power, often necessitating high-performance 
computing facilities.

• Data Acquisition: Delivers highly detailed and accurate 
flow characteristics, capturing complex interactions and 
behaviours that 2D simulations cannot, essential for 
final validation and detailed analysis.

Using 2D and 3D simulations in the context of low-fidelity (LF) and high-fidelity (HF) data acquisition provides 

a clear comparison in terms of computational time and resource requirements:

2D Simulations (LF): 

• Computational Time: Significantly faster to run 

compared to 3D simulations.

• Resource Requirements: Requires less memory 

and processing power, making it suitable for 

quick, iterative analyses.

• Data Acquisition: Provides basic flow patterns and 

general insights, useful for preliminary studies and 

identifying potential design issues early on.

Multi-fidelity global flow simulation - 1
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Multi-Fidelity approach

Multi-Fidelity is the integration of multiple 

data sets with varying levels of detail and 

accuracy to enhance overall analysis and 

decision-making.

• High-Fidelity (HF): Data or models that 

are highly accurate and detailed but often 

expensive and computationally intensive.

• Low-Fidelity (LF): Data or models that are 

less accurate and detailed but cheaper and 

faster to obtain.

• Purpose: Combines LF and HF data to 

optimize cost, accuracy, and computational 

efficiency in various applications.

LF data HF data

y

Q (y)

HF and LF relationship

Relationship between HF data 

and corresponding LF data

Relationship between HF data 

and every LF datum

y

Q (y) LF data HF data

HF and LF relationship

... ...

yL, 1 QL(yL, 1) yH, i QL(yH, i)

yL, 2 QL(yL, 2) yH, i QL(yH, i)

yL, 3 QL(yL, 3) yH, i QL(yH, i)

yL, 4 QL(yL, 4) yH, i QL(yH, i)

… … … …

yL, NL
QLF(yL, NL

) yH, i QL(yH, i)

…

Multi-fidelity data compiling Convolutional layer Deep Neural Network

,( )H HiQ y
+

Multi-fidelity Data Aggregation using Convolutional Neural Networks (MDA-CNN)

Multi-fidelity global flow simulation - 2



2D multiphase model

1m/s 1.5 m/s
2 m/s 2.5 m/s

Low-Fidelity case under different inlet flow rate

3 m/s 3.5 m/s 4 m/s

Multi-fidelity global flow simulation - 3
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3D multiphase model

Multi-fidelity global flow simulation - 4

2 m/s 3 m/s

High-Fidelity case under different inlet flow rate
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Multi-Fidelity approach

Illustration of prediction results

Multi-fidelity global flow simulation - 5
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(a) Initially added inhibitor on the pipe wall (b) Stably distributed Inhibitor film

(c) Inhibitor degradation and adhesion loss

Research objects

• Surrogate model for predicting near-wall stress 

using obtained flow conditions from global model.

• Effects of wall shear stress (WSS) on inhibitor 

degradation;

Background

AI-enhanced local WSS simulation - 1



10

Schematic illustration of wall shear stress under different flow rate.

Shear stress = shear rate × viscosity

shear rate is proportionate to flow rate without turbulence

Background

AI-enhanced local WSS simulation - 2
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Illustration of the form of roughness shapes.

y=0.14*cos(0.1*x)+0.14  (mm)

y=0.16*cos(0.1*x)+0.16  (mm) y= 0.16 *cos(0.15*x)+0.16 (mm)

y=0.14*cos(0.15*x)+0.14  (mm)

The roughness shapes are established in the form of y=a*cos(f*x)+a

a=0.12, 0.14, 0.16, 0.18; f=0.05, 0.1, 0.15, 0.2, 0.25

Local roughness representation

AI-enhanced local WSS simulation - 3
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Illustration of the form of the dataset.

