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Mechanics and

Materials
Ashraf Bastawros

Obijective Electrochemistry
Kurt Hebert

Enhance Pipeline Safety

Evaluate interactive threats of external
mechanical dents and secondary features,
through integrated lab-scale experimental
and numerical framework to characterize
and better predict the remaining safe life
and operating pressures, while projecting
the needs for mitigation measures.

Pipeline failures in corrosive environments — A conceptual analysis of trends and effectshttps://doi.org/10.1016/j.engfailanal.2015.03.004
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Motivation: Service Gauges and Dents
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Failure Investigation Report — Northern Natural Gas Co
(NNG)- Natural Force Damage

Large scatter of Fatigue Life vs. dent depth
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Motivation: Interactive Threats

(a) Dented to 1.1% deep,
unrestrained, fatigued (90-
540psi), failed at 455k cycle.

(b) In-service dent @1.6% deep,
smooth profile, restrained/

unrestrained fatigued (90-
365psi), failed at 108k cycle.

(c) In-service failure, dent
@1.6% deep, very rough,
corroded profile, restrained/
unrestrained, (365psi max),
failed at 12k cycle.
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What could be the i1ssue(s)?
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Task-1: Lab Scale Interactive Threat Screening
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The micro-cell corrosion setup with the loading
mechanism to mimic IGSCC conditions with
variable stress levels.
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Task-2: Electrochemical Effects: Experiments/electrochem. measuremen
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Task-2.1 Electrochemical Effects: Role of Plastic Strains
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Engineering Strain (mm/mm)

Loading to predetermined strain levels of

0.25-4%, representing the residual plastic

strain level within a shallow dent.
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Coupled Chemo-mechanical corrosion (15min)
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Variation of Activation Site Density with pre-Strain Level

120 =

—F— Measured % Activation Sites
Arrhenius fitting

100

80 |
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C(e)=c, +ce *

% Activation sites
3
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20T

0 0.5 1 15 2 2.5 3 35 4 45
Pre-Srain (%)
C(€) is the percentage activation sites as a function of the prestrain level

C, = reference site densities (0.13) ¢, = reference strain (0.06) C,=const. (3.51)

Arrhenius dependence of density of the triple junction corrosion site on the strain level.
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Task-3: Electrochemical Impedance Spectroscopy (EIS)

Negative Phase / Degrees

(3.1) EIS Analysis: Corrosion Product Layer
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Dependence on corrosion time of porosity ¢ and diffusion layer thickness o
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Task-3.2 Electrochemical Analysis: (a) Grain Boundary Grooving

Corrosion prc$
\Si oxidation (Rs;)

Vacancy
diffusion (J,)

Lo 2 me oy
Jt HF:--, ,':"._:zlgﬁ"ﬁ- o A

2hrs exposure

«—arain
boundary

Solving diffusion eqn. by multigrid finite difference
- Shape evolution
- Vacancy Concentration

5hrs exposure
Misra et al. 2021
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Task-3.2 Electrochemical Analysis: (a) Grain Boundary Grooving

Vacancies concentration, c(x,y)
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5hrs exposure
Misra et al. 2021
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Task-3.2 Electrochemical Analysis: (b) Evolution of GB Cracking

5hrs exposure

Fe™ 4+ CO;?* - FeCO,

f |
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FeCO, corrosion product layer grows at the metal interface by inward diffusion of CO,72 ions.
Point A: volume expansion, compressive out-of-plane stress in the steel,
Point B: tensile stress concentration at the GB ahead of the wedge Misra et al. 2020
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Task-3.2 Electrochemical Analysis: (c¢) Fatigue Life

5hrs exposure

_-—-—'—"""'!' Distance

The RKR model for cleavage fracture.
(Ritchie, Knott, Rice, 1973.)

