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Background

Pipeline incidents continue occurring
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Pipeline incidents in 1999-2022: (a) number of fatalities and injuries, and (b) costs

Data source: United States Department of Transportation, PHMSA. Data and Statistics Overview:
https://www.phmsa.dot.gov/data-and-statistics/pipeline/data-and-statistics-overview
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Problems address in this project

Pipelines are subjected to interactive risks

« Different types, or same type but multiple ones at the same position

A

.....

| Dnging Cracking Dent Corrosion

These risks interact with each other

« The development rate of anomalies are increased

 More difficult to detect and evaluate the anomalies

» Measurement results are sensitive to multiple anomalies

> Difficult to differentiate each type of anomaly
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Research objective

Develop a distributed fiber optic sensor network for monitoring cracks,
dents, corrosion, impact, and their interactive effects for pipelines

é Y

[ Sensing ]I:» Monitoring :‘[ Managing ]
~ Crack/Leak
&I » Detect, locate, quantify, visualize

=N

Dent/Deformation

Alert - Detect, locate, quantify, visualize
» Generation

. Annunciation|| | Corrosion

« Classification » Detect, locate, quantify, visualize
* Development

Impact/Excavation
"| » Detect, locate, quantify, visualize
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Distributed fiber optic sensor network

Integrate distributed sensor, point sensor, and Al

Intelligent biological system Al-powered intelligent pipeline with distributed fiber optic sensors as “sensory nerves”

Weld seams

| Point fiber optic Sensors
/  at the critical l6¢ations

Distributed fiber optic sensor
along the pipeline

Bio-
inspired Data collection, processing,
smart ‘and Al-powered interpretatio
pipeline

ek * Distributed fiber optic sensors provide detailed measurements
9900 jum of temperature and strain distributions for the pipeline, like
“sensory nerves” for biological systems.
2 * The sensor data are used to assess detailed pipeline condition,
- and AI methods are used to automate the interpretation of
Fiber optic sensors  distributed fiber optic sensor data.

— A
S5 ’ Sensory

nerves
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Optical fibers

« Telecommunication-grade single-mode optical fiber:

Outer coating Cladding

» Core: high-purity fused silica, high 6242 um 3125 um

refractive index

» Cladding: high-purity fused silica,
low refractive index

» Coatings: mechanical protection Inner coating | Core
@190 um ?8.2 um

« Light wave is guided through total internal reflection at the core-
cladding interface

| Cladding . n,=1.463 |

Core n,=1.469
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Fiber optic sensors

« Grating sensors

» Single point measurement \\\§\\é\\

*

* |nterferometer sensors

» Single point measurement /{N
- kl |

* Distributed sensors

Intensity Incident
A

» Continuous measurement
along optical fiber (~100 km),

1 sensing point at every 1 cm Brillouin Brillouin
Scatterlng Scatterlng

» Based on light scatterings in
optical fiber ‘ Frequency

Raman Rayleigh Raman
scattering scattering scattering
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Proposed approach

Interactive anomalies are monitored using a distributed fiber optic
sensor network that measures temperature and strain distributions

Threats/anomalies [Excavation / } [ Cracking / J [Deformatlon [ ot ]

in pipelines Intrusion Leaking (e.g. dent)

Inform l IInspect

Measurands of T -
sensor network cmpetature

)

Strain ] [ Curvature J [ Corrosion }
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Tasks with total project funding (high level)

* Develop and demonstrate the distributed fiber optic sensor
network for detecting, locating, characterizing, and guantifying
Individual and interactive anomalies

» Individual anomalies (strain, bending, dent, crack, corrosion, impact)

> Interactive anomalies

* Develop data processing and analysis programs for effective and
efficient interpretation of sensor data

» Analytical methods

» Machine learning methods

« Train graduate and undergraduate students through conducting
research on pipeline anomaly detection to prepare them for
future careers in related industry

« Funding: $250,000 from PHMSA
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Experiments

Measurement of arbitrary strain fields

Detection, localization, and quantification of cracks

Interfacial mechanics of distributed sensors undergoing debonding
Detection, localization, quantification, and visualization of buckling/dent
Detection, localization, quantification, and visualization of corrosion
Investigation of different types of fiber optic cables and installation methods
Detection of excavation induced impacts on pipelines

Measurement of interactive deformations and cracks

© 0o N o 0 A~ W D PE

Measurement of interactive dent and corrosion
10. Measurement of interactive deformations and dent
11. Measurement of interactive impact loads and corrosion

12. Measurement of interactive deformations, dent, crack, and corrosion
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Theme 1. Measurement of arbitrary strain fields

 When a fiber optic sensor is embedded in a matrix, does the sensor always
sense the same strain as the host matrix?