Dataset 1

Input:

step / set

mid nextpre

Output:

mid

x-coordinate

y-coordinate

(y-derivative)

WSS

Normalization

Mean, Std

TestTrain

Dataset 2 … Dataset n

pre: 200; mid: 50; next: 200; step: 50

WSS in the certain segment is affected 

by near roughness shapes

To conform to reality, only a middle 

segment of data in each set is predicted

Training and testing data separation

AI-enhanced local WSS simulation - 4
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Illustration of FNO network for WSS prediction.

mid nextpre mid nextpre
Row

Linear

expand

Row

FFT

IFFT
x-coordinate
y-coordinate

y-derivative 32

mid nextpre
Row

Linear

expand

32

mid nextpre

128

mid nextpre

WSS

Row

Linear reduce

mid

WSS

Column

Linear reduce

Column

Cut down

• Traditional FNO predicted objects with same sizes

• Directly cutting down is chosen in the final row reduction

Neural Network model (FNO) setup

AI-enhanced local WSS simulation - 5
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Results of predicted WSS under the training data with combined amplitude and frequency values.

y=0.16*cos(0.15*x)+0.16

a=0.12, 0.14, 0.16, 0.18

f=0.05, 0.1, 0.15, 0.2, 0.25

Eliminate y=0.16*cos(0.15*x)+0.16 

Prediction for unseen roughness profile

AI-enhanced local WSS simulation - 6
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Comparison of results among different types of normalization.

Dataset 1

Normalization

… Dataset n

Normalization Normalization

Normalization in each set No normalization

Importance of data normalization

AI-enhanced local WSS simulation - 7
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The model of fully-connected neural network (FCNN) with similar number of parameters.

mid nextpre mid nextpre
Row

Linear

expand
x-coordinate
y-coordinate

y-derivative

Row

Linear

expand

mid nextpre mid nextpre

WSS

mid

WSS

Row

Linear

reduce

Column

Cut 

down

Comparison with benchmark machine learning model – off-the-shelf fully 

connected neural network model 

AI-enhanced local WSS simulation - 8
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Results of benchmark FCNN

Comparison

Results of proposed model

AI-enhanced local WSS simulation - 9
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• Aleatoric uncertainty (AU): measurement noise, inadequate accuracy and so on.

• Epistemic uncertainty (EU): untouched points in training data.

Computational WSS is not stable under a 

periodic roughness shape

AU

EU

https://zhuanlan.zhihu.com/p/56986840

How confident are you about the simulation? - Uncertainty Qualification (UQ)

AI-enhanced local WSS simulation - 10
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Illustration of Bayesian FNO network.

mid nextpre mid nextpre
Row

Linear

expand

Row

FFT

IFFT
x-coordinate
y-coordinate

y-derivative 32

mid nextpre
Row

Linear

expand

32

mid nextpre

128

mid nextpre

WSS

Row

Linear reduce

mid

WSS

Column

Cut down

AU: 𝐿𝑜   
 

𝑁
σ𝑖= 
𝑁  

2
exp(−𝜎) 𝑦𝑖 − 𝑓 𝑥𝑖

2 +
 

2
𝜎

(σ is produced from the full layers)

EU: Add dropout into the layer

Dropout

uncertainty qualification method

AI-enhanced local WSS simulation - 11
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Results under Bayesian FNO network.

uncertainty qualification results

AI-enhanced local WSS simulation - 12



21
[1] Corrosion inhibitors: physisorbed or chemisorbed?

[2] Inhibition of CO2 corrosion of mild steel − Study of mechanical effects of highly turbulent disturbed flow

Desorption rate expressed by Arrhenius Equation:

• A —— Frequency prefactor of desorption: fitting in static regime.

• s —— Wall shear stress.

• t —— Time.

• in —— The n-th inhibitor.

• T —— Temperature.

• R ——Molar gas constant.

• E —— Reaction energy of desorption: molecules’ property 

   (     𝑛) 
 
𝐸

𝑅𝑇

Surface coverage rate:

Required information:

• 𝐶𝑖 —— Corrosion rate with the inhibitor.

• 𝐶0 —— Corrosion rate without the inhibitor.