» Additional efforts required to couple electrochemical driven GB cracking to
Fatigue life
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Task-4: Numerical Analysis of Interactive Threats

(4.1) Elasto-plastic cyclic damage constitutive model
Framework proposed by LeMaitre and Chaboche

E.t.z E?- + EP- 7\2
lj lj ij der
Subsequent yield surface B =
e — 1+ v< Oij ) v Ukk5ij for combined hardening
Y E \1-D/ E\1-D
3( 0ij Oij _ Initial yield surface
Iy = j§(1 —D “"f) (1 -D “"f) —RE) T ALY
dJ3 g
P _ 0fy
4 = "\ 90, I
ij
Accumulated damage per cycle block © max
. ~(dD, dD
p
Dl+1 = D! + + AN S,
dN  dN ’
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Task-4.2 Fatigue Damage Model

Elastic Damage Evolution

elastic damage per cycle

B
dD T
€ = [1—(1—D)ﬁ+1]“[ a ]
dN Mo(1 - 3b30H,mean)(1 —D)
1/2
113 0.7
Tq = E[i (Sijmax = Sijmin)(Sijmax — Sij,min)] o6 |
* 205
Tqg— T &
a=1-a(—- =) Eoa |
Oy — Oequv,max a
203 |
T; = Olo (1 N b1(3O_H,mean/0'u)) = Zz [ —Bonora Model
. . al —Lemai del
Plastic Damage Evolution 0 [Lemattfe Mode
Lemaitre plastic damage formula 0 001 002 003 004 0.5
2 m Accumulated Plastic Strain
dDP [ (O'eq) R, ] Az
= €
— 2 p — c el
dN  12ES(1—D) A€,: depends on the initial dent damage

Bonora plastic damage formula

ldDP
_=Do+(Dcr_Do) 1-(1-

ln(AEp/eth) P >n>l

dN
R,=2(1+v)/3+3(1—- ZV)(O'H/Ueq)Z triaxiality function
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Task-4.3 Implementation of a User-material Subroutine in Abaqus

Define Material Parameters for the elastoplastic model and for the
fatigue damage models

Y The mOdeI implemented into Parameters Initiali:ation (D, de€,,, etc.)
’ pl A

a user-material subroutine ¥

[ Calculate the elastic stiffness matrix ]

(UMAT) in ABQUS FEA 3

Calculate predictor stress (assume the material is purely elastic)

2

Calculate the yield function terms (/)

Model calculates stress and I
strain fields, then estimate T

evolution equation,
dN

"

damage =
g . |
Solve for the equivalent plastic s y
strain. Then, solve the plastic > Ca::cula;:a thke ‘;otalldan;aﬁe
H t
Damage controls stiffness damage evolution equation, - T T T AT
degradation J i Material degradation
Ei+1 s Ei (1 _Di+1)
| de,”"' =dg," (1-D"Y)
Update the plasticity terms
Update the Jacobian (stiffness) matrix (C¢~P)
Update stress (corrector stress ) (Ui? )
No
D =17
Yes

| Exit |
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Task-4.4 Model Calibration/Verification

D =D, + D,

o Ag, =0%
o Ag, =1%]
+ Ag, = 3%|]
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Number of Cycles to Failure x10°
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. O
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Experimental data: G. Xi, et. al, Materials & Design, 194, 2020.
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Task-4.5 HC Fatigue Model Implementation

To save the computational time, two different

techniques are employed
e

£ ®
L] [ ¢
L . . RSN R U N S N
1. Simplified solution algorithm _ 05¢% v #4313 1
Q tr t ¢t 1Y oty ¢t ey
= IR S T S DR I T IR ST
B SR K SRR B B TN B N B
v’ Compute the stress state at %0-0“ ; A O R A R U G A R
the maximum point in cycle. < RS S S G U5 SN S SR O
050 43 b4 we bbb b4
° ¢ L) L 3 L) LIS b 4
SRS I A A T A ¢
° . ° .4 (] ‘é Qt % Q.r
2. le jumpin hni B T T B A
Cyc € jJumping tec que 0 0.05 0.1 0.15 0.2
Time/Cycles
v" Assume the stress and the
damage will be constant C\ceJumpl Simul non(\d c‘ceJumpz
over a block of cycles §
8 /' d '\ d
- le \ [ \ 2’ \ \
. . (dD, dD ‘
Dl =Dpi4+(—=+—L)AN
dN dN Cycle
N=1
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Task-4.5 Validation: (a) Simplified Solution with Cycle Jumps

damage progression stress history
1.0 1000
— —Full Cycle
308 S 11
g = 500 HH“H! I
5 0.6 3 “ l”"‘!u
3 £ 250
o (.4 2
o0 o
< ) 0
0o 2 }
A 0 —Full Cycle|| £ -250
—e—Simplified| | &
20 1 ; 3 s % 1 > 3 4
Number of Cycles to Failure x10° Number of Cycles to Failure x10°
fonofoa ey
AURAENE NS NN S
ARSI R IS U R R A
ool DI LT A T Omax = 800 MPa
Simplified solutionZ 1§ 41 174011 R = —0.5
I S AR AR R AR S AR ¥
SRR S AR Y
ol ¥V
0 0.05 0.1 0.15 0.2