« The relationship between ¢, and & must be determined.

4— Matrix

<4— Coating
<4— Sijlica fiber

(sensing part)

Coating
Fiber > £f
Coating

l____/
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Mechanical study

Governing equation

ef (x) — k?er (x) + k?e,(x) = 0 £n je—>  Matrix
\ . Coating ’
where , & f»  Fiber
k? = o Coating
rz[ln(ri/rf) N In(ro/ri)] daaaes :
ff Gi Go i Matrix .

Strain in fiber (&) is solved, given the strain field (g,) in the matrix

gr(x) = Cycosh(kx)+C, cosh(kx) + £P (x)

Different strain fields (¢,,) have been studied.
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Case 1: Uniform strain field in matrix

Concrete cylinder under Strain in fiber is calculated:
uniform compression

gr(x) = &u[1 — cosh(kx)+tanh(kL/2) sinh(kx)]

_ Plot in red color
Fiber

=1 Development length
Ak L B < 1000 -
©
= 800
, ) Q© 600 -
b Strain §
€m o 400 - Theoretical
o
Strain in g 200 - — = = Measured
concrete O 0 . . O .
> X 1.4 1.5 1.6 1.7 1.8
0 L

Distance along optical fiber (m)

Strain measurement results should be corrected using the calibrated relationship between g; and ¢,
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Case 2: Non-uniform strain fields in matrix

« Distributed fiber optic sensors are usually subjected to non-uniform strain fields
due to the long length

A&

v

This original work enables accurate interpretation of
sensor data for measuring strain distributions.

Ag(x) 4 &,(x)

€o

&
ggtde
o
0 > 0 3

0 L -a 0 b

=
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Strain transfer analysis

« An approach to perform forward and backward (inverse) strain transfer analysis
has been developed in recent research

« Measurement from distributed sensors can be corrected to eliminate the strain
transfer effect

4 . &, £
. ’ | Forward > ’ 2
&, 0 -
0 : Inverse 0 :
0 L 0 L

Forward
Distributed fiber |==) Measurement of ' »| Strain field of host ==>| Condition of civil
_ S Strain transfer analysis _
optic sensor strain distribution y, . structures infrastructure
Inverse

Tan, X., Bao, Y.*, Zhang, Q., et al., 2021. Strain transfer effect in distributed fiber optic sensors under an arbitrary field.
Automation in Construction, 124, p.103597.

Mahjoubi, S., Tan, X. and Bao, Y.*, 2022. Inverse analysis of strain distributions sensed by distributed fiber optic sensors
subject to strain transfer. Mechanical Systems and Signal Processing, 166, p.108474.

Yan, M., Tan, X., Mahjoubi, S. and Bao, Y.*, 2022. Strain transfer effect on measurements with distributed fiber optic
sensors. Automation in Construction, 139, p.104262.
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Pipeline deformation

 Detailed strain distributions were measured

Full-size pipe L%

Optical fiber

< / / 7 / / / / 7 7
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(/ A /S S S S S S S S

Path-1 Path-4
e e Theoretical value
50 - Path 1
Path 2

w
Z 40 - Path 3
- Path 4
2 30 - ~—— Path 5
E 20 -

10 Wi o 4,

0 ke ' . . e "".L

0.1 0.6 1.1 1.6 2.6 3.1 3.6
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Theme 2: Detection, localization, and quantification of cracks

* When an optical fiber passes a crack
» the optical fiber will be stretched to a
high strain level,

» debonding will happen in the optical
fiber to delay the rupture of fiber, and

» the strain peaks indicate the
locations of cracks.

