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Executive Summary 

The transportation pipeline network is the vital infrastructure supplying essential energy products, 

ensuring the uninterrupted functioning of homes and businesses across the United States. Although 

numerous safety measures have contributed to maintaining a low pipeline failure rate, unfortunate 

incidents continue to occur, resulting in fatalities, injuries, and substantial financial losses. Recent 

investigations conducted by the National Transportation Safety Board (NTSB) have shed light on 

the significant role played by interactive anomalies in these pipeline incidents.  

The goal of this project is to develop an advanced distributed fiber optic sensor network capable 

of detecting, locating, and quantifying interactive anomalies for pipelines. The primary research 

objectives encompass: (1) Development and calibration of fiber optic sensor network: Creating, 

calibrating, and validating a distributed fiber optic sensor network for various pipeline anomalies, 

while also assessing their interactions. (2) Real-time data processing: Designing and validating 

data processing programs for analyzing sensor data in real time. (3) Workforce development: 

Offering training opportunities to graduate and undergraduate students for the pipeline industry. 

To achieve these objectives, this project has used a comprehensive research approach, including 

theoretical analysis, laboratory testing, and advanced computational techniques such as machine 

learning, metaheuristic optimization, and finite element analysis. The laboratory testing phase has 

been divided into two key stages: (1) Individual anomalies investigation: This phase explored the 

effects of individual anomalies (crack, dent, excavation-induced impact, and corrosion) on the 

measurements obtained from distributed sensors. (2) Interactive anomalies investigation: Building 

upon the understanding of sensing abilities, interactive anomalies involving various combinations 

of individual anomalies were investigated, including deformations and cracks, dent and corrosion, 

deformations and dents, impact and corrosion, and deformations, dents, cracks, and corrosion. 

The research efforts have culminated in the development of a distributed fiber optic sensor network 

that seamlessly integrates multifunctional distributed and point fiber optic sensors. This network 

provides continuous measurements along the length of pipelines and has been deployed on various 

pipelines. The performance of the distributed fiber optic sensor network has undergone rigorous 

evaluation through extensive experiments conducted under diverse testing conditions. 

The results have demonstrated the remarkable capabilities of the distributed fiber optic sensor 

network, including: (1) Real-time 3D strain field measurement: The network can measure arbitrary 

strain fields in real time. The strain fields are invaluable for assessing the mechanical condition of 

pipelines and guiding their operation. (2) Crack detection and visualization: The system can detect, 

locate, quantify, and visualize cracks in pipelines. A theoretical model was developed to support 

the measurements. (3) Dent and buckling detection: The network is able to detect, locate, quantify, 

and visualize dents and buckling in pipelines, supported by theoretical models for both global and 

local deformations. (4) Corrosion detection and warning: It can detect, localize, quantify, visualize, 

and issue warnings related to pipeline corrosion. A theoretical model for corroded pipelines has 

been developed. (5) Interactive anomaly detection: The network can detect and discriminate 

interactive anomalies, a crucial capability given that different anomaly types can exacerbate each 

other and accelerate pipeline degradation when occurring in the same positions. In summary, the 

distributed fiber optic sensor network represents a promising solution for monitoring interactive 

anomalies, with the goal of enhancing pipeline safety, improving management and maintenance 

practices, extending service life, and enhancing transport efficiency in the pipeline industry. 
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1. Introduction 

1.1. Background 

“More than 2.6 million miles of transportation pipelines deliver the energy products the 

American public needs to keep its homes and businesses running” – USDOT PHMSA [1]. From 

2003 to 2022, despite the best effort made to improve the safety of pipelines, over 12,781 incidents 

occurred, resulting in substantial property damage and significant injuries [2].  Figure 1.1.1 shows 

the number of fatalities and injuries, and the costs of the incidents [2].  Besides, significant annual 

investment is made for inspection and maintenance of pipelines.  According to a survey performed 

by the National Association of Corrosion Engineers (NACE) International in 2002, the average, 

annual, corrosion-related costs for U.S. pipeline operators to monitor, replace, and maintain assets 

is over $12 billion. Therefore, pipeline integrity and its impact on the economy and prosperity of 

the U.S. cannot be treated light in any measure. 

  

Figure 1.1.1. Pipeline incidents in 1999-2022: (a) number of fatalities and injuries, and (b) costs. 

The incidents were mainly caused by corrosion, excavation damage, natural force damage, 

other outside force damage, material/weld failure, equipment failure, and incorrect operation [3].  

Typical anomalies in pipelines include cracks, deformation (e.g., dent, gouge, ovality, buckle, roof 

topping, ripple/wrinkle), and corrosion [4].  Extensive research on each type of anomaly has been 

conducted individually, including the causes, detection methods, potential effects on pipeline 

performance, repair and maintenance methods [5-7].  Specifications have been issued to guide the 

maintenance of pipelines [4]. Although these efforts improved the safety and management of 

pipelines, the number of incidents retained about 600-700 per year in 2003-2022 [2].  During 2011-

2015, the National Transportation Safety Board (NTSB) investigated three major gas transmission 

pipeline incidents. Based on the investigation, NTSB reported “the inadequate evaluation of 

interactive threats is a frequently cited shortcoming of integrity management (IM) programs, which 

may lead to underestimating the true magnitude of risks to a pipeline” [8], and suggested “update 

guidance for gas transmission pipeline operators and inspectors on the evaluation of interactive 

threats” [8]. Currently, knowledge on interactive anomalies remains lacking, and the knowledge 

gap limits the capability of improving the safety and management of pipelines.  There is an urgent 

need for effective detection and evaluation techniques for interactive anomalies.  

1.2. Existing solutions and challenges 

There are four primary types of pipeline integrity assessment methods allowed by the IM 

regulations [9]: (1) in-line inspection (ILI) using “smart pigs”, (2) pressure testing, (3) direct 
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assessment, and (4) other technologies such as novel sensors. Typically, pressure testing is 

destructive; direct assessment involves multiple steps and only examines a small sub-segment of 

pipeline [8]. The ILI technologies and sensors installed on pipeline are two promising categories 

of nondestructive evaluation (NDE) methods for pipeline. As presented in Table 1.1.1, each 

method has its strengths and limitations in inspecting pipeline integrity. The limitations have 

potential to cause severe consequences in the presence of interactive anomalies. 

Table 1.1.1. Two categories of NDE methods for pipeline integrity 

Category Advantage Disadvantage 

ILI Spatially distributed information. (1) Delayed information. 

(2) Insufficient reliability. 

Sensors installed 

on pipelines 

(1) Real-time condition assessment. 

(2) High reliability. 

Spatially discrete information. 

 

To date, ILI technologies have been widely applied for detecting and sizing pipeline anomalies, 

with the use of “smart pigs” that are instrumented with NDE tools and travel along the pipeline for 

inspection, as depicted in Figure 1.1.2 [10].  The NDE technologies that have been incorporated 

in smart pigs included but not limited to: (i) magnetic flux tools for metal loss [11], (ii) ultrasonic 

tools for cracks, wall thickness, and metal loss [12], and (iii) tools for deformation, such as dent 

and gouge [13]. Typically, a smart pig incorporates multiple sensors for transmitting, receiving, 

and recording NDE signals.  Then, the data are processed and interpreted by trained professionals 

using sophisticated programs.  In this way, anomalies are mapped over the entire pipeline, and 

delivered to decision makers for the management (e.g., maintenance, repair, or replacement) of the 

pipeline finally. Recently, multiple NDE tools have been employed in a single smart pig to assess 

multiple types of anomalies simultaneously.  The incorporation of multiple NDE tools has the 

potential to improve the effectiveness in detecting and sizing anomalies, and has implications in 

promoting the detection, characterization, and understanding of interactive anomalies in pipelines. 

 

Figure 1.1.2. A smart pig travels along a pipeline and detects anomalies in the pipeline with use of the NDE 

tools incorporated in the smart pig. 

The development and applications of the ILI technologies facilitate the pipeline inspection and 

management, and improved the safety and economic aspects. However, the ILI tools have their 

limitations. First, the inspection of anomalies using ILI is only performed as needed or scheduled 

maintenance, not in real time. The time delay between each inspection trail has potential to hinder 

timely actions to avoid accidents. Second, the reliability of smart pigs has been questioned [14]. 

In 2013, ExxonMobil’s Mayflower oil spill caused serious damages due to pipeline rupture, which 
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resulted from seam hook cracks that were not detected by smart pigs in advance.  The failure to 

detect the anomaly was likely due to the technical limitations of the NDE tools, which have a 

dilemma of the detection efficiency and accuracy.  Since the smart pigs move along the pipeline 

for inspection, the measurement rate (efficiency) needs to be high, potentially compromising the 

accuracy.  Considering environmental effects, such as noises or electromagnetic interference 

(EMI), the measurement accuracy is further compromised.  The presence of interactive anomalies 

likely further increases the challenge in detecting different types of anomalies, because one type 

of anomaly may affect the detection of other types of anomalies or even disable the smart pig.  For 

instance, significant geometry change such as dent may stop the smart pig in a pipeline. 

Meanwhile, various sensors have been developed and applied on pipelines for nondestructive 

inspection.  For example, acoustic sensors have been installed on the exterior wall of pipelines to 

detect and size anomalies such as cracks [15].  The acoustic sensors continuously monitor cracking 

in the pipelines in real time.  While the acoustic sensing techniques are effective in detecting 

cracks, removing the pipeline coating for installing the acoustic sensors potentially triggers 

additional corrosion.  Besides, in order to inspect pipeline network in a large area or long distance, 

numerous sensors must be deployed at different locations along the pipeline. The large number of 

sensors increase the sensor cost and lead to challenges for data acquisition and processing. 

Alternatively, fiber optic sensors were proposed for real-time condition monitoring.  Fiber 

optic sensors are made using optical fibers measuring 125 µm in diameter. In general, fiber optic 

sensors are immune to EMI, lightweight, small in size, and have high chemical and thermal 

stability.  The sensor installation is straightforward and does not require removing pipeline coating. 

Fiber optic sensors are gaining increasing interests in condition assessment of engineering 

structures [16-18]. Most fiber optic sensors used are point sensors, which measure temperature and 

strain at a local spot [19]. Fiber optic sensors have been developed to detect corrosion [20-22] by 

coating nano silver film and Fe-C layer on the fiber optic sensor surface as shown in Figure 1.1.3 

for the design and fabrication process of the sensors [23].  

 

Figure 1.1.3. Optical fiber functionalized by depositing functional materials on the surface of the optical 

fiber for measuring steel corrosion. 

The point fiber optic sensors are simultaneously sensitive to multiple variables such as strains, 

temperature, corrosion, cracks, etc. To distinguish the multiple variables, a typical solution is to 

deploy multiple co-located sensors at the monitored site, with one of the sensors only subjected to 

temperature change for temperature compensation, one subjected to temperature and strain 

changes, and one subjected to temperature change and corrosion. Thus, the point fiber optic sensors 

have potential to measure multiple parameters, although it may be costly to install enough sensors 
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for a large monitoring area or long distance. Searching for monitoring technique in a large area, 

there is a need for a cost-effective real-time inspection solution that can efficiently monitor 

interactive anomalies along the entire length of the pipeline.  

1.3. Objectives 

This research aims to develop a distributed fiber optic sensor (DFOS) network for real-time 

monitoring of the initiation and development of anomalies and their interactions in pipelines. The 

development of the DFOS network is a part of the systematic research on bio-inspired intelligent 

pipelines, as shown in Figure 1.1.4. Inspired by the biological systems that have sensory nerves, 

we are developing smart pipelines with DFOS networks which provide detailed measurements of 

temperatures and strains along the length of the pipelines. The role of the DFOS network is like 

the role of sensory nerves of biological systems.  

In addition to the DFOS network used for measurement and data collection, another essential 

component of the intelligent pipeline system is a machine learning-based AI model which is 

developed for analyzing and interpreting the DFOS sensor data automatically, without human 

intervention. The AI model is necessary because the DFOS network generates a large amount of 

sensor data. It is unrealistic to manually analyze and interpret the large amount of sensor data by 

humans. With the AI model, it is envisioned that the intelligent pipeline system will achieve the 

ability to monitor its condition in real time because the AI model has high time efficiency in data 

analysis and interpretation. Furthermore, the DFOS network and the AI model provide data for 

establishing digital twins for the physical pipelines, and the digital twins will be live digital twins 

or updatable digital twins because the digital twins will be updated according to the data provided 

by the DFOS network and the AI model.  

This project primarily focuses on the development of the DFOS network based on laboratory 

experiments, aimed at testing the feasibility of using the DFOS network to achieve the envisioned 

capabilities of intelligent pipeline systems. This report also includes preliminary research on the 

development of the AI model to prove the feasibility of AI-powered sensor data interpretation. 

 

Figure 1.1.4. Concept of the DFOS network for monitoring interactive anomalies in pipelines. 
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The concept of the DFOS network for real-time anomaly monitoring is shown in Figure 1.1.4. 

The proposed DFOS network will seamlessly integrate multifunctional distributed and point fiber 

optic sensors and provide fully distributed measurements of temperatures and strains along the 

fiber optic cable for the detection, localization, characterization, and quantification of interactive 

anomalies in pipelines. A telecommunication-grade single-mode fiber optic cable is utilized as a 

distributed sensor that provides spatially distributed measurement along the fiber, and point fiber 

optic sensors (i.e., FBG sensors) are integrated at critical locations for improving measurement 

accuracy and reliability. The fiber optic cable can be installed along the entire pipeline or at the 

selected pipeline segments as a continuous sensor. Both the distributed and point fiber optic 

sensors measure multiple pipeline anomalies and their interactions that are associated with the 

integrity of the pipeline.  

The various anomalies inform the desired measurands of the proposed DFOS network, as 

shown in Figure 1.1.5. This project focused on four types of representative threats or anomalies, 

which are excavation, cracking, deformation, corrosion, and their interactions, to exemplify the 

functions of the sensor network. Excavation generates impacts or vibrations to the optical fiber. 

Cracking changes temperature and strain in the optical fiber. Dent was considered as an example 

type of deformation, which induces local deformations in the optical fiber. Corrosion was detected 

using fiber optic strain sensors or by measuring the strain change in the optical fiber. 

The overarching goal of this research is to develop a multifunctional DFOS network for real-

time detection and characterization of interactive anomalies in pipelines. To reach this goal, the 

following main objectives will be achieved: 

(1) To develop and demonstrate an innovative multifunctional DFOS network for accurate 

detection, localization, characterization, and quantification of various anomalies along 

pipelines, and their interactions in between different anomalies. 

(2) To develop data processing and analysis programs for sensor data analysis to identify 

interactions between different anomalies and improve decision making for effective and 

efficient management of pipelines.  

(3) To train graduate and undergraduate students through conducting cutting-edge research on 

pipeline anomaly detection to prepare them for future careers in related industry. 

 
Figure 1.1.5. Pipelines with multiple threats/anomalies, revealing the desired functions of DFOS networks.  
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2. Theoretical and Experimental Research 

In this research, laboratory experiments were designed to achieve the research objectives in 

two main phases:  

• Phase I: Considering the complexity of interactive anomalies, individual anomalies were 

first investigated to establish basic understandings of the effects of individual anomalies 

on the measurements from DFOS networks and to develop the capabilities of monitoring 

individual anomalies. The anomalies investigated in this phase include the strain fields, 

cracks, dents, excavation induced impacts, and corrosion. 

• Phase II: Based on the sensing capabilities gained through Phase I, Phase II focused on 

the interactive anomalies with different combinations of individual anomalies.  

The following 12 experimental research has been designed and conducted in this project. The 

results from the first five experiments have generated peer-reviewed journal papers, and the results 

from the last five experiments have been utilized to generate journal papers that are either under 

review or in preparation for journal and conference papers.  

• Experiment 1: Measurement of arbitrary strain fields [24-26] 

• Experiment 2: Detection, localization, and quantification of cracks [27] 

• Experiment 3: Interfacial mechanics of distributed sensors undergoing debonding [28] 

• Experiment 4: Detection, localization, quantification, and visualization of buckling/dent 

[29] 

• Experiment 5: Detection, localization, quantification, and visualization of corrosion [30] 

• Experiment 6: Investigation of different types of fiber optic cables and installation 

methods 

• Experiment 7: Detection of excavation induced impacts on pipelines 

• Experiment 8: Measurement of interactive deformations and cracks 

• Experiment 9: Measurement of interactive dent and corrosion 

• Experiment 10: Measurement of interactive deformations and dent 

• Experiment 11: Measurement of interactive impact loads and corrosion 

• Experiment 12: Measurement of interactive deformations, dent, crack, and corrosion 

In addition to the above experimental research, finite element analysis and theoretical studies 

have been conducted. In addition, machine learning-based AI models have been developed for 

automatic analysis and interpretation of DFOS data, thereby proving the concept and feasibility of 

the vision for intelligent pipeline system shown in Figure 1.1.4. The conducted research has been 

elaborated in the following sections. 
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2.1. Optical fibers and sensing principle 

2.1.1. Optical fibers 

This study investigates four types of telecommunication-grade single-mode fiber optic cables 

(Corning SMF 28e+®) as DFOS, including three types of fiber optic cables as distributed strain 

sensors and one type of fiber optic cable as distributed temperature sensors. The three types of 

fiber optic cables as distributed strain sensors include a bare fiber and two coated fibers, as shown 

in Figure 2.1.1.  

The bare fiber had a fused silica core (diameter: 8.2 µm), a fused silica cladding (outer 

diameter: 125 µm), an inner coating (outer diameter: 190 µm), an outer coating (outer diameter: 

242 µm), as shown in Figure 2.1.1(a). The inner coating is a soft acrylic layer which protects the 

glass fiber from mechanical impact. Another important function of the inner coating is to facilitate 

operations such as stripping off the coatings without damaging the fused silica fiber. The outer 

coating is a stiff acrylic layer which is utilized to protect the glass fiber from abrasion and 

environmental exposure. Both coatings are composed of complex mixtures of raw materials, such 

as monomers, oligomers, photoinitiators, and additives. To enhance the mechanical strength, two 

coated fibers are packaged with tight polyvinyl chloride buffers with diameters of 650 µm and 900 

µm, respectively, as shown in Figure 2.1.1(b) and Figure 2.1.1(c). 

 
 

 

  
 

(a) (b) (c) 

Figure 2.1.1. Cross section of the fiber coated with tight buffer: (a) 242-µm-diameter bare fiber; (b) 650-

µm-diameter coated fiber; and (c) 900-µm-diameter coated fiber. 

The sensing part is the fiber core. Light waves propagate along the fiber optic cable via total 

internal reflection at the core-cladding interface, as shown in Figure 2.1.2. In the manufacturing of 

optical fiber, the inner and outer coatings are applied sequentially in a liquid form as the glass fiber 

is drawn and are sequentially cured by exposure to ultraviolet light sources. Table 2.1.1 shows the 

dimensions and the elastic moduli of the different components of the fiber optic cables.  
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Table 2.1.1. Main properties of the fiber optic cables 

Components Material Outer diameter Elastic modulus Poisson’s ratio 

Fiber 

core 

Core Fused silica 8.2 μm 70.2 GPa 0.26 

Cladding Fused silica 125 μm 70.2 GPa 0.26 

Coating 
Inner coating Acrylate 190 μm 0.6 MPa 0.48 

Outer coating Acrylate 242 μm 2550 MPa 0.42 
 

 

Figure 2.1.2. Structures of a single-mode optical fiber and propagation of light waves along the fiber. 

The fiber optic cable used for temperature measurement is shown in Figure 2.1.3. A fiber 

optic cable for strain measurement is shown in Figure 2.1.3(a), and a fiber optic cable for 

temperature measurement is shown in Figure 2.1.3(b). The fiber optic cable for temperature 

measurement was composed of a fiber optic strain cable, a layer of aramid yarn, and a cable 

jacket. The aramid yarn is made from Kevlar®, which is crimped to the cable jacket after 

assembly. Therefore, the stresses applied to the fiber optic cable are mainly carried by the aramid 

yarn instead of the glass fiber. In this way, the fiber optic cable is not sensitive to mechanical 

strain but sensitive to the temperature effect. Finally, an outer jacket (typically a soft plastic 

material measuring in about 3 mm in diameter) is applied outside the yarn and the buffered fiber 

for mechanical protection. Previous research revealed that the fiber optic cables successfully 

survived fiber installation and concrete casting processes. 

  

(a) (b) 

Figure 2.1.3. Cross section of single mode optical fibers for: (a) distributed fiber optic strain sensors; and 

(b) distributed fiber optic temperature sensors. 
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2.1.2. Sensing principle 

The sensing principle of DFOS for measuring strain and temperature changes is based on 

light scatterings. Rayleigh scattering in a fiber optic cable is an elastic scattering phenomenon that 

occurs when transmitted light interacts with the irregular microstructure of the fused silica. The 

occurrence of irregularities can be attributed to the fabrication process of fiber optic cables. The 

irregularities have sizes comparable with the wavelength of light waves, leading to changes in the 

refractive index and the density of fiber core. This project mainly utilized an Optical Frequency 

Domain Reflectometry (OFDR) technique [31], which measures temperature and strain changes 

based on Rayleigh scattering in two different states: the reference state and the perturbed state. In 

each state, a light wave is beamed into the optical fiber, generating Rayleigh scattering. The 

backscattered signal is measured from the optical fiber along the fiber length. At each point of the 

fiber, the amplitude of the backscattered signal is plotted against the wavelength of the light. The 

amplitude versus wavelength data are converted into intensity versus frequency via Fast Fourier 

Transform (FFT). Cross-correlation operation is performed for the reference and the perturbed 

states, and a frequency shift can be identified, as shown in Figure 2.1.4. The distance is determined 

by the travelling time of the backscattered signals.  

 

Figure 2.1.4. Sensing principle of optical frequency domain reflectometry for measuring strain change. 

The frequency shift is associated with strain and temperature changes: 

∆𝜆

𝜆
=
∆𝜐

𝜐
= 𝐾𝑇𝑇 + 𝐾𝜀𝜀 

(2.1.1) 

where 𝜆 and 𝜐 are the mean optical wavelength and frequency, respectively; and 𝐾𝑇 and 𝐾𝜀 are the 

temperature and strain sensitivity coefficients.  

At a constant temperature, the spectral shift can be converted into strain along the fiber optical 

cable with a calibrated strain sensitivity coefficient. When the temperature changes, a fiber optic 

cable free of strain change can be used for temperature compensation.  

In this project, an OFDR data acquisition system (model: Luna ODiSi 6) was used to perform 

measurements. The measurement accuracy specified by the manufacturer was ±5 µε for strain and 

±2.2 ºC for temperature. The range of spatial resolution was 0.65 mm to 5.2 mm. The maximum 
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length of fiber optic cable sensor supported by the OFDR system was longer than 200 m in length 

for each channel with extended range remote modules. 

Although OFDR is adopted in this study, it is noted that there are other types of distributed 

fiber optic sensing technologies, such as Brillouin optical time domain analysis (BOTDA) and 

Brillouin optical time domain reflectometry (BOTDR). In general, there is a trade-off between the 

measurement distance and spatial resolution. With OFDR, the spatial resolution can be finer than 

1 mm, but the measurement distance is typically shorter than 1 km. With BOTDA and BOTDR 

based on Brillouin scattering, the measurement distance can be longer than 100 km, but the spatial 

resolution is at the scale of meter or half-meter. Based on BOTDA, a PPP-BOTDA technology 

achieved a spatial resolution as fine as 2 cm [32]. In real practice, if the length of the pipeline 

segment that needs to be monitored is longer than the measurement distance of the DFOS, multiple 

segments of distributed sensors can be used. If the data acquisition system has multiple channels, 

one system can be placed in the middle of two adjacent pipeline segments to duplicate the distance. 

2.1.3. Calibration of sensitivity coefficients 

The strain sensitivity coefficient was calibrated in uniaxial tensile tests using a load frame at 

room temperature (25 °C). The tests were conducted under a displacement rate of 1 mm/min. The 

applied load and extension were measured by the transducer and the extensometer of the load 

frame, respectively. The frequency shift due to strain change was measured using the OFDR data 

acquisition system. The coefficient of determination for the linear regression is close to 1.0, 

indicating a good correlation. The slope represents the strain sensitivity coefficient (𝐾𝜀) of the 

optical fiber, which was determined to be -0.15 MHz/µε. Similarly, the temperature sensitivity 

coefficient (𝐾𝑇) was calibrated and determined to be -1.46 MHz/ºC. 

2.2. Measurement of arbitrary strain fields 

2.2.1. Strain transfer effect 

Fiber optic sensors are usually packaged with protective coatings to enhance the mechanical 

strength and workability. The sensors are either embedded in or attached to host materials for 

measurement. The strain changes sensed by fiber optic sensors can be different from (and usually 

smaller than) the strain changes in the host matrix because of the coating. This is known as the 

strain transfer effect.  

Strain transfer effect has been extensively studied for point fiber optic sensors in literature [33-

44]. For example, a theoretical study was conducted on the strain transfer of a coated fiber optic 

sensor embedded in a composite matrix based on the mechanics of elasticity [35]. The study 

assumed the host matrix to be infinite and subjected to a far-field longitudinal shear load parallel 

to both the optical and the structural fibers, and derived closed-form solutions for the strain transfer 

ratio based on the assumptions. It was found that the strain transfer was related to the coating 

thickness and the elastic moduli of the coating and host material [34]. The shear-lag theory was 

used to develop a mechanical model to describe the strain transfer behavior of a coated optical 

fiber embedded in a host matrix [33], and the model was validated using a white light Michelson 
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interferometric sensor [36]. Subsequently, an expression of the axial strain distribution was derived 

for an embedded fiber optic sensor packaged with elastic coating material under an arbitrary strain 

field [38], and a theoretical strain transfer model was proposed to consider an ideal elastoplastic 

coating [39]. The strain transfer ratio was studied when the coating material worked at different 

stages (elastic, elastoplastic, plastic, and post-plastic) [41]. Based on the above advances, strain 

transfer behaviors have been considered for fiber Bragg grating (FBG) sensors under axial stresses 

[43] and non-axial stresses [42]. Furthermore, research was extended to multi-layer composite 

materials under a non-uniform strain field, and the FBG’s reflection spectrum was observed to be 

broadened or even split into multiple peaks, which was different from a single sharp peak found 

in a uniform strain field [40]. Overall, the strain transfer ratio was about 0.90 to 0.96 and associated 

with the sensor’s orientation [44]. In addition, it was found that the presence of packaged point 

sensors could affect the strain distribution in the host material [37]. 

The above review indicates that the previous studies focused on the strain transfer effect in 

point sensors, such as FBG and interferometer sensors. Due to the limited sensing length, most 

often, a point sensor can be considered working in uniform strain fields. In addition, the previous 

formulae for point sensors were validated in an average sense. The average strain transfer over the 

whole sensor length was derived and correlated to the strain measurements [36, 42]. However, this 

is not satisfied in DFOS, which are often used to measure non-uniform strain distributions [45, 

46]. To date, the understanding of strain transfer in DFOS is still lacking. There is no effective 

method to quantify the strain transfer effect in the case of DFOS. It is still a challenge to assess 

and improve the accuracy of strain measurement using DFOS.  

2.2.2. Forward strain transfer analysis 

The governing equation was derived to analyze the strain transfer effect of DFOS embedded 

in a host structure. The governing equation was solved under different strain field conditions. An 

arbitrary infinitesimal segment of a fiber optic cable with a dual-layer coating embedded in host 

matrix is shown in Figure 2.2.1.  

Typical types of host matrix include cementitious matrix (e.g., mortar or paste) and polymetric 

matrix (e.g., epoxy). The following assumptions are employed for the sake of simplicity: (1) All 

materials work linearly elastically. (2) All interfaces are well bonded. (3) Only stresses that are 

parallel to the optical fiber are considered. (4) The impact of the optical fiber’s presence on the 

host matrix’s strain field is neglected. Due to symmetry, only half the structure is shown.  

The shear stresses in the inner and outer coatings are represented by τi(x, r) and τo(x, r), 

respectively. The shear stress between the host matrix and the outer coating is represented by τo(x, 

ro). The shear stress between the outer and inner coatings is represented by τi(x, ri). The shear stress 

at the interface between the inner coating and the fiber core is represented by τf(x). The normal 

stresses in the fiber core, the outer coating, the inner coating, and the vicinity of host matrix are 

represented by σf(x), σo(x), σi(x), and σh(x), respectively. The deformations of the optical fiber, 

inner coating, outer coating, and the host matrix are represented by δf, δo, δi, and δh, respectively, 

at x with a segment of dx length. The shear strains in inner and outer coatings are represented by 
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γi and γo, respectively. For each segment, no deformation is shown on the left side. The 

deformations represent the total deformation of both sides. 

 

Figure 2.2.1. Stress analysis of an optical fiber packaged with multi-layer coatings embedded in concrete. 

Equations of equilibrium in the x-direction are: 

(𝜋𝑟f
2) d 𝜎f(𝑥) + (2𝜋𝑟f)𝜏f(𝑥) d 𝑥 = 0    (2.2.1) 

(𝜋𝑟2 − 𝜋𝑟f
2) d 𝜎i (𝑥) + (2𝜋𝑟f)𝜏i(𝑥, 𝑟) d 𝑥 = (2𝜋𝑟f)𝜏f(𝑥) d 𝑥, 𝑟f ≤ 𝑟 ≤ 𝑟i  (2.2.2) 

(𝜋𝑟2 − 𝜋𝑟i
2) d 𝜎o (𝑥) + (2𝜋𝑟)𝜏o(𝑥, 𝑟) d 𝑥 = (2𝜋𝑟i)𝜏i(𝑥, 𝑟i) d 𝑥, 𝑟i ≤ 𝑟 ≤ 𝑟o  (2.2.3) 

Considering that no force is directly applied on the coatings at x = 0, integrating from 0 to x, 

Eqs. (2.2.2) and (2.2.3) can be rewritten as: 

(
r2−rf

2

2x
)σi(x) + rτi(x, r) = rfτf(x), rf ≤ r ≤ ri   (2.2.4) 

(
r2−rf

2

2x
)σo(x) + rτo(x, r) = riτi(x, ri), ri ≤ r ≤ ro  (2.2.5) 

Since the diameter of the optical fiber is small compared with its length, the first terms in Eqs. 

(2.2.4) and (2.2.5) vanish, except for the vicinity at the two ends of the optical fiber [46]. Then, 

Eqs. (2.2.4) and (2.2.5) can be rewritten as: 

𝑟𝜏i(𝑥, 𝑟) = 𝑟f𝜏f(𝑥), 𝑟f ≤ 𝑟 ≤ 𝑟i    (2.2.6) 

𝑟𝜏o(𝑥, 𝑟) = 𝑟i𝜏i(𝑥, 𝑟i) = 𝑟f𝜏f(𝑥), 𝑟i ≤ 𝑟 ≤ 𝑟o   (2.2.7) 

According to the assumption (1), the optical fiber’s longitudinal strain can be expressed as: 

𝜎f(𝑥) = 𝐸f𝜀f(𝑥)     (2.2.8) 

Thus, Eq. (2.2.1) can be rewritten as: 

𝜏f(𝑥) = −
𝐸f 𝑟f

2

𝑑 𝜀f(𝑥)

𝑑 𝑥
    (2.2.9) 
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Plug Eq. (2.2.9) into Eq. (2.2.6) and Eq. (2.2.7), respectively: 

𝜏i(𝑥, 𝑟) = −
𝐸f 𝑟f

2

2𝑟

𝑑 𝜀f(𝑥)

𝑑 𝑥
, 𝑟f ≤ 𝑟 ≤ 𝑟i   (2.2.10) 

𝜏𝑜(𝑥, 𝑟) = −
𝐸f 𝑟f

2

2𝑟

𝑑 𝜀f(𝑥)

𝑑 𝑥
, 𝑟i ≤ 𝑟 ≤ 𝑟o   (2.2.11) 

According to the assumption (2), the deformations in Figure 2.2.1 satisfy: 

𝛿h = 𝛿f + 𝛿i + 𝛿o     (2.2.12) 

The longitudinal deformations of the host matrix and the glass fiber can be expressed as: 

𝛿h = 𝜀h(𝑥) d 𝑥, 𝛿f = 𝜀f(𝑥) d 𝑥    (2.2.13) 

The strain transfer from the host matrix to the optical fiber core depends on the shear strain in 

the interlayer which is due to the relative deformation between the host matrix and fiber core. 