Time/Cycles
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Task-4.5 Validation: (b) Monotonic Dent Loading

material parameters for the pipeline steels

Parameter E (GPa) o, (MPa) g, (MPa)
Legacy X52 200 400 567
Modern X70 200 500 620

s

609.6
300

O X52-Experimental

|| 0 X70-Experimental
o X52-FE Model

| |==t==XT70-FE Model

(\}
ot
)

¥
IAK

Wall thickness = 9.0 mm
Mesh element: C3D8

|
-}
-}

(@)
@)

(b)

Indentation Force, F' (kN)
o
S

-

1 0 10 20 30 40 50 60 70 80 90 100
K Indentation Depth, d (mm)

All dimensions are inmm *

Pipe indentation model Monotonic load-indentation depth

Experimental data: Bolton et al., [IPC 44205, 2010
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Task-4.5 Validation: (¢) Elastic Fatigue Damage model (uniform €,)

fatigue parameters for the tested materials

Parameter a by b, B M,(MPa) o0;,(MPa)
X52 0.75 1.32 1.76 3.22 9341 284
X70 0.72 1.28 1.15 3.25 18357 300
___ 600 T , . ___ 600 . .
Cf © Experimental, R= —1 D‘f © Experimental, R= —1
E 550 + . ¢ IS * Model‘, R= -1 - = 550 ., % * Model_, R= -1 |
--: * (3 o B Experimental, R= —0.5 \—: A o B Experimental, R=0
g 500 o1 og 4 Model, R=—05 £ 500 9, ¢ Model, R=0
© 450 Model o & b? oo
%" *, 0% %" 50 Model "i-,,,n% N
2 400 Y, 0@ 3 ooty] ﬁo&
: 2, %0, 00 @, oo,
2 350 0 Y0 z +,.9i&
+ z
E 300 . ° 2 350 ., 050
= + 5 *
= 250 : : : : = 300 : : : *TY
102 10° 10* 10° 10° 107 103 10* 10° 108 107

All dimensions are in mm

Tensile fatigue specimen

Number of Cycles to Failure, Ny
SN curve for X52

Number of Cycles to Failure, N;
SN curve for X70

Experimental data: Md Liakat Ali, PhD Thesis, LSU, 2015.
Turhan, et al., Journal of Failure Analysis and Prevention, 20, 2020.
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Task-4.5 Validation: (d) Plastic Fatigue Damage model (uniform € )

Bonora plastic damage formula

— n
dD? In( A€, /€
——=p,+D..—D)|[1-{1- (86p/€. )Rv
dN ln(ecr/eth)
Parameter D, D, €th Ecr n
X70 0 0.48 0.004 0.30 0.680
0.6 |
o Experimetnal
0.5+ + Fitted o
Q 0.4
03!
g
802l
0.1 |
X-70
0 L |
0 0.1 0.2 0.3

Equivelant Plastic Strain, p*

Experimental data: Lee at al., Acta materialia, 54(4), 2006
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Task-4.6 Simulation Sequence: (a) Indentation

< Indentation (step-1 e

0.16 20
0.15
0.14 0
0.12 0 300 600 90 00
0.11
0.09 = -20
0.08 | £
0.07 -
0.05 s 40
01 :
0.01 S 60
-0.00 <
Q -80
v -100
—Initial Dent
-120 i
7 X Distance From Dent Center (mm)
Contours of equivalent plastic strain Axial dent profile
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Task-4.6 Simulation Sequence: (b) Indentation Elastic Unloading

< Elastic recovery or indentor removal (step-2)

0.16 20
E 0.15
0.14 0
0.12 5
0.11
0.09 = -20
i3 :
0.05 < 40
g1 :
[ 0.01 S -60
-0.00 o
Q -80
v 100 —|nitial Dent
—Elastic Rebound
)\ 120 °p;
7 X Distance From Dent Center (mm)
Contours of equivalent plastic strain Axial dent profile
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Task-4.6 Simulation Sequence: (¢) Pressure Rebounds