8000
Crack
Matri | g 00007
X =2
c
Coating _,_/ k ‘s 4000 -
Fiber 9
Coating  ~ , 2000
Matrix 0
| Debonding length |

Embedded fiber
optic sensor

0 02040608 1 12141618 2
Distance along optical fiber (m)
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Methods for crack width quantification

Theoretical support of the empirical crack width correlation

16000

Pullout force

T/'

_e 1

Aluminum plate

________________

Optical fiber —»

Data acquisition system

—

Pullout force

Tensile strain (ue)

0

r
h
1

¢
w = 2] gr(x)dx
0

Tan, X. and Bao, Y.* (2021). Measuring crack width using a distributed fiber optic sensor based on optical frequency domain

reflectometry. Measurement, 172, p.108945.

Crack wdth from DFOS (mm)
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Theme 3: Interfacial mechanics of distributed sensors undergoing
debonding

Force-slip curve P-s

Bond-slip model z-s

Metaheuristic Model parameters:
: inverse analysis p={t.5.apB.k}
Coating
Fie core I
7(s)
S |
0 > 0
21z = 16000 : lL
£ =160 mm We=249mm, 16000 T 0.05mm Detailed strain distribution
10 A I P 0.12mm alomg opticfiber is achieved L0
= A W=189mm| T | TTTTT 0 22mm Evolution of o
< 8 e 932 mm/"e;'}c =133 mm 12000 1 “ "7 0.39 mm c:”:cll:figti -~ % 0.9 4
] e B 0.78 . " B
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Comparison of the analytical

and experimental results Strain distributions

Convergence curves
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Application 1: Flexural testing

* Four-point bending tests 100

Rigid steel frame > '

Actuator >

i

20 40 60 80 100 Visualization of cracking

Mid-span deflection (mm) process

]

IC

Spreader beam—» Tested beam

14000 -
——30kN 8
12000 A
10000 4

8000 -

| ) N

Tensile strain (ue)

6000
b=~ Roller [ [ L “Roller g ol
< Load cell Load cell i
{ { ~ - A 2 1 Dk?auce along beam (2m) % d
LVDT LVDT LVDT LVDT LVDT
- Rigid support —— Surface-attached optical fiber Rigid support

------ Embedded optical fiber

Tan, X., Abu-Obeidah, A., Bao, Y.*, Nassif, H., and Nasreddine, W. (2021). Measurement and visualization of strains and cracks in
CFRP post-tensioned fiber reinforced concrete beams using distributed fiber optic sensors. Automation in Construction, 124, p.103604.
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Application 2: Steel-concrete pipe crack

5000
4500
4000
3500
3000
2500
2000
1500
1000

500

Strain distribution (pie)

-300
-1000

Path 1
3
Path_6
Path-1: Both strain Path-2: Strain sensor Path-3: Both strain { Path-4: Strain sensor
and temp. sensors and temp. sensors
4
| —24h 48h ——72h ——96h ——120h ——144h ——168h ——192h ——216h ——240h ——264h ——288h 312h 336h ——480h —624h|

4 42 444648 5 52545658 6 626466068 7 72747678 8 82848688 9 9294096 98 1010210410.610.8 11 11.211.411.611.8 12 12.212.412.612.8

Distrance along optical fiber (m)
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Theme 4: Detection, localization, quantification, and visualization of

buckling/dent

Measure strain

distributions

Y

m

m

A

AN

1

Sensor

1
Structure

Validate
reconstructe__d |

Data processing >

Computer vision>

Determine strain

profile function

-

Strain contour

Reconstructed
deformed shape

ﬁ uolldnJisuodal ad eys

I ———
Deformed structure
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Shape reconstruction algorithm

« For both 1D and 2D problems

Governing equations:

gp(x’ y) = Z Z mijxiyj = FSmS
J

i

D¢ = min{[ep — Fgmg]TWR [sp — Fgmg]}

Boundary conditions:

Ue(x=0,y) =ve(x=Ly;) =0

] | ; . . dv,(x,y;) _ dvy (x,¥;) —0
WR = d1ag[W1 - WER... WN] dx o dx vl
WR = 1, Point i at straight sensor lengths
E 7o, Point i at curved sensor lengths 2 42
0%vy (x,y) = ();, o L (9;’ Ll e L
& (x,y) = ‘Za—pZ’ B=zery) dx x=0 dx x=L
- )
Analytical z z +2., ] _ 1M
v, (x,y;) = M..xl+2 ] M - = /.
e (0, Y1) Lz ij X Vi Y zi(i—1)
9 E—— J