•  —— desorption rate. 

𝜃  
𝐶0 𝐶𝑖

𝐶0
,  
𝑑𝜃

𝑑𝑡
  

Evaluation of Natural Weed Extract on the Safety of Corrosion Inhibition 

of Stainless Steel-410 Pipelines in the De-scaling Process

Inhibitor desorption model

Flow-assisted inhibitor loss model – 1 (preliminary)



Desorption rate for one type of inhibitor:

s1

          
 
    
  

s2

s3

s4

Inhibitor desorption model

22

Flow-assisted inhibitor loss model – 2
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• Establish a specific degradation equation of inhibitor film

• Establish Multi-Fidelity models suitable for flow field prediction in pipeline

• Design the experiment to study long-term inhibitor degradation

Pump i1 i2 i3

s1

s2

s3

s4

• sn —— The n-th wall shear stress.

     (change of wall pattern or section area)

• in —— The n-th inhibitor.

Future work and plans
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1. Developed a comprehensive protocol for Electrochemical Impedance Spectroscopy (EIS), Tafel polarization, and weight loss 

methods. This protocol serves as a robust framework for evaluating the performance of various corrosion inhibitors. 

2. Evaluated the effectiveness of pectin as a corrosion inhibitor using both electrochemical test methods and weight loss 

methods. This comparative analysis provided insights into the performance of pectin under different testing conditions.

3. Formulated a protocol for the chemical modification of pectin using EDC (1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide) 

and NHS (N-Hydroxysuccinimide). This protocol outlines the steps to enhance the properties of pectin, potentially improving 

its effectiveness as a corrosion inhibitor.

4. Conducted long-term weight loss methods to determine the efficiency of pectin in various media. These extended tests 

provided valuable data on the long-term performance of pectin as a corrosion inhibitor.

5. Established a baseline for evaluating corrosion inhibitors. This baseline provides a standard for comparison, helping to assess 

the performance of new or modified inhibitors.

6. Collected and analyzed data from existing literature on inhibitors. This comprehensive review of existing research helped to 

contextualize our findings and inform our future research. 

Design and Synthesis of Green Inhibitors
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Progress made in Q3’2024



A three-electrode cell will be used for the electrochemical 
studies via a potentiostat (VersaSTAT 4, ameteksi 
Instruments). In this setup, the carbon steel will act as the 
working electrode, while the reference electrode is Saturated 
Calomel Electrode (SCE). Graphite electrode will be used as 
a counter electrode.

Electrochemistry Corrosion Test

Design and Synthesis of Green Inhibitors
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Different electrochemical corrosion test will be done:

• Polarization Techniques

• Electrochemical impedance spectroscopy (EIS) 
under different corrosive media like: HCl, SO2 , 
CO2 (Sweet corrosion), H2S (Sour corrosion), 
H2SO4 at different inhibitor concentration and 
coated samples. 

  

Electrochemistry Corrosion Test

Design and Synthesis of Green Inhibitors
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• Polarization techniques encompass several methods, 
including Tafel extrapolation, potentiodynamic 
measurements, cyclic polarization, and linear 
polarization resistance.

• Tafel extrapolation involves a destructive test. By 
examining extrapolation plots, any changes in the 
corrosion mechanism can be discerned through 
variations in the Tafel slope. Additionally, a direct 
measurement of the corrosion current is obtained.

• When a metallic electrode is immersed in a corrosive 
medium, anodic and cathodic reactions 
spontaneously occur on the electrode surface, 
triggering corrosion.

https://www.beyonddiscovery.org/corrosion-resistance-3/eq-1.html

Polarization Techniques

Design and Synthesis of Green Inhibitors
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Experimental Procedure: 

