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Objective 1: Develop a slow crack growth model for HDPE that accounts for the 
effects of stress loading with the thermal and chemical effects.

Objective 2: Develop a method using computational finite element simulations for 
convolutional neural network (CNN) to accurately predict embedded hidden crack’s 
key characteristics for HDPE. (The key is to be able to quantify crack using a fast 
microsecond raw ultrasound wave data that is essential to scan long pipelines)

Objective 2 helps detect and quantify existing cracks using a proposed new NDE approach, and 
Objective 1 is aimed to provide a better assessment of HDPE pipeline integrity by helping predict the 
remaining life when a crack is detected and sized.   

Objectives
Plastic pipes are increasingly used due to their lightweight, low installation costs, ease of 

maintenance, and corrosion resistance, with 8.3 billion feet of plastic pipeline (4.4 billion feet Main 

and 3.9 billion feet service) transporting natural gas and 55 million residential and commercial gas 

lines (service). High-density PE (HDPE) is preferred polymer for gas transport lines.  *2022 data

Non-visible flaws can grow over time and can cause catastrophic failure.

http://www.srivastavaresearchlab.com/
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Research tasks performed 
Objective 1 research activities 

Objective 2 research activities

• Experimental work to study creep, very slow strain rate, and rate-dependent response of HDPE.

• Studied, analyzed and compiled relevant experimental data from published long-term creep tests of 

HDPE samples under different chemical and thermal exposures.

• Developed a new slow crack growth model incorporating the stress, thermal and chemical effects.

• Calibrated the model parameter using experimental data

• Checked the model’s predictive abilities using independent experimental data.

• Developed and proposed an automatic crack characterization ultrasonic non-destructive evaluation 

(NDE) method using neural network models to eliminate human involvement.

• Develop finite element simulations for ultrasound NDT of HDPE. 

• Applied high-fidelity synthetic data from finite element simulations to train a CNN for two critical 

crack parameters of various lengths and locations for embedded hidden cracks.

• Built an experimental set-up and conducted ultrasound NDT on HDPE specimens to independently 

validate the performance of FEA-trained CNN in accurately predicting both the location and size of 

embedded cracks simultaneously in real-life HDPE test specimens.

http://www.srivastavaresearchlab.com/
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Research Outcomes 1: 

A new slow crack growth model for high-

density polyethylene under thermal and 

chemical environment 

http://www.srivastavaresearchlab.com/
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Failure in polyethylene pipes
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Internal pressure driven brittle type overall 

macroscopic crack failure 

Slow crack growth leading to 

discontinuous bands in HDPE

scanning electron microscope (SEM) image of 

craze microstructure in HDPE

H. Hamouda et al, Polymer 42 (12), 2001

Almomani et al., Materials & Design 227, 2023

http://www.srivastavaresearchlab.com/
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Crack-tip opening distance (COD) in slow crack growth

9

Brown and Lu, Polymer 36, 1995

Almomani et al., Materials & Design 227, 2023

COD versus time for a typical PE material

http://www.srivastavaresearchlab.com/
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Proposed SCG model for chemical environment exposure
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Brown and Lu’s SCG model New SCG model

where

COD from Dugdale theory for plane strain condition

Brown and Lu’s 

assumption for COD 
Proposed new model for COD

Dotted black line prediction from Brown and 

Lu model. It does not work well for chemical 

exposure situations and does not have 

chemical exposure failure prediction ability. 

http://www.srivastavaresearchlab.com/
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Proposed SCG model for chemical environment exposure
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where

Chemical exposure term Temperature termUnit correction factor

Time to failure is based on the final failure crack length or CTOD criteria.

http://www.srivastavaresearchlab.com/
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New SCG model
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Parameters in the proposed SCG model

𝑚 = 10, 𝑛 = 5
𝑄𝑤𝑎𝑡𝑒𝑟 = 100 𝑘𝐽/𝑚𝑜𝑙, 𝑄𝐴𝑟𝑘𝑜𝑝𝑎𝑙 = 110 𝑘𝐽/𝑚𝑜𝑙

𝜎1 = 121 𝐾𝑃𝑎, 𝜎2 = 67 𝑀𝑃𝑎
𝑑0 = 35 𝜇𝑚, 𝜂 = 1.13𝑒10 𝑃𝑎 𝑠

http://www.srivastavaresearchlab.com/
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SCG experiments
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CREEP TESTS TIME TO FAILURE AT 3 MPA:

No chemical exposure (Air) - 160 days

With chemical pre-exposure (Igepal) – 100 days

http://www.srivastavaresearchlab.com/
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Scanning electron microscope (SEM) image
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SEM images of creep test HDPE samples captured at 1000X