Therefore, for the inner and outer coatings: 

𝛿i = ∫ d𝛾i (𝑥, 𝑟) d 𝑟
𝑟i
𝑟f

=
1

𝐺i
∫ d 𝜏i (𝑥, 𝑟) d 𝑟
𝑟i
𝑟f

   (2.2.14) 

𝛿o = ∫ d 𝛾o (𝑥, 𝑟) d 𝑟
𝑟o
𝑟i

=
1

𝐺o
∫ d 𝜏o (𝑥, 𝑟) d 𝑟
𝑟o
𝑟i

   (2.2.15) 

where, γi = τi /Gi, and γo = τo /Go. 

Plugging Eq. (2.2.13), Eq. (2.2.14) and Eq. (2.2.15) into Eq. (2.2.12): 

𝜀h(𝑥)d𝑥 = 𝜀f(𝑥) d 𝑥 +
1

𝐺i
∫ d 𝜏i (𝑥, 𝑟) d 𝑟
𝑟i
𝑟f

+
1

𝐺o
∫ d 𝜏o (𝑥, 𝑟) d 𝑟
𝑟o
𝑟i

 (2.2.16) 

Plugging Eq. (2.2.10) and Eq. (2.2.11) into Eq. (2.2.16), and rearranging the nonzero term dx, 

Eq. (2.2.16) can be rewritten as: 

𝜀h(𝑥) = 𝜀f(𝑥) −
𝐸f 𝑟f

2

2
[
In(𝑟i/𝑟f)

𝐺i
+
In(𝑟o/𝑟i)

𝐺o
]
𝑑2𝜀f(𝑥)

d𝑥2
   (2.2.17) 

By introducing a positive coefficient k, Eq. (2.2.17) can be rewritten as [47]: 

𝜀f
″(𝑥) − 𝑘2𝜀f(𝑥) + 𝑘

2𝜀h(𝑥) = 0    (2.2.18a) 

𝑘2 =
2

𝐸f 𝑟f
2[
In(𝑟i/𝑟f)

𝐺i
+
In(𝑟o/𝑟i)

𝐺o
]
    (2.2.18b) 

For the optical fiber packaged with a dual-layer coating (Figure 2.1.1), k can be determined 55 

m-1, according to the optical fiber’s dimensions and material properties. 

The strain transfer in optical fibers with multi-layer coatings can be analyzed following the 

same process. As a matter of fact, Eq. (2.2.18b) can be extended to a generalized form for optical 

fibers with multi-layer coatings, as long as k2 is modified as: 

𝑘2 =
2

𝐸f 𝑟f
2[
In(𝑟1/𝑟f)

𝐺1
+
In(𝑟2/𝑟1)

𝐺2
+⋅⋅⋅+

In(𝑟n/𝑟n−1)

𝐺n
]
   (2.2.18c) 
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where n represents the number of coating layers. 

The solution of Eq. (2.2.18) can be expressed as [48]: 

𝜀f(𝑥) = 𝐶1 cosh( 𝑘𝑥) + 𝐶2 sinh( 𝑘𝑥) + 𝜀
p(𝑥)   (2.2.19) 

where the first two terms represent the general solution; the third term εp(x) is the particular 

solution associated with εh(x), which denotes the strain distribution in the host matrix along the 

optical fiber. The integration constants, C1 and C2, are determined by the boundary conditions. 

In general, the form of εh(x) can be different in various problems. Thus, the particular solution 

εp(x) can be different, correspondingly. For an arbitrary condition, εh(x) can be expressed using a 

Fourier series. However, for a large amount of engineering problems, εh(x) can be segmentally 

expressed as or approximated by a series of polynomials, as shown in Eq. (2.2.20). 

𝜀h(𝑥) = ∑ 𝑎𝑖𝑥
𝑖𝑚

𝑖=0      (2.2.20) 

where m represents the order, and ai (i=0, 1, 2, … , m) represent the coefficients. 

εp(x) can be determined as a polynomial of the same order in each segment where εh(x) is 

continuous and differentiable regarding to x [48]. Therefore, εp(x) and εf(x) can be written as: 

𝜀p(𝑥) = ∑ 𝑏𝑖𝑥
𝑖𝑚

𝑖=0      (2.2.21a) 

𝜀f(𝑥) = 𝐶1 cosh( 𝑘𝑥) + 𝐶2 sinh( 𝑘𝑥) + ∑ 𝑏𝑖𝑥
𝑖𝑚

𝑖=0    (2.2.21b) 

where bi (i = 0, 1, 2, … , m) are the coefficients. The relationship between ai and bi are as follows. 

When m < 2, 

𝑎𝑖 = 𝑏𝑖     (2.2.22) 

When m ≥ 2, 

𝑎𝑖 = {
𝑏𝑖

𝑏𝑖 − (𝑖 + 2)(𝑖 + 1)𝑏𝑖+2/𝑘
2 ,

𝑖 = 𝑚 − 1,𝑚
𝑖 ≤ 𝑚 − 2

  (2.2.23) 

The strain transfer ratio is defined: 

𝛼(𝑥) = 𝜀f(𝑥)/𝜀h(𝑥)    (2.2.24) 

2.2.2.1. Uniform strain fields 

An optical fiber is attached along a pipe subjected to a uniform cross section, as shown in 

Figure 2.2.2. The normal strain in the pipe is expressed as: εh(x) = ε0.  

The normal strain in the optical fiber can be determined from Eq. (2.2.21b) as: 

𝜀f(𝑥) = 𝐶1 cosh( 𝑘𝑥) + 𝐶2 sinh( 𝑘𝑥) + 𝜀0  (2.2.25) 

Then, the shear stress in the optical fiber is determined from Eq. (2.2.10), as shown in: 

𝜏f(𝑥) = −0.5𝐸f𝑟f[𝑘𝐶1 sinh( 𝑘𝑥) + 𝑘𝐶2 cosh( 𝑘𝑥)] (2.2.26) 

The boundary conditions are: 
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𝜀f(𝑥 = 0) = 0     (2.2.27a) 

𝜀f(𝑥 = 𝐿) = 0     (2.2.27b) 

Plugging Eq. (2.2.27) into Eq. (2.2.25) and Eq. (2.2.26), coefficients C1 and C2 are determined: 

𝐶1 = −𝜀0, 𝐶2 = 𝜀0 tanh( kL/2) 

In this case, another boundary can be used to replace Eq. (2.2.27a) or Eq. (2.2.27b): 

𝜏f(𝑥 = 𝐿/2) = 0     (2.2.27c) 

With Eq. (2.2.27c), the same results of the coefficients C1 and C2 can be obtained. 

Therefore, the normal strain and shear stress are: 

𝜀f(𝑥) = 𝜀0[1 − cosh( 𝑘𝑥) + tanh( kL/2) sinh( 𝑘𝑥)]  (2.2.28) 

𝜏f(𝑥) = −0.5𝐸f𝑟f𝑘𝜀0[tanh( kL/2) cosh( 𝑘𝑥) − sinh( 𝑘𝑥)] (2.2.29) 

The strain transfer ratio is: 

𝛼(𝑥) = 1 − cosh( 𝑘𝑥) + tanh( kL/2) sinh( 𝑘𝑥)   (2.2.30) 

 

Figure 2.2.2. Optical fiber attached to the exterior surface of a pipe subjected to a uniform strain field. 

The strain transfer ratio can be plotted against x (0 ≤ x ≤ L/2 for the left half), as shown in 

Figure 2.2.3(a). The right half (L/2 < x ≤ L) is symmetrical to the left half. At each end of the 

optical fiber, there is a development length where the measured strain is smaller than the real strain 

due to the strain transfer effect.  

The strain is gradually developed within that length, and the strain transfer ratio will be 

approximately 1.0 beyond that length. The development length is dependent on k that is related to 

the material and geometry of the optical fiber and independent of the applied strain ε0. For the 

optical fiber with a dual-layer coating in this study, 95% of the strain could be developed in 55 

mm, and 99% of strain could be developed in 84 mm. Eq. (2.2.30) can be used to correct the 

measured strains within the development length. As indicated in Eq. (2.2.30), the strain transfer 
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ratio is dependent on L. With k = 55 m-1, tanh(kL/2) increases to 0.95 at L = 66 mm, as shown in 

Figure 2.2.3(b). When the specimen length is longer than 100 mm, the influence of specimen 

length will be negligible. Therefore, no significant difference can be observed between the three 

curves in Figure 2.2.3(a). 

  
(a) (b) 

Figure 2.2.3. Strain transfer ratio in uniform strain field: (a) strain transfer ratio versus distance; and (b) 

tanh(kL/2) versus specimen length. 

2.2.2.2. Non-uniform strain fields 

A DFOS can be subjected to a complex strain field, because of the long sensor length. In 

general, it might be difficult to use a single polynomial to describe the strain field, as illustrated in 

Figure 2.2.4. Regarding an arbitrary strain field, the field can be divided into multiple segments 

along the length of the DFOS. Within each segment, the strain field can be described using a single 

or combination of polynomials.  

 

Figure 2.2.4. Arbitrary strain field of the host matrix. The strain field is divided into multiple segments 

along the length of the DFOS.  

Therefore, a general procedure for solving a non-uniform strain field is proposed: (1) Step 1: 

Judge whether the strain field needs to be divided into multiple segments, and determine the 

polynomial expression of the strain field. (2) Step 2: Determine the boundary conditions. If there 

are multiple segments, the boundary conditions of each segment should be determined. (3) Solve 

the strain distribution in the DFOS. After the strain transfer within each segment is solved, the 

strain distribution along the entire fiber length can be obtained by combining all the segments. 
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A representative non-uniform strain field is investigated, as shown in Figure 2.2.5. In the length 

(L) of the pipe between points A and B, the normal strain linearly increases from ε1 to ε2. Regarding 

pipes subjected to more complicated non-uniform strain fields, the pipe can be divided into 

multiple segments. When the length of the segments is small, each segment can be considered 

subjected to the representative strain field. 

To describe the relationship between ε1 and ε2, a factor λ is introduced: 

𝜀2 = 𝛾𝜀1      (2.2.31) 

The normal strain in the pipe can be expressed as: 

𝜀h(𝑥) = 𝜀1 +
(𝜀2−𝜀1)𝑥

𝐿
= 𝜀1[1 +

(𝛾−1)𝑥

𝐿
]     (2.2.32) 

Therefore, the normal strain and shear stress of the optical fiber are: 

𝜀f(𝑥) = 𝐶1 cosh( 𝑘𝑥) + 𝐶2 sinh( 𝑘𝑥) + 𝜀1[1 +
(𝛾−1)𝑥

𝐿
]    (2.2.33) 

where C1 and C2 are the integration constants, which are determined by the boundary conditions.  

 

Figure 2.2.5. Optical fiber attached to the exterior surface of a pipe subjected to a linear strain field. 

The boundary conditions are: 

𝜀f(𝑥 = 0) = 0      (2.2.34a) 

𝜀f(𝑥 = 𝐿) = 0      (2.2.34b) 

The integration constants can be determined: 

𝐶1 = −𝜀1      (2.2.35a) 

𝐶2 = 𝛾𝜀1tanh (𝑘𝐿/2)     (2.2.35a) 

The strain transfer ratio can be determined: 

𝛼(𝑥) = 1 −
𝛾 tanh(

𝑘𝐿

2
) sinh(𝑘𝑥)−cosh (𝑘𝑥)

1+
(𝛾−1)𝑥

𝐿

     (2.2.36) 
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The strain in the DFOS can be plotted against x/L, as shown in Figure 2.2.6(a). The strain in 

the DFOS is lower than the strain in the host matrix within the development lengths at the two 

ends of the DFOS. Beyond the development length, the strain in the middle length of the DFOS is 

the same as the strain in the host matrix. The strain transfer ratio along the DFOS is plotted in 

Figure 2.2.6(b). 

Based on the above analysis on a single segment with non-uniform strain distribution, further 

analysis is performed for multiple segments with different non-uniform strain distributions, as 

depicted in Figure 2.2.7. The entire length of the pipe is divided into two segments, and the strain 

distribution is linear along the length of each segment. 

  
(a) (b) 

Figure 2.2.6. Strain transfer analysis results: (a) strain distribution in the DFOS; and (b) strain transfer 

ratio along the DFOS.  

 

Figure 2.2.7. Depiction of a pipe subjected to a non-uniform strain field.  

According to the strain distribution, the pipe is divided into two segments, designated as A-C 

and C-B, respectively. Within each segment, the strain linearly changes from one end to the other 

end of the segment. The lengths of the two segments are a and b, respectively, and the total length 

is denoted as L (L = a + b). Within segment A-C, the strain changes from ε1 to ε0. Within segment 

C-B, the strain changes from ε0 to ε2. To describe the relationship between ε0, ε1 and ε2, two factors 

(λ1 and λ2) are introduced: 
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𝜀1 = 𝛾1𝜀0      (2.2.37a) 

𝜀2 = 𝛾2𝜀0      (2.2.37b) 

The normal strain in the pipe can be expressed as: 

𝜀h(𝑥) = {
𝜀0[1 −

(𝛾1−1)𝑥

𝑎
]

𝜀0[1 +
(𝛾2−1)𝑥

𝑏
]
,
𝑥 < 0
𝑥 ≥ 0

     (2.2.38) 

Therefore, the normal strain of the optical fiber is expressed as: 

𝜀f(𝑥) = {
𝐶1 cosh( 𝑘𝑥) + 𝐶2 sinh( 𝑘𝑥) + 𝜀0[1 −

(𝛾1−1)𝑥

𝑎
]

𝐶3 cosh( 𝑘𝑥) + 𝐶4 sinh( 𝑘𝑥) + 𝜀0[1 +
(𝛾2−1)𝑥

𝑏
]
,
𝑥 < 0
𝑥 ≥ 0

   (2.2.39) 

where C1 and C2 are the integration constants, which are determined by the boundary conditions.  

The boundary conditions are: 

𝜀f(𝑥 = −𝑎) = 0      (2.2.40a) 

𝜀f(𝑥 = 0−) = 𝜀f(𝑥 = 0+)     (2.2.40b) 

𝜏f(𝑥 = 0
−) = 𝜏f(𝑥 = 0+)     (2.2.40c) 

𝜀f(𝑥 = 𝑏) = 0      (2.2.40d) 

The integration constants can be determined: 

𝐶1 = 𝐶3      (2.2.41a) 

𝐶2 = 𝐶4 + 𝜀0(
𝛾1−1

𝑘𝑎
+
𝛾2−1

𝑘𝑏
)      (2.2.41b) 

𝐶3 = −
𝐶4 sinh(𝑘𝑏)+𝛾2𝜀0

cosh (𝑘𝑏)
      (2.2.41c) 

𝐶4 = 𝜀0
𝛾1 cosh(𝑘𝑏)−𝛾2 cosh(𝑘𝑎)−(

𝛾1−1

𝑘𝑎
+
𝛾2−1

𝑘𝑏
) sinh(𝑘𝑎)cosh (𝑘𝑏)

sinh (𝑘𝑎+𝑘𝑏)
   (2.2.41d) 

The strain distribution in the DFOS can be obtained by plugging Eq. (2.2.41) into Eq. (2.2.39). 

The strain in the DFOS can be plotted against x/L, as shown in Figure 2.2.8(a). The strain in the 

DFOS is lower than the strain in the host matrix within the development lengths at the two ends 

of segment. Beyond the development length, the strain in the middle length of segment is the same 

as the strain in the host matrix. The strain transfer ratio along the length of the DFOS is plotted in 

Figure 2.2.8(b). Here, a = b = 0.5 m; γ1 = 1.5, and γ2 = 2. 

The strain transfer ratio at x = 0 can be determined: 

𝛼(𝑥 = 0) =
𝜀f(𝑥=0)

𝜀h(𝑥=0)
= 1 −

𝛾1/ cosh(𝑘𝑎)−𝛾2/cosh(𝑘𝑏)−(
𝛾1−1

𝑘𝑎
+
𝛾2−1

𝑘𝑏
) tanh(𝑘𝑎)

tanh(𝑘𝑎)/tanh(𝑘𝑏)+1
−

𝛾2

cosh(𝑘𝑏)
    (2.2.42) 

When a and b reach 0.096 m, the values of cosh(ka) and cosh(kb) reach 100; and the values of 

tanh(ka) and tanh(kb) are more than 0.9999. Thus, the strain transfer ratio at x = 0 is rewritten as: 
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𝛼(𝑥 = 0) ≈ 1 −
0−0−(

𝛾1−1

𝑘𝑎
+
𝛾2−1

𝑘𝑏
)

1+1
− 0 = 1 +

𝛾1−1

2𝑘𝑎
+
𝛾2−1

2𝑘𝑏
   (2.2.43) 

When a = b = L/2, the strain transfer ratio at x = 0 can be rewritten as: 

𝛼(𝑥 = 0) ≈ 1 +
𝛾1+𝛾2−2

𝑘𝐿
     (2.2.44) 

The strain transfer ratio at x = 0 (Figure 2.2.8) is plotted in Figure 2.2.9. Given k = 55 m-1 and 

L = 1.0 m, the strain transfer ratio at the interface between the two segments (A-C and C-B) follow 

a linear relationship with (γ1 + γ2). “Accurate” and “Approximate” are obtained using Eq. (2.2.42) 

and Eq. (2.2.44), respectively. 

  
(a) (b) 

Figure 2.2.8. Strain transfer analysis results: (a) strain distribution in the DFOS; and (b) strain transfer 

ratio along the sensor length.  

 
Figure 2.2.9. Results of the strain transfer ratio at x = 0.  

A brief summary of the above analysis can be made: For a non-uniform strain field, in addition 

to the development length at the two ends of the DFOS, the strain transfer at the interface between 

two adjacent segments should be considered. When the segment length is no less than 0.1 m, if (γ1 

+ γ2) < 5, then, the effect of the strain transfer effect is less than 5%.  

2.2.2.3. Validation 

The analytical formulae of strain transfer ratio are derived for uniform and representative non-

uniform strain fields, and investigated through experimentation using strain distributions measured 
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from DFOS based on OFDR. To validate the derived formulae and analysis in the above analytical 

study, experiments have been performed in two loading scenarios: (1) uniaxial tensile test, and (2) 

three-point bending test. The two tests respectively correspond to uniform strain field and non-

uniform strain field with a non-differentiable point.  

It is noted that aluminum plate specimens have been utilized in the validation testing, rather 

than using steel pipes, because aluminum plate specimens were available in the laboratory and 

easier to handle for reliable tests. The availability of the tests using pipe specimens was affected 

by COVID-19. To avoid delaying the progress, we adopted plates for validating the theoretical 

studies. The use of plate specimens does not affect the results of validation tests because the 

theoretical analysis does not rely on the specific material (e.g., API 5L grade steel, or aluminum) 

and the specific geometry (e.g., pipe, or plate). The tests are used to valid mechanical analysis and 

derived equations. Based on these considerations, the following validation tests were performed: 

An aluminum plate instrumented with a DFOS was tested using a low-capacity load frame 

(load capacity: 10 kN). A uniaxial tensile testing of an aluminum plate instrumented with a DFOS, 

as shown in Figure 2.2.10(a).  

  
(a) (b) 

Figure 2.2.10. Uniaxial tensile test: (a) experimental setup, and (b) strain distribution results.  

The aluminum plate measured 300 mm in length, 30 mm in width, and 3 mm in thickness. A 

DFOS was attached to the surface of plate using a two-part epoxy. The fiber was connected to the 

distributed sensing system using the same optical fiber. The low-capacity load frame was used to 

apply tensile forces to the specimen. Before the tensile test, a 4-N preload was applied to allow the 

load frame and specimen to set. Then, the specimen was stretched to achieve 1600 με with a step 

size of 200 με. A clip-on strain gauge was calibrated using a caliber and used to measure the strain 

of the aluminum plate. The strain distribution along the optical fiber was measured at each step of 

loading. Figure 2.2.10(b) shows the measured strain distributions from the DFOS at different 

loading levels, and compares the measurement result with the analytical strain distributions. 

Overall, the experimental results are in good agreement with the analytical results. 

The same aluminum plate was tested under a three-point bending using the same load frame, 

as depicted in Figure 2.2.11(a). The span length was 250 mm. A 4-N preload was applied to allow 
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the load frame and beam to set. The mid-span deflection and settlements were measured using a 

displacement sensor attached to the mid-span of the specimen. The mid-span deflection was 

changed from 0 to 1.5 mm with a step size of 0.5 mm. The strain distribution along the optical 

fiber was measured at each step. Figure 2.2.11(b) compares the measured strain distributions with 

the analytical strain distributions. Overall, the experimental results were in good agreement with 

the analytical results, and thus, validated the derived formulae of strain transfer for the non-

uniform strain field with a non-differentiable point. 

  
(a) (b) 

Figure 2.2.11. Bending test: (a) experimental setup, and (b) strain distribution results. The experimental 

and analytical results are represented by “Exp” and “Ana”, respectively.  

2.2.2.4 Summary 

Based on the research presented in section 2.2.2, the following conclusions can be drawn:  

(1) The strain distributions sensed by packaged distributed fiber optic sensors attached to the 

surface of a pipe are subjected to strain transfer effects which can significantly influence 

the strain distribution patterns and values. It is essential to perform strain transfer analysis 

to properly interpret the distributed sensor data for pipeline monitoring. 

(2) The presented strain transfer analysis approach is effective in quantitatively evaluating the 

strain transfer behaviors of packaged distributed fiber optic sensors. The derived formulae 

can be used to determine the strain distributions in packaged distributed fiber optic sensors 

attached to pipelines under various strain field conditions, thereby offering an theoretical 

basis for using distributed fiber optic sensors. 

2.2.3. Inverse strain transfer analysis 

The forward analysis in Section 2.2.2 explains the strain transfer effect in distributed fiber optic 

sensors. However, the forward strain transfer analysis is inapplicable in practice. In most practical 

problems, a DFOS is used to measure strain distributions in host matrix. In other words, the strain 

distribution in optical fiber is measured, while the strain distribution in host matrix is unknown. 

Thus, the task is to convert strain distribution in optical fiber into strain distribution in host matrix. 

This is an inverse problem opposite to the forward analysis, as shown in Figure 2.2.12 [25]. 
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This section presents an innovative inverse analysis method that is used to convert the strain 

distribution in optical fiber into strain distribution in host matrix for the first time. The inverse 

analysis is performed through an optimization process. This study investigates three different 

metaheuristic optimization algorithms, which are the colliding bodies optimization (CDO), genetic 

algorithm (GA), and particle swarm optimization (PSO). Based on the proposed methods, case 

studies were conducted to test the performance of the proposed method under known and unknown 

strain conditions. In forward problems, with the type and magnitude of the strain in host matrix, a 

strain transfer analysis can be performed to calculate the strain distribution in optical fiber. 

 

Figure 2.2.12. Comparison of forward and inverse problems of strain transfer analysis for DFOS.  

In this study, the strains sensed by DFOS are used to determine the strain distributions in host 

matrix in two different scenarios: 

(1) Scenario 1: When the type of strain field in host matrix is known, only the magnitude of 

strain needs to be determined. For example, if the strain in host matrix is uniform, the only 

unknown is the magnitude of uniform strain. When the magnitude of strain distribution in 

host matrix is assumed, the strain distribution in DFOS can be predicted via the forward 

analysis method in reference. Since the strain distribution in DFOS is measured, the 

discrepancy between the predicted and measured strains in DFOS can be used to define 

the objective function for an optimization analysis that can determine the optimal 

magnitude of strain to minimize the discrepancy.  

(2) Scenario 2: When the type of strain field in host matrix is unknown, both the type and 

magnitude of strain need to be determined. For example, if the loads applied to a beam 

are unknown, both the type and magnitude of strain distribution are the unknowns. An 

innovative method is presented to provide a general method for the formulation of strain 

distribution based on the principle of superposition. 

Figure 2.2.13 shows the flowchart of the proposed method. There are four main steps: (1) Step 

1: An inverse problem is formulated. When the type of strain field of host matrix is known, the 

formulae of strain distribution are used to formulate the strain distribution in optical fiber. When 

the type of strain field of host matrix is unknown, an innovative method is presented to formulate 

the strains. (2) Step 2: The discrepancy between the measured and calculated strains in optical 
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fiber is used to define the objective function for optimization. (3) Step 3: Optimization is performed 

to minimize the discrepancy between measured and calculated strain distributions in optical fiber 

by varying the strain field in host matrix. (4) Step 4: The results of optimization are used to 

determine the strain distributed in host matrix. 

 
Figure 2.2.13. Flowchart of the proposed methodology for the inverse analysis of strain distributions. 
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2.2.3.1. Scenario 1: Known types of strain field in host matrix 

When the types of strain field in host matrix are known, the strain distribution in the matrix 

can be formulated using boundary conditions and used to formulate the strain distribution in the 

DFOS through a forward analysis. Then, the formulation of the strain distribution in the DFOS 

can be used to formulate the inverse problem that can be solved through an optimization process. 

Four representative types of nonuniform strain field in host matrix were considered in prior 

research, which are (1) continuous linear strain fields, (2) continuous nonlinear strain fields, (3) 

continuous bi-linear strain fields, and (4) discontinuous strain fields, as shown in Figure 2.2.14. 

The governing equations and boundary conditions of the four cases are elaborated in Section 2.1.2. 

  
(a) (b) 

  
(c) (d) 

Figure 2.2.14. Representative non-uniform strain fields: (a) continuous linear, (b) continuous nonlinear, 

(c) continuous bi-linear, and (d) discontinuous strain fields.  

2.2.3.2. Scenario 2: Unknown type of strain field in host matrix  

In general, the type of strain field in host matrix is unknown. A general method is presented 

to solve problems when the strain field in host matrix is unknown. For an arbitrary strain field, the 

formula of strain distribution in the host matrix caused by an individual load can be derived using 

the boundary conditions. Then, a forward analysis is applied to formulate the strain distribution in 

the DFOS caused by the individual load. Next, according to the principle of superposition, the 

strain distributions in the in the optical fiber caused by several loads can be formulated as the sum 

of the strain distributions in the optical fiber caused by each of the load, as shown in Figure 

2.2.15(a). Similarly, the summation of strain distributions in the host matrix caused by each of the 

loads equals to the strain distribution in the host matrix, as shown in Figure 2.2.15(b). The number, 

location, and the magnitude of loads are treated as the unknown parameters of the inverse problem. 

The strain in the host matrix can be expressed as: 

𝜀h(𝑥) =∑𝜀h,𝑖(𝑥)

𝑁

𝑖=1

 (2.2.46) 
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where 𝜀h,i(𝑥) represents the strains in the host matrix caused by the 𝑖-th load; and 𝑁 is the number 

of applied loads. Similarly, the strain in the optical fiber can be expressed as: 

𝜀f(𝑥) =∑𝜀f,𝑖(𝑥)

𝑁

𝑖=1

 (2.2.47) 

where 𝜀f,i(𝑥) represents the strain in the fiber caused by the 𝑖-th load which is expressed as: 

𝜀f,i(𝑥) = 𝐶1,𝑖 cosh( 𝑘𝑥) + 𝐶2,𝑖 sinh( 𝑘𝑥) + 𝜀h,i(𝑥) (2.2.48) 

where 𝐶1,𝑖 and 𝐶2,𝑖 are the integration constants corresponds to the 𝑖-th applied load.  

  
(a) (b) 

Figure 2.2.15. Principle of the superposition of the strain fields caused by multiple loads. 

According to Eq. (2.2.47), Eq. (2.2.48) can be rewritten as: 

𝜀f(𝑥) = (∑𝐶1,𝑖

𝑁

𝑖=1

) cosh( 𝑘𝑥) + (∑𝐶2,𝑖

𝑁

𝑖=1

) sinh( 𝑘𝑥) +∑𝜀h,𝑖(𝑥)

𝑁

𝑖=1

 
(2.2.49) 

2.2.3.3. Optimization for inverse analysis 

The inverse problem for calculating the strain distribution in the host matrix can be solved 

through optimization. The objective of the optimization is to minimize the objective function: 
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𝑓(𝜙) = 𝑀𝑃𝐸(𝜙) =
1

𝑛
∑|

𝜀f(𝑥𝑖, ∅) − 𝜀𝑓
˄(𝑥𝑖)

𝜀𝑓
˄(𝑥𝑖)

|

𝑛

𝑖=1

 (2.2.50) 

where 𝑓(𝜙) is the objective function; 𝑀𝑃𝐸(𝜙) is the mean percentage error; 𝜀𝑓
˄(𝑥𝑖) is the strain 

measured from a DFOS; 𝜀f(𝑥𝑖, ∅) is the calculated strain in the DFOS based on the forward strain 

transfer analysis; 𝑛 is the number of measured strains; 𝜙 is the decision vector consisting 𝑁 number 

of optimization variables; and Ω is the search space.  

When the type of strain distribution in host matrix is known, the decision vector that contains 

the optimization variables can be expressed as: 

𝜙 = [𝜀1, 𝜀2, … , 𝜀𝛼, 𝑎1, 𝑎2, … , 𝑎𝛽]
𝑇 (2.2.51) 

where 𝜀𝑖 is the 𝑖-th strain to be determined; 𝑎𝑗 is the 𝑗-th length of segment to be determined; 𝛼 

and 𝛽 are the number of unknown strains and the length of segments, respectively; therefore, the 

number of variables 𝑁 is equal to (𝛼 + 𝛽). A candidate solution is feasible, i.e., 𝜙 ∈ Ω, if the 

variable bounds are satisfied:  

−𝑆 ≤ 𝜀𝑖 ≤ 𝑆               𝑖 = 1, 2, … , 𝛼 (2.2.52) 

0 < 𝑎𝑗 < 𝐿                  𝑗 = 1, 2, … , 𝛽 (2.2.53) 

where 𝑆 is the absolute maximum value of the strain measurement range of the DFOS, which is 

set to 7500 µε in this study; 𝐿 is the length of the optical fiber.  

When the type of strain distribution in host matrix is unknown, the decision vector is modified: 

𝜙 = [𝜀1, 𝜀2, … , 𝜀𝛼, 𝑎1, 𝑎2, … , 𝑎𝛽 , 𝑁𝐿1, 𝑁𝐿2, … , 𝑁𝐿ɣ]
𝑇 (2.2.54) 

where 𝑁𝐿𝑖 is the number of type-𝑖 loads; ɣ is the number of considered load types, which is equal 

to 1 when the concentrated forces are the only kind of applied loads; 𝛼 and 𝛽 are determined based 

on the maximum number of applied loads for each type of load. The number of variables is equal 

to 𝑁 = 𝛼 + 𝛽 + ɣ.  