1. Measure Open Circuit Potential ECO and allow to stabilize.

2. Apply initial E that is 10 mV negative of EOC.

3. Scan at a slow scan rate (~0.125 mV/s) to a final E that is 
10 mV positive of EOC.

4. Measure current, plot E (Y-axis) versus I (X-axis).

5. Measure slope, which has units of resistance (E/i = R).

6. Convert Rp to icorr.

7. Convert icorr to Corrosion Rate.

8. This procedure works for every corrosion system
https://www.beyonddiscovery.org/corrosion-resistance-3/eq-1.html

Polarization Techniques

Design and Synthesis of Green Inhibitors
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Tafel polarization curve of carbon steel in 1M HCL 

Design and Synthesis of Green Inhibitors
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Tafel polarization curve of carbon steel in 1M HCL+ 2g/L Pectin 
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Sample Ecorr (mV) Icorr (μA/cm2) CR (mmpy)
Inhibition 

efficiency (%)

Blank -453.05 18.94 0.219 -------

Pectin -456.29 12.86 0.1487 32%

𝐶𝑅  
𝐼𝑐𝑜𝑟𝑟. 𝐾. 𝐸𝑊

𝜌.  

where K is constant defines the units of CR, for CR in mm/year (mmpy), K  = 

3272 mm/(A cm year), EW (the equivalent weight)  27.92 g  for carbon steel, 

ρ (density)  = 7.9 g/cm3 for copper, A (area) of the sample = 1 cm2.

𝐼𝐸  
𝐶𝑅0 − 𝐶𝑅𝑃

𝐶𝑅0
𝐼𝐸  

𝐼𝑐𝑜𝑟𝑟 − 0 − 𝐼𝑐𝑜𝑟𝑟 − 𝑃
𝐼𝑐𝑜𝑟𝑟 − 0

Design and Synthesis of Green Inhibitors
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Electrochemical Impedance Spectroscopy (EIS) is a non-
destructive experimental technique that captures the 
response of a nonlinear electrochemical system as a 
function of applied potential. It provides valuable 
information about the metal/electrolyte interface.

Within short testing times, EIS measurements yield reliable 
data, enabling us to predict the long-term performance of 
inhibitors. The result of EIS is the impedance of the 
electrochemical system as a function of frequency.

We have the option to analyze EIS data using the common 
electrical equivalent circuit (EEC) approach, as well as with 
physics-based/mechanistic models.

Shahzad, Khuram, et al. "Electrochemical and thermodynamic study on the corrosion 
performance of API X120 steel in 3.5% NaCl solution." Scientific reports 10.1 (2020): 4314.

Electrochemical impedance spectroscopy 

Design and Synthesis of Green Inhibitors
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Nyquist plots for carbon steel in 1.0 mol HCl solution 

in the absence and presence of pectin

The Nyquist plots reveal a single semi-circle shape for 

both uninhibited and inhibited solutions, with the 

diameter increasing as the inhibitor concentration 

rises. This suggests that pectin molecules adsorb at the 

carbon steel-electrolyte interface without altering the 

corrosion mechanism, and the inhibition behavior is 

governed by the charge transfer process. However, the 

imperfections in the semi-circle shape indicate 

frequency dispersion, which is typically caused by the 

roughness and heterogeneity of the metal surface.

Design and Synthesis of Green Inhibitors
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The equivalent circuit used to fit the experimental data.

The electrical equivalent circuit employed to analyze the 

impedance plots. In this figure, R1 is the solution resistance and 

R2 is the charge transfer resistance (polarization resistance ). 

The impedance of the constant phase element is (CPE1).

R1 CPE1

R2

Element Freedom Value Error Error %

R1 Free(±) 1.916 0.059769 3.1195

CPE1-T Free(±) 7.2283E-05 3.7447E-06 5.1806

CPE1-P Free(±) 0.88668 0.0075996 0.85708

R2 Free(±) 1616 39.3 2.4319

Chi-Squared: 0.01287

Weighted Sum of Squares: 1.7761

Data File: C:\New folder\EIS PECTIN 15May.z

Circuit Model File: C:\New folder\Pectin circuit.mdl

Mode: Run Fitting / Freq. Range (0.001 - 1000000)

