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Pipeline incidents continue occurring
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Pipeline incidents in 1999-2022: (a) number of fatalities and injuries, and (b) costs

Data source: United States Department of Transportation, PHMSA. Data and Statistics Overview: 

https://www.phmsa.dot.gov/data-and-statistics/pipeline/data-and-statistics-overview



Pipelines are subjected to interactive risks

• Different types, or same type but multiple ones at the same position

These risks interact with each other

• The development rate of anomalies are increased

• More difficult to detect and evaluate the anomalies

➢ Measurement results are sensitive to multiple anomalies

➢ Difficult to differentiate each type of anomaly
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Problems address in this project

Digging Cracking Dent Corrosion



Develop a distributed fiber optic sensor network for monitoring cracks, 

dents, corrosion, impact, and their interactive effects for pipelines
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Research objective

MonitoringSensing

Crack/Leak
• Detect, locate, quantify, visualize

Corrosion
• Detect, locate, quantify, visualize

• Development

Dent/Deformation
• Detect, locate, quantify, visualize

Managing

Alert
• Generation

• Annunciation

• Classification

Impact/Excavation
• Detect, locate, quantify, visualize



Integrate distributed sensor, point sensor, and AI
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Distributed fiber optic sensor network



• Telecommunication-grade single-mode optical fiber: 

• Light wave is guided through total internal reflection at the core-

cladding interface

Optical fibers

➢ Core: high-purity fused silica, high 

refractive index 

➢ Cladding: high-purity fused silica, 

low refractive index 

➢ Coatings: mechanical protection
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• Distributed sensors

Fiber optic sensors

• Grating sensors

• Interferometer sensors

➢ Continuous measurement 

along optical fiber (~100 km), 

1 sensing point at every 1 cm

Rayleigh 

scattering

Incident

Brillouin 

scattering

Brillouin 

scattering

Raman 

scattering
Raman 

scattering

Frequency

Intensity

➢ Single point measurement 

➢ Single point measurement 

➢ Based on light scatterings in 

optical fiber



Interactive anomalies are monitored using a distributed fiber optic 

sensor network that measures temperature and strain distributions
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Proposed approach



• Develop and demonstrate the distributed fiber optic sensor 

network for detecting, locating, characterizing, and quantifying 

individual and interactive anomalies

➢ Individual anomalies (strain, bending, dent, crack, corrosion, impact)

➢ Interactive anomalies

• Develop data processing and analysis programs for effective and 

efficient interpretation of sensor data

➢ Analytical methods

➢ Machine learning methods

• Train graduate and undergraduate students through conducting 

research on pipeline anomaly detection to prepare them for 

future careers in related industry

• Funding: $250,000 from PHMSA
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Tasks with total project funding (high level) 



1. Measurement of arbitrary strain fields 

2. Detection, localization, and quantification of cracks

3. Interfacial mechanics of distributed sensors undergoing debonding

4. Detection, localization, quantification, and visualization of buckling/dent

5. Detection, localization, quantification, and visualization of corrosion

6. Investigation of different types of fiber optic cables and installation methods

7. Detection of excavation induced impacts on pipelines

8. Measurement of interactive deformations and cracks

9. Measurement of interactive dent and corrosion

10.Measurement of interactive deformations and dent

11.Measurement of interactive impact loads and corrosion

12.Measurement of interactive deformations, dent, crack, and corrosion
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Experiments
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• When a fiber optic sensor is embedded in a matrix, does the sensor always 

sense the same strain as the host matrix?

εm

• The relationship between εm and εf must be determined. 

Matrix

Coating

Fiber

Coating

Matrix

εf

Theme 1: Measurement of arbitrary strain fields 
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Mechanical study

• Governing equation

where

• Strain in fiber (εf) is solved, given the strain field (εm) in the matrix

𝜀𝑓
′′ 𝑥 − 𝑘2𝜀𝑓 𝑥 + 𝑘2𝜀𝑚 𝑥 = 0

𝑘2 =
2

𝐸𝑓𝑟𝑓
2[

𝐼𝑛(𝑟𝑖/𝑟𝑓) 
𝐺𝑖

+
𝐼𝑛(𝑟𝑜/𝑟𝑖)

𝐺𝑜
]

𝜀𝑓 𝑥 = 𝐶1cosh(𝑘𝑥)+𝐶2 cosh 𝑘𝑥 + 𝜀𝑝(𝑥)

εm

εf

• Different strain fields (εm) have been studied. 