A solution is within the design space when Eq. (2.2.53) and Eq. (2.2.55) are satisfied: 

0 ≤ 𝑁𝐿𝑘 ≤ 𝑀𝑁𝐿𝑘         𝑘 = 1, 2, … , ɣ (2.2.55) 

where 𝑀𝑁𝐿𝑘 is the maximum number of type-𝑘 load, which is set before the optimization process. 

2.2.3.4. Metaheuristic optimization algorithms 

Three nature-inspired population-based metaheuristic algorithms were considered, which are 

(1) colliding bodies optimization, (2) genetic algorithm, and (3) particle swarm optimization. 

2.2.3.4.1. Colliding bodies optimization 

The colliding bodies optimization is inspired by the law of conservation of momentum which 

states that the total momentum is constant when two bodies collide elastically. A set of objects 
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with different masses are the search agents which move towards the search space and collide with 

each other. The three steps of the algorithm are as follows:  

(1) The objects are sorted based on the mass contribution, which is formulated as: 

𝑚𝑖 =
1 𝑓(𝜙𝑖)⁄

1 ∑ 𝑓(𝜙𝑖)
𝑁𝑆
𝑖=1⁄

 (2.2.56) 

where 𝑓(𝜙𝑖) is the objective function value of the 𝑖-th object; 𝜙𝑖 is the 𝑖-th object; 𝑁𝑆 is the 

number of search agents (objects). 

(2) The objects are organized into two groups, called stationary and moving groups, and the 

objects are split into pairs, as shown in Figure 2.2.16. 

 

Figure 2.2.16. Arranging the objects into stationary and moving groups and pairing the objects.  

(3) A collision occurs between the paired moving and stationary objects. The velocity of 

moving objects after collision is determined by: 

𝜈𝑖
′ =

(𝑚𝑖 − 𝐸𝑚(𝑖−
𝑁𝑆
2
)
)𝜈𝑖

𝑚𝑖 +𝑚(𝑖−
𝑁𝑆
2
)

           𝑖 = 𝑁𝑆 2⁄ + 1,… ,𝑁𝑆 (2.2.57) 

where 𝑚𝑖 is the mass contribution of the 𝑖-th object; and 𝐸 is the coefficient of restitution: 

𝐸 = 1 −
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
 (2.2.58) 

where 𝑖𝑡𝑒𝑟 and 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 are the number of current iteration and the maximum number of 

iterations; 𝜈𝑖 is the velocity of 𝑖-th stationary object before collision which is equal to zero: 

𝜈𝑖 = 0                  𝑖 = 1,… ,
𝑁𝑆

2⁄  (2.2.59) 

The velocity of stationary objects after the collision is formulated as: 

𝜈𝑖
′ =

(𝑚𝑖+𝑁𝑆 2⁄
+ 𝐸𝑚𝑖+𝑁𝑆 2⁄

)𝜈𝑖+𝑁𝑆 2⁄

𝑚𝑖 +𝑚𝑖+𝑁𝑆 2⁄

                  𝑖 = 1,… ,𝑁𝑆 2⁄  (2.2.60) 

where 𝜈𝑖+𝑁𝑆 2⁄
 is the velocity of moving objects before the collision, which can be calculated as: 

𝜈𝑖 = 𝜙𝑖 − 𝜙(𝑖−𝑁𝑆
2
)
                  𝑖 = 𝑁𝑆 2⁄ + 1,… ,𝑁𝑆 (2.2.61) 

where 𝜙𝑖 is the position of the 𝑖-th object. The new position of the moving and stationary objects 

can be calculated as: 
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𝜙𝑖
′ = 𝜙𝑖 + 𝑟𝑎𝑛𝑑 ∙ 𝜈𝑖

′ (2.2.62) 

where ϕ𝑖
′ and ϕ𝑖 are the new and current positions of the 𝑖-th object; 𝑟𝑎𝑛𝑑 is a random vector in 

the range [0, 1] and has the same size with 𝜈𝑖
′; the symbol “∙” is element-by-element multiplication. 

2.2.3.4.2. Genetic algorithm 

Genetic algorithm is an algorithm inspired by Charles Darwin's theory of natural evolution: 

The individuals that can adapt to changes are able to survive and reproduce. Individuals are the 

search agents while the chromosomes of individuals are the candidate solutions. Each component 

of the chromosomes is a gene. The three steps of the algorithm are as follows: 

(1) The more suitable chromosomes, i.e., the highest quality solutions, are chosen and allowed 

to survive. The survival probability of each chromosome is expressed as: 

𝑃𝑖 =
𝑓(𝜙𝑖)

∑ 𝑓(𝜙𝑖)
𝑁𝑆
𝑖=1

 (2.2.63) 

(2) The individuals selected in the first step mate with each other with a crossover probability 

𝑃𝐶. Offspring with new gene assortments are created as shown in Figure 2.2.17(a). 𝑃𝐶 is 90%. 

(3) Mutation occurs with the probability of 𝑃𝑀 to preserve the diversity from the previous 

population of individuals to the next one, as shown in Figure 2.2.17(b). 𝑃𝑀 is set to 10%. 

  
(a) (b) 

Figure 2.2.17. Genetic algorithm for the optimization tasks: (a) gene exchange, and (b) mutation. 

2.2.3.4.3. Particle swarm optimization 

Particle swarm optimization algorithm is inspired by the swarm intelligence of bird flock. The 

algorithm has two steps: 

(1) The velocity of particles (search agents) is calculated using: 

𝑉𝑖
′ = 𝜔𝑉𝑖 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖 − 𝜙𝑖) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑖 − 𝜙𝑖) (2.2.64) 

where 𝑉𝑖
′ and 𝑉𝑖 are the new and previous velocity of the 𝑖-th particle; 𝜔 is the inertia weight 

constant which is expressed as: 

𝜔 =
(𝑖𝑡𝑒𝑟𝑚𝑎𝑥 − 𝑖𝑡𝑒𝑟)

(𝑖𝑡𝑒𝑟𝑚𝑎𝑥 − 1)
(𝜔𝑚𝑎𝑥 −𝜔𝑚𝑖𝑛) + 𝜔𝑚𝑖𝑛 (2.2.65) 

where 𝜔𝑚𝑎𝑥 and 𝜔𝑚𝑖𝑛 are the maximum and minimum inertia weight, which are set to 0.9 and 

0.4; 𝑐1 and 𝑐2 are the acceleration coefficients which are set to 2; 𝑟1 and 𝑟2 are random numbers in 

the range of [0, 1].  
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(2) The particles move across the search space based on the following expression: 

𝜙𝑖
′ = 𝜙𝑖 + 𝑉𝑖

′ (2.2.66) 

A schematic of the movement mechanism of particles is shown in Figure 2.2.18. 

 

Figure 2.2.18. Schematic illustration of the movement mechanism of the particle swarm optimization. 

2.2.3.5. Case studies for scenario 1 

This section presents four representative case studies to demonstrate the proposed method in 

problems of Scenario 1 when the type of strain field in host matrix is known: (1) Case 1: uniform 

strain field; (2) Case 2: continuous linear strain field; (3) Case 3: continuous bi-linear strain field; 

and (4) Case 4: discontinuous strain field.  

To solve the inverse problems, each of the three metaheuristic optimization algorithms is 

executed for 50 independent runs for statistical analysis. The termination criterion of the 

optimization algorithms is defined by the number of evaluations of objective function, which is 

10 𝑁𝑆2 where 𝑁𝑆 is the number of search agents.  

2.2.3.5.1. Case 1: Uniform strain field 

A DFOS is applied to measure the strain distribution in a host matrix that is subjected to a 

uniform strain field with a strain magnitude of 1000 με. According to reference, it is known that a 

nonuniform strain distribution can be measured from the DFOS. In this study, the measured strain 

distribution is used to determine the real strain distribution in host matrix through the proposed 

inverse analysis method.  

For each of the metaheuristic algorithms, the number of search agents is set to 10. Figure 

2.2.19 shows the convergence curves of the different algorithms. Table 2.2.1 lists the results. 

Overall, the particle swarm optimization has demonstrated the best performance, because it 

achieves the smallest values of “Average error”, “Maximum error”, and “Standard deviation”, 

which indicate the highest effectiveness, precision, and stability, respectively. The average 

execution time of the particle swarm algorithm is slightly higher than the other algorithms, 

indicating that the computational efficiency of the particle swarm algorithm is a little lower.  
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Figure 2.2.19. Convergence of the metaheuristic algorithms on case study 1. CBO, GA, and PSO represent 

colliding bodies optimization, genetic algorithm, and the particle swarm optimization. 

Table 2.2.1. Computational results of the metaheuristics in solving case study 1 

Optimization 

algorithm 

Minimum 

error (%) 

Average error 

(%) 

Maximum 

error (%) 

Standard 

deviation (%) 

Average execution 

time (s) 

Colliding bodies 

optimization 
2.80E-09 0.011 0.49 0.071 0.023 

Genetic 

algorithm 
2.81E-09 0.001 0.047 0.015 0.031 

Particle swarm 

optimization 
3.38E-09 0.000 0.000 0.000 0.038 

      

Figure 2.2.20 shows the results of the particle swarm optimization. Figure 2.2.20(a) plots the 

strain distributions in DFOS (εf), the real strain distribution in host matrix (εhr), and the calculated 

strain distribution in host matrix (εhc). The calculated strain distribution corresponds to the 

optimization result with the lowest objective function. It is seen that the calculated and real strain 

distributions in the host matrix are in good agreement. Figure 2.2.20(b) plots the relative error 

normalized as the percentage of the strain value, including the average error, upper and lower 

bounds of the error, and the 95% confidence interval of errors for the calculated strains in host 

matrix. The maximum relative error is less than 0.0001%. 
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(a) (b) 

Figure 2.2.20. Inverse analysis results of Case 1: (a) strain distributions; and (b) relative error along the 

DFOS. CI represents the confidence interval. 

2.2.3.5.2. Case 2: Continuous linear strain field 

A DFOS is applied to measure the strain distribution in a host matrix that is subjected to a 

linear strain field with a strain magnitude increasing from 1000 με to 2000 με. Again, the measured 

strain distribution is used to determine the real strain distribution in host matrix through the 

proposed inverse analysis method. For each of the metaheuristic algorithms, the number of search 

agents is set to 30. Figure 2.2.21 shows the convergence curves of the algorithms.  

 

Figure 2.2.21. Convergence of the metaheuristic algorithms on case study 2. CBO, GA, and PSO represent 

colliding bodies optimization, genetic algorithm, and the particle swarm optimization. 

Table 2.2.2 lists the results. Overall, the particle swarm optimization has demonstrated the 

best performance, because it achieves the smallest values of “Average error”, “Maximum error”, 

and “Standard deviation”, which indicate the highest effectiveness, precision, and stability, 

respectively. The average execution time of the particle swarm algorithm is slightly higher than 
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the other algorithms, indicating that the computational efficiency of the particle swarm algorithm 

is a little lower. 

Table 2.2.2. Computational results of the metaheuristics in solving case study 2 

Optimization 

algorithm 

Minimum 

error (%) 

Average error 

(%) 

Maximum 

error (%) 

Standard 

deviation (%) 

Average execution 

time (s) 

Colliding bodies 

optimization 
0.10 0.13 0.70 0.10 0.09 

Genetic 

algorithm 
0.10 0.15 0.86 0.14 0.10 

Particle swarm 

optimization 
0.10 0.10 0.10 0.00 0.12 

 

Figure 2.2.22 shows the results of the particle swarm optimization. Figure 2.2.22(a) plots the 

strain distributions in DFOS (εf), the real strain distribution in host matrix (εhr), and the calculated 

strain distribution in host matrix (εhc). The calculated strain distribution corresponds to the 

optimization result with the lowest objective function. It is seen that the calculated and real strain 

distributions in the host matrix are in good agreement. Figure 2.2.22(b) plots the relative error 

normalized as the percentage of the strain value, including the average error, upper and lower 

bounds of the error, and the 95% confidence interval of errors for the calculated strains in host 

matrix. The maximum relative error is less than 0.001%. 

  
(a) (b) 

Figure 2.2.22. Inverse analysis results of Case 2: (a) strain distributions; and (b) relative error along the 

DFOS. CI represents the confidence interval. 

2.2.3.5.3. Case 3: Bi-linear strain field 

The proposed method is used to estimate a strain field composed of two linear segments: (1) 

The strain linearly decreases from 1500 με to 1000 με as x increases from -0.5L to 0. (2) The strain 

linearly increases from 1000 με to 2000 με as x increases from 0 to 0.5L. The intersection point is 

at x = 0; hence, 𝑎 = 0.5L. To solve the inverse problem, the number of search agents is set to 50. 
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Figure 2.2.23 shows the convergence of the investigated algorithms. Table 2.2.3 lists the 

computational results. Overall, the particle swarm optimization has demonstrated the best 

performance, because it achieves the smallest values of “Average error”, “Maximum error”, and 

“Standard deviation”, which indicate the highest effectiveness, precision, and stability, 

respectively. The average execution time of the particle swarm algorithm is comparable with the 

other algorithms.  

 

Figure 2.2.23. Convergence of the metaheuristic algorithms on case study 3. CBO, GA, and PSO represent 

colliding bodies optimization, genetic algorithm, and the particle swarm optimization. 

Table 2.2.3. Computational results of the metaheuristics in solving case study 3 

Optimization 

algorithm 

Minimum 

error (%) 

Average error 

(%) 

Maximum 

error (%) 

Standard 

deviation (%) 

Average 

execution time (s) 

Colliding bodies 

optimization 
18 38 61 0.86 0.47 

Genetic 

algorithm 
0.10 0.11 0.13 0.01 0.50 

Particle swarm 

optimization 
0.10 0.11 0.13 0.01 0.50 

 

Figure 2.2.24 shows the results of the particle swarm optimization. Figure 2.2.24(a) plots the 

strain distributions in DFOS (εf), the real strain distribution in host matrix (εhr), and the calculated 

strain distribution in host matrix (εhc). The calculated strain distribution corresponds to the 

optimization result with the lowest objective function. The calculated and measured strain 

distributions in host matrix are in good agreement. Figure 2.2.24(b) plots the relative error 

normalized as the percentage of the strain value, including the average error, upper and lower 

bounds of the error, and the 95% confidence interval of errors for the calculated strains in host 

matrix. The maximum relative error is less than 0.1%. 
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(a) (b) 

Figure 2.2.24. Inverse analysis results of Case 3: (a) strain distributions; and (b) relative error along the 

DFOS. CI represents the confidence interval. 

2.2.3.5.4. Case 4: Discontinuous strain field 

The proposed method is used to estimate a strain field composed of two linear segments with 

an abrupt strain change: (1) The strain linearly decreases from 750 με to 500 με as x increases from 

-0.5L to 0. (2) The strain linearly increases from 750 με to 1500 με as x increases from 0 to 0.5L. 

The intersection point is at x = 0; hence, 𝑎 = 0.5L. To solve the inverse problem, the number of 

search agents is set to 50. Figure 2.2.25 shows the convergence of the investigated algorithms.  

 

Figure 2.2.25. Convergence of the metaheuristic algorithms on case study 4. CBO, GA, and PSO represent 

colliding bodies optimization, genetic algorithm, and the particle swarm optimization. 

Table 2.2.4 lists the results. Overall, the particle swarm optimization has demonstrated the 

best performance, because it achieves the smallest values of “Average error”, “Maximum error”, 



Page 36 

 

and “Standard deviation”, which respectively indicate the highest effectiveness, precision, and 

stability. The average execution time of the particle swarm algorithm is comparable with the other 

algorithms, meaning that the computational efficiency of these algorithms are comparable.  

Table 2.2.4. Computational results of the metaheuristics in solving case study 4 

Optimization 

algorithm 

Minimum 

error (%) 

Average 

error (%) 

Maximum 

error (%) 

Standard 

deviation (%) 

Average execution 

time (s) 

Colliding bodies 

optimization 
19.70 46.30 69.30 9.52 0.97 

Genetic algorithm 0.10 2.38 11.50 2.83 0.99 

Particle swarm 

optimization 
0.10 0.39 12.90 1.81 1.01 

 

Figure 2.2.26 shows the results of the particle swarm optimization. Figure 2.2.26(a) plots the 

strain distributions in DFOS (εf), the real strain distribution in host matrix (εhr), and the calculated 

strain distribution in host matrix (εhc). The calculated strain distribution corresponds to the 

optimization result with the lowest objective function. The calculated and measured strain 

distributions in host matrix are in good agreement. Figure 2.2.26(b) plots the relative error 

normalized as the percentage of the strain value, including the average error, upper and lower 

bounds of the error, and the 95% confidence interval of errors for the calculated strains in host 

matrix. The maximum relative error is less than 0.1%.  

  
(a) (b) 

Figure 2.2.26. Inverse analysis results of Case 4: (a) strain distributions; and (b) relative error along the 

DFOS. CI represents the confidence interval. 

2.2.3.6. Case studies for scenario 2 

This section presents two case studies to evaluate the performance of the proposed method 

when the type of strain field in host matrix is unknown. In each case, multiple concentrated loads 

are applied at arbitrary sections of a simply support beam instrumented with DFOS, as illustrated 

in Figure 2.2.27.  
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(a) (b) 

Figure 2.2.27. Simply supported beam under: (a) two concentrated forces; (b) three concentrated forces.  

Both the locations and magnitudes of the loads need to be determined through inverse analysis. 

Figure 2.2.27(a) shows a beam under two concentrated loads. Figure 2.2.27(b) shows a beam under 

three concentrated loads. The beams have a uniform cross section along the length. The strain 

distribution in host matrix caused by the 𝑖-th load (𝐹𝑖) can be expressed as: 

𝜀h(𝑥) =

{
 

 𝜀𝑖 (
𝑥

𝑎𝑖
) 0 ≤  𝑥 ≤ 𝑎𝑖

𝜀𝑖 (
𝐿 − 𝑥

𝐿 − 𝑎𝑖
) 𝑎𝑖 ≤  𝑥 ≤ 𝐿

 (2.2.67) 

where 𝜀𝑖 is the maximum strain at the section where the i-th load is applied; 𝑎𝑖 is the distance 

between the i-th load and the left support; and 𝐿 is the span of the beam.  

With Eq. (2.2.67), the strain distribution in the DFOS can be expressed as: 

𝜀f(𝑥) =

{
 

 𝐶1 cosh( 𝑘𝑥) + 𝐶2 sinh( 𝑘𝑥) + 𝜀𝑖 (
𝑥

𝑎𝑖
) 0 ≤  𝑥 ≤ 𝑎𝑖

𝐶3 cosh( 𝑘𝑥) + 𝐶4 sinh( 𝑘𝑥) + 𝜀𝑖 (
𝐿 − 𝑥

𝐿 − 𝑎𝑖
) 𝑎𝑖 ≤  𝑥 ≤ 𝐿

 (2.2.68) 

where 𝐶1, 𝐶2, 𝐶3, and 𝐶4 are the integration constants to be determined by the boundary conditions.  

The boundary conditions are: 

𝜀f(𝑥 = 0) = 0 (2.2.69a) 

𝜀f(𝑥 = 𝑎𝑖
−) = 𝜀f(𝑥 = 𝑎𝑖

+) (2.2.69b) 

𝜀f(𝑥 = 𝐿) = 0 (2.2.69c) 

𝜏f(𝑥 = 𝑎𝑖
−) = 𝜏f(𝑥 = 𝑎𝑖

+) (2.2.69d) 

The integration constants are determined as: 

𝐶1 = 0 (2.2.70a) 

𝐶2 =
𝜀𝑖𝐿

𝑘𝑎𝑖(𝐿 − 𝑎𝑖)
[
sinh(𝑘𝑎𝑖)

tanh(𝑘𝐿)
− cosh(𝑘𝑎𝑖)] (2.2.70b) 

𝐶3 = −
𝜀𝑖𝐿

𝑘𝑎𝑖(𝐿 − 𝑎𝑖)
sinh(𝑘𝑎𝑖) (2.2.70c) 

𝐶4 =
𝜀𝑖𝐿

𝑘𝑎𝑖(𝐿 − 𝑎𝑖)
[
sinh(𝑘𝑎𝑖)

tanh(𝑘𝐿)
] (2.2.70d) 
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For each load, there are two unknown parameters to be determined (𝜀𝑖 and 𝑎𝑖). When the 

beam is divided into (N + 1) segments, there is a total of N loads. The total strain is equal to the 

sum of N number of 𝜀𝑖, where i = 1, 2, ... , N. Therefore, the decision vector can be expressed as: 

𝜙 = [𝜀1, 𝜀2, … , 𝜀𝛼 , 𝑎1, 𝑎2, … , 𝑎𝛼 , 𝑁]
𝑇 (2.2.71) 

where 𝜀𝑖 is the maximum strain in the host matrix caused by the 𝑖-th concentrated load (𝐹𝑖); 𝑎𝑖 is 

the location of 𝐹𝑖; and 𝑁 is the number of applied concentrated loads.  

A candidate solution is feasible when the following statement is satisfied:  

1 ≤ 𝑁 ≤ 𝑀𝑁 (2.2.72) 

where 𝑀𝑁 is the maximum number of concentrated loads. In this study, 𝑀𝑁 is set to 5.  

To solve the inverse problem, each algorithm is executed for 50 independent runs to evaluate 

the algorithms. The computation for optimization is terminated as the number of objective function 

evaluations reaches 10 𝑁𝑆2 where 𝑁𝑆 is the number of search agents which is set to 100. 

2.2.3.6.1. Case 5: Two concentrated forces 

The beam shown in Figure 2.2.27(a) is analyzed using the proposed method. The concentrated 

forces, F1 and F2, are applied at the third spans of the beam. The span length of the beam is 0.25 

m. The strain distributions in the host structure are shown in Figure 2.2.28. 𝜀𝑓,𝑖 and 𝜀ℎ,𝑖 are the 

strains in optical fiber and host matrix caused by the i-th force, respectively. 𝜀𝑓 and 𝜀ℎ are the total 

strains in optical fiber and host matrix, respectively. 

 

Figure 2.2.28. Strain distributions for two concentrated forces.  

Figure 2.2.29 shows the convergence curves of the optimization algorithms. Table 2.2.5 lists 

the computational results. Overall, the genetic algorithm shows the best performance because it 

shows the smallest values of “Average error”, “Maximum error”, and “Standard deviation”. The 

different algorithms show comparable results for the average execution time. 
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Figure 2.2.29. Convergence curves of the metaheuristic algorithms for Case 5.  

Table 2.2.5. Computational results of the metaheuristics in solving case study 5 

Optimization 

algorithm 

Minimum 

error (%) 

Average error 

(%) 

Maximum 

error (%) 

Standard 

deviation (%) 

Average execution 

time (s) 

Colliding bodies 

optimization 
3.52 9.05 15.78 3.49 1.01 

Genetic 

algorithm 
0.000 0.09 1.26 0.24 1.17 

Particle swarm 

optimization 
0.005 0.46 5.79 1.46 1.38 

      

The results from the genetic algorithm are plotted in Figure 2.2.30(a), showing that the real 

and the calculated strains in host matrix are in good agreement. Figure 2.2.30(b) shows the average 

error, upper and lower bounds of error, and the 95% confidence interval of the error. The absolute 

maximum error is less than 3% and the 95% confidence interval is in the range of (-1.5%, 1%). 

  
(a) (b) 

Figure 2.2.30. Inverse analysis results of Case 5: (a) strain distributions; and (b) relative error along the 

DFOS. CI represents the confidence interval. 



Page 40 

 

2.2.3.6.2. Case 6: Three concentrated forces 

The beam shown in Figure 2.2.27(b) is analyzed using the proposed method. The concentrated 

forces, F1 to F3, are applied at the quarter and middle spans of the beam. The span length of the 

beam is 0.25 m. The strain distributions in the host structure are shown in Figure 2.2.31. Figure 

2.2.32 shows the convergence curves of the optimization algorithms.  

 

Figure 2.2.31. Strain distributions for three concentrated forces.  

 

Figure 2.2.32. Convergence curves of the metaheuristic algorithms for Case 6. 

Table 2.2.6 lists the computational results. Overall, the genetic algorithm shows the best 

performance since it has the smallest values of “Average error”, “Maximum error”, and “Standard 

deviation”. The different algorithms show comparable results for the average execution time. 

The results of genetic algorithm are plotted in Figure 2.2.33(a), indicating that the real and the 

calculated strains in host matrix are in good agreement. Figure 2.2.33(b) shows the average error, 

upper and lower bounds of the error, and the 95% confidence interval of the error. The absolute 

maximum error is less than 5% and the 95% confidence interval is in the range of (-2%, 2%). 



Page 41 

 

Table 2.2.6. Computational results of the metaheuristics in solving case study 6 

Optimization 

algorithm 

Minimum 

error (%) 

Average error 

(%) 

Maximum 

error (%) 

Standard 

deviation (%) 

Average execution 

time (s) 

Colliding bodies 

optimization 
2.64 6.16 10.46 1.80 2.36 

Genetic 

algorithm 
0.10 0.25 1.48 0.21 3.51 

Particle swarm 

optimization 
0.12 0.31 1.68 0.28 3.69 

 

  
(a) (b) 

Figure 2.2.33. Inverse analysis results of Case 6: (a) strain distributions; and (b) relative error along the 

DFOS. CI represents the confidence interval. 

2.2.3.6.3. Case 7: A real-world application 

A case study of the proposed method for a real-world application was conducted. A carbon-

fiber-reinforced polymer (CFRP) post-tensioned fiber reinforced concrete beam, shown in Figure 

2.2.34 [49], was tested, and the sensor data were analyzed using the developed method.  

It is noted that beam specimens, rather than pipes, were tested because the beam specimens 

were available in the laboratory. The availability of the tests using pipe specimens was affected by 

COVID-19. To avoid delaying the research progress, we adopted beam specimens for validating 

the theoretical research results. The test results can be utilized to valid the developed theoretical 

methods because the proposed inverse strain transfer analysis method is independent of the specific 

material (e.g., API 5L grade steel, or reinforced concrete) and the specific geometry (e.g., pipe, or 

beam). The case study focuses on inverse mechanical analysis for the strain transfer behaviors and 

the optimization of the sensing results. Based on the above considerations, the following validation 

tests were designed and performed: 

 



Page 42 

 

  
(a) (b) 

Figure 2.2.34. Four-point bending test set-up of the CFRP post-tensioned fiber reinforced concrete beam: 

(a) photograph; and (b) the schematic illustration. 

The beam was under four-point bending, and two concentrated forces were applied at 1.08 

and 1.99 m away from the start point of the optical fiber. A DFOS was embedded in the concrete. 

The span length of the beam is 3.04 m. The strain distributions in the optical fiber and host structure 

are shown in Figure 2.2.35.  

 

Figure 2.2.35. strain distribution in the host structure obtained by inverse analysis for Case 7. 

The case study was conducted with two types of methods: (I) Type 1: Consider the number of 

applied loads, as well as their location and magnitude, as unknown parameters. (II) Type 2: 

Consider the magnitudes of the applied concentrated loads as the unknown parameters. Figure 

2.2.36 shows the convergence curves of the optimization algorithms. 

Table 2.2.7 and Table 2.2.8 list the computational results for type 1 and type 2. The genetic 

algorithm showed the best performance as it has the smallest values of “Average error”, 

“Maximum error”, and “Standard deviation”. The different algorithms show comparable results 

for the average execution time. 
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(a) 

 
(b) 

Figure 2.2.36. Convergence of the metaheuristic algorithms for Case 7: (a) type 1, and (b) type 2.  

Table 2.2.7. Computational results of the metaheuristics in solving case 7 – type 1 

Optimization 

algorithm 

Minimum 

error (%) 

Average error 

(%) 

Maximum 

error (%) 

Standard 

deviation (%) 

Average execution 

time (s) 

Colliding bodies 

optimization 
1709.97 2877.93 4442.76 2084.57 2.88 

Genetic 

algorithm 
3.46 3.48 3.80 0.67 3.42 

Particle swarm 

optimization 
3.82 5.57 6.89 4.09 3.71 
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Table 2.2.8. Computational results of the metaheuristics in solving case 7 – type 2 

Optimization 

algorithm 

Minimum 

error (%) 

Average error 

(%) 

Maximum 

error (%) 

Standard 

deviation (%) 

Average execution 

time (s) 

Colliding bodies 

optimization 
4.32 4.33 4.33 0.081 2.07 

Genetic 

algorithm 
4.32 4.32 4.32 0.000 2.88 

Particle swarm 

optimization 
4.32 9.09 15.99 9.81 2.90 

 

The results from the genetic algorithm are plotted in Figure 2.2.37, indicating that the real and 

the calculated strains in host matrix are in good agreement; the results of type 2 are more accurate 

than those of type 1. Figure 2.2.37 shows the average error, upper and lower bounds of the error, 

and the 95% confidence interval of the error for type 1 and type 2. The absolute maximum error 

for type 1 and type 2 is less than 10% and 7%; the 95% confidence interval for type 1 is in the 

range of (-10%, 15%); the 95% confidence interval for type 2 is in the range of (-5%, 1%). 

         
(a) (b) 

Figure 2.2.37. Relative error along the DFOS for the results obtained for Case 7: (a) type 1, and (b) type 

2. CI represents the confidence interval. 

2.2.3.7. Summary 

Strains measured by DFOS with protective coatings can be different from the real strains in 

host matrix due to strain transfer effect. In this project, forward and inverse strain transfer analysis 

methods were developed. The forward strain transfer analysis was conducted to derive the strain 

distributions sensed by the DFOS, and the inverse strain transfer analysis was conducted to 

determine the real strain distributions in host matrix using strain distributions measured from 

DFOS. Two different scenarios of strain distributions in host matrix are investigated, which have 

known and unknown types of strain fields, respectively. Three representative metaheuristic 

algorithms are respectively utilized in the inverse analysis. The performance of the proposed 
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method was evaluated by analytical case studies and experimental testing of a prestressed concrete 

beam subjected to four-point bending. The results demonstrated high accuracy and efficiency of 

the proposed method. 

 

 

2.3. Detection, localization, quantification, and visualization of cracks 

2.3.1. Overview 

Research was conducted to develop methods to quantify crack width at multiple scales with 

high accuracy. Specifically, this study has three main objectives: (1) develop a new method to 

evaluate crack width from micro to macro scales; (2) investigate the feasibility to monitor multiple 

cracks using a single DFOS; and (3) investigate the effects of three key parameters of DFOS, 

which are the coating thickness of optical fiber, the spatial resolution of strain measurement, and 

the spacing between adjacent cracks. To this end, a customized specimen was designed to 

manipulate cracks under precise displacement control. An optical fiber was attached to the 

specimen and served as a DFOS which measured strain distributions along the fiber based on 

OFDR. An algorithm was presented to analyze crack width based on the measured strain 

distribution. The crack width measured by the DFOS was compared with the crack width measured 

by an extensometer. Parametric studies were conducted to investigate the effects of the three key 

parameters on the measurement of crack width. This study is expected to significantly enhance the 

capability of detecting, locating, and quantifying cracks by using DFOS. 

2.3.2. Experimental program 

2.3.2.1. Specimen and test set-up 

Figure 2.3.1 shows the specimen and the test set-up. The specimen consisted of two aluminum 

plates and two steel bars with a U-shaped cross section as the slideway of the plates. The aluminum 

plates, U-shaped bars, and optical fiber are shown in grey color, orange color, and green color, 

respectively. Under tension, the bars constrained the lateral movement of the plates but allow 

sliding along the length direction. Each plate measured 13 mm in width and 400 mm in length. 