Maximum Iterations: 100

Optimization Iterations: 0

Type of Fitting: Complex

Type of Weighting: Calc-Modulus

Design and Synthesis of Green Inhibitors
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R1 CPE1

R2

Element Freedom Value Error Error %

R1 Free(±) 2.127 0.048463 2.2785

CPE1-T Free(±) 9.917E-05 4.1488E-06 4.1835

CPE1-P Free(±) 0.87113 0.0062242 0.7145

R2 Free(±) 1046 19.255 1.8408

Chi-Squared: 0.007303

Weighted Sum of Squares: 1.0078

Data File: C:\New folder\EIS HCL 15May.z

Circuit Model File: C:\New folder\Pectin circuit.mdl

Mode: Run Fitting / Freq. Range (0.001 - 1000000)

Maximum Iterations: 100

Optimization Iterations: 0

Type of Fitting: Complex

Type of Weighting: Calc-Modulus

Design and Synthesis of Green Inhibitors
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Sample

Rs (solution 

resistance) 

(Ω cm2)

RP (Polarization 

resistance)

(Ω cm2)

CPE (constant phase 

element) (F/s)
n Inhibition efficiency (%)

Blank 2.1 1046 9.9 *10-5 0.87
----------

Pectin 1.9 1616 7.2 * 10-5 0.88 35%

𝐼𝐸  
𝑅𝑃 − 𝑃 − 𝑅𝑃 − 0

𝑅𝑃 − 𝑃

Results from weight loss tests conducted for 24 hrs 
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• 1M HCL Reference  ( 2W, 4W, 6W)

• 1M HCL+ 2g/L PECTIN Solution (2W,4W,6W)

• 0.25 M HCL solution Reference

• 0.25 M HCl in 2g/L of Pectin solution 

37

Long Term Corrosion Weight Loss Tests
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CONDITION W1(g) W2(g) W3(g) AVARAGE WEIGHT LOSS(g) CORROSION (%)

Weight  before 

corrosion 
3.77704 3.76516 3.79326 3.778487

0.3348 8.862(%)Weight after 

corrosion  
3.48571 3.3929 3.45236 3.443653

CONDITION W1(g) W2(g) W3(g) AVARAGE 
WEIGHT 

LOSS(g)
CORROSION (%)

INHIBITOR 

EFFICIENCY 

Weight  before 

corrosion 
3.80058 3.80363 3.7935 3.799237

0.084 2.221(%) 74.993
Weight after 

corrosion  
3.74578 3.6806 3.71815 3.714843

1M HCL PURE SAMPLE 

1M HCL + 2g/L PECTIN INHIBITOR  

𝐼𝐸  
𝐶𝑅0 − 𝐶𝑅𝑃

𝐶𝑅0
CORROSION%  

𝐴𝑣𝑔 𝑤𝑡 𝐴𝐶 𝐴𝑣𝑔 𝑤𝑡 𝐵𝐶

𝐴𝑣𝑔 𝑤𝑡 𝐵𝐶
 

Duration: Two Weeks
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Metal samples in pure HCL

Metal samples in HCL + Pectin 

Digested 
area

Pierced area

Corroded 
area

2 Weeks
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CONDITION W1(g) W2(g) W3(g) AVARAGE WEIGHT LOSS(g) CORROSION %

Weight  before 

corrosion 
3.77715 3.74674 3.77531 3.76454

0.35407 9.405%Weight after 

corrosion  
3.3173 3.43603 3.47818 3.410503

CONDITION t W1(g) W2(g) W3(g) AVARAGE 
WEIGHT 

LOSS(g)
CORROSION 

INHIBITOR 

EFFICIENCY 

Weight  

before 

corrosion 

3.79257 3.7804 3.8158 3.796257

0.17692 4.660(%)
50.445%

Weight after 

corrosion  
3.56769 3.62383 3.66649 3.619337

1M HCL PURE SAMPLE 

1M HCL + 2g/L PECTIN INHIBITOR  

Duration: Four Weeks
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Metal samples in pure HCl