Tan, X., Guo, P., Zou, X., & Bao, Y. * (2022). Buckling detection and shape reconstruction using strain distributions measured

from a distributed fiber optic sensor. Measurement, 200, p.111625.
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Application: Eccentrical buckling

« Coordinate transform and strain profile interpolation

Strain (pe)
-3500 -2500 -1500 -500 500 1500 2500 3500 Strain (je)
29 3000
34
—~
é y 2000
— 39 4
8 1000
Eg 44 4 2121 N
éﬂ —3134N
& 49 3524;\: » 0
< ——3705 N
o 54 4 —3819N
2 ——3900 N -1000
8 59 ——3962 N
3= ——4085 N
R 64 4148 N 2
&5 4176 N
i i — 4183 N -3000

Load

Increase of
load

SIEES
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« Computer vision result (point cloud) for validation

Point cloud data obtained

from depth camera (Unit: m)

— 0.005
E 0N Results from distributed 0
= .. fiber optic sensor
g -001. . 20.005
X 1.0.01
© -0.02  Accuracy:
A SSE: 0.001883 | 0015
R2: 0.9857 , :
-0.03 .| RMSE: 0.001205 e i
0.3 -0.025
0.2
y(m) o] § 0.0
N < % v
¥ 5 0.1 0.2 0.3 0.4 0.5 0.6

x (m)
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Theme 5: Detection, localization, quantification, and visualization of corrosion

1. “Smart pipes” instrumented with a 2. Real-time data acquisition from the
distributed fiber optic sensor distributed sensor
r
‘ N
4. Detection, localization, visualization, 3. Real-time data processing and
and quantification of corrosion analytics of distributed sensor data
Contour Pipe surface  Strain (pg)
)'-__,,.-q e (@]
= 8
[«B]
w
(@)]
©
[«B]
(&)
c
[
@
;.’:5‘ D
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Corrosion mass loss model

* Meso-scale corrosion model

Fiber optic cable

NaCl solutions — NaCl solution

Pipeline — Rust

Optical fiber ———
Buffer

[ Dy ¥
. D, N
I* Dy "

2 8 TTTTTTTTTTTToTmmosomomooooooooooooooooooooooo :
- Q ! 2 1
&k _ TpLDy 2 2 :
£ 5 Am—4(k_1)[(1+a)(2£+s)]
l k=E=D‘:2_D"2
9 i Vp DOZ_Dn2 i
o 5 i :
£ 5 : s i
& E : a=— !
a3 : mDy !
5 | :

______________________________________________________

Tan, X., Fan, L., Huang, Y., & Bao, Y. (2021). Detection, visualization, quantification, and warning of pipe corrosion using
distributed fiber optic sensors. Automation in Construction, 132, p.103953.
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Corrosion severity evaluation

 Calibrated corrosion mass loss model

~ 7TpLD02

Am = 2328 [(1+ a®)(2e 4+ £2)] where k = 1.582

» Corrosion severity evaluation model

______________________________________ 0.4
Am X 365 x 1000 0.35 1
! = ! _ 0.3 ___é. .......... 9
i AT.D ! 220,25 eeees ii..,ié ........................
——————————————————————————————————————— E, 0.2 !
gois{ F
where CR is average corrosion rate (unit in 014 ¢}
mm/y = millimeter per year); 0.05 A "

- 0 .‘ T T T T T T T
Am is the mass loss (g); 0 2 4 6 8 10 12 14 16 18 20
A is the initial exposed surface area (mm?); Time (Day)

T is exposure time (days); and 0 <CR <0025 Low
: , 0.025 < CR <£0.12 Moderate
p is density of metal (g/cm3). _
0.12 < CR < 0.25 High
0.25 < CR Severe

e
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Application: Corrosion mass loss calculation