Air-exposed Chemically treated (for 14 days in 10% Igepal solution)

http://www.srivastavaresearchlab.com/
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Creep/Slow crack growth experimental data
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Experimental data: Elongation for various temperatures (FNCT – Full Notched Creep Test specimens) 

Experimental data from Schilling et al, Polymer Testing 64 (2017)

Conversion approximation:

Arkopal (also Igepal) (nonylphenolpolyglycolether), 

is a nnonionic surfactant used as an environment 

stress cracking ESC agent to accelerate SCG in 

polyethylene and is the standard for ESC testing 

under ASTM D1693 (Standard Test Method for 

Environmental Stress-Cracking of Ethylene Plastics)

Arkopal structure

http://www.srivastavaresearchlab.com/
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Calibration of new SCG model
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Absolute values are approximations, but the relative values and trends are quite relevant.

http://www.srivastavaresearchlab.com/
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Stress, Temperature and Chemical Environment Dependent SCG  
Predictions from the new model
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Crack depth growth rate

Time to Failure

http://www.srivastavaresearchlab.com/
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SCG model prediction for single edge notched specimens
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Comparison of COD rate ( ሶ𝛿) of the single edge notch test (SENT) 

specimen obtained from new SCG model with experimental data 

of Brown and Lu. Only basic properties for the experimental 

material and the geometry parameter (Y) were updated. This was 

intended for independent validation of the model.   

SENT geometry

Brown and Lu, Macromolecular Symposia (1991)

http://www.srivastavaresearchlab.com/
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Very slow strain rate and rate dependent response experimental study
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SEM images of the fracture surface near the crack initiation of 

HDPE samples (0.0003 s−1 strain rate) for different temperatures 

and exposure environments

(a) Air 22 ℃, (b) Air 37 ℃, (c) Air 50 ℃,

(d) Igepal 22 ℃, (e) Igepal 37◦C, (f) Igepal 50 ℃, 

(g) PBS 22 ℃, (h) PBS 37 ℃. 

MTS mechanical testing machine 

with temperature chamber

http://www.srivastavaresearchlab.com/
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Rate and temperature dependent response of HDPE under different exposure
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Air

Igepal

PBS

0.0003 /s0.3 /s
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Research Outcomes 2: 

Crack Length and Position Measurements 

using Ultrasound NDT and CNN

Crack length a is one of the most critical parameter

http://www.srivastavaresearchlab.com/
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Nondestructive evaluation (NDE)
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NDE is a non-destructive evaluation inspection technique used to detect and 

characterize flaws in structures without damaging the material.

• Ultrasonic testing
• Infrared testing

• Electromagnetic testing

• Magnetic particle testing

Example: ILI detects flaws using smart pipeline integrity 

gauges (PIGs) with NDT techniques

Ultrasonic smart PIG

Manual ultrasound NDT

https://www.eddyfi.com/en/product/rscan-manual-

ultrasonic-system

https://www.dacon-inspection.com/pipeline-services/intelligent-

pigging/ultrasonic-in-line-inspection-ili-pigging/

Willems et al., European Conference on Non-destructive Testing, 2010

http://www.srivastavaresearchlab.com/
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1. Interpretation uncertainty
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• Interpretation from human operator

• Black line: ideal interpretation (metal)

• Blue dots: real experiment data (metal)

• Lack of fast quantification NDE

Current limitations:

Machine learning

ML when trained can be very 

useful but where is the data?

• Very scarce for hidden flaw

• Not well-labeled

• Extremely costly from experiments

Training data fact sheet

"Information for the procurement and conduct of NDT," The 

British Institute of Non-Destructive Testing, 2008.

Motivation

Current HDPE pipe integrity challenges:

2. Lack of training data from experiments

http://www.srivastavaresearchlab.com/
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Experiment

Quantification of an embedded crack: Our methodology
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Our Proposed Method:

• FEA of ultrasound NDT – A scan (fast scan)

• Simulation-based, well-labeled training data

• Microseconds fast obtained unprocessed1D 

signal-based (Ultrasound A-scan based) CNN 

(The proposed method solves the problem of a lack of 

a non-destructive evaluation methodology that can 

rapidly and accurately predict embedded crack length 

and position simultaneously in long HDPE pipes.)

• Validation with independent real-life lab 

experiments

Computation

http://www.srivastavaresearchlab.com/
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3D numerical simulation representing ultrasound NDT
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Abaqus/Explicit

• Dynamic analysis

• Time dependent pressure BC

• Nodal displacement

Averaged 3-direction displacement

Normalization

Pulse amplitude

3D Geometry. Penny-shaped crack. 
Crack length/size to its thickness ratio varied from 2 to 12.