Metal samples in HCL + Pectin 

4 Weeks

Pierced area

Digested 
area
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CONDITION W1(g) W2(g) W3(g) AVARAGE WEIGHT LOSS(g) CORROSION %

Weight  before 

corrosion 
3.7611 3.78515 3.78458 3.776943

0.46791 12.39%Weight after 

corrosion  
3.2635 3.29025 3.37335 3.309033

CONDITION W1(g) W2(g) W3(g) AVARAGE 
WEIGHT 

LOSS(g)
CORROSION 

INHIBITOR 

EFFICIENCY 

Weight  before 

corrosion 
3.7308 3.7906 3.7784 3.7666

0.2086 5.54(%) 55.28%
Weight after 

corrosion  
3.53846 3.55604 3.57925 3.557917

1M HCL PURE SAMPLE 

1M HCL + 2g/L PECTIN INHIBITOR  

Duration: Six Weeks

Design and Synthesis of Green Inhibitors

42



Metal samples in pure HCL

Metal samples in HCL + Pectin 

6 Weeks

Pierced area
Digested 

area

Digested 
area

Fully 
Corroded 

area
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CONDITION W1(g) W2(g) W3(g) AVARAGE WEIGHT LOSS(g) CORROSION %

Weight  before 

corrosion 
3.78612 3.77865 3.79825 3.787673

1.498 39.566%Weight after 

corrosion  
2.29125 2.38876 2.18711 2.28904

CONDITION W1(g) W2(g) W3(g) AVARAGE 
WEIGHT 

LOSS(g)
CORROSION 

INHIBITOR 

EFFICIENCY 

Weight  before 

corrosion 
3.8106 3.7564 3.81138 3.792793

0.37686 9.936(%) 74.887%
Weight after 

corrosion  
3.51761 3.3682 3.36199 3.41593

0.25 M PURE SAMPLE 

0.25 MHCL + 2g/L PECTIN INHIBITOR  

0.25 M  Duration: Six Weeks
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Metal samples in 0.25M HCL + Pectin 

Metal samples in 0.25M HCL

Fully 
Corroded 

area

Digested 
area

Digested 
area

Shallow 
Digested 

area
6 Weeks
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• Dissolve 10 g of pectin, 50 mmol EDC, and 16.7 mmol NHS in 300 mL deionized water.

• Stir the solution magnetically for 3 hours in an ice bath to activate the carboxyl groups of pectin.

• Dissolve 50 mmol of amino acid in 300 mL deionized water

• Combine the activated pectin solution with the amino acid solution.

• Adjust the pH to 5 using 1 mol/L hydrochloric acid solution.

• Induce the grafting reaction by magnetically stirring the mixed solution for 24 hours under ice bath conditions.

• Add 600 mL anhydrous ethanol to the reaction mixture and mix evenly.

• Centrifuge the mixture and remove the supernatant. The precipitate was dialyzed with7000–14000 Dalton  

molecular weight cut-off membrane for 72 h at room temperature to remove residual EDC, amino acids, NHS.

• Remove water from the product by freeze-drying to obtain a dried powder.

Modification of Pectin 
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• Add 50 ml of distilled water to a mixture of 2.00 g of commercial  pectin and 5 ml of 95% ethanol. Stir until a homogeneous 
solution is obtained. 

• Heat the solution to the desired temperature. Add 1 ml of the corresponding amino compound (e.g., 1.00 g of guanidine 
carbonate).

• Stir occasionally and maintain the temperature for the specified reaction time.

• Quench the reaction by adding 3 ml of acidified ethanol

• Stir the mixture for 30 minutes. Centrifuge the suspension for 30 minutes at 4000 rpm. Add 200 ml of 96% ethanol to the 
supernatant. Place the mixture in a refrigerator overnight. 

• Centrifuge the coagulated mass for 30 minutes at 4000 rpm. 