Instrumentation of pipes

7

1 o g

=8
: &
7 4
000 T——3n —60n ——oon :
114h ——134h ——184h s 01
4000 {——208h ——280h ——472h res
= ——640h ——912h ——1080h o 3
§3000 I Calibration 5 4 -
£ 2000 4/ ~—~———————— -
« 2 | y =X
1000 4~ — e o 2 T .’.,’ R*=0.993
: e 2 0 ; T T T T T T T
) ——— ] 0 1 2 3 4 5 6 7 8
247 267 287 307 397 347 Mass loss from distributed sensors (g)
Distance along fiber (m) Comparison results
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Theme 6: Different types of fiber optic cables and installation methods

« Three types of fiber optic cables

Outer coating

0242 pm ey coating

2190 pm

Cladding

Core ¥8.2 um

Outer coating ¥242 um

Inner coating @190 pm
Cladding @125 um

Core ©¥8.2 um

Tight buffer
D650 pm

Tight buffer @650 um
Outer coating 242 pm
— Inner coating @190 um
Cladding @125 pm

Core 8.2 um

Tight buffer
9900 pm

Tight buffer 3900 pm

Outer coating @242 pm
- Inner coating @190 pm
Cladding @125 pm

Core @8.2 um
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 Three sensor installation methods

| e e e

Top view Top view Top view
R | — | | ¢ |
Cross section Cross section Cross section

« Mechanical testing of a steel pipe

F ull-size pipe Lo : ‘ b Optical fiber

J

F1-M1 F2-M1

F2-M2

F1-M2

F1-M3 F2-M3
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 Three sensor installation methods

Strain (pe)
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Theme 7: Detection of excavation induced impacts on pipelines

» Impact detection is challenging for underground pipelines which are unseen to
excavation crews

» This project developed a strain-based method to detect impact effects using
distributed fiber optic sensors
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 When an impact load was applied, the sensor showed high sensitivity
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« Atime-frequency analysis was conducted to monitor the impact load
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Theme 8: Measurement of interactive deformations and cracks

» Direct integration of strains becomes unavailable

4 Strain 4 Strain
Tension
1‘ Right
g
Optical =
fiber o 1= Distance Distance
~ Crack scop
(&) :
N | Crack width changes: 1.2 3.1
()\ Unit: (x10~ mm) 7.1 12.2
\| 19.6 33.6
......... Ana.
Plate > | IO | N iCiackmotehl | 8 an T e
specimen B
G.OISS 6.1I55 6.2ISS

Distance along fiber (m)

Tension X
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Full-size steel pipe under four-point bending

Actuator

Spreader beam\

+<— Loading head

Loading head —
Distributed fiber optic sensor

Steel

X

uh(x)=f en(x)dx+68=41 (L—x)z
0 0 ’

3]
o
=
+
g
o
A
=
N
Q
Strain distribution (J1€)
o0
[a=]
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Theme 9: Measurement of interactive dent and corrosion

« Monitoring of dent effect to corrosion
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Theme 10: Measurement of interactive dent and bending

« Monitoring of dent effect to bending
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Tan, X., Poorghasem, S., Huang, Y., Feng, X. and Bao, Y.*, 2024. Monitoring of pipelines subjected to interactive bending and dent using
distributed fiber optic sensors. Automation in Construction, 160, p.105306.
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Loading point

Distributed fiber optic sensors installed on pipes with different paths
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Theme 11: Measurement of interactive impact loads and corrosion

* Monitoring of impact loads and corrosion
170mm X
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Test specimens and sensors: (a) a test specimen, (b) schematic of the sensors,
(c) schematic of a specimen.
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* Test setup
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* Representative results
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Theme 12: Measurement of interactive deformations, dent, crack, and corrosion

« Monitoring of deformations, dent, crack, and corrosion
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Representative results measured from distributed fiber optic sensors

» The strain distributions measured from the pipes with dent show higher spikes and
deeper valleys than the pipes without any dent because dent caused residual strains
in the steel pipes and modified the microstructures of the pipes.

» The presence of the notch accelerated the corrosion, as shown by higher spikes.
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Develop a machine learning approach

» To enable automatic monitoring of anomalies based on distributed sensor data
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Conclusions

« Measurement of 3D arbitrary strain fields of pipelines.

« Detection, localization, quantification, and visualization of cracks in
pipelines.