. b di de_D o o (1-(1 ln(AEp/eth)R K
s Pressure reboun |ng (step-3) an = Dot (Der = Do) _< " In(eqr/€cn) ")

0.20 20
E 0.18
0.16 0
0.15
0.13 0
0- 12 — _20
0.10 S
0.08 3
0.07 P 40
0.05 _ =
0.03 Two cycles of internal pressure 8
[ 0.02 are applied to account for dent - -60
-0.00 rebounding. S
a -80
—|nitial Dent
Y -100 —Elastic Rebound
| —P =75%SMYS
-120
z X Distance From Dent Center (mm)
Contours of equivalent plastic strain Axial dent profile
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Task-4.6 Simulation Sequence: (d) Cyclic Pressure Loading

+ Cyclic pressure or fatigue loading (step-4)

00 0%
. 0.76
0s’'a & 8 & 8 & a8 8 0.69
%
0.799 o8& de b 60 9q oo 99 0.61
06?. 0{» #0 °9 f‘: ?9Q f‘} e 0.53
Opd fe sh b e b4 e sl o33
D05E e b de e b e s b g 0.30
= § o669 9o e d b ooy 0.22
R IRIEIRISIRISIEINN B
0.3|-¢¢ 348 oo bé op go ol ¢ -0.01
68 9o 86 o9 beo o é, 6 '
MR R EEERE
[
01 ¢ ¥ ® © % € %
Y
00— 1
0 1 2 3 4 5 6 7 8
Number of Cycles z X

The applied cyclic fatigue loading (R =0.125)  The computed fatigue damage
P=10% —80% SMYS after load application
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Failure/Cracking Patterns

4.6 Simulation Sequence: (f) Identify

Task

Deleted elements in the highly-damages region
(crack pattern)

Crack pattern by element deletion

0
0
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: (e) restrained Pipe

Sequence

10N

lat

.6 Simu
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v' For arestrained pipe, the

indentor was kept in place
after the elastic recovery step

v dent rebounding

Damage contours
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Results: (a) Shallow Unrestrained Dent— outer, axial

% Unrestrained dents

v' Fatigue cracks are initiated axially on the outer surface of the pipe

v' The crack appears on the shoulder of the dent and propagates closer to
center of the dent

OOHRNWWAUTO YN 0O
R<NANOOUIWHROORN

elelelelolelelololelelo]e)

>_.<

N
X

Contours of the damage index X52, OD =457 mm and t = 7.9 mm
Experimental data: Tiku, et al., IPC 45134, 2012
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Results: (b) Shallow Unrestrained Dent-Comparison with Full-Scale

< Fatigue response of full-scale pipe

4.0 — e =

a B X52-Experimental
% 0 X70-Experimental
& 357, X52-FE Model :
< + X70-FE Model o,
é} 3.0 .
5 o
5 2.5+ - *0
- o0 1,:,'. P a
S 2.0 A
b°

102 103 10* 10°

Number of Cycles to Failure, Ny _ 0%
Fatigue life at different dent depths Full-scale experimental testing setup

Experimental data: Bolton, et al., IPC 44205, 2010
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Results: (¢) Shallow restrained Dent — outer, radial

< Shallow restrained dents

¢ faigue cracks [

v' Fatigue cracks appear on the shoulder of
the dent, which are circumferentially
initiated on the outer surface of the pipe

v" The azimuthal orientation of the crack is
modulated by the depth of the dent such
that the crack becomes closer to the
axial center of the pipe as the depth
increases.

"Restrained, d/D = 3.1%
X52, OD =457 mm and t = 7.9 mm
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Contours of the da mage index Experimental data: Tiku, et al., IPC 45134, 2012
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Results: (d) Deep restrained Dent — inner, radial

IOWA STATE UNIVERSITY
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< Deep restrained dents

v' Fatigue are circumferentially initiated on

the inner surface

v The initiation point is observed to be at the
contact point between the indentor and
the pipe

outer surface

of the pipe
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Contours of the damage index
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Results: (e) Fatigue Life X-70 Steel restrained vs Unrestrained Dent