• Wash the coagulated mass three times with 100 ml portions of 70% acid ethanol Continue washing with 100 ml portions of 
70% aqueous ethanol until the mass is free of chloride ions (Cl⁻). 

• Dry the final product overnight at 40°C.

This study confirms that pectin functionalization with amines and amino acids results in amination, saponification, decarboxylation, and depolymerization. 

These modifications activate carboxylic groups and alter the polysaccharide structure, enhancing pectin's reactivity and potential for diverse applications. 

Quantified degrees of esterification, amidation, and decarboxylation are discussed.

Functionalization of Pectin 
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• In our experimental observations, we found that pectin demonstrated an efficiency ranging from 30 to 33 

percent across all three tests conducted. These tests encompassed both electrochemical analyses and weight 

loss assessments.

• Interestingly, we noticed a significant increase in efficiency when the duration of the tests was extended. 

Specifically, efficiencies of 74%, 55%, and 50% were recorded for test durations of 2, 4, and 6 weeks 

respectively.

• While pectin serves as a protective agent against metal corrosion, it also exhibits a detrimental effect. It has 

been observed to create a perforation in the metal upon reaction with hydrochloric acid (HCl). This particular 

phenomenon was exclusively observed in the HCl media, indicating a unique interaction between pectin and 

HCl under these conditions.

Key Observations 
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• Establish a foundational performance metric using benchmark chemical inhibitors to gauge subsequent 

improvements.

• Investigate the intricate reaction mechanism between carbon steel and the combined HCl and pectin media to 

understand the corrosion process.

• Evaluate and refine test methods (pectin coating vs. pectin dispersion; static vs. flow medium), determining 

the suitability of HCl as a medium for these experiments.

• Explore alterations to the pectin structure to enhance its efficacy as a corrosion inhibitor.

• Continue weight loss and electrochemical tests under a variety of conditions to gather comprehensive data.

• Finalize the compilation of the inhibitor database, ensuring it is exhaustive and up-to-date.

Future work

Design and Synthesis of Green Inhibitors
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• Benchmark Inhibitors

• Corrosion Test Media

• Corrosion Test Methods

• Additional Tests

We Need Your Guidance
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Reason of case selection

In this scenario, a U-bend pipe is taken into consideration for a simple 2D single phase, second-order turbulent 
flow CFD simulation. The K-epsilon model is used with a medium coarse mesh and a fine mesh. The two 
results produced highly similar results with a similar computational time, which doesn’t seem ideal enough to 
be considered as different fidelity. 

LF case HF case

Appendix - 1
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Pipe parameters

Roughness shape

Flow features
Trained 

network
Wall stress

Reliability

Stress

Experimental recorded point

Schematic illustration of predicting inhibitor degradation.

…

i1

i2

i3

WSS used in degradation model
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0.5m

Schematic diagram of the numerical pipe model

3m/s

1m (no roughness) 2.5m (no roughness)

0.05m (roughness)

Pipe model for data collection

Appendix - 3
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Illustration of selecting data segment with sinusoidal roughness

WSS / Pa

x / m

Stress remains stable when 0.02 < x < 0.04

Connection of 

stress peak values

Roughness segment of 0.02 < x < 0.04 is chosen as training or testing data

Selection of data segment

Appendix - 4
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Comparison of iteration processes between different types of row transformation.

mid nextpre

WSS

mid

WSS

Column

Cut down

mid nextpre

WSS

mid

WSS

Column

Linear reduce

Comparison of different data transfers
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Difference analysis between FNO and FCNN

• FNO contains the process of Fast Fourier Transform (FFT) and inverse 

FFT to better identify curve characteristics.

• For random start points and end points from a same segment, FCNN may 

deem them as different roughness types and fail to learn the similarity 

among series, while FNO could consider the arrangement pattern of data.

Set 1

Set 2

Set 3 …

Illustration of data extraction from certain segment.

Start

Start End

End

Start End

Prediction model for wall shear stress

Appendix - 6
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