« Detection, localization, quantification, and visualization of pipeline
buckling/dents.

« Detection, localization, quantification, visualization, and warning of
pipeline corrosion.

« Detection and monitoring of impacts applied to pipelines. The
Impacts can be applied by third-party excavation or digging.

« Detection and discrimination of interactive anomalies of pipelines.
The investigated cases of interactive anomalies included: (1) global
and local deformations (bending and dents); (2) deformations and
cracks; (3) deformations and corrosion; (4) deformations, impacts,
and corrosion; and (5) deformations, cracks, and corrosion.

« Machine learning-based methods for automatic data interpretation.
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Next steps

Evaluation of the developed sensors and analytical tools for other types and sizes
of pipes. It is important to test the sensor installation methods and data analysis
methods in further experiments using large pipe specimens and in field testing.

Development, evaluation, and implementation of machine learning methods for
automatic interpretation of data provided by distributed fiber optic sensor network
deployed on pipes subject to interactive anomalies.

Development, evaluation, and implementation of methods for efficient installation
of fiber optic cables on the surfaces of pipelines. It is important and urgent to
develop effective and efficient methods for installing fiber optic cables. Robots are
promising solutions for the installation of fiber optic cables as distributed sensors
for pipeline applications.

Development, evaluation, and implementation of an Internet of Things (1oT)
platform for automatic generation and utilization of digital twins of smart pipelines
instrumented for improved asset management.

Education and training of students and pipeline professionals for developing the
next-generation workforce for the pipeline industry. It is important to develop
courses and certificate programs to support the vision for smart pipelines.
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Distributed Fiber Optic Sensor Network for Real-time Monitoring of Pipeline Interactive Anomalies
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Main Objective

The main objectives in this project include: (1) the development, calibration, and validation of an innovative
distributed fiber optic sensor network for detection, localization, characterization, and quantification of cracking,
deformation (dent), material degradation (corrosion), and excavation along the pipelines, and their interactions in
between these different anomalies; (2) the development and validation of a data processing programs for real-
time sensor data analysis to identify interactions between different anomalies for effective and efficient pipeline
management; and (3) the training offered to graduate and undergraduate students through the research on
pipeline anomaly detection to prepare them for future careers in related industry.

Public Abstract

A transportation pipeline network of about 2.6 million miles delivers the energy products that the American public
needs, in order to keep its homes and businesses running. While various measures have kept the pipeline failure
rate low, incidents continue occurring and causing fatality, injures, and significant revenue loss. Recent
investigations canducted by National Transportation Safety Board (NTSB) have shown that interactive threats and
anomalies play important roles in pipeline incidents. There is an urgent need to develop effective nondestructive
evaluation technologies to detect and analyze interactive anomalies.

The current practice of pipeline anomaly detection mainly relies on the use of smart pigs that are only performed
as scheduled or needed, which may have delayed actions to anomalies, operation downtime, and significant
revenue loss. An alternative to monitor a pipeline in real time is to use field sensors installed on pipelines, such as
ultrasonic or point fiber optic sensors. However, the use of point sensors requires a large quantity of sensors for a
long distance, resulting in high cost and intensive labor efforts for long-term condition monitoring.

The overarching goal of this research is to pave a path which may transform the current pipeline anomaly
detection technologies to a distributed fiber optic sensor network for real-time detection, localization, and
quantification of interactive anomalies of pipelines, thus improving the pipeline safety and management. The
distributed fiber optic sensor network will seamlessly integrate multifunctional distributed and point fiber optic
sensors and provide fully distributed measurement along the pipeline. A continuous optical fiber will serve as both
the transmission line and distributed sensor based on light scatterings in the optical fiber. Along the pipeline, the
location of an event is determined by measuring the time of flight of the backscattered light signal. Peint fiber optic
sensors (e.g. fiber Bragg grating sensors) will be incorporated at critical locations for improving the measurement
accuracy and reliability of the distributed fiber optic sensor network. Both the distributed and point fiber optic
sensors will measure multiple pipeline anomalies and their interactions that are associated with the integrity of the
pipeline. To exemplify the functionality of the proposed sensor network, this project will demonstrate the sensor
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