The two ends of the specimen were gripped and loaded by the load frame under displacement 

control at the rate of 0.2 mm/min. As the aluminum plates slid along the U-shaped bars, a crack 

was generated at the interface between the two plates. The crack width was controlled by the load 

frame and measured by an extensometer which was clipped on the aluminum plates at the crack, 

as shown in Figure 2.3.1(a). The measurement of crack width from the extensometer was used as 

the ground truth in this study. 

It is noted that aluminum plate specimens have been utilized in the validation testing, rather 

than using steel pipes, because aluminum plate specimens were available in the laboratory and 

easier to handle for reliable tests. The availability of the tests using pipe specimens was affected 

by COVID-19. To avoid further delaying the progress, we adopted plate specimens for developing 

the technology. The tests are acceptable because the developed technology for monitoring cracks 
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does not rely on the specific material (e.g., API 5L grade steel, or aluminum) and the specific 

geometry of the structure (e.g., pipe, or plate). The research focuses on technology development. 

Based on the above considerations, the following validation tests were performed: 

Optical fibers were attached to the surface of the specimen using adhesives, and each optical 

fiber served as a DFOS and the transmission line. In this research, two cracking scenarios were 

considered: single crack and multiple cracks. Figure 2.3.1(b) shows the set-up for two cracks. One 

end of the optical fiber was connected to the data acquisition system for measurement of strain 

distribution along the optical fiber, and the other end of the optical fiber was free. The optical fiber 

was passed through the crack two times to simulate the effect of two cracks crossing a DFOS. The 

spacing between adjacent cracks is simulated by changing the length of the optical fiber at the 

turning portion. In the scenario of single crack, the same set-up was employed, but the optical fiber 

was passed through the crack for one time. 

  
(a) (b) 

Figure 2.3.1. Specimen and test set-up: (a) photography of the specimen on the load frame; and (b) the set-

up for measurement using DFOS.  

2.3.2.2. Loading protocol 

Figure 2.3.2 shows the loading protocol of the tensile tests. Under the displacement control 

mode, the displacement applied by the load frame linearly increased with time. The measurement 

results from the extensometer installed at the crack width was almost the same as the displacement 

applied by the load frame. This is because the two aluminum plates were discontinuous except for 

the thin optical fiber bridging the crack between the two plates. The deformations of the aluminum 

plates are negligible. Therefore, the elongation represents the crack width of the specimen. 
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Figure 2.3.2. Comparison of the elongations measured by load frame and the extensometer. 

2.3.2.3. Investigated cases 

This research investigates the effects of the coating thickness, spatial resolution, and spacing 

between adjacent cracks. A total of 11 cases were investigated, as listed in Table 2.3.1, including 

3 coating thicknesses (242 µm, 650 µm, and 900 µm), 3 spatial resolutions (0.65 mm, 1.3 mm, and 

2.6 mm), and 6 spacings between adjacent cracks (100 mm, 150 mm, 200 mm, 300 mm, 400 mm, 

and 500 mm). The control case uses a bare fiber (coating thickness: 242 µm) and the spatial 

resolution of 0.65 mm. In each case, three tests were duplicated.  

Table 2.3.1. Investigated cases 

Cases Coating thickness (µm) Spatial resolution (mm) Crack spacing (mm) 

1 (control) 242 0.65 -* 

2 650 0.65 - 

3 900 0.65 - 

4 242 1.30 - 

5 242 2.60 - 

6 242 0.65 500 

7 242 0.65 400 

8 242 0.65 300 

9 242 0.65 200 

10 242 0.65 150 

11 242 0.65 100 

* Note: Cases 1-5 investigated the effects of coating thickness and spatial resolution on measurement of 

single cracks. Therefore, the crack spacing is not applicable. Cases 6-11 investigated the effect of the 

spacing between two adjacent cracks. 

 

2.3.2.4. Experimental results 

Figure 2.3.3 shows the results of the strain distributions measured from the DFOS in the 11 

cases. For each case, the strain distributions were measured under different crack widths. 

Representative strain distributions for selecting crack widths are included. Figures 2.3.3(a) to 

2.3.3(e) show the strain distributions measured from the different DFOS in the single crack 

scenario. The legend shows the crack width. 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

  

 

(j) (k)  

Figure 2.3.3. Representative strain distributions measured from DFOS: (a) Case 1; (b) Case 2; (c) Case 3; 

(d) Case 4; (e) Case 5; (f) Case 6; (g) Case 7; (h) Case 8; (i) Case 9; (j) Case 10; and (k) Case 11.  

Figure 2.3.3(a) shows the measured strain distributions in the control case. The peak indicates 

the location of the crack. The strain distributions are symmetrical to the peak. The development of 

the strain distribution can be divided into three stages: (1) Crack initiation: a sharp peak is 

measured at the location of the crack, and the corresponding crack width is increased from 0 mm 

to 0.25 mm. (2) Debonding: the strain peak is widened with the increase of the crack width, due to 

debonding in the optical fiber. Due to debonding, the abrupt elongation of the optical fiber at the 

crack was averaged over a longer length, reducing the peak strain. The corresponding crack width 

ranges from 0.25 mm to 2.49 mm. (3) Slipping: The debonding length propagates along the fiber 
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length. Eventually, after the debonding length is significantly developed, the DFOS fails to provide 

further measurement.  

Figures 2.3.3(b) and 2.3.3(c) show the results of strain distributions measured from the fiber 

optic sensors with the coating thicknesses of 650 µm and 900 µm, respectively. The strain 

distributions measured from the sensor with a coating thickness of 650 µm are approximately 

symmetrical to the location of the crack, while the strain distributions measured from the sensor 

with a coating thickness of 900 µm are not symmetrical to the location of the crack after debonding 

occurs. That is because debonding in the sensor with a coating thickness of 900 µm is not 

symmetrical, which can be attributed to the interfacial properties associated with the fabrication of 

the optical fiber. The bond strength in the optical fiber at one side of the crack can be higher than 

the bond strength in the optical fiber at the other side of the crack. 

Figures 2.3.3(d) and 2.3.3(e) show the results of strain distributions measured from bare fibers 

with spatial resolutions of 1.3 mm and 2.6 mm, respectively. Compared with the measurement 

results shown in Figure 2.3.3(f) for the spatial resolution of 0.65 mm, the change of the spatial 

resolution does not change the trend and the magnitude of the strain distribution at the crack. 

Figures 2.3.3(f) to 2.3.3(k) show the strain distributions from bare fibers with a spatial 

resolution of 0.65 mm in the multiple crack scenario, and the spacing of the two adjacent cracks is 

500, 400, 300 200, 150, and 100 mm, respectively. When the crack spacings are 500 mm (Figure 

2.3.3(f)), 400 mm (Figure 2.3.3(g)) and 300 mm (Figure 2.3.3(h)), both cracks are detected in the 

strain distributions measured by the same optical fiber throughout the loading process. Two peaks 

are identified in the strain distribution along the fiber length, and there is no interference with each 

other as the crack width increases. When the spacing between the two cracks is reduced to 200 

mm (Figure 2.3.3(i)), there is no interference between the two cracks when the crack width is 

small; however, after the crack width is increased to 2.09 mm, there is a small overlap at the edges 

of the lobes of the strain distributions corresponding to the two cracks. While a small overlap does 

not highly affect the measurement results of crack width, however, a large overlap may 

significantly influence the measurement results. When the spacing between the two cracks is 

reduced to 150 mm (Figure 2.3.3(j)), the strain distributions for the two cracks are affected by the 

presence of each other. Overlap of the peaks for the two cracks can be observed at a narrower 

crack width. Consistent observations can be obtained when the spacing between the two cracks is 

further reduced to 100 mm (Figure 2.3.3(k)). Therefore, the maximum crack width that can be 

measured by a single DFOS is dependent on the spacing between two adjacent cracks. 

2.3.2.5. Discussions 

2.3.2.5.1. Quantification of crack width 

According to the definition of strain, the elongation of the optical fiber due to the crack 

opening is reflected by the strain distribution measured by the optical fiber, and the elongation of 

the aluminum plates can be described by the strain in the plates. In this case, the strain of the 

aluminum plate is negligible. Therefore, the crack width can be considered to be equivalent to the 
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integration of the strain peak corresponding to the crack, as illustrated in Figure 2.3.4. The 

aluminum plates are shown in grey color. The optical fiber free of strain change is shown in green 

color, and the optical fiber subjected to strain change due to the crack is shown in purple color. 

 

Figure 2.3.4. Illustration of the strain distribution in an optical fiber before debonding occurs.  

Therefore, the crack width can be calculated based on the strain distributions measured from 

the DFOS. Figure 2.3.5(a) plots the crack widths calculated by the integration of strains, and 

compares the results against the crack widths measured from the extensometer. The results from 

the DFOS and the extensometer agree well with each other. A straight line can be used to fit the 

data, and the coefficient of determination is 0.9996, which indicates a high correlation. The 

measurement error of crack width by the DFOS is defined based on mean absolute deviation [50], 

as described in Eq. (2.3.1):  

Error =
1

𝑛
∑√(𝑤Measurement,𝑖 −𝑤Real,𝑖)

2
𝑛

𝑖=1

 (2.3.1) 

where 𝑛 is the total number of data points; 𝑤Measurement,𝑖 is the crack width measured from the 

DFOS; and 𝑤Real,𝑖 is regarded as the real crack width measured from the extensometer. 

𝑤Measurement,𝑖 and 𝑤Real,𝑖 are expressed as follows: 

𝑤Measurement,𝑖 =
𝑤DFOS,𝑖
𝑘

 (2.3.2a) 

𝑤Real,𝑖 = 𝑤E,𝑖 (2.3.2b) 

where 𝑛 is the total number of data points; 𝑤DFOS,𝑖 is the crack width measured from the DFOS; 

and 𝑤E,𝑖 is the crack width measured from the extensometer; and k is the slope of the linear fitting 

curve, which is 1.019, as shown in Figure 2.3.5(a). 

A method proposed in prior research on quantifying crack width is introduced for comparison 

with the forementioned method. The magnitude of strain peak is correlated to the crack width [51], 

as shown in Figure 2.3.5(b). The data points show a transition behavior, which can be attributed 

to the occurrence of debonding in the optical fiber. At the crack widths about 0.3 mm, as marked 
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by the green circle, the trend of the curve is significantly changed, because the strain transfer 

behavior between the matrix and the optical fiber is altered after debonding occurs.  

  
(a) (b) 

Figure 2.3.5. Quantification of crack width: (a) correlation between the crack widths determined by the 

DFOS and the extensometer; and (b) correlation between the magnitude of peak strain and the crack width 

measured from the extensometer. 

Due to the transition behavior, two lines are used to fit the data points [51]. The first line is 

used to describe the relationship before debonding, and the second line is used to describe the 

relationship after debonding. Eq. (2.3.2) is used to evaluate the measurement accuracy, where 

𝑤Measurement,𝑖 and 𝑤Real,𝑖 are respectively expressed in Eq. (2.3.3a) and Eq. (2.3.3b): 

𝑤Measurement,𝑖 =
𝜀𝑚,𝑖
𝑘𝑚

 (2.3.3a) 

𝑤Real,𝑖 = 𝑤E,𝑖 (2.3.3b) 

where 𝑛 is the total number of data points; 𝜀𝑚,𝑖 is the peak strain measured from the DFOS; 𝑘𝑚 is 

the slope of the fitting line, as shown in Figure 2.3.5(b); 𝑤E,𝑖 is the crack width measured from the 

extensometer; and 𝑚 is the number of the segment for the bi-linear fitting curve (𝑚 = 1 for the 

first segment, and 𝑚 = 2 for the second segment). 

2.3.2.5.2. Effects of coating thickness 

Figure 2.3.6(a) shows the crack widths measured from the DFOS with different coating 

thicknesses. The crack width was calculated by the integration of strain distributions. The 

measurement results follow linear trends, although the slopes of the different fibers are slightly 

different. Figure 2.3.6(b) compares the results of peak strains measured from the optical fibers 

with different coating thicknesses. A bi-linear correlation between the crack widths and the 

magnitude of the peaks is used to estimate the crack widths. Different optical fibers show different 

transition points, and the peak strain values are significantly different after the transition points. 

When the optical fibers have different coating thicknesses, the slopes of the first line are almost 

the same, but the slopes of the second line are different. The errors of the different optical fibers 

and methods are compared in Figure 2.3.6(c). With presented method for determining crack width, 

the measurement errors are 18 µm, 5.6 µm, and 19 µm for the coating thicknesses of 242 µm, 650 
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µm, and 900 µm, respectively. With prior method based on the peak strain, measurement errors 

are 47 µm, 39 µm, and 51 µm for the coating thicknesses of 242 µm, 650 µm, and 900 µm, 

respectively. At each coating thickness, the presented method shows higher accuracy. 

   

(a) (b) (c) 

Figure 2.3.6. Effects of coating thickness: (a) comparison of measurement results of the crack width from 

the sensors with different coating thicknesses; (b) comparison of measurement results of the peak strain 

from the sensors with different coating thicknesses; and (c) measurement accuracy of the crack width. 

 

2.3.2.5.3. Effects of spatial resolution 

Figure 2.3.7(a) compares the crack widths measured from the DFOS with different spatial 

resolutions, and the crack widths were determined by the integration of the strain distributions. As 

the spatial resolution changes from 0.65 mm to 2.6 mm, the slope of the curve decreases from 1.0 

to 0.8. Figure 2.3.7(b) compares the results of peak strains measured from the DFOS with different 

spatial resolutions. The different optical fibers show different transition points, and the peak strain 

values are different after the transition points. 

  
 

(a) (b) (c) 
Figure 2.3.7. Parametric study of effects of spatial resolution: (a) relationship between integration results 

and the crack width detected with 0.65 mm, 1.3 mm, and 2.6 mm spatial resolution, respectively; and (c) 

measurement accuracy of crack width of different spatial resolutions. 

Figure 2.3.7(c) shows that the accuracy of the crack width is dependent on the spatial 

resolution of the DFOS. With present method, as the spatial resolution changes from 0.65 mm to 

2.6 mm, the error is increased from 18 µm to 151 µm. With the prior method based on the peak 

strain, as the spatial resolution changes from 0.65 mm to 2.6 mm, the error is increased from 47 

µm to 379 µm. 
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2.3.2.5.4. Effects of crack spacing 

When there are multiple cracks, different cracks may interfere with each other. With a small 

spacing between adjacent cracks, as the crack width increases, the peak strains corresponding to 

the two cracks can have an overlap in the middle. The overlap has adverse effects on the 

measurement accuracy of the crack width. Figure 2.3.8(a) shows the effects of the crack spacing 

on the accuracy. As the crack width increases, the accuracy of crack width is compromised, and 

the decrease of the spacing between cracks aggravates the accuracy.  

Given a required accuracy of 50 µm, the maximum measurable crack width is determined, as 

plotted against the spacing between cracks in Figure 2.3.8(b). Overall, the maximum measurable 

crack width increases with the spacing between cracks. When the spacing is increased from 100 

mm to 400 mm, the maximum measurable crack width is increased from 0.05 mm to 2.29 mm. 

The relationship between the maximum crack width and crack spacing can be fitted with a 

parabolic equation. However, after the spacing between cracks is larger than 400 mm, further 

increasing the spacing will not affect the maximum measurable crack width, because there will be 

no interference between cracks. 

  
(a) (b) 

Figure 2.3.8. Effect of crack spacing on: (a) measurement accuracy; and (b) measurable crack width. The 

crack spacing and measurable crack width are 𝑠 and 𝛿, respectively. 

2.3.3. Summary 

Based on the above investigations, the following findings can be drawn: 

(1) Crack widths were measured using the proposed method at micro to macro scales in the 

cracking process. The initiation and development of cracks can be detected, located, and 

quantified by analyzing strain distributions measured from the DFOS. The measurement 

accuracy of crack width can be as high as 5.6 µm. 

(2) The proposed measurement method provides better accuracy and linearity of crack width 

than the prior methods based on the correlation between the peak strain and crack width. 

The proposed method is not prone to possible debonding in the optical fibers and shows 

desired robustness in the measurement of crack width throughout the crack process.  
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(3) With the proposed method, the measurement accuracy of the crack width is less sensitive 

to the thickness of protective coatings of the different types of optical fibers with different 

packages, compared with the prior method based on the correlation between the peak 

strain and crack width. The measurement accuracy can be compromised by using optical 

fibers with thick coatings.  

(4) The measurement accuracy of the crack width is dependent on the spatial resolution of 

the strain distribution. When the spatial resolution is increased from 0.65 mm to 1.3 mm, 

the error is increased from 18 µm to 151 µm. When the spatial resolution is increased 

from 1.3 mm to 2.6 mm, the error is increased from 47 µm to 379 µm. 

(5) Multiple cracks can be located and quantified using a single DFOS. Increasing the 

spacing between the cracks tends to improve the measurement accuracy of crack width. 

Under a given accuracy of crack width, the derived parabolic equation can be used to 

assess the maximum measurable crack width. 

The utilization of a distributed fiber optic sensor for monitoring cracks in a pipe subjected to 

various cracking mechanisms is illustrated in Figure 2.3.9. The method developed for monitoring 

cracks in this project is a general method based on strain measurements, which can be applied to 

different types of pipe cracks caused by different cracking mechanisms. When a distributed fiber 

optic sensor is installed in a helix pattern on the surface of the pipe, the sensor captures the various 

types of cracks, as long as the crack affects the strains in the distributed sensor. The cracks can be 

axial or circumferential cracks. The above research has shown that the distributed fiber optic sensor 

is sensitive to cracks from micro- to macro-scale because microcracks can also cause changes in 

the strain field of the pipe. Regarding the concerns about potential breakage of the sensor cable 

due to the tension force by pipe outside diameter expansion at a result of cracks formed in the pipe 

wall, packaged distributed fiber optic sensors have shown high performance in self-protection via 

a interfacial debonding mechanism, as elaborated in section 2.4. 

 

Figure 2.3.9. Monitoring of cracks in a pipe instrumented with distributed fiber optic sensor on the surface. 
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2.4. Interfacial mechanics of distributed sensors undergoing debonding 

2.4.1. Interfacial debonding effect 

Recent research showed that DFOS were applicable in the presence of fiber-coating interface 

debonding [52, 53], and the interface debonding showed benefits for fiber optic sensors [54]. 

Figure 2.4.1 shows a fiber optic cable embedded in a matrix subject to tensile forces. As the matrix 

is cracked, debonding occurs between the fiber and protective coating. The stresses in the fiber are 

re-distributed over a debonding length along the fiber to accommodate the localized deformation 

at the crack opening, thus reducing the peak tensile stress in the fiber and protecting the fiber from 

rupture [55]. The debonding helps avoid rupture of DFOS crossing cracks [52, 56]. Debonding is 

essential for using DFOS in structural health monitoring because the occurrence of discontinuity 

such as cracks [52, 56] and delamination [57] in host structures is unavoidable in practice. 

 
Figure 2.4.1. Debonding at fiber-coating interface to avoid the rupture of DFOS across a crack. 

Currently, there is lack of knowledge on the fiber-coating interfacial behavior [48]. Previous 

research on the interfacial strain transfer of fiber optic sensors focused on the elastic stage, lacking 

consideration of interfacial debonding. The strain transfer of a fused silica fiber with polymeric 

coating was studied in references [24-26]. It was assumed that the fused silica fiber was exposed 

to constant shear stress at the fiber-coating interface when debonding occurred [48]. However, the 

derived strain distributions in fused silica fibers were inconsistent with the strain distributions 

measured from high-resolution distributed sensors [27]. Multiple challenges have been identified 

from previous research: (1) The fiber-coating interfacial behavior is unclear, hindering accurate 

interpretation of sensor data. (2) It is difficult to determine the interfacial properties of sensors. 

Existing research on the interface laws relies on trial-and-error methods with limited efficiency 

and accuracy. The parameters were manually selected in references [58, 59]. When there are many 

parameters, it will be challenging to obtain parameters using trial-and-error methods. In a nutshell, 

the interfacial bond-slip behavior of optical fibers is still unclear. When a distributed sensor is used 

to measure strains, the following questions need to be answered: (1) When will debonding be 

initiated between the fiber and coating? (2) How will the debonding propagate at the interface? (3) 

How will the debonding affect the strain distribution in fused silica fiber under the strain transfer 

effect? These knowledge gaps have stalled wider applications of distributed sensors because it is 

unknown how to properly interpret the distributed strain sensing data in the presence of cracks. 
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Motivated by the challenges, this research has three main objectives: (1) to develop a unified 

cohesive interface law (CIL) and a mechanical model to describe the interfacial behaviors; (2) to 

understand the fiber-coating interfacial behavior for DFOS; and (3) to utilize DFOS to measure 

the strain distributions in fused silica fiber in presence of interfacial debonding. To this end, this 

research performed a mechanical analysis on the fiber-coating interface based on the CIL and 

intrinsically linked the CIL to the force-slip results in the fiber pullout process. The link was then 

used to calibrate the parameters of the CIL perform through a metaheuristic inverse analysis. Strain 

distributions in the fused silica fiber were directly measured using a fully DFOS technology. 

The novelties of this research include three aspects: (1) This research proposes a unified CIL 

to describe the fiber-matrix interface and derived closed-form solutions. (2) This research presents 

a metaheuristic inverse analysis to enable automatic determination of interfacial parameters. (3) 

The proposed CIL and analytical solutions are validated by measurements from DFOS. A unique 

feature of this research is that the research on interface mechanics and DFOS is integrated via 

metaheuristic inverse analysis.  

2.4.2. Methods 

2.4.2.1. Framework 

Figure 2.4.2 shows the research framework. The black arrows show the flow of solving the 

problems in previous research, and the interface law is the key to addressing the challenges. The 

interface law is evaluated via fiber pullout response, and the relation is established through a 

forward mechanical analysis. This research presents a unified CIL and proposes to determine the 

interface law using fiber pullout test through metaheuristic inverse analysis.  

 

Figure 2.4.2. Framework integrating forward analysis, inverse analysis, and DFOS for strains and cracks. 

With the interface law, on one hand, the interface law is utilized to interpret the bond-slip 

behavior of the fiber-coating interface for fiber optic sensors, thus enabling DFOS to measure 

cracks in presence of interfacial debonding. The interface law is utilized to predict the strain 

distributions in fused silica fiber during the fiber pullout process, and the prediction results are 

evaluated using a DFOS. On the other hand, the proposed CIL is independent of the specific 

materials and applicable to different types of composites to predict mechanical properties of the 

unknown fiber-reinforced interface, as marked by the green arrows.  
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2.4.2.2. Mechanical analysis 

2.4.2.2.2. Governing equation 

Figure 2.4.3 shows an infinitesimal segment of a fiber embedded in a host matrix, which can 

be the adhesive (e.g., epoxy) used to attach the fiber to the surface of a pipe. The representative 

types of matrices for structures include the cementitious matrix such as mortar and the polymetric 

matrix such as epoxy resin. The optical fiber is composed of a fused silica fiber core and polymeric 

coating. The coating of the optical fiber is in direct contact with the matrix.  

 

Figure 2.4.3. Infinitesimal segment of fiber embedded in a matrix and subjected to a pullout force. 

When the matrix is fixed, the fused silica fiber is subjected to a pullout force P. The length 

of the optical fiber embedded in the matrix is ℓ (embedment length), and the diameter of the fused 

silica fiber core is 𝐷𝑓. The axial stress in the fiber core is 𝜎𝑓(𝑥), where 𝑥 is the coordinate along 

the fiber length. The interfacial slip between fiber core and coating is 𝑠. The elastic modulus and 

section area of the representative types of host matrix for engineering structures are often much 

larger than those of the fiber core and coating. Therefore, the matrix deformation is neglected. 

Since the interfacial slip varies along the fiber length, 𝑠 is written as 𝑠(𝑥). The slip distances at the 

free end and the loaded end of the matrix are respectively denoted as 𝑠𝐹 = 𝑠(𝑥 = 0) and 𝑠𝐺 =

𝑠(𝑥 = ℓ). The shear stress at the fiber-coating interface is a function of 𝑠 and expressed as 𝜏(𝑠).  

The equilibrium equation of the fused silica fiber along x direction is expressed as: 

𝜎𝑓(𝑥) ∙ 𝐴𝑓 + 𝜏(𝑠)𝑑𝑥 ∙ 𝑝𝑓 = [𝜎𝑓(𝑥) + 𝑑𝜎𝑓(𝑥)] ∙ 𝐴𝑓 (2.4.1a) 

𝜎𝑐(𝑥) ∙ 𝐴𝑐 = 𝜏(𝑠)𝑑𝑥 ∙ 𝑝𝑓 + [𝜎𝑐(𝑥) + 𝑑𝜎𝑐(𝑥)] ∙ 𝐴𝑐 (2.4.1b) 

where 𝜎𝑐(𝑥) and 𝐴𝑐 are the axial stress in the coating and the cross-sectional area of coating, 

respectively; 𝐴𝑓 and 𝑝𝑓 are the cross-sectional area and perimeter of fiber core, respectively, which 

are expressed as: 

𝐴𝑓 =
1

4
𝜋𝐷𝑓

2 (2.4.2a) 
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𝑝𝑓 = 𝜋𝐷𝑓 (2.4.2b) 

Eq. (2.4.1) is rewritten as: 

𝑑𝜎𝑓(𝑥)

𝑑𝑥
=
𝑝𝑓

𝐴𝑓
𝜏(𝑠) (2.4.3a) 

𝑑𝜎𝑐(𝑥)

𝑑𝑥
= −

𝑝𝑓

𝐴𝑐
𝜏(𝑠) (2.4.3b) 

According to the Hooke’s Law, the relationship between the normal stress and strain along 

the fiber length is expressed in Eq. (2.4.4): 

𝜎𝑓(𝑥) = 𝐸𝑓𝜀𝑓(𝑥) = 𝐸𝑓
𝑑𝑢𝑓(𝑥)

𝑑𝑥
 (2.4.4a) 

𝜎𝑐(𝑥) = 𝐸𝑐𝜀𝑐(𝑥) = 𝐸𝑐
𝑑𝑢𝑐(𝑥)

𝑑𝑥
 (2.4.4b) 

𝑠(𝑥) = 𝑢𝑓(𝑥) − 𝑢𝑐(𝑥) (2.4.4c) 

𝐸𝑐 =
𝐸𝑐𝑖𝐴𝑐𝑖 + 𝐸𝑐𝑜𝐴𝑐𝑜
𝐴𝑐𝑖 + 𝐴𝑐𝑜

 (2.4.4d) 

where 𝐸𝑓, 𝐸𝑐𝑖, and 𝐸𝑐𝑜 are the elastic moduli of the fiber core, inner coating, and outer coating, 

respectively; 𝑢𝑓(𝑥) and 𝑢𝑐(𝑥) are the displacement of fiber core and coating layers, respectively; 

𝐴𝑐𝑖 and 𝐴𝑐𝑜 are the cross-sectional areas of the inner and outer coatings, respectively. 

Substituting Eq. (2.4.4) into Eq. (2.4.3) and Eq. (2.4.1), the governing equation is obtained: 

𝑑2𝑠(𝑥)

𝑑𝑥2
− 𝜆2𝜏(𝑠) = 0 (2.4.5a) 

𝑑𝑠(𝑥)

𝑑𝑥
= 𝜑𝜀𝑓(𝑥) (2.4.5b) 

𝑤𝑐 = 2[𝑢𝑓(ℓ) − 𝑢𝑓(0)]  =
2

𝜑
(𝑠𝐺 − 𝑠𝐹) = 2∫ 𝜀𝑓(𝑥)𝑑𝑥

ℓ

0

 (2.4.5c) 

where 𝜆 = √
𝑝𝑓∙𝜑

𝐸𝑓𝐴𝑓
 ; 𝜑 = (

𝐴𝑓𝐸𝑓

𝐴𝑐𝐸𝑐
+ 1); and 𝑤𝑐 refers to the crack width. 

The boundary conditions at the free end are: 

𝜀𝑓(𝑥 = 0) = 0 (2.4.6a) 

𝑠(𝑥 = 0) = 𝑠𝐹 (2.4.6b) 

The axial stress in the fiber core at the loaded end is expressed as: 

𝜀𝑓(𝑥 = ℓ) =
𝑃

𝐴𝑓𝐸𝑓
 (2.4.7) 

The governing equations describe the relationship between the interfacial slip and the shear 

stress [60]. Eq. (2.4.5c) provides a theoretical foundation for the quantification of crack widths 
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using the interfacial slip or integration of the strain distribution in vicinity of the crack. The 

interfacial bond-slip law is needed to solve the governing equation of the interface law. 

2.4.2.2.3. Unified CIL 

This subsection presents a CIL to unify the bond-slip models of shear-softening and shear-

hardening interfaces, as shown in Figure 2.4.4. The CIL has three main stages: (i) a linear-elastic 

stage, (ii) a yielding stage, and (iii) a debonding stage. In the linear-elastic stage, as the slip 

increases from 0 to 𝛼𝑠𝑓 (0 < 𝛼 < 1), the shear stress linearly increases from 0 to 𝛽𝜏𝑓. In the 

yielding stage, as the slip increases from 𝛼𝑠𝑓 to 𝑠𝑓, the shear stress linearly changes from 𝛽𝜏𝑓 to 

𝜏𝑓. If 𝛽 > 1, the CIL describes a linear softening behavior, meaning that the interfacial shear stress 

deceases in the yielding stage. If 𝛽 = 1, the CIL describes a constant behavior. If 0 < 𝛽 < 1, the 

CIL describes a linear hardening behavior, meaning that the interfacial shear stress increases in the 

yielding stage. Finally, after the slip is larger than 𝑠𝑓, the debonding stage occurs, and the shear 

stress decreases with the interface slip exponentially. 

   
(a) (b) (c) 

Figure 2.4.4. Illustration of CIL: (a) softening interface (𝛽 > 1); (b) constant interface (𝛽 = 1); and (c) 

hardening interface (0 < 𝛽 < 1). 

The CIL is expressed as: 

𝜏(𝑠) =

{
  
 

  
 
𝛽𝜏𝑓

𝛼𝑠𝑓
𝑠                                           , 0 ≤ 𝑠 ≤ 𝛼𝑠𝑓

𝜏𝑓

1 − 𝛼
[
(1 − 𝛽)𝑠

𝑠𝑓
+ (𝛽 − 𝛼)] , 𝛼𝑠𝑓 < 𝑠 ≤ 𝑠𝑓

𝜏𝑓𝑒
−𝜏𝑓(𝑠−𝑠𝑓)

𝑘                               , 𝑠𝑓 ≤ 𝑠

 (2.4.8) 

where 𝜏𝑓, 𝑠𝑓, 𝛼, 𝛽, and 𝑘 are the unknown parameters of the CIL to be calibrated; 𝜏𝑓, 𝑠𝑓, and 𝑘 are 

the bond strength, the slip corresponding to the bond strength, and interfacial fracture energy, 

respectively; 𝛼 and 𝛽 determine the separating point in the linear elastic ascending part of the CIL; 

𝛽 is of crucial importance in the CIL because 𝛽 determines the type of the interface. With equation 

(2.4.8), the governing equation shown in Eq. (2.4.5) has been solved. 