FEA mesh

1 MHz Ultrasound

http://www.srivastavaresearchlab.com/
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1D Convolutional neural network (CNN)
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Signal-based CNN:

• No manual feature selection

• Fewer training data

• Resistant to noise

Ultrasound time 

signal (A-scan)
ReLU

Dropout

High level feature 

extraction performed 

in convolutional layer

Crack features

(Prevents 

overfitting)

http://www.srivastavaresearchlab.com/
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Results: Training and testing of a CNN
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CNN was trained for 2000 epochs for a learning rate of 0.0005

Crack feature Length Location

Error (MAPE) 3.2% 2.5%

1600 training data, 100 testing data

Embedded crack characterization

From simulations:

45° line 

Location Length

http://www.srivastavaresearchlab.com/
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Validation using HDPE samples: sample preparation
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Validation using physical ultrasound NDE experiments
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Olympus Epoch 650 

Ultrasonic Flaw Detector

Ultrasound sensor with a 

hydrogel couplant on a 

material sample

Ultrasound transducer

• Single element

• Straight beam

• 1 MHz

• 12.7 mm diameter

http://www.srivastavaresearchlab.com/
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Accurate quantification of multiple crack features
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• The CNN that was pre-trained only by simulation signals

• Results are shown for crack feature predictions on 25 experimental signals; 

these experiments were completely independent

Crack feature Length Location

Percentage error 

(MAPE)
3.2% 3.8%

45° line

The methodology can be applied to curved geometries such as pipelines. 

http://www.srivastavaresearchlab.com/
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Closing remarks

1. SCG Model: 

A new model for Slow Crack Growth in HDPE that incorporates thermal and chemical 
effects has been developed.

2. Chemical Exposure Effects: 

Findings show significant differences in failure times between chemically exposed and 
unexposed HDPE, underscoring the importance of including chemical exposure in the 
SCG model.

3. Machine Learning in Non-Destructive Evaluation (NDE): 

The study successfully applies machine learning to process fast microsecond acquired 
unprocessed ultrasound time signals for measuring embedded cracks in HDPE, offering 
a faster, feasible and more accurate alternative to traditional NDE methods.

31
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Closing remarks (Continued)

4. Industry Implications: 

• Future recommendations include further tests and work for SCG model validation, 
parameter calibrations and model modifications as needed for specific materials, 
chemical environments and applications.

• It is recommended to customize the proposed FEA and CNN-based NDE method for 
plastic pipeline NDE considering key field variables and flaw types. 

• The proposed method should be considered for further development and deployment of 
advanced NDE units equipped with machine-learning (ML) analysis chips for field use 
(e.g., an ultrasonic detector with NN in an ILI). 

• The proposed method of physically accurate simulations to train ML for NDE can also be 
applied to other NDE techniques.

32
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Closing remarks (Continued)

5.  Current and Future Critical Research Needs: 

• Need strong support and leadership from federal agencies, industry partners and 
university researchers to work together to develop robust understanding and 3D 
models for polymer damage under stress, thermal and chemical exposure. 

➢ Scientifically and carefully study microstructural damage mechanisms in 
important polymers and develop physics-based continuum scale (practical 
length scales) 3D damage and failure theoretical frameworks and 
constitutive models for broader applicability.

• Polymer failure research is critical for onshore (pipelines) and offshore 
(pipelines, flexibles, risers, etc.) structures where polymers are subjected to long-
term exposure degradation and stress.

➢ Continued commitment towards (polymer) structural safety from DOT, 
industry and academia is greatly appreciated. 

33
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Closing remarks (Continued)

5. Relevant Publications: 

• Sijun Niu, Venkatsai Bellala, Daanish Qureshi, and Vikas Srivastava, A machine learning method to 
characterize the crack length and position in high-density polyethylene using ultrasound, arxiv.org, 2023. 
https://doi.org/10.48550/arXiv.2304.11497

• Sijun Niu and Vikas Srivastava, Simulation trained CNN for accurate embedded crack length, location, and 
orientation prediction from ultrasound measurements, International Journal of Solids and Structures, 242, 
111521, 2022. https://doi.org/10.1016/j.ijsolstr.2022.111521

• Sijun Niu and Vikas Srivastava, Ultrasound classification of interacting flaws using finite element 
simulations and convolutional neural network, Engineering with Computers, 1-10, 2022. 
https://doi.org/10.1007/s00366-022-01681-y

• Sijun Niu, Enrui Zhang, Yuri Bazilevs, and Vikas Srivastava, Modeling finite-strain plasticity using physics-
informed neural network and assessment of the network performance, Journal of the Mechanics and 
Physics of Solids, 172, 105117, 2023. https://doi.org/10.1016/j.jmps.2022.10517
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