𝑥
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Case 1: Uniform strain field in matrix
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Case 2: Non-uniform strain fields in matrix

• Distributed fiber optic sensors are usually subjected to non-uniform strain fields 

due to the long length

This original work enables accurate interpretation of 

sensor data for measuring strain distributions.
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Strain transfer analysis

• An approach to perform forward and backward (inverse) strain transfer analysis 

has been developed in recent research

• Measurement from distributed sensors can be corrected to eliminate the strain 

transfer effect

Tan, X., Bao, Y.*, Zhang, Q., et al., 2021. Strain transfer effect in distributed fiber optic sensors under an arbitrary field. 

Automation in Construction, 124, p.103597.

Mahjoubi, S., Tan, X. and Bao, Y.*, 2022. Inverse analysis of strain distributions sensed by distributed fiber optic sensors 

subject to strain transfer. Mechanical Systems and Signal Processing, 166, p.108474.

Yan, M., Tan, X., Mahjoubi, S. and Bao, Y.*, 2022. Strain transfer effect on measurements with distributed fiber optic 

sensors. Automation in Construction, 139, p.104262.
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Pipeline deformation

• Detailed strain distributions were measured
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Theme 2: Detection, localization, and quantification of cracks

• When an optical fiber passes a crack
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➢ the optical fiber will be stretched to a 

high strain level,

➢ debonding will happen in the optical 

fiber to delay the rupture of fiber, and

➢ the strain peaks indicate the 

locations of cracks.



Theoretical support of the empirical crack width correlation
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Tan, X. and Bao, Y.* (2021). Measuring crack width using a distributed fiber optic sensor based on optical frequency domain 

reflectometry. Measurement, 172, p.108945.

Methods for crack width quantification 

𝑤 = 2 න
0

𝓁

𝜀𝑓 𝑥 𝑑𝑥
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Theme 3: Interfacial mechanics of distributed sensors undergoing 

debonding

Comparison of the analytical 
and experimental results Convergence curvesStrain distributions



• Four-point bending tests

Application 1: Flexural testing

22

Tan, X., Abu-Obeidah, A., Bao, Y.*, Nassif, H., and Nasreddine, W. (2021). Measurement and visualization of strains and cracks in 

CFRP post-tensioned fiber reinforced concrete beams using distributed fiber optic sensors. Automation in Construction, 124, p.103604. 



Application 2: Steel-concrete pipe crack

23

Path_1

Path_6
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Data processing  

Measure strain 
distributions

Computer vision

Sh
ap

e reco
n

stru
ctio

n

Determine strain 
profile function

Validate 
reconstructed 

shape

Reconstructed 
deformed shape

Theme 4: Detection, localization, quantification, and visualization of 

buckling/dent



• For both 1D and 2D problems

Shape reconstruction algorithm 
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Tan, X., Guo, P., Zou, X., & Bao, Y. * (2022). Buckling detection and shape reconstruction using strain distributions measured 

from a distributed fiber optic sensor. Measurement, 200, p.111625.

𝜀𝑝 𝑥, 𝑦 = −𝑧
𝜕2𝑣𝑝 𝑥, 𝑦

𝜕𝑝2
, 𝑝 = 𝑥 or 𝑦

𝜀𝑝 𝑥, 𝑦 = ෍
𝑖

෍
𝑗

𝑚𝑖𝑗𝑥𝑖𝑦𝑗 = 𝑭𝜀𝒎𝜀

Ф𝜀 = min 𝜺𝑝 − 𝑭𝜀𝒎𝜀 𝑇
𝑾𝑅 𝜺𝑝 − 𝑭𝜀𝒎𝜀

𝑾𝑅 = diag 𝑊1
𝑅 ⋯ 𝑊𝑖

𝑅 ⋯ 𝑊𝑁
𝑅

𝑊𝑖
𝑅 = ቊ

1, Point 𝑖 at straight sensor lengths
0, Point 𝑖 at curved sensor lengths

Governing equations: Boundary conditions: 