2.4.2.3. Metaheuristic inverse analysis 

This section presents the metaheuristic inverse analysis method to accurately calibrate the 

parameters of the CIL, as illustrated in Figure 2.4.5. Past research showed that the force-slip curves 
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of pullout tests were determined when a CIL was given through a forward analysis. However, the 

calibration of the model parameters is an inverse problem, which was usually solved through the 

trial-and-error method. Nevertheless, the trial-and-error method is inefficient and inaccurate, 

especially when there are multiple parameters that involve coupling effects. Inaccurate model 

parameters highly affect the analysis accuracy of interfacial behaviors.  

 

Figure 2.4.5. Comparison of the forward and inverse problems of the fiber pullout behavior. 

This study proposes to solve the inverse problem using the hypotrochoid spiral algorithm. A 

set of initial values are assigned to the model. With the initial values, the analytical solutions of 

force-slip data are calculated based on the forward analysis. The calculation results are compared 

with the fiber pullout test results. The discrepancy between the calculation results and test results 

are obtained, and the hypotrochoid spiral algorithm is used to minimize the discrepancy by 

optimizing the model parameters. The objective function in the minimization is defined as 𝑓(𝑋): 

𝑓(𝑋) =
1

𝑛
∑RMSE[𝑃(ℓ𝑖, 𝑋), 𝛶𝑖(𝑠𝐺𝑖)

𝑛

𝑖=1

] (2.4.9) 

where 𝑋 is the vector composed of the five parameters of CIL; the fiber embedded in the matrix is 

divided into 𝑛 segments, and ℓ𝑖 is the 𝑖-th length; 𝑃(ℓ𝑖, 𝑋) is the calculated pullout force 

corresponding to ℓ𝑖; 𝑠𝐺𝑖 is the slip corresponding to ℓ𝑖; 𝛶𝑖 is a fitted model to estimate the 

magnitude of the tested pullout force; and the root mean square error (RMSE) is defined as:  

RMSE(𝑃, 𝛶𝑖) = √
∑ (𝑝𝑖 − 𝜈𝑖)

2𝑛
𝑖=1

𝑛
 (2.4.10) 

where P = [p1, p2, …, pN] and A = [𝜈1, 𝜈2, …, 𝜈N] are the vectors for the calculated and tested 

values of the pullout forces, respectively. 

The coefficient of determination (R2) and the maximum absolute error (MAE) are also used 

to evaluate the accuracy of the inverse analysis: 

R2 = 1 −
∑ (𝑝𝑖 − 𝜈𝑖)

2𝑛
𝑖=1

∑ [𝜈𝑖 −mean(𝜈𝑖)]2
𝑛
𝑖=1

  (2.4.11a) 
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MAE(𝑃, 𝛶𝑖) =
1

𝑛
∑|𝑝𝑖 − 𝜈𝑖|

𝑛

𝑖=1

 (2.4.11b) 

The optimization algorithm was executed for 20 independent runs. The number of search 

agents was set to 50, and the optimization process was terminated when the number of iterations 

reached 500. After the five parameters 𝛼, 𝛽, 𝜏𝑓, 𝑠𝑓, and 𝑘 are determined through the inverse 

analysis, the CIL is determined and used to derive the force-slip curve, the slip distribution and 

shear stress distribution at the fiber-matrix interface, as well as the axial strain distribution of the 

fiber at an arbitrary slip level. 

2.4.3. Analytical studies 

Previous research showed that the fiber pullout process and the failure mode were dependent 

on the fiber length (ℓ) embedded in the matrix, and there was a critical embedment length (ℓ0) for 

the fiber. The critical embedment length is the minimum length necessary to completely activate 

the whole CIL along embedded fiber length (ℓ) in the matrix.  

 
Figure 2.4.6. Five main stages of the fiber-matrix damage in the single fiber pullout process. 

Based on the critical embedment length (ℓ0), the pullout behavior is investigated in two cases: 

(1) Case 1: the embedment length is longer than the critical length (ℓ > ℓ0). The pullout process 

in Case 1 included five stages, which are the elastic stage, elastic-yielding stage, elastic-yielding-

debonding stage, yielding-debonding stage, and debonding stage. (2) Case 2: the embedment 

length is shorter than the critical length (ℓ < ℓ0). The pullout process in Case 2 included five 

stages, which are the elastic stage, elastic-yielding stage, yielding stage, yielding-debonding stage, 
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and debonding stage. The difference between the two cases is that the elastic-yielding-debonding 

stage in Case 1 is replaced by the yielding stage in Case 2.  

Long embedment lengths enable the complete development of the interface capacity. Short 

embedment lengths undergo lower strain and load levels. Therefore, evaluation of the critical 

embedment length ℓ0 is critical, considering that the failure mode of the fiber pullout test is fiber 

slip. Figure 2.4.6 shows the five main stages of the fiber-matrix interface damage in the single 

fiber pullout process. The mechanical behavior is related to the bonding length (ℓ), which is equal 

to the embedment length of the optical fiber in the matrix. 

2.4.3.1. Case 1: Long embedment length (ℓ > ℓ0) 

With the CIL in Figure 2.4.4, the governing equation was solved to determine the slip, shear 

stress, and axial strain distributions along the embedded fiber length, as summarized in Table 2.4.1. 

ℓ𝑒𝑙 and ℓ𝑦𝑑 are the elastic length and the yielding length, respectively, which are determined by 

the boundary conditions. The constants 𝜆1, 𝜆2, 𝜆3 and 𝐶1 to 𝐶6 were used to simplify the formulae.  

The elastic, yielding, and debonding stages occur at the fiber-coating interface simultaneously 

only when the embedment length (ℓ) is longer than the critical embedment length (ℓ0): 

ℓ0 =

{
 
 

 
 
1

𝜆2
cosh−1 (

1

𝛽
) , 𝛽 ≠ 1

1

𝜆
√
2(1 − 𝛼)𝑠𝑓

𝜏𝑓
, 𝛽 = 1

 (2.4.18) 

The elastic stage (Stage I) ends when 𝜏(ℓ) = 𝛽𝜏𝑓. The load and the corresponding loaded end 

slip at the end of the elastic stage are: 

𝑃𝐴 = 𝐴𝑓𝐸𝑓
1

𝜑
𝜆1 tanh(𝜆1ℓ)𝛼𝑠𝑓 (2.4.19a) 

𝑠𝐺,𝐴 = 𝛼𝑠𝑓 (2.4.19b) 

The elastic-yielding stage (Stage II) ends when 𝜏(ℓ) = 𝜏𝑓. The load and the corresponding 

loaded end slip at the end of the elastic-yielding stage are: 

𝑃𝐶 =

{
 
 

 
 𝐴𝑓𝐸𝑓

1

𝜑
𝜆2
(1 − 𝛼)𝛽𝑠𝑓

1 − 𝛽
sinh(𝜆2ℓ)  , 𝛽 ≠ 1

𝐴𝑓𝐸𝑓
1

𝜑
𝜆2𝜏𝑓ℓ                               , 𝛽 = 1

 (2.4.20a) 

𝑠𝐺,𝐶 =

{
 

 
(1 − 𝛼)𝛽𝑠𝑓

1 − 𝛽
cosh(𝜆2ℓ) −

𝛽 − 𝛼

1 − 𝛽
𝑠𝑓 , 𝛽 ≠ 1

1

2
𝜆2𝜏𝑓ℓ

2 + 𝛼𝑠𝑓                                  , 𝛽 = 1

 (2.4.20b) 

The elastic-yielding-debonding stage (Stage III) ends when 𝜏(0) = 𝛽𝜏𝑓. The load and the 

loaded end slip at the end of elastic-yielding-debonding stage are: 
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𝑃𝐷 = 𝐴𝑓𝐸𝑓
1

𝜑

2𝑘

𝜏𝑓
𝜆3√𝐶1 tanh[𝜆3√𝐶1(ℓ − 𝐶2)],       (when ℓ𝑦𝑑 = ℓ0) (2.4.21a) 

𝑠𝐺,𝐷 =
2𝑘

𝜏𝑓
ln{cosh[𝜆3√𝐶3(ℓ − 𝐶4)]} −

𝑘

𝜏𝑓
ln(𝐶3),    (when ℓ𝑦𝑑 = ℓ0)        (2.4.21b) 

The yielding-debonding stage (Stage IV) ends when 𝜏(0) = 𝜏𝑓. The load and the 

corresponding loaded end slip at the end of the elastic stage are shown in Eq. (2.4.22). 

Table 2.4.1. Analytical solutions for long embedment length (ℓ < ℓ0) 

Stage Analytical solutions 

I 𝑠(𝑥) = 𝑠𝐹 cosh(𝜆1𝑥) (2.4.13a) 

 
𝜏(𝑥) =

𝛽𝜏𝑓

𝛼𝑠𝑓
𝑠𝐹 cosh(𝜆1𝑥) (2.4.13b) 

 
𝜀𝑓(𝑥) =

1

𝜑
𝜆1𝑠𝐹 sinh(𝜆1𝑥) (2.4.13c) 

II The solution at the region of 0 ≤ 𝑥 ≤ ℓ𝑒𝑙:  

 
𝑠(𝑥) = 𝛼𝑠𝑓

cosh(𝜆1𝑥)

cosh(𝜆1ℓ𝑒𝑙)
 (2.4.14a) 

 
𝜏(𝑥) = 𝛽𝜏𝑓

cosh(𝜆1𝑥)

cosh(𝜆1ℓ𝑒𝑙)
 (2.4.14b) 

 
𝜀𝑓(𝑥) =

1

𝜑
𝜆1𝛼𝑠𝑓

sinh(𝜆1𝑥)

cosh(𝜆1ℓ𝑒𝑙)
 (2.4.14c) 

 The solution at the region of ℓ𝑒𝑙 ≤ 𝑥 ≤ ℓ:  

 𝑠(𝑥)

=

{
 

 
(1 − 𝛼)𝛽𝑠𝑓

1 − 𝛽
cosh[𝜆2(ℓ𝑒𝑙 − 𝑥)] −

𝜆1𝛼𝑠𝑓

𝜆2
tanh(𝜆1ℓ𝑒𝑙) sinh[𝜆2(ℓ𝑒𝑙 − 𝑥)] −

𝛽 − 𝛼

1 − 𝛽
𝑠𝑓  , 𝛽 ≠ 1

1

2
𝜆2𝜏𝑓(ℓ𝑒𝑙 − 𝑥)

2 − 𝜆1𝛼𝑓 tanh(𝜆1ℓ𝑒𝑙) ∙ (ℓ𝑒𝑙 − 𝑥) + 𝛼𝑠𝑓                                       , 𝛽 = 1

 
(2.4.14d) 

 

𝜏(𝑥) = {
𝛽𝜏𝑓 cosh[𝜆2(ℓ𝑒𝑙 − 𝑥)] −

𝛼(1 − 𝛽)𝜆1𝜏𝑓
(1 − 𝛼)𝜆2

tanh(𝜆1ℓ𝑒𝑙) sinh[𝜆2(ℓ𝑒𝑙 − 𝑥)]  , 𝛽 ≠ 1

𝜏𝑓                                                                                                                               , 𝛽 = 1

 (2.4.14e) 

 𝜀𝑓(𝑥)

=

{
 
 

 
 1

𝜑
𝜆1𝛼𝑠𝑓 tanh(𝜆1ℓ𝑒𝑙) cosh[𝜆2(ℓ𝑒𝑙 − 𝑥)] −

1

𝜑
𝜆2
(1 − 𝛼)𝛽𝑠𝑓

1 − 𝛽
sinh[𝜆2(ℓ𝑒𝑙 − 𝑥)]  , 𝛽 ≠ 1

−
1

𝜑
𝜆2𝜏𝑓(ℓ𝑒𝑙 − 𝑥) +

1

𝜑
𝜆1𝛼𝑓 tanh(𝜆1ℓ𝑒𝑙)                                                               , 𝛽 = 1

 
(2.4.14f) 

III The solution at the region of 0 ≤ 𝑥 ≤ ℓ𝑒𝑙:  

 
𝑠(𝑥) = 𝛼𝑠𝑓

cosh(𝜆1𝑥)

cosh(𝜆1ℓ𝑒𝑙)
 (2.4.15a) 

 
𝜏(𝑥) = 𝛽𝜏𝑓

cosh(𝜆1𝑥)

cosh(𝜆1ℓ𝑒𝑙)
 (2.4.15b) 

 
𝜀𝑓(𝑥) =

1

𝜑
𝜆1𝛼𝑠𝑓

sinh(𝜆1𝑥)

cosh(𝜆1ℓ𝑒𝑙)
 (2.4.15c) 

 The solution at the region of ℓ𝑒𝑙 ≤ 𝑥 ≤ ℓ𝑒𝑙 + ℓ𝑦𝑑:  

 

𝑠(𝑥) =

{
 
 

 
 
(1 − 𝛼)𝛽𝑠𝑓

1 − 𝛽

sinh[𝜆2(ℓ𝑒𝑙 + ℓ𝑦𝑑 − 𝑥)]

sinh(𝜆2ℓ𝑦𝑑)
−
(1 − 𝛼)𝑠𝑓

1 − 𝛽

sinh[𝜆2(ℓ𝑒𝑙 − 𝑥)]

sinh(𝜆2ℓ𝑦𝑑)
−
𝛽 − 𝛼

1 − 𝛽
𝑠𝑓 , 𝛽 ≠ 1

1

2
𝜆2𝜏𝑓(ℓ𝑒𝑙 − 𝑥)(ℓ𝑒𝑙 + ℓ𝑦𝑑 − 𝑥) −

(1 − 𝛼)𝑠𝑓

ℓ𝑦𝑑
(ℓ𝑒𝑙 − 𝑥) + 𝛼𝑠𝑓 , 𝛽 = 1

 

 

(2.4.15d) 
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Table 2.4.1. Analytical solutions for long embedment length (ℓ < ℓ0) 

Stage Analytical solutions  

 

𝜏(𝑥) = {
𝛽𝜏𝑓

sinh[𝜆2(ℓ𝑒𝑙 + ℓ𝑦𝑑 − 𝑥)]

sinh(𝜆2ℓ𝑦𝑑)
− 𝜏𝑓

sinh[𝜆2(ℓ𝑒𝑙 − 𝑥)]

sinh(𝜆2ℓ𝑦𝑑)
, 𝛽 ≠ 1

𝜏𝑓                                                                                            , 𝛽 = 1

 (2.4.15e) 

 𝜀𝑓(𝑥)

=

{
 
 

 
 −

1

𝜑
𝜆2
(1 − 𝛼)𝛽𝑠𝑓

1 − 𝛽

cosh[𝜆2(ℓ𝑒𝑙 + ℓ𝑦𝑑 − 𝑥)]

sinh(𝜆2ℓ𝑦𝑑)
+
1

𝜑
𝜆2
(1 − 𝛼)𝑠𝑓

1 − 𝛽

cosh[𝜆2(ℓ𝑒𝑙 − 𝑥)]

sinh(𝜆2ℓ𝑦𝑑)
, 𝛽 ≠ 1

−
1

𝜑
𝜆2𝜏𝑓(ℓ𝑒𝑙 − 𝑥) −

1

2

1

𝜑
𝜆2𝜏𝑓ℓ𝑦𝑑 + 𝜑

(1 − 𝛼)𝑠𝑓

ℓ𝑦𝑑
                     , 𝛽 = 1

 
(2.4.15f) 

 The solution at the region of ℓ𝑒𝑙 + ℓ𝑦𝑑 ≤ 𝑥 ≤ ℓ:  

 
𝑠(𝑥) =

2𝑘

𝜏𝑓
ln{cosh[𝜆3√𝐶1(𝑥 − 𝐶2)]} −

𝑘

𝜏𝑓
ln(𝐶1)  (2.4.15g) 

 

𝜏(𝑥) =
𝐶1𝜏𝑓 ∙ 𝑒

𝜏𝑓𝑠𝑓
𝑘

cosh2[𝜆3√𝐶1(𝑥 − 𝐶2)]
 (2.4.15h) 

 
𝜀𝑓(𝑥) =

1

𝜑

2𝑘

𝜏𝑓
𝜆3√𝐶1 tanh[𝜆3√𝐶1(𝑥 − 𝐶2)] (2.4.15i) 

IV The solution at the region of 0 ≤ 𝑥 ≤ ℓ𝑦𝑑:  

 

𝑠(𝑥) =

{
 
 

 
 1 − 𝛼

1 − 𝛽
𝑠𝑓

cosh(𝜆2𝑥)

cosh(𝜆2ℓ𝑦𝑑)
−
𝛽 − 𝛼

1 − 𝛽
𝑠𝑓 , 𝛽 ≠ 1

1

2
𝜆2𝜏𝑓(𝑥

2 − ℓ𝑦𝑑
2) + 𝑠𝑓                  , 𝛽 = 1

 (2.4.16a) 

 

𝜏(𝑥) = {
𝜏𝑓

cosh(𝜆2𝑥)

cosh(𝜆2ℓ𝑦𝑑)
, 𝛽 ≠ 1

𝜏𝑓                         , 𝛽 = 1

 (2.4.16b) 

 

𝜀𝑓(𝑥) =

{
 
 

 
 1

𝜑
𝜆2
1 − 𝛼

1 − 𝛽
𝑠𝑓

sinh(𝜆2𝑥)

cosh(𝜆2ℓ𝑦𝑑)
 , 𝛽 ≠ 1

1

𝜑
𝜆2𝜏𝑓𝑥                                    , 𝛽 = 1

 (2.4.16c) 

 The solution at the region of ℓ𝑦𝑑 ≤ 𝑥 ≤ ℓ:  

 
𝑠(𝑥) =

2𝑘

𝜏𝑓
ln{cosh[𝜆3√𝐶3(𝑥 − 𝐶4)]} −

𝑘

𝜏𝑓
ln(𝐶3)  (2.4.16d) 

 

𝜏(𝑥) =
𝐶3𝜏𝑓 ∙ 𝑒

𝜏𝑓𝑠𝑓
𝑘

cosh2[𝜆3√𝐶3(𝑥 − 𝐶4)]
 (2.4.16e) 

 
𝜀𝑓(𝑥) =

1

𝜑

2𝑘

𝜏𝑓
𝜆3√𝐶3 tanh[𝜆3√𝐶3(𝑥 − 𝐶4)]  (2.4.16f) 

V 𝑠(𝑥) =
2𝑘

𝜏𝑓
ln{cosh[𝜆3√𝐶5(𝑥 − 𝐶6)]} −

𝑘

𝜏𝑓
ln(𝐶5)  (2.4.17a) 

 

𝜏(𝑥) =
𝐶5𝜏𝑓 ∙ 𝑒

𝜏𝑓𝑠𝑓
𝑘

cosh2[𝜆3√𝐶5(𝑥 − 𝐶6)]
 (2.4.17b) 

 
𝜀𝑓(𝑥) =

1

𝜑
𝐸𝑓
2𝑘

𝜏𝑓
𝜆3√𝐶5 tanh[𝜆3√𝐶5(𝑥 − 𝐶6)]  (2.4.17c) 
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𝑃𝐸 = 𝐴𝑓𝐸𝑓
1

𝜑

2𝑘

𝜏𝑓
𝜆3𝑒

−(
𝜏𝑓𝑠𝑓
2𝑘

)
tanh (𝜆3𝑒

−(
𝜏𝑓𝑠𝑓
2𝑘

)
ℓ) (2.4.22a) 

𝑠𝐺,𝐸 =
2𝑘

𝜏𝑓
ln [cosh (𝜆3𝑒

−(
𝜏𝑓𝑠𝑓
2𝑘

)
ℓ)] + 𝑠𝑓  (2.4.22b) 

2.4.3.2. Case 2: Short embedment length (ℓ < ℓ0) 

When the embedment length of fiber is shorter than the critical embedment length (ℓ < ℓ0), 

the elastic-yielding-debonding stage in Case 1 is replaced by a yielding stage. The other stages in 

Cases 1 and 2 are the same, so they are not duplicated. This section only elaborates the yielding 

stage (Stage III), and the corresponding formulae of slip, shear stress, and axial strain distributions 

along the embedded fiber length are summarized in Table 2.4.2.  

Table 2.4.2. Analytical solutions for short embedment length (ℓ < ℓ0) 

Stage Analytical solutions  

III 𝑠(𝑥) =

{
 

 (𝑠𝐹 +
𝛽 − 𝛼

1 − 𝛽
𝑠𝑓) cosh(𝜆2𝑥) −

𝛽 − 𝛼

1 − 𝛽
𝑠𝑓  , 𝛽 ≠ 1

1

2
𝜆2𝜏𝑓𝑥

2 + 𝑠𝐹                                       , 𝛽 = 1

 (3.23a) 

 

𝜏(𝑥) = {
[
(1 − 𝛽)𝜏𝑓
(1 − 𝛼)𝑠𝑓

𝑠𝐹 +
𝛽 − 𝛼

1 − 𝛼
𝜏𝑓] cosh(𝜆2𝑥) , 𝛽 ≠ 1

𝜏𝑓                                                                , 𝛽 = 1

 (3.23b) 

 

𝜀𝑓(𝑥) = {
𝜑𝜆2 (𝑠𝐹 +

𝛽 − 𝛼

1 − 𝛽
𝑠𝑓) sinh(𝜆2𝑥) , 𝛽 ≠ 1

𝜑𝜆2𝜏𝑓𝑥                                          , 𝛽 = 1

 (3.23c) 

 

The yielding stage (Stage III) is ended when 𝑠𝐺,𝐷 = 𝑠𝑓. The corresponding load at the end of 

the yielding stage is: 

𝑃𝐷 = {
𝜑𝐴𝑓𝐸𝑓 (

1 − 𝛼

1 − 𝛽
) 𝑠𝑓𝜆2 tanh(𝜆2ℓ) , 𝛽 ≠ 1

𝜑𝐴𝑓𝐸𝑓𝜆
2𝜏𝑓ℓ                               , 𝛽 = 1

 (2.4.24) 

 

2.4.3.3. Analytical results 

Based on the unified CIL and analytical solutions, the shear stress distributions along the 

interface are obtained by solving the governing equation at each loading stage. Figure 2.4.7 

illustrates the evolution of the interfacial shear stress when the embedment length is longer than 

the critical embedment length (ℓ > ℓ0).  

The evolution of the interfacial shear stresses for a long embedment length is characterized 

by five stages. In the first stage, the load-displacement response is linear elastic. The shear stress 

distributions along the interface are shown in Figure 2.4.7(a) and Figure 2.4.7(b). At the end of the 

elastic stage, a portion of the interface enters the yielding stage, while the remaining portion is still 

in the elastic stage. The corresponding shear stress distributions along the interface are depicted in 

Figure 2.4.7(c) and Figure 2.4.7(d). Specifically, the parameter 𝛽 has a significant effect on the 
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shear stress distribution. When 𝛽 > 1, the shear stress distribution shows a softening effect for the 

portion of interface in the yielding stage; when 𝛽 = 1, the shear stress distribution is constant; and 

when 0 < 𝛽 < 1, the shear stress distribution shows a hardening effect. At the end of the elastic-

yielding stage, a portion of the interface enters the debonding stage, while the remaining part is 

still in the elastic-yielding stage. The corresponding shear stress distributions along the interface 

are depicted in Figure 2.4.7(e) and Figure 2.4.7(f). In the elastic-yielding-debonding stage, the 

applied force increases due to the debonding at the interface. At the end of the elastic-yielding-

debonding stage, there is no elastic stage at the interface. The shear stress distributions are shown 

in Figure 2.4.7(g) and Figure 2.4.7(h). At the end of the yielding-debonding stage, the shear stress 

is equal to the bond strength (𝜏𝑓) at the free end. Finally, Figure 2.4.7(i) depicts the shear stress 

distribution at debonding stage. 

 

 

 

 

 

Figure 2.4.7. Evolution of interfacial shear stresses for a long embedment length and propagation of 

debonding: (a, b) elastic stage; (c, d) elastic-yielding stage; (e, f) elastic-yielding-debonding stage; (g, 

h) yielding-debonding stage; and (i) debonding stage. I, II and III represent elastic, yielding and 

debonding stress state, respectively. 
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Figure 2.4.7. Evolution of interfacial shear stresses for a long embedment length and propagation of 

debonding: (a, b) elastic stage; (c, d) elastic-yielding stage; (e, f) elastic-yielding-debonding stage; (g, h) 

yielding-debonding stage; and (i) debonding stage. I, II and III represent elastic, yielding and debonding 

stress state, respectively. 

When the embedment length is shorter than the critical embedment length (ℓ < ℓ0), the shear 

stress distribution at the end of the elastic-debonding stage is shown in Figure 2.4.8(a). There is 

no elastic stage along the fiber, and the interface is in the softening stage along the whole fiber 

length. At the end of the softening phase, the shear distribution is shown in Figure 2.4.8(b). Then, 

the shear stress distribution evolves to the yielding-debonding stage. 
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Figure 2.4.8. Evolution of interfacial shear stress distribution of yielding stage for a short embedment 

length and propagation of debonding. 

2.4.4. Implementation 

The presented interface law and analysis is implemented into optical fibers that were used to 

validate the approaches. The validation of the approaches took advantage of the unique sensing 

capability of the DFOS. The proposed CIL and derivation of analytical formulae are independent 

of specific materials (e.g., fiber optic cables) and applicable to other composites.  

2.4.4.1. Pullout tests 

Single fiber pullout tests were carried out as shown in Figure 2.4.9(a). In each test, an optical 

fiber was attached using adhesive (ethyl cyanoacrylate super glue) on two aluminum plates (length 

× width × thickness: 200 mm × 30 mm × 5 mm). The coating of the fiber was stripped off using a 

stripper at crack position. The aluminum plate was gripped by a low-capacity load frame (load 

capacity: 1 kN; accuracy: ±0.2 N). The embedment fiber length with the coating was ℓ = 160 mm. 

The test was repeated eight times. The embedded silica fiber was pulled out under displacement 

control at a constant rate of 0.5 mm/min. The applied force was measured from the load cell 

embedded in the load frame. The pullout displacement was measured using an extensometer 

attached to the two aluminum plates. Representative results are shown in Figure 2.4.9(b). The 

curves indicate that the pullout behavior is dependent on the embedded fiber length. An 

extensometer measured the relative displacement between the two aluminum plates representing 

the crack width increase. Figure 2.4.9(c) shows the representative strain distribution curves with 

crack width opening. 

It is noted that plate specimens have been utilized in the pull-out testing, rather than using 

steel pipes, because plate specimens were available in the laboratory and easier to handle for 

reliable tests. The availability of the tests using pipe specimens was affected by COVID-19. To 
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avoid delaying the progress, we adopted plate specimens for validating the theoretical studies. The 

validation tests are acceptable because the theoretical analysis does not rely on the specific material 

(e.g., API 5L grade steel, or aluminum) and the specific geometry (e.g., pipe, or plate). The 

validation focuses on mechanical analysis and equation derivation.  

 
(a) 

  
(b) (c) 

Figure 2.4.9. Fiber pullout test: (a) test set-up (b) representative pullout load versus crack width curves; 

and (c) representative experimental strain distribution curves with crack width opening.  

2.4.4.2. Metaheuristic inverse analysis 

The model parameters 𝛼, 𝛽, 𝜏𝑓, 𝑠𝑓, and 𝑘 were determined through the metaheuristic inverse 

analysis based on the fiber pull-out test results. Figure 2.4.10 shows the optimization convergence 

curves for the 20 independent runs of the inverse analysis. The curves indicate that the adopted 

algorithm effectively minimizes the objective function and avoids premature convergence.  

Table 2.4.3 lists the results of the parameters of the presented CIL and performance metrics. 

The results indicate that the force-slip results obtained from the inverse analysis agree with the test 

results. Figure 2.4.11(a) compares the experimental and analytical results of the force-crack width 

curves based on inverse analysis. 
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Figure 2.4.10. Convergence of the hypotrochoid spiral optimization algorithm for 20 independent runs. 

The red line represents the best result, and the gray lines represent the other results. 

Table 2.4.3. Parameters of the bond-slip relationships 

Samples  

(ℓ = 160mm) 

𝑠𝑓 

(mm) 

𝜏𝑓 

(MPa) 
𝛼 𝛽 

𝑘 

(N/mm) 
RMSE R2 MAE 

Exp._1 

1.092 0.1158 0.3689 5.6786 1621.54 

0.1225 0.984 0.0901 

Exp._2 0.1032 0.991 0.0715 

Exp._3 0.1009 0.994 0.0791 

Exp._4 0.1102 0.992 0.0804 

Exp._5 0.1231 0.995 0.1002 

Exp._6 0.1068 0.987 0.0787 

Exp._7 0.1242 0.993 0.1013 

Exp._8 0.1097 0.989 0.0925 

Exp._average 0.1125 0.991 0.0867 

 

2.4.4.3. Distributed fiber optic sensing 

With the model parameters, the mechanical model was used to derive the slip distribution and 

the shear stress distribution at the fiber-coating interface and the strain distribution in the fiber 

along the fiber length at an arbitrary crack width opening. Figure 2.4.11 plots nine selected crack 

width levels at the loaded end, 𝑤𝑐 = [0.05 mm, 0.12 mm, 0.22 mm, 0.32 mm, 0.59 mm, 0.78 mm, 

1.33 mm, 1.89 mm, 2.49 mm], in the pullout force-crack width curve when the embedment length 

is 160 mm. The nine crack width levels were selected to represent nine stages of the pullout 

process. This analytical analysis provides a theoretical foundation for measuring the crack widths 

using the empirical relationship between the magnitude of strain peak measured from DFOS and 

crack width. 
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(a) (b) 

  
(c) (d) 

Figure 2.4.11. Assessment of the analytical solution for nine levels of crack width: (a) the crack widths at 

nine loading levels; (b) comparison of the analytical and experimental results of axial strain distributions; 

(c) slip distributions; and (d) shear stress distributions.  

Figure 2.4.11(b) compares the analysis results of the strain distributions in the fused silica 

fiber against the measurements from the DFOS based on OFDR. The analysis and measurement 

results of the strain distributions agree, indicating that the presented interface law and inverse 

analysis are effective in analyzing the interfacial behavior. The understanding of the interfacial 

behavior enables the operation of DFOS and the interpretation of the sensing data in the presence 

of debonding at the fiber-coating interface. In the presence of cracks, the theoretical formula that 

relates the slip of the optical fiber and the crack opening width is determined according to the 

governing equation Eq. (2.4.5), and the crack width is calculated by the integration of the tensile 

strains in the vicinity of the crack. This analytical analysis also paves the theoretical way to 

quantify the crack widths using strain distributions measured from DFOS, and the developed 

approaches enable accurate interpretation of the results from the DFOS. 

Figure 2.4.11(c) shows the slip distributions along the fiber at different crack width openings. 

The slip reaches the maximum value at the loaded end (𝑥 =  ℓ) and gradually decreases towards 



Page 72 

 

the free end (𝑥 = 0) of the fiber. When the slip is small (𝑠𝐺 < 0.284 mm or 𝑤𝑐 < 0.12 mm), the 

entire interface is elastic. When 𝑠𝐺 increases from 0.284 mm to 1.746 mm (or 0.12 mm < 𝑤𝑐 < 

0.59 mm), the interface is in the elastic-yielding stage. When 𝑠𝐺 increases from 1.746 mm to 7.310 

mm (or 0.59 mm < 𝑤𝑐 < 2.49 mm), the fiber core-cladding interface is in the elastic-yielding-

debonding stage. 

Figure 2.4.11(d) shows the shear stress distributions along the fiber length at different crack 

width openings. When the crack width opening is small (𝑤𝑐 < 0.12 mm), the shear stress reaches 

the maximum value at the loaded end and gradually decreases towards the free end of the fiber. 

