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Challenge of project

* We evaluated the accuracy at which unmanned
aerial vehicles replicated inspector classifications to
evaluate their use as a complementary tool in the
pipeline inspection process. We investigated the
use of various sensors to determine the most cost-
effective methodology for performing pipeline
monitoring and analysis in Appalachia.



Main objective

* Determine the most cost-effective combination of
Unmanned Aerial System (UAS) sensors to monitor
and evaluate pipeline conditions.



Tasks

l.  Vegetation Classification
Il. Sediment Modeling
Ill. Cost Effectiveness



|. Vegetation classification
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. Sediment modeling
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Ill. Cost effectiveness

* In the region containing the study area, there were
182 total rain events greater than 0.25 inches for
2019, 2020, and 2021, setting the number of
average weather inspections to 61.

* From this a total of 113 total inspections were
projected for this study area.

* Each inspection was flown in two branches,
meaning the total number of inspection flights at
this site would be 226 annually.



cont.

* Expert input placed UAV lifespan to be 1,000 flight
hours before costly maintenance leads to a likely
replacement of the drone system. With each flight
in the study area covering approximately 1 kmin a
period of 20 minutes of flight, the drone would be
expected to last 13.25 years until replacement was
required.



Results — Vegetation classification

True
User
Fail Pass Totals Accuracy
_ Fail 11 0 11 1.0000
Predicted
Pass 2 12 14 0.8571
Totals 13 12
Overall
Producer Accuracy | 0.8462 | 1.0000 | Accuracyv-> 0.9200
Kappa = 0.8408




Results — Sediment modeling
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Slip Located in LiDAR-based Hillshade




LiDAR-based Topographic Wetness Index
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LiDAR-based Slope Length and Steepness Factor

OB COMPARITY WAy CONTIEBGTORA. W,
PACLITIES, WGl WY WRCINA S «
CPTWETI T RCRR T [ e
AR MMV TIONA AN B

METLAALA L, (98, WS, U OO LG
L0A, UOUHE PSRN T4, L0, WA,
PARA A SISO, WCEAL WA, D8 e,
A T YO LN AL D R TR
GO A, TR A TVE G
il

N
LS-Factor 0 50 100 200
e —— 1:900 Scale w+ E

P 201.737 % Waterbar Count
60
. o — e — 0TS S




NDVI Vegetation Coverage Identification
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Thermal Reflectance Orthomosaic Identifying
Flowing Surface Water
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USGS LiDAR-based 1 meter Flow Accumulation Analysis
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Results — Cost effectiveness

Drone Ingpction

Equipment Costs

% Of Method
Item/License Cost [5) Qty Replacement Period (yrs) | Sfyr 5/Em Total
DA W20 w2 5 6,000.00 1 13.25 s 452 B3 I 1%
Drone Insurance 5 TIEDG 1 1] 5 706 | 5 175 1%
M200 Battery 5 480.00 2 1.7 & 56471 4 214 1%
Sentera 6x Multispectral Sensor | 5 13,550.00 1 1335 | & 102264 5 387 1%
iPad 5 599.00 1 1 & 59900 5 227 1%
Apple iCare 5 149.00 1 2] 3% 74,50 4 028 0%
Pixdd Mapper 5 3,600.00 1 1| 5 360000 5 13.61 7%
Esri ArcGIS Pro License % 3,800.00 1 1 s 3,B00.00 4 1437 75
Equipnent Cost Subtotal [$/Km) § 41,00 21%
Manpower Costs
Pasition Hourly Rate Hourly Rate + 25% Hra/Km 5/Km
Filot 5 20,00 5 15.00 1.28 | § 32.08 1%
GIS Analyst 5 40,00 | 5 50.00 243 | $111.35 6%
Mangower Cost Subtotal (5/Km) $153.33 70%

Drgne Ingpection Cost Total (S/Km):

Lo |




Traditional Inspection
Equipment Costs
Itemy/License Cost (5) Qty Replacement Period (yrs) | Sfyr S/Em % Of Method Total
iPad ) 590,00 1 1] % 599.00 5 207 5%
Apple iCare 5 149.00 1 2] 5 74.50 5 0.28 1%
Equipment Cost Subtotal (5/Km) 5 2.55 6%
Manpower Costs
Position Rate [5/hr] Rate + 25% (5/Hr) Hrs/Km SKm
Pipeline Inspector* 5 20000 | 5 25.00 174 | 5 4357 94%
Traditional Inspection Cost Total (5/Km): 5 4612
Proportions of Total Cost By Method (5/km)
Traditional Inspection UAV Inspection UAV Inspection (Flight Optimized)
52556
. 513.02, 7% $13.02, 7%
$27.99, 14%
52799, 16%

$43.57 , 94% $153,33, 79%

Total: 546.12/km Total: 5194.34/km

136,67, T7%

Total: $177.67 /km

@Equipment @ 5oftware Licenses BManpower Costs




Collection (Adjusted to min/Km

Time (Min) | Time (Hr)
Set Up 30 0.50
Calibration 2 0.03
Flight 20 0.33
Moving Pics to Computer 25 042
Pilot Total (Hr/Km): ‘