อ
𝑑2𝑣𝑥(𝑥, 𝑦𝑖)

𝑑𝑥2

𝑥=0

= อ
𝑑2𝑣𝑥(𝑥, 𝑦𝑖)

𝑑𝑥2

𝑥=𝐿

= 0

𝑣𝑥 𝑥 = 0, 𝑦𝑖 = 𝑣𝑥 𝑥 = 𝐿, 𝑦𝑖 = 0

ቤ
𝑑𝑣𝑥(𝑥, 𝑦𝑖) 

𝑑𝑥
𝑥=0

= ቤ
𝑑𝑣𝑥(𝑥, 𝑦𝑖)

𝑑𝑥
𝑥=𝐿

= 0

Analytical 
solution:

𝑣𝑥(𝑥, 𝑦𝑖) = ෍

𝑖

෍

𝑗

𝑀𝑖𝑗𝑥𝑖+2𝑦𝑖
𝑗 𝑀𝑖𝑗 = −

1

𝑧

𝑚𝑖𝑗

𝑖 𝑖 − 1



• Coordinate transform and strain profile interpolation

Application: Eccentrical buckling
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• Computer vision result (point cloud) for validation

27
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Theme 5: Detection, localization, quantification, and visualization of corrosion

1. “Smart pipes” instrumented with a 
distributed fiber optic sensor

2. Real-time data acquisition from the 
distributed sensor

4. Detection, localization, visualization, 
and quantification of corrosion

Output

3. Real-time data processing and 
analytics of distributed sensor data
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Corrosion mass loss model

Tan, X., Fan, L., Huang, Y., & Bao, Y. (2021). Detection, visualization, quantification, and warning of pipe corrosion using 

distributed fiber optic sensors. Automation in Construction, 132, p.103953.

• Meso-scale corrosion model

∆𝑚 =
𝜋𝜌𝐿𝐷0

2

4 𝑘 − 1
1 + 𝛼2 2𝜀 + 𝜀2

𝛼 =
𝑠

𝜋𝐷0

𝑘 =
𝑉𝑟

𝑉𝑝
=

𝐷𝑐
2 − 𝐷𝑛

2

𝐷0
2 − 𝐷𝑛

2
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Corrosion severity evaluation

∆𝑚 ≈
𝜋𝜌𝐿𝐷0

2

2.328
1 + 𝛼2 2𝜀 + 𝜀2

• Calibrated corrosion mass loss model

where 𝑘 = 1.582 

𝐶𝑅 =
Δ𝑚 × 365 × 1000

𝐴𝑇𝜌

• Corrosion severity evaluation model

where 𝐶𝑅  is average corrosion rate (unit in 

mm/y = millimeter per year);

Δ𝑚 is the mass loss (g); 

𝐴 is the initial exposed surface area (mm2); 

𝑇 is exposure time (days); and 

𝜌 is density of metal (g/cm3).

0 < 𝐶𝑅 ≤ 0.025 Low

0.025 < 𝐶𝑅 ≤ 0.12 Moderate

0.12 < 𝐶𝑅 ≤ 0.25 High

0.25 < 𝐶𝑅  Severe



Application: Corrosion mass loss calculation

31

Comparison results

P2

Instrumentation of pipesTest setup

Calibration



• Three types of fiber optic cables

Theme 6: Different types of fiber optic cables and installation methods

32



• Three sensor installation methods

• Mechanical testing of a steel pipe

33



• Three sensor installation methods
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• Impact detection is challenging for underground pipelines which are unseen to 

excavation crews

• This project developed a strain-based method to detect impact effects using 

distributed fiber optic sensors

Theme 7: Detection of excavation induced impacts on pipelines

35



• When an impact load was applied, the sensor showed high sensitivity

36

t=47.004 s

t=46.6 s t=47.0 s t=47.003 s

t=47.008 s t=47.012 s



• A time-frequency analysis was conducted to monitor the impact load

37

x=2m

x=0.5m x=1m x=1.5m

x=2.5m x=3m



• Direct integration of strains becomes unavailable

Theme 8: Measurement of interactive deformations and cracks
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Full-size steel pipe under four-point bending
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• Monitoring of dent effect to corrosion