When the crack width opening increases from 0.12 mm to 0.59 mm, the maximum shear stress 

reaches the peak shear, the maximum shear stress reaches the peak at the intersection between the 

elastic and yielding sections. The position of maximum shear stress moves toward the free end of 

the embedded section when the crack width opening increases. When the crack width opening is 

larger than 0.59 mm, the loaded end of the embedded section reaches the debonding section, and 

the position of peak shear stress moves further toward the free end of the embedded fiber. 

2.4.5. Summary 

This study presents a unified cohesive interface law to describe the bond-slip behavior of 

fused silica fiber with polymeric coating in the fiber pullout process, performs a mechanical 

analysis on fiber pullout responses based on the presented interface law, develops a metaheuristic 

inverse analysis to calibrate the model parameters, and applies a DFOS technology based on 

optical frequency domain reflectometry to measure the strain distributions in optical fibers. The 

following findings are drawn:  

(1) The presented CIL reasonably reflected the bond-slip behavior for fused silica fiber with 

polymeric coating and has the potential for other types of fiber-matrix interface. With the 

proposed CIL, the mechanical analysis on the fiber-coating interface can establish the 

intrinsic relationship between the CIL and the fiber pullout force-crack width response.  

(2) The parameters of the unified CIL were automatically determined via the metaheuristic 

inverse analysis with high efficiency and accuracy. For the investigated embedment fiber 

lengths, the RMSE is lower than 0.13, R2 is higher than 0.98, and MAE is lower than 0.11.  

(3) The presented method provides reasonable predictions of the slip distribution and shear 

stress distribution at the fiber-coating interface as well as the strain distributions in the 

fused silica fiber. The results of the strain distributions agreed with the strain distributions 

measured from the DFOS throughout the pullout process.  

(4) This research advances the understanding of the fiber-coating interfacial behavior, and the 

understanding enables DFOS to be operated in presence of debonding at the fiber-coating 

interface at cracks, as well as accurate measurement of crack width by interpretation results 

obtained from DFOS. 
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2.5. Detection, localization, quantification, and visualization of buckling/dent 

2.5.1. Overview 

This research aims to address the challenges by developing an effective and practical method 

for buckling detection and shape reconstruction using strain profiles measured from a DFOS. This 

study has three main research objectives: (1) to develop a practical method to detect buckling and 

reconstruct the detailed buckling shape for thin-walled plates subjected to eccentric buckling loads, 

mimicking realistically complex buckling deformations; (2) to investigate the effects of spatial 

resolution and sensor deployment of DFOS on the performance in shape reconstruction; and (3) to 

develop a method to visualize the strain distributions and buckling deformations of monitored 

structures for practical engineers.  

To achieve the above objectives, this research tested two types of specimens, including a bar 

specimen under uniaxial compression and a plate specimen under eccentric compression. Both 

specimens were instrumented with DFOS and monotonically loaded until buckling occurred. A 

practical method was proposed to determine the full-field strain contours in the specimens 

throughout the loading process and to reconstruct the deformed shape based on the relationship 

between strain and deformation. Furthermore, a depth camera was used to monitor the specimens 

throughout the loading process, and the point cloud were used to evaluate the buckling 

deformations obtained from the proposed method. Finally, a parametric study was conducted to 

investigate the effects of spatial resolution and sensor deployment on shape reconstruction. 

Compared with existing research, this research has four novelties: (1) This research addresses 

buckling deformation of plates under eccentric loads, rather than simple deflections of beams or 

cantilever plates. (2) This research focuses on the development of practical yet efficient solutions 

to detect, locate, trace, visualize, and quantify three-dimensional (3D) buckling deformations. (3) 

This research measures experimental deformations directly by computer vision method to validate 

the shape reconstruction approach. (4) This research evaluates important parameters of DFOS and 

sensor deployment scheme.  

2.5.2. Methods 

The framework of this research on buckling detection and shape reconstruction is shown in 

Figure 2.5.1. The DFOS was deployed on thin walls to measure strain distributions. The measured 

strains are used to determine the strain distribution function, which was then used to determine the 

deformed shape of the structure through an inverse analysis. Finally, computer vision measurement 

is performed to obtain three-dimensional point clouds for measuring structural deformations and 

validating the developed method. This research developed a method to determine the strain 

distribution function through data regression, and presented a shape reconstruction method to 

determine the deformed shape based on strain distributions. 
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Figure 2.5.1. Research framework integrating DFOS, shape reconstruction, and computer vision. 

2.5.2.1. Shape reconstruction 

2.5.2.1.1 Strain distribution function 

Since a DFOS measures strains at many points along the sensor, each measurement from the 

sensor is a series of strain data that can be expressed as a strain vector 𝜺𝑝: 

𝜺𝑝 = [𝜀𝑝1⋯𝜀𝑝𝑖⋯𝜀𝑝𝑁]
𝑇
 (2.5.2) 

where 𝜀𝑝𝑖 is the strain measured from point i (i = 1, 2, ..., N), and N is the total number of data 

points. The subscript 𝑝 is the direction (𝑥 or 𝑦) of the strain component, consistent with the 

direction of the distributed sensor.  

The coordinates of measurement points in the DFOS are expressed as:  

[𝑿, 𝒀] =

[
 
 
 
 
𝑥1
⋮
𝑥𝑖

𝑦1
⋮
𝑦𝑖

⋮ ⋮
𝑥𝑁 𝑦𝑁]

 
 
 
 

 (2.5.3) 

where 𝑥𝑖 and 𝑦𝑖 are respectively the x and y coordinate values of point 𝑖. 

With the strain vector and the coordinate matrix, the strain and coordinate of each point along 

the DFOS can be described using the following matrix: 

[𝑿, 𝒀, 𝜺𝑝] =

[
 
 
 
 
𝑥1
⋮
𝑥𝑖

𝑦1
⋮
𝑦𝑖

𝜀𝑝1
⋮
𝜀𝑝𝑖

⋮ ⋮ ⋮
𝑥𝑁 𝑦𝑁 𝜀𝑝𝑁]

 
 
 
 

 (2.5.4) 

Although the DFOS covers a large area of the monitored structure, the DFOS does not provide 

measurement at every point because there are gaps between adjacent paths of the DFOS. This 

study proposes to determine the full-field strain distributions of the monitored structure through 

regression analysis of the strain distribution function using a surface fitting method. The strain 

component at an arbitrary point (𝑥, 𝑦) is expressed as: 
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𝜀𝑝(𝑥, 𝑦) = ∑𝑚𝑘𝑓𝑘(𝑥, 𝑦)

𝑀

𝑘=1

 (2.5.5) 

where 𝑚𝑘 is the coefficient of the 𝑘-th fitting function (𝑘 = 1, 2, ..., 𝑀), and 𝑀 is the total number 

of the fitting functions. Then, the strain vector 𝜺𝑝 can be expressed as: 

𝜺𝑝 =

[
 
 
 
 
𝑓1(𝑥1, 𝑦1) ⋯ 𝑓𝑘(𝑥1, 𝑦1)

⋮ ⋱ ⋮
𝑓1(𝑥𝑖, 𝑦𝑖) ⋯ 𝑓𝑘(𝑥𝑖, 𝑦𝑖)

⋯ 𝑓𝑀(𝑥1, 𝑦1)
⋱ ⋮
⋯ 𝑓𝑀(𝑥𝑖, 𝑦𝑖)

⋮ ⋱ ⋮
𝑓1(𝑥𝑁, 𝑦𝑁) ⋯ 𝑓𝑘(𝑥𝑁, 𝑦𝑁)

⋱ ⋮
⋯ 𝑓𝑀(𝑥𝑁, 𝑦𝑁)]

 
 
 
 

[
 
 
 
 
𝑚1

⋮
𝑚𝑘

⋮
𝑚𝑀]

 
 
 
 

= 𝑭𝜀𝒎𝜀 (2.5.6) 

If polynomial functions are used to fit the profiles of strain distributions, the strain component 

at an arbitrary point (𝑥, 𝑦) is expressed as: 

𝜀𝑝(𝑥, 𝑦) =∑∑𝑚𝑖𝑗𝑥
𝑖𝑦𝑗

𝑗𝑖

 (2.5.7) 

where 𝑚𝑖𝑗 is the coefficient; 𝑖 and 𝑗 are the orders of polynomial functions.  

The coefficients are determined by minimizing the following objective function based on the 

least-square residual method: 

Ф𝜀 = min {[𝜺𝑝 − 𝑭
𝜀𝒎𝜀]

𝑇
𝑾𝑅[𝜺𝑝 − 𝑭

𝜀𝒎𝜀]} (2.5.8) 

where the weight matrix 𝑾𝑅 is composed of weights for each data point as expressed by: 

𝑾𝑅 = diag[𝑊1
𝑅⋯𝑊𝑖

𝑅⋯𝑊𝑁
𝑅] (2.5.9) 

where weight 𝑊𝑖
𝑅 is the relative data reliability of point 𝑖, which can be determined by: 

𝑊𝑖
𝑅 = {

1, Point 𝑖 at straight sensor lengths
0, Point 𝑖 at curved sensor lengths

 (2.5.10) 

where the weight value 𝑊𝑖
𝑅 = 1 is assigned to the data point that is located in the straight sensor 

lengths; and the data point that is located in the curved sensor lengths is not used in the shape 

reconstruction. Thus, it became possible to consider the influence of acute curvature of sensor 

deployment profile using the relative data reliability of distributed strain data. 

2.5.2.1.2. Strain-deformation relationship 

The equation that governs the relationship between strain and out-of-plane deformation of a 

surface is determined based on the elastic theory, as shown in Eq. (2.5.11): 

𝜀𝑝(𝑥, 𝑦) = −𝑧
𝜕2𝑣𝑝(𝑥, 𝑦)

𝜕𝑝2
, (𝑝 = 𝑥 or 𝑦) (2.5.11) 

where 𝑧 is the distance from the neutral axis of the cross section. 

Given a specific 𝑦-coordinate, the governing equation can be rewritten as: 
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𝜀𝑝(𝑥, 𝑦𝑖) = −𝑧
𝑑2𝑣𝑥(𝑥, 𝑦𝑖)

𝑑𝑥2
 (2.5.12) 

where 𝑣𝑥(𝑥, 𝑦𝑖) is the deflection of the structure along 𝑦𝑖. 

When the length of the buckled region of the structure is detected, the boundary conditions 

of the governing equation can be described in Eq. (2.5.13): 

𝑣𝑥(x = 0, 𝑦𝑖) = 𝑣𝑥(𝑥 = 𝐿, 𝑦𝑖) = 0 (2.5.13a) 

𝑑𝑣𝑥(𝑥, 𝑦𝑖)

𝑑𝑥
|
𝑥=0

=
𝑑𝑣𝑥(𝑥, 𝑦𝑖)

𝑑𝑥
|
𝑥=𝐿

= 0 (2.5.13b) 

𝑑2𝑣𝑥(𝑥, 𝑦𝑖)

𝑑𝑥2
|
𝑥=0

=
𝑑2𝑣𝑥(𝑥, 𝑦𝑖)

𝑑𝑥2
|
𝑥=𝐿

= 0 (2.5.13c) 

where 𝐿 is the length of the buckled region. The starting and end points of the buckled area are 

expressed as 𝑥 = 0 and 𝑥 = L, respectively. 

According to Eq. (2.5.7), the strain distribution surface is expressed using polynomial 

functions, so the deflection can be expressed in Eq. (2.5.14), and the integration constants are 

determined by boundary conditions. 

𝑣𝑥(𝑥, 𝑦𝑖) =∑∑𝑀𝑖𝑗𝑥
𝑖+2𝑦𝑖

𝑗

𝑗𝑖

 (2.5.14a) 

𝑀𝑖𝑗 = −
1

𝑧

𝑚𝑖𝑗

𝑖(𝑖 − 1)
 

(2.5.14b) 

2.5.2.1.3 Computer vision 

Computer vision measurement was performed using a depth camera with a pair of camaras 

(model: Intel d455), and the data were processed using commercial software (Intel RealSense 

View®). The depth camera used stereo vision to determine the distance between the camera and 

specimens. For shape reconstruction, the two cameras were synchronized to capture photos of the 

specimen. Since the distance between left and right cameras is known, depth values for each pixel 

in the image can be calculated by correlating points of paired photos [61]. The depth pixel values 

were processed to generate a depth frame. Subsequent depth frames created a depth video stream 

for shape reconstruction. The ideal range of the adopted depth camera was 0.3 m to 3 m. The depth 

resolution was up to 1280 px × 720 px, and the depth accuracy was finer than 2% [62]. In this 

study, the depth camera captured videos for one side of each specimen, and the measurement was 

synchronized with the DFOS system. 

2.5.3. Experimental studies 

2.5.3.1. Buckling test 

2.5.3.1.1. Specimen and test set-up 

Buckling testing was conducted to assess the buckling behaviors of bar and plate specimens, 

respectively. The bar specimen represented one-dimensional (1D) buckling deformations, and the 

plate specimen represented two-dimensional (2D) buckling deformations. The tested specimens 

are shown in Figure 2.5.2.  
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(a) (b) (c)  

 

 

(d)  

Figure 2.5.2. Specimen preparation and test set-up: (a) photograph of the bar specimen on the load frame; 

(b) installation of the optical fiber on side A of the plate specimen; (c) installation of the optical fiber on 

side B of the plate specimen; and (d) photograph of the plate specimen. 

It is noted that plate specimens were utilized in experimental testing, rather than pipes, 

because plate specimens were available in the laboratory and easier to handle for reliable tests. 

The availability of the tests using pipe specimens was affected by COVID-19. To avoid delaying 

the progress, we adopted plate specimens to develop the technology for monitoring dents or local 

buckling. The technology is developed based on strain measurements. The method is independent 

of the specific geometry of specimens (e.g., pipe, or plate). 

The length and cross section of the bar specimen were 500 mm and 12.7 mm × 2.54 mm, 

respectively. Two optical fibers were deployed as a DFOS on two surfaces of the bar specimen 

along its length. The attached length of each optical fiber was 𝐿 = 400 mm, as depicted in Figure 

2.5.2(a). The thickness and area of the plate specimen were 2.54 mm and 609.6 mm × 304.8 mm, 

respectively. Two optical fibers were attached as a DFOS on the two surfaces (side A and side B) 
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of the plate specimen following the designed zigzag patterns, as shown in Figure 2.5.2(b) and 

Figure 2.5.2(c), respectively. On both sides of the plate, the spacing between two adjacent paths 

of the DFOS was 50.8 mm. The bar specimen was made of aluminum. The plate specimen was 

made of structural steel. 

Before the optical fibers were installed, the specimens were cleaned to remove grease and 

rust from the surfaces. The purpose of the surface cleaning effort is to ensure the bond between 

epoxy and specimens. Then, the optical fibers were attached to the specimens via tapes at discrete 

spots following the pattern designed to cover the majority area of the specimens. The tape was 

used to hold optical fibers in place during the installation. Next, a fast-setting glue was used to 

attach the optical fibers to the specimens at discrete points between the taped spots. Once the glue 

was set, the tape was removed. The removal of tape must be careful to prevent damage to the 

optical fibers. Finally, a two-part epoxy was applied to the optical fibers for strong attachment and 

reliable strain transfer between the specimen and optical fiber. The thickness of epoxy should be 

minimized to alleviate the effect of epoxy on the buckling of specimens. In this study, the thickness 

of epoxy was about 0.25 mm, which was around one tenth of the thickness of the specimens. The 

width of epoxy strips was about 5 mm. The epoxy was cured in air at room temperature (22 ºC ± 

2 ºC) and normal humidity (50% ± 5%). 

After the epoxy was cured for 24 hours, the specimens were tested under mechanical loading 

using a load frame (model: Instron 8813, load capacity: 100 kN), as shown in Figure 2.5.2(a) and 

Figure 2.5.2(d). Each specimen was loaded under compression by the load frame until buckling 

occurred. The bar specimen was loaded along the center to generate symmetrical deformation, 

while the plate specimen was loaded with an eccentricity to generate unsymmetrical deformation. 

For each DFOS, one end was connected to the data acquisition system for measurement, and the 

other end was free. The resolution of the DFOS was set at 0.65 mm. The compression tests were 

performed under displacement control with a displacement rate of 0.2 mm/min. The applied load 

was measured by a load cell embedded in the load frame, and the displacement was measured by 

a displacement sensor of the load frame. 

2.5.3.1.2. Load-displacement curves and visual inspection 

Figure 2.5.3 shows the load-displacement curves and buckling deformations of the tested 

specimens. The specimens showed similar curves with three stages: (1) Stage 1: from “O” to “A”, 

where the compressive load approximately linearly increases with the displacement; (2) Stage 2: 

from “A” to “B”, where the compressive load increases with the displacement with a decreasing 

slope until reaching the peak load at point B; and (3) Stage 3: from “B” to “C”, where the load 

decreases with the displacement. 

The bar specimen under uniaxial compression exhibited a typical buckling deformation. The 

lateral deformation increased with the applied displacement. The plate specimen under eccentric 

compression exhibited a representative out-of-plane buckling deformation that is unsymmetrical 

to the loading axis and increased with the applied displacement. 
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(a) (b) 

Figure 2.5.3. Load-displacement of the specimens under compression: (a) the bar, and (b) the plate. 

2.5.3.2. Strain distributions 

2.5.3.2.1. Bar specimen 

The strain distributions measured from the DFOS installed on the bar specimen under 

different loads are shown in Figure 2.5.4. The vertical axis represents the strains caused by 

buckling, and the horizontal axis represents the distance along the DFOS, with the zero distance 

at the connector of the data acquisition system.  

 

Figure 2.5.4. Strain distributions measured from the DFOS deployed on the bar. 

The length range of the DFOS is selected to show the strain distributions within the length of 

fiber optic cable installed on the bar. When the load increased from 0 to 292 N (Stage 1), the strains 

along the entire fiber length were compressive strains (negative), and the peak strain increased 

with the load. When the load increased from 292 N to 412 N (Stage 2), the strains in the middle 

region of the specimen were negative, while the strains at the two ends of the specimen were 

changed to positive values. The strains in both positive and negative regions increased with the 

load. When the load decreased from 412 N to 395 N (Stage 3), the shapes of strain distributions 

and curvature distributions are similar to those in Stage 2. The magnitudes of strain distributions 

increased with the decrease of the load due to the further increase of buckling deformations. 
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2.5.3.2.2. Plate specimen 

Similar to the bar specimen, the strain distributions measured from the DFOS installed on the 

two surfaces of plate specimen under different loads are shown in Figure 2.5.5. The vertical axis 

represents the strains caused by buckling, and the horizontal axis represents the distance along the 

DFOS, with the zero distance at the connector of the data acquisition system. In each figure, the 

length range of the DFOS is selected to show the strain distributions within the length of fiber 

optic cable installed on the plate specimen. 

 
(a) 

 
(b) 

Figure 2.5.5. Strain distributions measured from the DFOS deployed on the plate specimen under different 

loads: (a) side A; and (b) side B. 

Figure 2.5.5(a) shows strain distributions measured from side A of the specimen in Stage 1 

to Stage 3. In Stage 1, when the load increased from 0 to 2121 N, the strains along the entire length 

were negative, and the peak strains increased with the load. In Stage 2, when the load increased 

from 2121 N to 4183 N, strains in the middle region of the plate were negative, while the strains 

at the two end regions of the plate were changed to positive values. The peak strains in both 

positive and negative regions increased with the loads. In Stage 3, when the load decreased from 

4183 N to 3944 N, the shapes of strain distributions were similar to those in Stage 2. The 
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magnitudes of strains increased with the decrease of the loads due to the increase of the buckling 

deformation. Similar trends of evolution of strains were observed from side B in Figure 2.5.5(b), 

while the magnitudes of strains were much lower than those from side A. 

2.5.3.2.3. Strain contour 

To use the strain data for visualization and shape reconstruction, 2D coordinates were 

assigned to each point via coordinate transform as described in Section 2. The measured strain 

distributions are re-plotted by coordinate transform. Then, the strain distributions measured from 

the discrete lines were used to generate continuous 2D strain contours via interpolation, as 

illustrated in Figure 2.5.6. 

 

Figure 2.5.6. Mapping of strain distributions on the plate for visualization of buckling deformation. 

Figure 2.5.7 plots the different orders of polynomial surfaces employed to fit the strain 

distributions measured from the DFOS deployed on side A of the plate specimen. The directions 

of x and y coordinates are introduced in Figure 2.5.6. 

The measurement results of strain distributions are represented by the black curves, and the 

polynomial fitting surfaces are shown by the colored contours. Red color stands for the areas 

subjected to high tensile strains, and blue color marks the areas subjected to high compressive 

strains. As the order of the polynomial fitting surface was increased, the spatial distribution and 

the magnitude of the strain distributions of the buckled plate were reasonably represented. 
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(a) (b) 

  
(c) (d) 

Figure 2.5.7. Strain polynomial fitting in the load direction (𝜀𝑥): (a) x (1-order) and y (5-order); (b) x (2-

order) and y (2-order); (c) x (3-order) and y (2-order); and (d) x (5-order) and y (3-order). 

A sensitivity analysis was performed to investigate the appropriate orders of the polynomial 

fitting surfaces. The evaluation results are listed in Table 2.5.1. Three performance metrics were 

adopted, which are the sum of squares due to error (SSE), coefficient of determination (R2), and 

the RMSE. 

SSE =∑(𝑝𝑖 − 𝜈𝑖)
2

𝑛

𝑖=1

 (2.5.15) 

𝑅2 = 1 −
∑ (𝑝𝑖 − 𝜈𝑖)

2𝑛
𝑖=1

∑ [𝜈𝑖 −mean(𝜈𝑖)]2
𝑛
𝑖=1

 (2.5.16) 

RMSE = √
∑ (𝑝𝑖 − 𝜈𝑖)2
𝑛
𝑖=1

𝑛
 (2.5.17) 

where P = [p1, p2, …, pN] and A = [𝜈1, 𝜈2, …, 𝜈N] are the vectors for the fitted and tested values of 

the strain profiles, respectively. 

 

 

 



Page 83 

 

Table 2.5.1. Sensitivity analysis for polynomial fitting of strain surface 

SSE (µε2) Order of x 

1 2 3 4 5 

Order 

of y 

1 7.03×109 3.27×109 1.45×108 7.13×107 3.38×107 

2 7.04×109 3.29×109 2.30×108 4.21×107 6.44×106 

3 7.02×109 7.65×107 1.23×108 4.89×107 3.35×107 

4 6.97×109 7.99×107 8.60×107 3.43×107 9.54×107 

5 6.94×109 9.12×107 1.21×108 2.96×107 2.99×107 

R2 Orders of x 

1 2 3 4 5 

Order 

of y 

1 0.014 0.528 0.979 0.990 0.995 

2 0.016 0.525 0.967 0.994 0.997 

3 0.013 0.989 0.982 0.993 0.995 

4 0.006 0.989 0.988 0.995 0.996 

5 0.001 0.987 0.983 0.996 0.996 

RMSE (µε) 
Orders of x 

1 2 3 4 5 

Order 

of y 

1 1.05×103 716.50 150.80 105.80 72.8 

2 1.05×103 718.90 190.00 81.30 31.80 

3 1.05×103 109.60 138.70 87.26 72.59 

4 1.05×103 112.00 116.20 73.44 38.73 

5 1.04×103 119.70 137.80 68.23 68.61 

 

The pentomic-square fitting (5-order in x axis and 2-order in y axis) had the highest accuracy, 

in terms of the lowest SSE and RMSE as well as the highest R2. Both the global and local fitting 

performance of the fitting surface must be considered. When the polynomial order is too high, the 

fitting surface will overfit input strain, producing unrealistic estimations. The discrepancy between 

the pentomic-square fitting surface and the measured distributions is plotted in Figure 2.5.8(a). 

Large discrepancy is found from the data points near the edges of the plate specimen.  

 

 
(a) (b) 

Figure 2.5.8. Residual profile of strain polynomial fitting surface caused by the bending deformation of the 

DFOS at the edges. 
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This is because the optical fiber near the edges was subjected to acute curvatures, as shown 

in Figure 2.5.8(b). Such results suggest that it is inappropriate to use the strains measured from the 

lengths of curved sensor lengths deployed near the edges. As indicated in Eq. (2.5.10), those 

lengths should be assigned with low weights to minimize their impact on the results. 

Figure 2.5.9 compares the contours of strain distributions of the two sides of the plate 

specimen under four load levels (3900 N, 4085 N, 4183 N, and 3944 N). Figure 2.5.9(a) shows the 

contours of side A of the plate specimen. The areas subjected to high tensile strains are shown in 

red color, and the areas subjected to high compressive strains are shown in blue color.  

As the applied load increased from 0 to 3900 N, there was no obvious change in the contours. 

As the applied load increased from 3900 N to 4183 N, obvious changes were shown in the 

contours. As the applied load decreased from 4183 N to 3944 N, the magnitudes of strains 

increased with the decrease of the loads. Figure 2.5.9(b) shows the contours of side B of the plate 

specimen. No obvious change was observed until the load decreased from 4183 N to 3944 N, when 

the magnitudes of strains increased with the decrease of the loads, consistent with the contours 

from side A. The strains measured from side B were lower than those measured from side A, 

because the DFOS deployed on the two sides of the plate were in different directions. The sensor 

of side A was along the loading direction and thus subjected to higher deformations under buckling 

of the plate. The sensor of side B was in the width direction of the plate and subjected to smaller 

deformations. 

 
(a) 

 
(b) 

Figure 2.5.9. Mapping contours of strain distributions for the plate: (a) side A, and (b) side B. 
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2.5.3.3. Shape reconstruction 

2.5.3.3.1. Bar specimen 

The buckling deformation of the bar specimen was reconstructed and compared with the point 

cloud data from the computer vision system, as shown in Figure 2.5.10. The considered load 

increased from 292 N to 406 N and then decreased to 395 N. The deformed shapes obtained from 

the two methods agree well with each other, validating the shape reconstruction method for 1D 

buckling problems. The discrepancy between the buckling deformations obtained from the two 

methods was attributed to inherent inaccuracy of the sensors such as the DFOS and deep camara, 

data acquisition systems, and positions of the DFOS, as well as boundary conditions.  

 

Figure 2.5.10. Deformation of the bar obtained from shape reconstruction and computer vision. 

2.5.3.3.2. Plate specimen 

Figure 2.5.11 compares the shape reconstruction results obtained from the proposed method 

and the computer vision method for the plate. The colorful surface represents the shape of the 

buckled plate obtained from the proposed method, and the black dots represent the point cloud 

data obtained from computer vision. 

 

Figure 2.5.11. Comparison of plate deformations obtained from the shape reconstruction method and 

computer vision method. 
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Overall, the reconstructed shape fitted with the measured deformation. The values of SSE, 

R2, and RMSE are 1.88×10-3, 0.986, and 1.21×10-3, respectively. These values indicate that the 

accuracy of the proposed shape reconstruction is high. The discrepancy was mainly at the edges 

due to the inaccurate strains as shown in Figure 2.5.8.  

2.5.3.3.3. Accuracy 

Figure 2.5.12 shows the performance metrics of the shape reconstruction results evaluated 

against the computer vision results. When the specimens were loaded until buckling occurred, the 

accuracy of the shape reconstruction method was reduced. The reduction was attributed to the 

large local deformation because the adopted strain-deflection relationship in Eq. (2.5.10) was 

based on the small deformation assumption, which is inapplicable for large deformations. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 2.5.12. Performance metrics of shape reconstruction of the bar and plate specimens in the buckling 

process: (a) SSE of the bar; (b) R2 of the bar; (c) RMSE of the bar; (d) SSE of the plate; (e) R2 of the plate; 

and (f) RMSE of the plate. 

2.5.4. Parametric study 

2.5.4.1. Spatial resolution 

Figure 2.5.13 shows the effect of the spatial resolution of the DFOS deployed on the plate 

specimen. As the spatial resolution changed from 0.65 mm to 2.6 mm, the changes of SSE, R2, and 

RMSE were negligible. As the spatial resolution changed from 2.6 mm to 20.8 mm, the values of 

SSE and RMSE rapidly increased, and R2 decreased.  
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(a) (b) (c) 

Figure 2.5.13. Effect of the spatial resolution for the plate specimen when the load was 4 kN: (a) SSE; (b) 

R2; and (c) RMSE. 

The results indicated that the spatial resolution had a significant effect on the measurement 

accuracy. In real applications, selection of an appropriate spatial resolution is critical to achieve 

high accuracy and data efficiency. If the spatial resolution is too high, a big dataset will be 

recorded. It is recommended to use 2.6 mm as the optimal spatial resolution for buckling detection 

and shape reconstruction. The corresponding values of SSE, R2, and RMSE are 1.98×10-3, 0.98, 

and 1.23×10-3 respectively. 

2.5.4.2 Sensor deployment 

Figure 2.5.14 shows the effect of the sensor deployment scheme on shape reconstruction 

accuracy of the plate specimen. The spacing between adjacent sensor paths was used to 

characterize the deployment scheme. As the spacing between adjacent strips increased from 50.8 

mmm to 304.8 mm, the values of SSE and RMSE were significantly increased, and R2 were highly 

reduced. The results indicated that fine spacing benefited the accuracy. To balance the accuracy 

and sensor deployment efficiency, the recommended spacing is 100 mm or finer. 

   
(a) (b) (c) 

Figure 2.5.14. Effect of the sensor deployment scheme for the plate specimen when the load was 4 kN: (a) 

SSE; (b) R2; and (c) RMSE. 

2.5.5. Summary 

This research develops an approach to detect, measure, visualize, and quantify 3D buckling 

of thin-walled structures using DFOS with sub-mm spatial resolutions in real time. An effective 

and practical shape reconstruction method was developed to derive the deformed shape based on 

the strain distributions. The reconstructed shape was validated using a computer vision method 
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that measured point cloud from the specimens. A parametric study was conducted to investigate 

the effects of key sensing parameters such as the spatial resolution and sensor deployment scheme 

on the performance of the shape reconstruction method, and used to optimize the resolution and 

deployment of DFOS. Based on the above investigations, the following conclusions are drawn: 

(1) DFOS can be used to measure detailed strain distributions of thin-walled structures 

subjected to buckling. The measured strain distributions can be used to detect, visualize, 

and quantify 3D buckling deformation. The capabilities of visualization and quantification 

enable engineers to immediately assess the structural condition. 

(2) The proposed shape reconstruction method achieved adequate accuracy in bar and plate 

structures subjected to buckling. The deformed shape of the plate specimen was complex 

due to the eccentric loading condition. The complex shape was reconstructed using the 

proposed method. The shape reconstruction results were comparable with the computer 

vision method but did not require visibility of cameras for the monitored structure.  

(3) The spatial resolution and sensor installation pattern showed significant effects on the 

accuracy of shape reconstruction. Fine spatial resolution and spacing of DFOS benefited 

the accuracy. It is recommended to use 2.6 mm as the spatial resolution and 100 mm as the 

spacing in practical applications.  

(4) This research focuses on investigation of the feasibility of the proposed method for bar and 

plate specimens. The performance of the proposed method for pipes is still unknown, but 

it is envisioned that comparable performance can be achieved from pipes since the method 

is based on strains. Buckling/dents will be detected as long as the strain field of the pipe is 

changed. In this research, modification of the strain-deflection relationship for large local 

deformations was not considered. It is envisioned that the accuracy will be improved by 

considering large deformations. Future research will be performed to improve the shape 

reconstruction method and validate the performance in real pipes. 