Processing (Adjusted to min/Km)

Time (Min) | Time (Hr)
Align 45 0.75
Set GCP 30 0.50
Products 20 0.33
Processing Subtotal (Hr/Km): 1.58

Modeling

Time (Min) | Time (Hr)
Load 15 0.25
Mosaic 2 0.03
Caleulate NDVI 1 0.02
Clip 1 0.02
Check Training Features 20 0.33
Train SVM 0.02
Reclassify 1 0.02
Total 41 0.68
Modeling Subtotal (Hr/Km): 0.34

Analysis and Report Creation

Time (Min) | Time (Hr)
Analysis (Review) 30 0.50
Report 30 0.50
Total 60 1.00
Analysis and Report Subtotal (Hr/Km): 0.50
GIS Analyst total (Hr/Km): 243




$/Km Proportional Cost Comparison

Dirone Processing Efficiency Increase

0% 5% | 10% | 20% | 30% | 40% | 50% 70%

Inspector | 0.40 072 o074 o075 os0] os4| osgo] 095 1.10

Speed 0.80 040 o041 o042 o044 o047 o050 o053 0.61

(/B 120 029 030 031 032 034] o036] 039 0.44

25% 1.60 024 o024 o025 o026 o028] o030 032 0.36
Overhead

201 021 o021 o022 o023 o024 o026 027 0.31

241 0o18| o019 o019 o020 o022 o023 o024 0.28

281 017 017 o018 o19] o020 o021 0.22 0.26

321 016 o016 o017 o017] o018 o020 021 0.24

Optimized Collection (Adjusted to min/Km)

Time (Min) | Time (Hr)
Set Up 15 0.25
Calibration P 0.03
Flight 10 0.17
Moving Pics to Computer 10 0.17

Pilot Total (Optimized, Hr/Km): 0.62




$/Km Proportional Cost Comparison
Drone Processing Efficiency Increase with Flight Optimization

0% 5% 10% 20% 30% 40% 50% 60% 70%

Inspector 0.40 0.78 0.81 0.83 0.88 0.94 1.00 1.08 1.16 1.26
Speed 0.80 0.43 0.45 0.46 0.49 0.52 0.35 0.60 0.64 0.70
glfglh@ 1.20 032] 033] o034 036] o038] o041 o044 047 051
‘IE;';:rhead 1.60 0.26 027 0.27 0.29 0.31 0.33 0.36 0.38 042
2.01 0.22 0.23 0.24 0.25 0.27 0.29 031 0.33 0.36

241 0.20 021 0.21 0.23 0.24 0.26 0.28 0.30 0.32

281 0.18 0.19 0.20 0.21 0.22 0.24 0.25 0.27 0.30

3.21 0.17 0.18 0.18 0.19 0.21 0.22 0.24 0.26 0.28




Conclusions and discussion —
Vegetation classification

* The accuracy assessments of both models suggest
the ability of either multispectral or RGB equipped
UAVs to provide pipeline vegetation inspections at
high accuracy

e Results indicate that the applied technique is
capable and SVM does appear to be an appropriate
classification approach at this small spatial
resolution



Conclusions and discussion —
Sediment modeling

 UAV-based LiDAR and RGB photogrammetry
products are highly useful for spatial analyses and
aid in surveying, construction, monitoring, and
change detection of a pipeline.

 UAV-based LiDAR is the preferred remote sensing
system to use for inspecting, monitoring, and
managing structural features including those
specific to sediment control within a pipeline right-
of-way.



Conclusions and discussion — Cost
effectiveness

* The tested UAV pipeline inspection approach will
be fiscally difficult to implement in all but the most
complex terrain. From the factors included, the
analysis suggests that the traditional inspection
approach, using a simple equipment set and lower
inspector pay rate, is likely to produce lower costs
than the UAV approach per kilometer.



Variable Cost Comparison

Data Processing Time Reduction (%)
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mpact of this research
oroject/technology on pipeline safety

* We found that UAV-based remote sensing systems
and their array of valuable data outputs display an
immense opportunity to increase safety, efficiency,
and accuracy within the oil and gas industry.



Future research opportunities

* Though current analysis shows UAV based inspections to be more
costly than traditional approaches, the evaluation of additional
identified factors may create a more complete picture of the
relationship between these two techniques, and aid in reducing
this cost differential.

» After determining effective performance and cost optimization, a
purpose-built drone could be deployed over a pipeline stretch
using a previously created flight plan on a regular basis. From this,
models of a reasonablfy high accuracy are derived, which could in
turn be used to identify larger issues requiring immediate
responses.

* This tasking could cover some weekly and post-rain inspections,
where there is a time sensitive nature to detecting large failures.
Trained and certified professionals will still be needed in
inspections, as they can seek-out conditions which the drone may
miss; however, their time spent traversing difficult terrain would
be reduced.
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