< Model Derived Fatigue Response

a
v' Fatigue life of a defect-free g 24— o | | — 109
ipeis ~5 M-cycle. — I | a
PP 5 Ml-cy % 23+ ° 9.4 g
v Forh/D=3%, fatigue lifeis & 2.2 8 o 182 %
reduced to just1.5% of the & o 2
undamaged life. A2l ° IKC=
g20f O o 159 Z
v' Unrestrained residual depth = g a
after pressure rebound g 1.9} O 438 .%
from dent of /D = 15%. - O o Unrestraint o 2
—11.8 ¢ ) 3.6 ke
= g | © Restraint o
% 1.7 = ' ' 125
o 0.8 1 2 3 4 5 67

Number of Cycles to Failure, N;(x10*)

» restrained dents show higher fatigue lives compared to unrestrained dents

[OWA STATE UNIVERSITY DEPARTMENT OF AEROSPACE ENGINEERING | 38



Results: (f) Synergistic Plastic Damage restrained/Unrestrained Dent

Initial plastic damage

v' Excessive initial damage due to
pressure-driven rebounding
leading to shorter fatigue life
in the unrestrained cases.

Restrained @ fixed spatial point in the axial path
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Results: (g) Synergistic Dent/Rebound Accumulated Plastic Strains
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p
v Accumulated €,

? Residual Stress
\? Geometric Effects

Summary of Findings: Synergistic Interactions ‘{

N~

Pristine Pipeline (,=0%) ~ 5 M-cycle
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Results: (h) Synergistic Dent/Rebound Accumulated Residual Stresses

< Residual stress after pressure rebounding,
shifted the mean stress amplitude

Restrained Out Unrestrained
ueer (15% OD initial indentation depth )
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Results: (g) Synergistic Geometry induced Stress Amplitude Riser, SCF

% Stress Concentration Factor

v SCF is obtained by dividing the
stress amplitude at the failure
point over the remote stress

coo000000000R
OORNWARUIOINOOVO
WORAWHOONUIAWHO

amplitude (at a point far from Y
the dent). )\

v Hioh o 9.5 ‘ , . . 2.4@
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Y X
conditions because of pressure- —T5¢ B {227
driven rebounding. § 65l 1 o 51 §
: . E55] ° a 2.0 %

v The stress magnification in the 2 o o &
dented area reduce the fatigue i S . 1‘9§
life by ~ 28% at the same level ;é”; 3.57 18

e, . o
of initial plastic damage. 2.5 x ' Rl ' 1.7 %
12 13 14 15 16 17 18

Stress Concentration Factor

IOWA STATE UNIVERSITY DEPARTMENT OF AEROSPACE ENGINEERING | 43




p
v Accumulated €,

Summary of Findings: Synergistic Interactions ‘{ .
v" Residual Stress

N~
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Needs to Revisit ASME B31.8

< Fatigue response of restrained dents (FE)

v ASME B31.8 is a profile based
approached. It does not account
for deformation histories or stress
concentration.

v' At higher dent depth, ASME
B31.8 predictions are ~30% (on
average) less than the localized FE
results.

v' This difference in strain yields in
~35% 1n life.
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Concluding Remarks

» Developed an integrated computational tool to predict fatigue life of dented
and gouged pipelines of different geometry and orientations.

» ldentified different factors controlling Fatigue life of dented pipes (Residual
plastic strain, residual stresses, Stress risers)

» The position and orientation of the fatigue crack are dictated by both dent
conditions (restrained or unrestrained) and the depth of the dent

» Naive assessment of chemical and mechanical coupling influence on IGC

» Level of prestrain increased the density of nucleation sites and accelerated the
corrosion process.

» Progress to link GB cohesion strength with corrosion and prestrain levels.
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Next Step/ Opportunities

» Extended Lab-scale investigation of coupling between residual stress, plastic
strains and SCC
» Numerical Assessments of fatigue life for wide range of interactive threats
o Different critical gouge geometries and orientations
o Corrosion induced wall thing
o Geohazard impact
o Assessment of rehabilitation methods
» Reexamine ASME B31.8 regarding pressurized and unpressurized

characterization of dents and gouges.
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Project Outcome/ Impact on Pipeline Safety
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Thank You!

Presentation and final Report are posted on project public Page
https://primis.phmsa.dot.gov/matrix/PrijHome.rdm?prj=838

Questions and comments for PI:
Ashraf Bastawros bastaw(@iastate.edu
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