The research in section 2.5 reveals that distributed fiber optic sensors can be used to monitor 

dents via measuring strain distributions, as illustrated in Figure 2.5.15. The dents can be caused by 

third-party activities such as excavation. This dent monitoring capability is similar to the crack 

monitoring capability, while the deformation is different which causes different strain profiles. 

The layout of the sensor can be straight or spiral (Figure 2.3.9), depending on the specific use case. 

 
Figure 2.5.15. Monitoring of dents in pipelines subjected to third-party excavation or other impacts. 
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2.6. Detection, localization, quantification, and visualization of corrosion 

2.6.1. Overview 

In previous research on distributed fiber optic corrosion sensors, the emphasis was mainly 

placed on feasibility of using DFOS to detect corrosion. Although the results showed a good 

promise, some challenges concerning real-life applications have been identified: (1) It is a 

challenge for pipeline engineers and stakeholders to understand and accurately interpret the unique 

sensor data measured from DFOS in practice. Skilled sensor experts are needed to process and 

explain the sensor data, thus increasing the operation cost of DFOS. (2) It is unclear how the 

corrosion condition of pipeline can be quantitatively evaluated using the data measured from the 

distributed sensors. In general, the DFOS data are associated with the severity of corrosion. 

However, there is lack of effective tools to quantify the relationship and generate warning for the 

severity of corrosion. (3) It is unknown how corrosion assessment using distributed sensors is 

affected by key parameters of the fiber optic cable, sensing parameters, and sensor deployment 

methods. These challenges hinder a wider application of DFOS for enhancing the capability of 

pipeline monitoring and improving safety.  

This paper presents a distributed monitoring method for detection, localization, visualization, 

quantification, and warning for pipe corrosion based on the measurement from a DFOS. This paper 

has three main contributions: (1) development of a distributed sensing method to detect, locate, 

and visualize corrosion of pipes; (2) development of a meso-scale analytical model to quantify 

mass loss due to corrosion and provide warning; and (3) investigation of the effects of important 

influencing factors on the assessment of pipe corrosion. To validate the developed method, steel 

pipes were prepared and instrumented with distributed sensors, and immersed in a sodium chloride 

solution (concentration: 3.5 wt.%) for corrosion tests. Strain distributions were measured from the 

distributed sensors based on OFDR. Mass loss of pipes was evaluated using a high-precision 

microbalance. A meso-scale analytical model was developed and presented to correlate the 

measured strains with mass loss of pipes due to corrosion. The effects of optical fiber type, spatial 

resolution of strain measurement, and sensor deployment pattern on corrosion assessment were 

investigated. Finally, a threshold-based warning method was developed based on corrosion 

assessment data for real-time alarming of pipe corrosion condition. 

2.6.2. Experimental program 

2.6.2.1. Materials and specimen preparation 

Figure 2.6.1 shows the dimensions of the investigated pipes that were made using low-carbon 

and stainless steel, respectively. Low-carbon steel is commonly used in transmission pipelines for 

oil and gas, following standards ASTM A733 and ASTM A269. Stainless steel with high corrosion 

resistance was used as reference to evaluate corrosion. The outer diameter and wall thickness were 

25.4 mm and 3 mm, respectively. Although this research was conducted using these pipes with 

limited types of materials and dimensions, the approach is applicable to various pipes with 

different sizes and materials because the developed approach is based on strain measurement. 

Corrosion of pipes will be monitored as long as corrosion causes strain changes. 
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(a) (b) 

Figure 2.6.1. Pipe specimens: (a) a low-carbon steel pipe; and (b) a stainless steel pipe. 

A fiber optic cable was installed on the pipe after cleaning the rust on pipe surface in three 

steps. First, the fiber optic cable was attached to a pipe at discrete spots using tape. Second, the 

fiber optic cable was fixed on the pipe at discrete points using a fast-curing glue. Third, the tape at 

discrete spots on the pipe was removed, and a two-part epoxy was applied along the fiber optic 

cable to ensure a reliable attachment of fiber and effective strain transfer between outer coating or 

tight buffer and pipe. The epoxy only covered the fiber optic cable and the cable line on the pipe. 

Any epoxy that flowed away from the fiber optic cable was cleaned to avoid potential effect on 

pipe corrosion. The installation of sensor for monitoring a continuous length of 1 m took less than 

10 minutes by one person. The time and labor requirements are reasonably low compared with the 

existing sensor technologies for pipeline inspection. Figure 2.6.2 shows the deployment pattern of 

fiber optic cables. The fiber optic cable was installed on the pipe following a helix pattern. 

Different spacings between adjacent spirals were investigated to optimize the deployment. 

 

Figure 2.6.2. Deployment of a coated fiber optic cable as a sensor on a pipe specimen. 

2.6.2.2. Investigated cases 

A total of 14 different cases were investigated, as listed in Table 2.6.1. The pipe specimens 

were grouped into four categories, designated as P0 to P3. P0 was the control specimen made using 

stainless steel.  

Group P1 includes three specimens which were designed for low-carbon steel pipes used to 

investigate the effects of three different coating thicknesses of fiber optic cable (242 µm, 650 µm, 

and 900 µm). Group P2 includes one specimen that was designed to investigate the effect of five 

different measurement spatial resolutions of DFOS (0.65 mm, 1.30 mm, 2.60 mm, 10.40 mm, and 

20.80 mm). Group P3 has five specimens to investigate five different helix spacings (10 mm, 20 

mm, 40 mm, 60 mm, and 80 mm) for the sensor deployment. 
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Table 2.6.1. Investigated cases of corrosion testing 

Cases Pipe group Cable diameter (µm) Spatial resolution (mm) Spacing (mm) 

1 P0 900 0.65 20 

2 

P1 

242 0.65 20 

3 650 0.65 20 

4 900 0.65 20 

5 

P2 

900 0.65 20 

6 900 1.30 20 

7 900 2.60 20 

8 900 10.40 20 

9 900 20.80 20 

10 

P3 

242 0.65 10 

11 242 0.65 20 

12 242 0.65 40 

13 242 0.65 60 

14 242 0.65 80 

 

2.6.2.3. Experimental set-up 

After the epoxy was hardened after 24 hours (h), the pipes were put in a plastic container and 

immersed in a sodium chloride solution (concentration: 3.5% by mass) for corrosion tests at room 

temperature (25 ºC ± 2 ºC). Figure 2.6.3(a) shows the test set-up.  

 
(a) 

  
(b) (c) 

Figure 2.6.3. Corrosion test of steel pipes: (a) test set-up; (b) four pipe specimens; and (c) illustration of a 

pipe instrumented with DFOS. 
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The fiber optic cable was connected to the distributed sensing system for data acquisition. 

Each measurement took about 20 s to 40 s, and the measurement frequency was 2 Hz. A distributed 

temperature sensor was used for temperature compensation, which could eliminate the effect of 

temperature variation on the measurement of strain distributions from the distributed strain sensor. 

The pipes were supported by plastic blocks at the two ends to fully expose the bottom of the pipes 

to the sodium chloride solution as shown in Figure 2.6.3(b) and Figure 2.6.3(c) as an example. 

2.6.3. Experimental results 

2.6.3.1. Visual inspection 

Figure 2.6.4 shows an example of representative visual inspection results from one specimen 

in each testing group. No rust was observed on the control pipe (P0) made of stainless steel. Rust 

grew on the external surfaces of pipes in groups P1 to P3. As the immersion time increased, the 

thickness of rust increased. Most rust was attached to the surface of the pipes, and only a small 

volume of rust was transported off the pipes. Since the corrosion products are expansive and have 

a lower density compared with intact steel, the diameter of the corroded pipe was increased.  

 

Figure 2.6.4. Four pipes immersed in a sodium chloride solution for corrosion experiments. 

2.6.3.2. Strain distributions 

The increase of the pipe diameter caused strain changes in the DFOS on the pipes. Figure 

2.6.5 shows the strain distributions measured from the DFOS at different immersion times (30 h, 

60 h, 114 h, 134 h, 184 h, 208 h, 280 h, 472 h, 640 h, 912 h, and 1080 h). The vertical axis 

represents the tensile strain induced by corrosion, and the horizontal axis represents the distance 

along the DFOS, with the zero distance at the connector of the data acquisition system. 

In each figure, the length range of the DFOS is selected to show the strain distributions within 

the length of fiber optic cable wrapped on the pipes. As shown in Figure 2.6.5(a), for the control 

specimen, a small strain change was measured, indicating negligible corrosion, which is consistent 

with visual inspection. The small strain change can be attributed to the expansion of the coatings 

of fiber optic cables due to water absorption. Although the coatings had a high water resistance 

and negligible degradation with presence of water, as specified by the manufacturer, the coating 

could absorb water and expand slightly. The effect of the expansion due to water absorption on 

the strains measured from the fiber optic cable should be calibrated and subtracted from the strain 

distributions used to evaluate corrosion of the pipe specimens. 
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Figures 2.6.5(b) to 2.6.5(d) show the strain distributions measured from the DFOS deployed 

on the specimens in groups P1 to P3. Obvious strain changes along the pipes can be observed. 

Compared with results of P0 shown in Figure 2.6.5(a), the values of strain distributions for P1 to 

P3 at the same immersion durations are much larger because rust was generated on the surfaces of 

the specimens in groups P1 to P3. Non-uniform strain distributions are observed because corrosion 

is uneven, which can be attributed to the different material defects and surface conditions. 

Compared with P1 and P2, the non-uniform strain distributions for P3 shown in Figure 2.6.5(d) 

are more obvious, which might be attributed to the smaller helix spacing. 

  

(a) (b) 

  
(c) (d) 

Figure 2.6.5. Strain distributions measured from the DFOS deployed along the pipe specimens: (a) Case 1 

in group P0; (b) Case 2 in group P1; (c) Case 5 in group P2; and (d) Case 10 in group P3. 

2.6.3.3. Visualization 

The expansion induced by corrosion of a pipe was detected by the change of strains sensed 

by a DFOS. With the location of the DFOS installed on the pipe, the distance along the DFOS can 

be correlated with the position of the pipe surface. With the correlation, the strain distributions 

measured from the DFOS can be replotted via a coordinate transform, as shown in Figure 2.6.6. 

The position of the DFOS on the pipes is described in a polar coordinate system, which can 

be transformed into coordinated in a Cartesian coordinate system. The specimen is cut along the 

pipe, and the circumference is unfolded to a flat plane (Figure 2.6.6). The circumference of the 
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pipe becomes the width of the plane, and the length of the pipe remains the length of the plane. 

The strain distributions measured from the DFOS is plotted in the plane to show a 2D contour, 

which can be used for visualization of corrosion in real time. The data between adjacent paths of 

fiber optic cable were obtained via biharmonic spline interpolant using MATLAB curve fitting 

tool function. The different paths of the DFOS show the strain variations. 

 
Figure 2.6.6. Method of mapping strain distributions on a pipe for visualization of corrosion. 

Figure 2.6.7 shows the mapping of corrosion at different immersion times (30 h, 472 h, 912 

h, and 1080 h). The areas of pipes subjected to high strains are shown in red color, indicating that 

the areas have more severe corrosion.  

 

Figure 2.6.7. Mapping of corrosion for specimens with a measurement spatial resolution of 0.65 mm. 
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Figure 2.6.8(a) shows the measurement of corrosion from specimens in group P2. As the 

spatial resolution changed from 0.65 mm to 2.6 mm, there was no obvious difference in the images. 

As the spatial resolution changed from 2.6 mm to 10.4 mm, obvious difference could be seen from 

the pictures. As the spatial resolution changed from 10.4 mm to 20.8 mm, the corrosion distribution 

could not be reasonably assessed, indicating that the spatial resolution had a significant effect on 

corrosion visualization. Figure 2.6.8(b) plots the monitored corrosion condition from specimens 

in group P3 with different helix spacings. As the spacing increased from 10 mm to 80 mm, the 

visualization results were highly changed, indicating a sensitivity to the helix spacing, which can 

be attributed to uneven corrosion distribution. A coarse helix spacing miss critical information. 

  
(a) (b) 

Figure 2.6.8. Corrosion condition of: (a) P2 specimens at 280 h; and (b) P3 specimens at 280 h. 

2.6.3.4. Quantification 

2.6.3.4.1. Mass loss evaluation 

Mass loss evaluation is a common method used to evaluate corrosion of pipelines. A reference 

sample of a pipe under consideration is prepared and placed near the pipe under corrosion. The 

mass loss of reference sample is measured to evaluate the mass loss of the pipe, assuming that the 

sample is subjected to the same corrosion rate as the pipe. This study used short pipes as reference 

samples for mass loss evaluation, as shown in Figure 2.6.9(a). 

   
(a) (b) (c) 

Figure 2.6.9. Evaluation of mass loss: (a) reference pipe; (b) high-precision microbalance; and (c) 

reference pipe in a vinegar acid solution for removing surface rust. 
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The reference pipes measured 60 mm in length, and their two ends were sealed using plastic 

corks to prevent ingress of sodium chloride. Before the corrosion test, the reference pipes were 

cleaned, and the initial mass was measured using a high-precision microbalance (model: Mettler-

Toledo Balance ME204E, USA), as shown in Figure 2.6.9(b). The readability of the high-precision 

microbalance was 0.1 mg. Then, the reference pipes were immersed in the same sodium chloride 

solution as the test pipes with DFOS. For every 12 h, one reference pipe was taken out of the 

solution to evaluate the mass loss, so the corrosion condition of pipes can be assessed over time. 

Before mass measurement, the reference pipe was immersed in a vinegar acid (concentration: 45% 

by mass) for 6 h to remove corrosion products from the surface, as shown in Figure 2.6.9(c). Then, 

the reference pipe was rinsed under running water. Next, it was placed in an oven at 70 °C for 15 

min to get dried. After the reference pipe was cooled in air to room temperature, its mass was 

measured again using the high-precision microbalance. The mass of the reference was compared 

with its initial mass, and the mass difference is the mass loss (𝛥𝑚) due to corrosion. 

2.6.3.4.2. Pipe corrosion model 

Figure 2.6.10 shows a meso-scale model of a steel pipe with corrosion. A fiber optic cable 

was installed on the surface in a helix pattern. Due to symmetry, only half of the cross section of 

pipe is shown. Since the fiber optic cable is winded on the surface of the pipe, the cut section of 

the cable has an ellipse shape in an arbitrary section perpendicular to the pipe length. The 

uncorroded section of the pipe is shown in orange color; the corrosion products (rust) that grow 

on the surface of the steel is shown in red color; the buffer of the fiber optic cable is shown in 

green color; and the fiber core is shown in white color. The rust is porous and has a larger volume 

than the steel, thus exerting pressure to the fiber optic cable. The pressure causes elongation of the 

fiber optic cable, and thus results in tensile strains in the fiber optic cable. Therefore, the strain 

change in the fiber optic cable reflects the corrosion process of the pipe. Figure 2.6.10(b) shows 

the geometry of the pipe after it is cut and unfolded to a flat plane. The round circumference is 

turned to a straight line. In the course of corrosion, the length of the fiber optic cable and the pipe 

perimeter are elongated, while the spacing (𝑠) of adjacent fiber paths is retained.  

  
(a) (b) 

Figure 2.6.10. Meso-scale corrosion model of a steel pipe with a DFOS: (a) Diameter change due to the 

corrosion; and (b) the geometry of the pipe after cut and unfolded to a flat plane. 
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To derive formulae for evaluating mass loss due to corrosion using the DFOS, the following 

assumptions are adopted:  

(1) All pipe corrosion products remain on the pipe surface. When pipes are embedded in soil 

or exposed to air, most corrosion products will stay on the pipe surface. Only a small 

amount of rust was transported to the solution. 

(2) The cross section of the pipe is circular throughout the corrosion process. 

In Figure 2.6.10, the outer diameter of the pipe is D0 (D0 = 25.4 mm) before corrosion and Dn 

after corrosion, the diameter including the rust layer is Dc, and the diameter including the rust layer 

and a half thickness of fiber optic cable is Df. Thus, the cross-sectional area (Ap) and volume (Vp) 

of the corroded steel of the pipe and the volume of rust (Vr) can be expressed as: 

𝐴𝑝 =
1

4
𝜋(𝐷0

2 − 𝐷𝑛
2) (2.6.4) 

𝑉𝑝 =
1

4
𝜋(𝐷0

2 − 𝐷𝑛
2)𝐿 (2.6.5) 

𝑉𝑟 =
1

4
𝜋(𝐷𝑐

2 − 𝐷𝑛
2)𝐿 (2.6.6) 

Therefore, the mass loss of the pipe (Δm) due to corrosion can be expressed as: 

∆𝑚 =
1

4
𝜋(𝐷0

2 − 𝐷𝑛
2)𝜌𝐿 (2.6.7) 

where 𝐿 is the pipe length subjected to corrosion (𝐿 = 300 mm in this study); and 𝜌 is the density 

of pipe material (𝜌 = 7850 kg/m3 in this study). 

In Figure 2.6.10(b), the original fiber length (l0) and fiber length after corrosion (lf) are: 

𝑙0 = √(𝜋𝐷0)
2 + 𝑠2 (2.6.8a) 

𝑙f = √(𝜋𝐷f)
2 + 𝑠2 (2.6.8b) 

Therefore, the average strain in the fiber optic sensor can be calculated as: 

𝜀 =
𝑙f − 𝑙0
𝑙0

= √
(𝜋𝐷f)

2 + 𝑠2

(𝜋𝐷0)
2 + 𝑠2

− 1 (2.6.9a) 

Since the thickness of the fiber optic cable is negligible compared with the diameter of the 

pipe, Df can be replaced by Dc in Eq. (2.6.9a), and the equation can be rewritten as: 

𝜀 = √
(𝜋𝐷𝑐)

2 + 𝑠2

(𝜋𝐷0)
2 + 𝑠2

− 1 (2.6.9b) 

The volume expansion coefficient (𝑘) of the rust will be defined as: 

𝑘 =
𝑉𝑟
𝑉𝑝
=
𝐷𝑐

2 −𝐷𝑛
2

𝐷0
2 − 𝐷𝑛

2 
(2.6.10) 

With Eq. (2.6.9) and Eq. (2.6.10), Eq. (2.6.7) can be converted into Eq. (2.6.11): 
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∆𝑚 =
𝜋𝜌𝐿𝐷0

2

4(𝑘 − 1)
[(1 + 𝛼2)(2𝜀 + 𝜀2)] 

(2.6.11a) 

𝛼 =
𝑠

𝜋𝐷0
 (2.6.11b) 

The volume expansion coefficient of rust is approximately equal to 𝑘 = 2 for steel corrosion. 

By assuming 𝑘 = 2, Eq. (2.6.11) can be rewritten as: 

∆𝑚 =
𝜋𝜌𝐿𝐷0

2

4
[(1 + 𝛼2)(2𝜀 + 𝜀2)] 

(2.6.12) 

Eq. (2.6.12) describes the relationship between the mass loss of the pipe and the strain 

measured from the DFOS, and considers the effect of the helix spacing on the strain measurement 

from the DFOS. In other words, once the strain distribution is measured from the DFOS, the mass 

loss of the pipe can be estimated using Eq. (2.6.12). According to Eq. (2.6.12), Figure 2.6.11 plots 

the estimated mass loss results of the tested pipes obtained from the strains measured from the 

DFOS for groups P0 to P3, respectively. Except Figure 2.6.11(a), each figure of Figures 2.6.11(b) 

to 2.6.11(d) summarizes the results of multiple specimens in the group.  

  
(a) (b) 

  
(c) (d) 

Figure 2.6.11. Results of mass loss of the pipe specimens: (a) P0; (b) P1; (c) P2; and (d) P3. 
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2.6.3.4.3. Calibration of corrosion expansion coefficient 

To validate the mass loss measurement using DFOS, Figure 2.6.12 summarizes the results 

from specimens P1, P2, and P3. The data are fitted using a linear equation through a regression 

analysis. The obtained R2 is 0.993, indicating a good correlation. However, the slope of the fitting 

line is 1.718, meaning that there is a factor between the estimated mass loss using the DFOS and 

the reference mass loss using microbalance. The factor can be attributed to the assumed value of 

𝑘 in Eq. (2.6.13). 

  
(a) (b) 

Figure 2.6.12. Comparison of measured and calculated mass loss of pipes: (a) 𝑘 = 2; (b) 𝑘 = 1.582. 

According to the slope in Figure 2.6.12(a), the k value can be revised to k = 1.582 for the 

laboratory tests performed in this paper. Thus, Eq. (2.6.12) can be rewritten as Eq. (2.6.13). By 

applying Eq. (2.6.13), the mass loss is re-estimated and plotted in Figure 2.6.12(b). The slope 

changed to 1.000, indicating that the proposed calibration method provides reasonable evaluation 

of the mass loss of the pipe under corrosion. 

∆𝑚 ≈
𝜋𝜌𝐿𝐷0

2

2.328
[(1 + 𝛼2)(2𝜀 + 𝜀2)] (2.6.13) 

2.6.3.4.4. Accuracy 

With the corrosion assessment described using the mass loss of pipe (𝛥𝑚) measured from the 

DFOS and high-precision microbalance, respectively, measurement error is defined based on mean 

absolute deviation [63], as described in Eq. (2.6.14): 

Error =
1

𝑛
∑√(∆𝑚calculating,𝑖 − ∆𝑚fitting,𝑖)

2
𝑛

𝑖=1

 (2.6.14) 

where 𝑛 is the total number of data points; ∆𝑚calculating,𝑖 is mass loss calculated using Eq. (2.6.13) 

based on the measurement of strain distribution from the DFOS; and ∆𝑚fitting,𝑖 is mass loss 

determined from the linear fitting as shown in Figure 2.6.13(b).  



Page 100 

 

Figure 2.6.13 shows the effects of the coating thickness, spatial resolution, and helix spacing 

on the accuracy of the proposed method for corrosion assessment. Figure 2.6.13(a) shows the effect 

of coating thicknesses. As the coating thickness increased from 242 µm to 900 µm, there is only 

slight change of error within 5%, meaning that the coating thickness does not significantly affect 

the accuracy. Therefore, fiber optic cables with a thick coating can be used to enhance the 

mechanical strength. Figure 2.6.13(b) shows the effect of spatial resolution. As the spatial 

resolution changed from 0.65 mm to 20.8 mm, the error was approximately linearly increased from 

0.116 g to 0.273 g, indicating that a fine spatial resolution benefits the measurement accuracy.  

In real application for pipeline monitoring, an appropriate spatial resolution is critical to 

achieve a reasonable accuracy for the evaluation of mass loss while retaining a desired data 

efficiency. On one hand, if the spatial resolution is too low, the accuracy will be compromised. On 

the other hand, if the spatial resolution is too high, a big data set with unnecessary data will be 

recorded. Figure 2.6.13(c) shows the effect of the helix spacing. As the helix spacing increased 

from 10 mm to 80 mm, the error was approximately linearly increased from 0.112 g to 0.317 g, 

indicating that a fine spacing of fiber optic cable could benefit the measurement accuracy. When 

the spacing is small, more detailed information of the corrosion distribution on the surface of 

pipeline can be captured. This is particularly important in the cases where the corrosion distribution 

on pipeline is significantly nonuniform, because a coarse spacing of the distribution fiber optic 

sensor may miss some critical corrosion spots. While the measured strain distributions slightly 

changed with the coating thickness, the spatial resolution and helix spacing showed significant 

effects on the contours of corrosion and quantification of mass loss. Based on these results, it is 

recommended to use the following parameters for the investigated pipes: (1) outer diameter: 25.4 

mm; (2) coating thickness: 900 µm; (3) spatial resolution: 10.4 mm; and (4) helix spacing: 40 mm. 

Further research is needed for pipes with larger diameters.  

   

(a) (b) (c) 

Figure 2.6.13. Evaluation of measurement accuracy of mass loss due to corrosion under different: (a) 

coating thicknesses; (b) spatial resolutions; and (c) helix spacings. 

2.6.3.5 Corrosion warning 

The mass loss of pipeline can be used to estimate the average corrosion rate (𝐶𝑅 unit in mm/y 

= millimeter per year), as shown in Eq. (2.6.15): 
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𝐶𝑅 =
Δ𝑚 × 365 × 1000

𝐴𝑇𝐷
 (2.6.15) 

where 𝛥𝑚 is the mass loss (g); 𝐴 is the initial exposed surface area (mm2); 𝑇 is exposure time 

(days); and 𝐷 is density of metal (g/cm3). 

According to the specifications in NACE SP0775-2018 [64], the average corrosion rate is 

ranked “low” when 𝐶𝑅 is less than 0.025 mm/y; the average corrosion rate is ranked “moderate” 

when 𝐶𝑅 is between 0.025 mm/y and 0.12 mm/y; the average corrosion rate is ranked “high” when 

𝐶𝑅 is between 0.12 mm/y and 0.25 mm/y; and the average corrosion rate is ranked “severe” when 

𝐶𝑅 is larger than 0.25 mm/y. Figure 2.6.14 summarizes the results from specimens P1, P2, and P3. 

After the pipe was exposed to the sodium chloride solution for 3 days, the value of 𝐶𝑅 exceeded 

0.25 mm/y, indicating a “severe” corrosion. A warning message was generated for the corrosion 

rate of the monitored pipeline.  

 
Figure 2.6.14. Warning of pipeline corrosion condition based on the threshold of corrosion rate (𝐶𝑅). 

2.6.4. Summary 

This chapter presents a real-time monitoring method for detection, localization, visualization, 

quantification, and warning of pipeline corrosion using a single-mode telecommunication-grade 

fiber optic cable as a fully-distributed sensor. Corrosion tests of pipes instrumented with different 

DFOS have been conducted to investigate the effects of package thickness, deployment pattern, 

and spatial resolution of the sensors on corrosion assessment. A meso-scale analytical model is 

developed to correlate the measured strains with the mass loss of pipe under corrosion and utilized 

for corrosion quantification. A threshold-based warning method is proposed for pipeline corrosion 

management. The experimental results indicate that the presented method is promising for real-

time monitoring of pipeline corrosion without influence on normal operation of pipeline. Based on 

above investigations, the following findings can be drawn: 

(1) Corrosion of pipes can induce strain change in DFOS deployed on the surface of pipes. As 

corrosion is developed, the tensile strain in DFOS is increased. The strains measured from 

DFOS can be used to detect corrosion on pipes. Strain distribution along a DFOS can be 

used to locate corrosion on the pipe. With the correlation between DFOS length and 

position on the pipe, the strains measured from DFOS can be used to locate and visualize 

corrosion on pipes.  



Page 102 

 

(2) The proposed meso-scale analytical model can be used to describe the dimensional changes 

in the course of pipe corrosion and elucidate the mechanisms of monitoring pipe corrosion 

using the DFOS. With the model, the strain measured from the DFOS can be used to 

quantify the mass loss of pipe due to corrosion. With the measurement results of mass loss 

of pipes, a rust expansion coefficient in the analytical model could be calibrated and enable 

reasonable predictions of mass loss using the strains measured from the DFOS. It is 

recommended to use 1.582 as the rust expansion coefficient in future development and 

applications. Based on the capability of quantifying pipe corrosion, corrosion warning can 

be provided by the threshold of corrosion rate.  

(3) The strain and corrosion measurement results are dependent on the coating thickness, 

spatial resolution, and helix spacing of the DFOS. While the measured strain distributions 

slightly changed with the coating thickness, the spatial resolution and helix spacing showed 

significant effects on the contours of corrosion and the quantification of mass loss. It is 

recommended to use the following parameters for pipelines with 25.4-mm outer diameter: 

coating thickness of 900 µm, spatial resolution of 10.4 mm, and helix spacing of 40 mm. 

Further research is needed for the appropriate parameters in other sizes of pipes. 

Based on this research, the following research needs have been identified: 

(1) In this study, the pipe specimens were immersed in sodium chloride solution for corrosion 

tests. The corrosion rate and microstructures of rusts are different from those of corrosion 

in air and soil. Further research is needed to test the performance of the proposed method 

in scenarios of corrosion in air and soil.  

(2) This study was focused on laboratory research and development using pipes with a limited 

length and diameter. The performance of the proposed approach in real-life applications 

with large pipes remains unclear. Further research is needed to evaluate the performance 

of the proposed approach. A life-cycle assessment is needed to understand the economic 

impact of the DFOS on intelligent management of pipelines.  

(3) In this study, the use of epoxy in the installation of the fiber optic cables on pipe specimens 

could slightly affect the corrosion of the pipes because the epoxy could affect the contact 

of pipe to water and oxygen, given the relatively small pipe surface area. Further research 

can be conducted using large pipes because the area covered by epoxy can be reduced, so 

that the effect of epoxy on the corrosion and monitoring performance can be evaluated. 

 

2.7. Measurement of interactive deformations and cracks 

2.7.1. Overview 

The above research has shown that individual anomalies such as cracks and corrosion can be 

well measured based on the measurements of strain distributions. When the type of anomalies is 

known and limited to a single type, the methods developed in the above sections can be utilized to 
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detect, locate, and quantify the anomalies. However, in fact, the real practices often involve many 

types of anomalies that may occur simultaneously. For example, pipelines are often subject to 

strain changes. When a pipe has a crack, both the crack and the strains in the pipe are reflected in 

the strain distributions measured from the DFOS. It is essential to develop effective methods to 

differentiate the effect of strains and cracks on the strain distributions measured from the DFOS 

deployed on pipelines. 

To address the above challenge, this study aims to: (1) develop a mechanical model to analyze 

the strain distributions sensed by DFOS subject to both strain changes and cracks; and (2) 

investigate the interactive effects of strains and cracks that occur simultaneously using DFOS.  

2.7.2. Theoretical studies 

2.7.2.1. Governing equation 

Figure 2.7.1 shows the schematic view of an optical fiber adhered to the substrate in symmetry 

with a crack with a width of 2𝛿 occurs in the substrate material. By considering symmetry, only a 

half-segment of the optical fiber has been analyzed. 

 

Figure 2.7.1. Illustration of stress and deformation of an optical fiber embedded in a matrix. 