Theme 9: Measurement of interactive dent and corrosion

40

Test setup of dent Loading and unloading

3.5 wt. % NaCl

Validation
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• Monitoring of dent effect to bending

Theme 10: Measurement of interactive dent and bending

41

Path_1 Path_2 Path_3

Distributed fiber optic network

Bending Bending + dent

Path_4

Bottom envelop
Top envelop

M-shape M-shape

Tan, X., Poorghasem, S., Huang, Y., Feng, X. and Bao, Y.*, 2024. Monitoring of pipelines subjected to interactive bending and dent using 

distributed fiber optic sensors. Automation in Construction, 160, p.105306.
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• Monitoring of impact loads and corrosion

Theme 11: Measurement of interactive impact loads and corrosion

43

Test specimens and sensors: (a) a test specimen, (b) schematic of the sensors, 

(c) schematic of a specimen.



• Test setup

44



• Representative results
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• Monitoring of deformations, dent, crack, and corrosion

Theme 12: Measurement of interactive deformations, dent, crack, and corrosion

46



• Representative results measured from distributed fiber optic sensors

➢ The strain distributions measured from the pipes with dent show higher spikes and 

deeper valleys than the pipes without any dent because dent caused residual strains 

in the steel pipes and modified the microstructures of the pipes. 

➢ The presence of the notch accelerated the corrosion, as shown by higher spikes.

47

Corrosion + Dent Corrosion + Dent + Notch



• To enable automatic monitoring of anomalies based on distributed sensor data

Develop a machine learning approach

48



• Measurement of 3D arbitrary strain fields of pipelines. 

• Detection, localization, quantification, and visualization of cracks in 

pipelines. 

• Detection, localization, quantification, and visualization of pipeline 

buckling/dents.

• Detection, localization, quantification, visualization, and warning of 

pipeline corrosion. 

• Detection and monitoring of impacts applied to pipelines. The 

impacts can be applied by third-party excavation or digging.

• Detection and discrimination of interactive anomalies of pipelines. 

The investigated cases of interactive anomalies included: (1) global 

and local deformations (bending and dents); (2) deformations and 

cracks; (3) deformations and corrosion; (4) deformations, impacts, 

and corrosion; and (5) deformations, cracks, and corrosion. 

• Machine learning-based methods for automatic data interpretation.

Conclusions

49
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• Evaluation of the developed sensors and analytical tools for other types and sizes 

of pipes. It is important to test the sensor installation methods and data analysis 

methods in further experiments using large pipe specimens and in field testing. 

• Development, evaluation, and implementation of machine learning methods for 

automatic interpretation of data provided by distributed fiber optic sensor network 

deployed on pipes subject to interactive anomalies. 

• Development, evaluation, and implementation of methods for efficient installation 

of fiber optic cables on the surfaces of pipelines. It is important and urgent to 

develop effective and efficient methods for installing fiber optic cables. Robots are 

promising solutions for the installation of fiber optic cables as distributed sensors 

for pipeline applications.

• Development, evaluation, and implementation of an Internet of Things (IoT) 

platform for automatic generation and utilization of digital twins of smart pipelines 

instrumented for improved asset management. 

• Education and training of students and pipeline professionals for developing the 

next-generation workforce for the pipeline industry. It is important to develop 

courses and certificate programs to support the vision for smart pipelines. 

Next steps 
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Project's public page 
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• The final report has been posted on the project's public page
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Q & A

Thank you!

PI: Yi Bao,  yi.bao@stevens.edu

Co-PI: Ying Huang, ying.huang@ndsu.edu
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