𝑢ℎ(𝑥) = 𝑢𝑓(𝑥) + 𝑠(𝑥) + 𝑢𝑖(𝑥) + 𝑢𝑜(𝑥) + 𝑢𝑎(𝑥) (2.7.1) 

𝜀𝑓(𝑥) =
𝑑𝑢𝑓(𝑥)

𝑑𝑥
= 𝑢𝑓

′ (𝑥) (2.7.2) 

𝑢ℎ(𝑥) = ∫ 𝜀ℎ(𝑥)
𝑥

0

𝑑𝑥 + 𝛿          for 𝑥 ≥ 0 (2.7.3) 

𝑢𝑖(𝑥) + 𝑢𝑜(𝑥) + 𝑢𝑎(𝑥) = −
𝐸𝑓  𝑟𝑓

2

2
[

𝐼𝑛 (
𝑟𝑖
𝑟𝑓
)

𝐺𝑖
+
𝐼𝑛 (

𝑟𝑜
𝑟𝑖
)

𝐺𝑜
+
𝐼𝑛 (

𝑟𝑎
𝑟𝑜
)

𝐺𝑎
]
𝑑𝜀𝑓(𝑥)

𝑑𝑥
 (2.7.4) 

According to Eq. (2.7.1) to Eq. (2.7.4), we can obtain: 
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𝑠(𝑥) =
1

𝑘2
𝑢𝑓
″(𝑥) − 𝑢𝑓(𝑥) + 𝑢ℎ(𝑥) 

(2.7.5a) 

𝑘2 =
2

𝐸f 𝑟f
2 [
𝐼𝑛(𝑟𝑖/𝑟𝑓)

𝐺𝑖
+
𝐼𝑛(𝑟𝑜/𝑟𝑖)
𝐺𝑜

+
𝐼𝑛(𝑟𝑎/𝑟𝑜)

𝐺𝑎
]

 (2.7.5b) 

Besides, based on equation of equilibrium, we also have: 

𝜏𝑓(𝑥, 𝑟𝑓) = −
𝐸𝑓  𝑟𝑓

2

𝑑𝜀𝑓(𝑥)

𝑑 𝑥
 (2.7.6) 

Based on Eq. (2.7.6), we can obtain: 

𝑢𝑓
″(𝑥) = 𝜀𝑓

′(𝑥) = −
2

𝐸𝑓 𝑟𝑓
𝜏𝑓(𝑥, 𝑟𝑓) (2.7.7) 

Based on the cohesive interface law proposed by previous study [28], 𝜏𝑓 is also the function 

of interfacial slip 𝑠: 

𝜏𝑓(𝑠) =

{
  
 

  
 
𝛽𝜏𝑓

𝛼𝑠𝑓
𝑠                                     , 0 ≤ 𝑠 ≤ 𝛼𝑠𝑓

(1 − 𝛽)𝜏𝑓
(1 − 𝛼)𝑠𝑓

𝑠 +
(𝛽 − 𝛼)𝜏𝑓

1 − 𝛼
, 𝛼𝑠𝑓 < 𝑠 ≤ 𝑠𝑓

𝜏𝑓𝑒
−𝜏𝑓(𝑠−𝑠𝑓)

𝑞                           , 𝑠𝑓 ≤ 𝑠

 (2.7.8) 

According to the previous study [28], the third stage of cohesive interface law can be replaced 

by the constant curve 𝜏𝑓 when the value of 𝑞 is large, which is illustrated in Figure 2.7.2. Therefore, 

Eq. (2.7.8) is simplified as: 

𝜏𝑓(𝑠) =

{
 
 

 
 
𝛽𝜏𝑓

𝛼𝑠𝑓
𝑠                                     , 0 ≤ 𝑠 ≤ 𝛼𝑠𝑓

(1 − 𝛽)𝜏𝑓
(1 − 𝛼)𝑠𝑓

𝑠 +
(𝛽 − 𝛼)𝜏𝑓

1 − 𝛼
, 𝛼𝑠𝑓 < 𝑠 ≤ 𝑠𝑓

𝜏𝑓                                           , 𝑠𝑓 ≤ 𝑠

 (2.7.9) 

 

Figure 2.7.2. Parametric study of effect of 𝑞 to the third stage of cohesive interface law. 
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Plugging Eq. (2.7.9) into Eq. (2.7.7), the relationship between 𝑠(𝑥) and 𝜀𝑓(𝑥) is established: 

𝑠(𝑥) =

{
 
 

 
 −

𝐸𝑓  𝑟𝑓

2

𝛼𝑠𝑓

𝛽𝜏𝑓
𝑢𝑓
″(𝑥)                                                  , 0 ≤ 𝑠 ≤ 𝛼𝑠𝑓

−
𝐸𝑓 𝑟𝑓

2

(1 − 𝛼)𝑠𝑓
(1 − 𝛽)𝜏𝑓

[𝑢𝑓
″(𝑥) +

2

𝐸𝑓  𝑟𝑓

(𝛽 − 𝛼)𝜏𝑓

1 − 𝛼
] , 𝛼𝑠𝑓 < 𝑠 ≤ 𝑠𝑓

 (2.7.10a) 

𝑑𝑠(𝑥)

𝑑𝑥
=

{
 
 

 
 −

𝐸𝑓  𝑟𝑓

2

𝛼𝑠𝑓

𝛽𝜏𝑓
𝜀𝑓
″(𝑥)           , 0 ≤ 𝑠 ≤ 𝛼𝑠𝑓

−
𝐸𝑓  𝑟𝑓

2

(1 − 𝛼)𝑠𝑓
(1 − 𝛽)𝜏𝑓

𝜀𝑓
″(𝑥), 𝛼𝑠𝑓 < 𝑠 ≤ 𝑠𝑓

 (2.7.10b) 

Substituting Eq. (2.7.10a) into Eq. (2.7.5a), we are able to obtain the governing equation that 

only contains 𝑢𝑓(𝑥) and 𝜀ℎ(𝑥): 

{
  
 

  
 [1 + 𝑘2

𝐸𝑓  𝑟𝑓

2

𝛼𝑠𝑓

𝛽𝜏𝑓
] 𝑢𝑓

″(𝑥) − 𝑘2𝑢𝑓(𝑥) + 𝑘
2[𝑢ℎ(𝑥)] = 0, 0 ≤ 𝑠 ≤ 𝛼𝑠𝑓

[1 + 𝑘2
𝐸𝑓  𝑟𝑓

2

(1 − 𝛼)𝑠𝑓
(1 − 𝛽)𝜏𝑓

] 𝑢𝑓
″(𝑥) − 𝑘2𝑢𝑓(𝑥) + 𝑘

2 [𝑢ℎ(𝑥) +
(𝛽 − 𝛼)𝑠𝑓

1 − 𝛽
] = 0, 𝛼𝑠𝑓 < 𝑠 ≤ 𝑠𝑓

𝑢𝑓
″(𝑥) +

2

𝐸𝑓𝑟𝑓
𝜏𝑓 = 0, 𝑠𝑓 ≤ 𝑠

 (2.7.11) 

Eq. (2.7.11) can be re-written in the form of: 

{
 
 

 
 

𝑢𝑓
″(𝑥) − 𝑘1

2𝑢𝑓(𝑥) + 𝑘1
2[𝑢ℎ(𝑥)] = 0, 0 ≤ 𝑠 ≤ 𝛼𝑠𝑓

𝑢𝑓
″(𝑥) − 𝑘2

2𝑢𝑓(𝑥) + 𝑘2
2 [𝑢ℎ(𝑥) +

(𝛽 − 𝛼)𝑠𝑓

1 − 𝛽
] = 0, 𝛼𝑠𝑓 < 𝑠 ≤ 𝑠𝑓

𝑢𝑓
″(𝑥) +

2

𝐸𝑓𝑟𝑓
𝜏𝑓 = 0, 𝑠𝑓 ≤ 𝑠

 (2.7.12a) 

𝑘1
2 =

𝑘2

1 + 𝑘2
𝐸𝑓 𝑟𝑓
2

𝛼𝑠𝑓
𝛽𝜏𝑓

 
(2.7.12b) 

𝑘2
2 =

𝑘2

1 + 𝑘2
𝐸𝑓 𝑟𝑓
2

(1 − 𝛼)𝑠𝑓
(1 − 𝛽)𝜏𝑓

 
(2.7.12c) 

The general solution of the first and second stage of Eq. (2.7.12a) can be expressed as: 

{
 
 

 
 

𝑢𝑓,𝐼(𝑥) = 𝐶1 𝑐𝑜𝑠ℎ( 𝑘1𝑥) + 𝐶2 𝑠𝑖𝑛ℎ( 𝑘1𝑥) + 𝑢ℎ(𝑥), 0 ≤ 𝑠 ≤ 𝛼𝑠𝑓

𝑢𝑓,𝐼𝐼(𝑥) = 𝐶3 𝑐𝑜𝑠ℎ( 𝑘2𝑥) + 𝐶4 𝑠𝑖𝑛ℎ( 𝑘2𝑥) + 𝑢ℎ(𝑥) +
(𝛽 − 𝛼)𝑠𝑓

1 − 𝛽
, 𝛼𝑠𝑓 < 𝑠 ≤ 𝑠𝑓

𝑢𝑓,𝐼𝐼𝐼(𝑥) = −
𝜏𝑓

𝐸𝑓𝑟𝑓
𝑥2 + 𝐶5𝑥 + 𝐶6, 𝑠𝑓 ≤ 𝑠

 (2.7.13) 

where 𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, and 𝐶6 are constants for each stage, respectively. 

2.7.2.2. Uniform strain fields 

In uniform strain fields, 𝜀ℎ(𝑥) = 𝜀0, the deformation can be expressed as: 
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𝑢ℎ(𝑥) = ∫ 𝜀ℎ(𝑥)
𝑥

0

𝑑𝑥 + 𝛿 = 𝜀0𝑥 + 𝛿          for 𝑥 ≥ 0 (2.7.14) 

The development length of crack effect is ℓ𝑐𝑟 (Segment A-C). The development length of 

uniform strain field is ℓ𝑠𝑡 (Segment D-B). 𝐿 is a half-length of the matrix, as shown in Figure 2.7.3. 

 

Figure 2.7.3. Distributed fiber optic sensor under a uniform strain field in the cracked host matrix. 

2.7.2.2.1. Stage I: Elastic phase 

In Stage I, the crack width in the substrate is small, and the interface between the fiber and 

fiber coating remains intact, and the bond stress increases linearly as the interfacial deformation 

increases (0 < 𝑥 < 𝑙𝑐𝑟). It is important to note that no debonding occurs between the epoxy resin 

and the concrete substrate, even if cracks occur in the epoxy resin. Stage I ends when the crack 

width reaches a critical value of 2𝛿𝑐𝑟, and the interface at the crack begins to yield, which marks 

the start of Stage II. When the interface model of the fiber and the coating layer is completely 

elastic, Eq. (2.7.14) can be substituted into the first stage of Eq. (2.7.13) to derive the differential 

equation expression of the fiber deformation, normal strain, shear stress, and fiber slip: 

𝑢𝑓,𝐼(𝑥) = 𝐶1,𝐼 𝑐𝑜𝑠ℎ( 𝑘1𝑥) + 𝐶2,𝐼 𝑠𝑖𝑛ℎ( 𝑘1𝑥) + 𝜀0𝑥 + 𝛿  (2.7.15a) 

𝜀𝑓,𝐼(𝑥) = 𝐶1,𝐼𝑘1 𝑠𝑖𝑛ℎ( 𝑘1𝑥) + 𝐶2,𝐼𝑘1 𝑐𝑜𝑠ℎ( 𝑘1𝑥) + 𝜀0 (2.7.15b) 

𝜏𝑓,𝐼(𝑥) = −
𝐸𝑓  𝑟𝑓

2
[𝐶1,𝐼𝑘1

2 𝑐𝑜𝑠ℎ( 𝑘1𝑥) + 𝐶2,𝐼𝑘1
2 𝑠𝑖𝑛ℎ( 𝑘1𝑥)] (2.7.15c) 

𝑠𝐼(𝑥) = −
𝐸𝑓  𝑟𝑓

2

𝛼𝑠𝑓

𝛽𝜏𝑓
[𝐶1,𝐼𝑘1

2 𝑐𝑜𝑠ℎ( 𝑘1𝑥) + 𝐶2,𝐼𝑘1
2 𝑠𝑖𝑛ℎ( 𝑘1𝑥)] (2.7.15d) 

where 𝐶1,𝐼 and 𝐶2,𝐼 are the integration constants to be determined by the boundary conditions. 

The boundary conditions are different for different segments: 

𝑢𝑓,𝐼(𝑥 = 0) = 0, 0 ≤ 𝑥 ≤ ℓ𝑐𝑟 (2.7.16a) 
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𝜀𝑓,𝐼(𝑥 = ℓ𝑐𝑟
− ) = 𝜀𝑓,𝐼(𝑥 = ℓ𝑐𝑟

+ ), 0 ≤ 𝑥 ≤ ℓ𝑐𝑟 (2.7.16b) 

𝜏𝑓,𝐼(𝑥 = ℓ𝑐𝑟
− ) = 𝜏𝑓,𝐼(𝑥 = ℓ𝑐𝑟

+ ), ℓ𝑐𝑟 ≤ 𝑥 ≤ 𝐿 (2.7.16c) 

𝜀𝑓,𝐼(𝑥 = 𝐿) = 0, ℓ𝑐𝑟 ≤ 𝑥 ≤ 𝐿 (2.7.16f) 

By substituting Eq. (2.7.16) into Eq. (2.7.15), the constants 𝐶1 and 𝐶2 are determined: 

𝐶1,𝐼  = {

−𝛿, 0 ≤ 𝑥 ≤ ℓ𝑐𝑟
𝜀0
𝑘1
[𝑠𝑖𝑛ℎ( 𝑘1𝐿) − 𝑡𝑎𝑛ℎ(𝑘1ℓ𝑐𝑟) 𝑐𝑜𝑠ℎ( 𝑘1𝐿)], ℓ𝑐𝑟 ≤ 𝑥 ≤ 𝐿

 (2.7.17a) 

𝐶2,𝐼  = {

𝛿 𝑡𝑎𝑛ℎ( 𝑘1ℓ𝑐𝑟), 0 ≤ 𝑥 ≤ ℓ𝑐𝑟
𝜀0
𝑘1
[𝑡𝑎𝑛ℎ(𝑘1ℓ𝑐𝑟) 𝑠𝑖𝑛ℎ( 𝑘1𝐿) − 𝑐𝑜𝑠ℎ( 𝑘1𝐿)], ℓ𝑐𝑟 ≤ 𝑥 ≤ 𝐿

 (2.7.17b) 

2.7.2.2.2. Stage II: Elastic-yielding phase 

Once the crack width exceeds the critical value, the interfacial yielding takes place and leads 

to a softening region at the interface between the fiber core and coating. Consequently, the fiber-

coating interface becomes elastic far away from the crack and softened near its location. In this 

scenario, two equations of deformation compatibility are necessary to describe the strain transfer 

mechanism accurately. To obtain the differential equation of deformation for the optical fiber, Eq. 

(2.7.14) is inserted into the first two stages of Eq. (2.7.13): 

𝑢𝑓,𝐼𝐼(𝑥) = {

𝐶1,𝐼𝐼 𝑐𝑜𝑠ℎ( 𝑘1𝑥) + 𝐶2,𝐼𝐼 𝑠𝑖𝑛ℎ( 𝑘1𝑥) + 𝜀0𝑥 + 𝛿, ℓ𝑦𝑑 ≤ 𝑥 ≤ 𝐿

𝐶3,𝐼𝐼 𝑐𝑜𝑠ℎ( 𝑘2𝑥) + 𝐶4,𝐼𝐼 𝑠𝑖𝑛ℎ( 𝑘2𝑥) + 𝜀0𝑥 + 𝛿 +
(𝛽 − 𝛼)𝑠𝑓

1 − 𝛽
, 0 ≤ 𝑥 ≤ ℓ𝑦𝑑

 (2.7.17a) 

𝜀𝑓,𝐼𝐼(𝑥) = {
𝐶1,𝐼𝐼𝑘1 𝑠𝑖𝑛ℎ( 𝑘1𝑥) + 𝐶2,𝐼𝐼𝑘1 𝑐𝑜𝑠ℎ( 𝑘1𝑥) + 𝜀0, ℓ𝑦𝑑 ≤ 𝑥 ≤ 𝐿

𝐶3,𝐼𝐼𝑘2 𝑠𝑖𝑛ℎ( 𝑘2𝑥) + 𝐶4,𝐼𝐼𝑘2 𝑐𝑜𝑠ℎ( 𝑘2𝑥) + 𝜀0, 0 ≤ 𝑥 ≤ ℓ𝑦𝑑
 (2.7.17b) 

𝜏𝑓,𝐼𝐼(𝑥) = {
−
𝐸𝑓 𝑟𝑓

2
[𝐶1,𝐼𝐼𝑘1

2 𝑐𝑜𝑠ℎ( 𝑘1𝑥) + 𝐶2,𝐼𝐼𝑘1
2 𝑠𝑖𝑛ℎ( 𝑘1𝑥)], ℓ𝑦𝑑 ≤ 𝑥 ≤ 𝐿

−
𝐸𝑓  𝑟𝑓

2
[𝐶3,𝐼𝐼𝑘2

2 𝑐𝑜𝑠ℎ( 𝑘2𝑥) + 𝐶4,𝐼𝐼𝑘2
2 𝑠𝑖𝑛ℎ( 𝑘2𝑥)], 0 ≤ 𝑥 ≤ ℓ𝑦𝑑

 (2.7.17c) 

𝑠𝐼𝐼(𝑥) =

{
 
 

 
 −

𝐸𝑓 𝑟𝑓

2

𝛼𝑠𝑓

𝛽𝜏𝑓
[𝐶1,𝐼𝐼𝑘1

2 𝑐𝑜𝑠ℎ( 𝑘1𝑥) + 𝐶2,𝐼𝐼𝑘1
2 𝑠𝑖𝑛ℎ( 𝑘1𝑥)], ℓ𝑦𝑑 ≤ 𝑥 ≤ 𝐿

−
𝐸𝑓 𝑟𝑓

2

(1 − 𝛼)𝑠𝑓
(1 − 𝛽)𝜏𝑓

[𝐶3,𝐼𝐼𝑘2
2 𝑐𝑜𝑠ℎ( 𝑘2𝑥) + 𝐶4,𝐼𝐼𝑘2

2 𝑠𝑖𝑛ℎ( 𝑘2𝑥) +
2

𝐸𝑓 𝑟𝑓

(𝛽 − 𝛼)𝜏𝑓

1 − 𝛼
] , 0 ≤ 𝑥 ≤ ℓ𝑦𝑑

 (2.7.17d) 

where 𝐶1,𝐼𝐼, 𝐶2,𝐼𝐼, 𝐶3,𝐼𝐼, and 𝐶4,𝐼𝐼 are the integration constants to be determined by the boundary 

conditions. 

The boundary conditions are different for different segments: 

𝑢𝑓,𝐼𝐼(𝑥 = 0) = 0, 0 ≤ 𝑥 ≤ ℓ𝑦𝑑 (2.7.18a) 

𝜀𝑓,𝐼𝐼(𝑥 = ℓ𝑦𝑑
− ) = 𝜀𝑓,𝐼𝐼(𝑥 = ℓ𝑦𝑑

+ ), 0 ≤ 𝑥 ≤ ℓ𝑦𝑑 (2.7.18b) 

𝜏𝑓,𝐼𝐼(𝑥 = ℓ𝑦𝑑
− ) = 𝜏𝑓,𝐼𝐼(𝑥 = ℓ𝑦𝑑

+ ), ℓ𝑦𝑑 ≤ 𝑥 ≤ ℓ𝑐𝑟 (2.7.18c) 

𝜀𝑓,𝐼𝐼(𝑥 = ℓ𝑐𝑟
− ) = 𝜀𝑓,𝐼𝐼(𝑥 = ℓ𝑐𝑟

+ ), ℓ𝑦𝑑 ≤ 𝑥 ≤ ℓ𝑐𝑟 (2.7.18d) 

𝜏𝑓,𝐼𝐼(𝑥 = ℓ𝑐𝑟
− ) = 𝜏𝑓,𝐼𝐼(𝑥 = ℓ𝑐𝑟

+ ), ℓ𝑐𝑟 ≤ 𝑥 ≤ 𝐿 − ℓ𝑠𝑡 (2.7.18e) 
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𝜀𝑓,𝐼𝐼(𝑥 = (𝐿 − ℓ𝑠𝑡)
−) = 𝜀𝑓,𝐼𝐼(𝑥 = (𝐿 − ℓ𝑠𝑡)

+), ℓ𝑐𝑟 ≤ 𝑥 ≤ 𝐿 − ℓ𝑠𝑡 (2.7.18f) 

𝜏𝑓,𝐼𝐼(𝑥 = (𝐿 − ℓ𝑠𝑡)
−) = 𝜏𝑓,𝐼𝐼(𝑥 = (𝐿 − ℓ𝑠𝑡)

+), ℓ𝑐𝑟 ≤ 𝑥 ≤ 𝐿 (2.7.18g) 

𝜀𝑓,𝐼𝐼(𝑥 = 𝐿) = 0, ℓ𝑐𝑟 ≤ 𝑥 ≤ 𝐿 (2.7.18h) 

By substituting Eq. (2.7.18) into Eq. (2.7.17), the constants 𝐶1,𝐼𝐼, 𝐶2,𝐼𝐼, 𝐶3,𝐼𝐼, and 𝐶4,𝐼𝐼 are 

determined: 

𝐶1,𝐼𝐼 =

{
 
 

 
 2𝛽𝜏𝑓(𝑒

2𝑘1𝐿 − 1)

𝑘1
2𝐸𝑓𝑟𝑓[𝑒

𝑘1ℓ𝑦𝑑 − 𝑒2𝑘1(𝐿−ℓ𝑦𝑑)]
, ℓ𝑦𝑑 ≤ 𝑥 ≤ ℓ𝑐𝑟

𝜀0
𝑘1
[𝑠𝑖𝑛ℎ( 𝑘1𝐿) − 𝑡𝑎𝑛ℎ(𝑘1ℓ𝑐𝑟) 𝑐𝑜𝑠ℎ( 𝑘1𝐿)], 𝐿 − ℓ𝑐𝑟 ≤ 𝑥 ≤ 𝐿

 (2.7.19a) 

𝐶2,𝐼𝐼  =

{
 
 

 
 −2𝛽𝜏𝑓(𝑒

2𝑘1𝐿 + 1)

𝑘1
2𝐸𝑓𝑟𝑓[𝑒

𝑘1ℓ𝑦𝑑 − 𝑒2𝑘1(𝐿−ℓ𝑦𝑑)]
, ℓ𝑦𝑑 ≤ 𝑥 ≤ ℓ𝑐𝑟

𝜀0
𝑘1
[𝑡𝑎𝑛ℎ(𝑘1ℓ𝑠𝑡) 𝑠𝑖𝑛ℎ( 𝑘1𝐿) − 𝑐𝑜𝑠ℎ( 𝑘1𝐿)], 𝐿 − ℓ𝑐𝑟 ≤ 𝑥 ≤ 𝐿

 (2.7.19b) 

𝐶3,𝐼𝐼 = −(𝛿 +
𝛽 − 𝛼

1 − 𝛽
𝑠𝑓) , 0 ≤ 𝑥 ≤ ℓ𝑦𝑑 (2.7.19c) 

𝐶4,𝐼𝐼 = (𝛿 +
𝛽 − 𝛼

1 − 𝛽
𝑠𝑓) 𝑐𝑜𝑡ℎ(𝑘2ℓ𝑦𝑑) −

2𝛽𝜏𝑓

𝐸𝑓𝑟𝑓𝑘2
2 𝑐𝑠𝑐ℎ(𝑘2ℓ𝑦𝑑) , 0 ≤ 𝑥 ≤ ℓ𝑦𝑑 (2.7.19d) 

Once the crack width exceeds the critical width for debonding, the interface between the fiber 

and its coating at the crack begins to debond. The interfacial shear stress at the crack, denoted as 

𝜏𝑓,𝐼𝐼(𝑥 = 0), becomes equal to the initial interfacial shear stress 𝜏𝑓. To calculate the half crack 

width 𝛿𝑠 at which optical fiber debonding from the substrate initiates, the following equation needs 

to be solved: 

𝜏𝑓 =
𝐸𝑓𝑟𝑓

2
(𝛿𝑠 +

𝛽 − 𝛼

1 − 𝛽
𝑠𝑓) 𝑘2

2
 (2.7.20) 

Therefore, the critical half crack width (𝛿𝑠) is expressed as follows: 

𝛿𝑠 =
2𝜏𝑓

𝐸𝑓𝑟𝑓𝑘2
2 −

𝛽 − 𝛼

1 − 𝛽
𝑠𝑓 (2.7.21) 

2.7.2.2.3. Stage III: Elastic-yielding-debonding phase 

As the crack width further increases, the interface between the fiber core and coating can be 

categorized into three regions: the debonding region near the crack (0 ≤  𝑥 < ℓ𝑑𝑏), the yielding 

region in the middle, and the elastic region at the end. Within the debonding region, the interfacial 

shear stress is mainly caused by the friction between the fiber and coating, and it remains constant. 

𝜏𝑓(𝑥) = 𝜏𝑓 (2.7.22) 

The strain induced in the optical fiber is expressed as a constant within the debonding region. 

The differential equation expression of the fiber deformation, normal strain, shear stress, and fiber 

slip are obtained: 
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𝑢𝑓,𝐼𝐼𝐼(𝑥) =

{
 
 

 
 

𝐶1,𝐼𝐼𝐼 𝑐𝑜𝑠ℎ( 𝑘1𝑥) + 𝐶2,𝐼𝐼𝐼 𝑠𝑖𝑛ℎ( 𝑘1𝑥) + 𝜀0𝑥 + 𝛿, ℓ𝑑𝑏 + ℓ𝑦𝑑 ≤ 𝑥 ≤ 𝐿

𝐶3,𝐼𝐼𝐼 𝑐𝑜𝑠ℎ( 𝑘2𝑥) + 𝐶4,𝐼𝐼𝐼𝐼 𝑠𝑖𝑛ℎ( 𝑘2𝑥) + 𝜀0𝑥 + 𝛿 +
(𝛽 − 𝛼)𝑠𝑓

1 − 𝛽
, ℓ𝑑𝑏 < 𝑥 ≤ ℓ𝑑𝑏 + ℓ𝑦𝑑

−
𝜏𝑓

𝐸𝑓𝑟𝑓
𝑥2 + 𝐶5,𝐼𝐼𝐼𝑥 + 𝐶6,𝐼𝐼𝐼 , 0 ≤ 𝑥 ≤ ℓ𝑑𝑏

 (2.7.23a) 

𝜀𝑓,𝐼𝐼𝐼(𝑥) =

{
 
 

 
 
𝐶1,𝐼𝐼𝐼𝑘1 𝑠𝑖𝑛ℎ( 𝑘1𝑥) + 𝐶2,𝐼𝐼𝐼𝑘1 𝑐𝑜𝑠ℎ( 𝑘1𝑥) + 𝜀0, ℓ𝑑𝑏 + ℓ𝑦𝑑 ≤ 𝑥 ≤ 𝐿

𝐶3,𝐼𝐼𝐼𝑘2 𝑠𝑖𝑛ℎ( 𝑘2𝑥) + 𝐶4,𝐼𝐼𝐼𝑘2 𝑐𝑜𝑠ℎ( 𝑘2𝑥) + 𝜀0, ℓ𝑑𝑏 < 𝑥 ≤ ℓ𝑑𝑏 + ℓ𝑦𝑑

−
2𝜏𝑓

𝐸𝑓𝑟𝑓
𝑥 + 𝐶5,𝐼𝐼𝐼 , 0 ≤ 𝑥 ≤ ℓ𝑑𝑏

 (2.7.23b) 

𝜏𝑓,𝐼𝐼𝐼(𝑥) =

{
 
 

 
 −

𝐸𝑓 𝑟𝑓

2
[𝐶1,𝐼𝐼𝐼𝑘1 𝑠𝑖𝑛ℎ( 𝑘1𝑥) + 𝐶2,𝐼𝐼𝐼𝑘1 𝑐𝑜𝑠ℎ( 𝑘1𝑥) + 𝜀0], ℓ𝑑𝑏 + ℓ𝑦𝑑 ≤ 𝑥 ≤ 𝐿

−
𝐸𝑓  𝑟𝑓

2
[𝐶3,𝐼𝐼𝐼𝑘2 𝑠𝑖𝑛ℎ( 𝑘2𝑥) + 𝐶4,𝐼𝐼𝐼𝑘2 𝑐𝑜𝑠ℎ( 𝑘2𝑥) + 𝜀0], ℓ𝑑𝑏 < 𝑥 ≤ ℓ𝑑𝑏 + ℓ𝑦𝑑

𝜏𝑓 , 0 ≤ 𝑥 ≤ ℓ𝑑𝑏

 (2.7.23c) 

𝑠𝐼𝐼𝐼(𝑥) =

{
 
 

 
 −

𝐸𝑓 𝑟𝑓

2

𝛼𝑠𝑓

𝛽𝜏𝑓
[𝐶1,𝐼𝐼𝑘1

2 𝑐𝑜𝑠ℎ( 𝑘1𝑥) + 𝐶2,𝐼𝐼𝑘1
2 𝑠𝑖𝑛ℎ( 𝑘1𝑥)], ℓ𝑑𝑏 + ℓ𝑦𝑑 ≤ 𝑥 ≤ 𝐿

−
𝐸𝑓 𝑟𝑓

2

(1 − 𝛼)𝑠𝑓
(1 − 𝛽)𝜏𝑓

[𝐶3,𝐼𝐼𝑘2
2 𝑐𝑜𝑠ℎ( 𝑘2𝑥) + 𝐶4,𝐼𝐼𝑘2

2 𝑠𝑖𝑛ℎ( 𝑘2𝑥) +
2

𝐸𝑓 𝑟𝑓

(𝛽 − 𝛼)𝜏𝑓

1 − 𝛼
] , ℓ𝑑𝑏 < 𝑥 ≤ ℓ𝑑𝑏 + ℓ𝑦𝑑

 (2.7.23d) 

where 𝐶1,𝐼𝐼𝐼, 𝐶2,𝐼𝐼𝐼, 𝐶3,𝐼𝐼𝐼, 𝐶4,𝐼𝐼𝐼, 𝐶5,𝐼𝐼𝐼, and 𝐶6,𝐼𝐼𝐼 are the integration constants to be determined by 

the boundary conditions. 

The boundary conditions are different for different segments: 

𝑢𝑓,𝐼𝐼𝐼(𝑥 = 0) = 0, 0 ≤ 𝑥 ≤ ℓ𝑑𝑏 (2.7.24a) 

𝜀𝑓,𝐼𝐼(𝑥 = ℓ𝑑𝑏
− ) = 𝜀𝑓,𝐼𝐼(𝑥 = ℓ𝑑𝑏

+ ), 0 ≤ 𝑥 ≤ ℓ𝑑𝑏 (2.7.24b) 

𝜏𝑓,𝐼𝐼(𝑥 = ℓ𝑑𝑏
− ) = 𝜏𝑓,𝐼𝐼(𝑥 = ℓ𝑑𝑏

+ ), ℓ𝑑𝑏 ≤ 𝑥 ≤ ℓ𝑦𝑑 (2.7.24c) 

𝜀𝑓,𝐼𝐼(𝑥 = (ℓ𝑑𝑏 + ℓ𝑦𝑑)
−
) = 𝜀𝑓,𝐼𝐼 (𝑥 = (ℓ𝑑𝑏 + ℓ𝑦𝑑)

+
) , ℓ𝑑𝑏 ≤ 𝑥 ≤ ℓ𝑦𝑑 (2.7.24d) 

𝜏𝑓,𝐼𝐼(𝑥 = (ℓ𝑑𝑏 + ℓ𝑦𝑑)
−
) = 𝜏𝑓,𝐼𝐼 (𝑥 = (ℓ𝑑𝑏 + ℓ𝑦𝑑)

+
) , ℓ𝑦𝑑 ≤ 𝑥 ≤ ℓ𝑐𝑟  (2.7.24e) 

𝜀𝑓,𝐼𝐼(𝑥 = ℓ𝑐𝑟
− ) = 𝜀𝑓,𝐼𝐼(𝑥 = ℓ𝑐𝑟

+ ), ℓ𝑦𝑑 ≤ 𝑥 ≤ ℓ𝑐𝑟  (2.7.24f) 

𝜏𝑓,𝐼𝐼(𝑥 = ℓ𝑐𝑟
− ) = 𝜏𝑓,𝐼𝐼(𝑥 = ℓ𝑐𝑟

+ ), ℓ𝑐𝑟 ≤ 𝑥 ≤ 𝐿 − ℓ𝑠𝑡 (2.7.24g) 

𝜀𝑓,𝐼(𝑥 = (𝐿 − ℓ𝑐𝑟)
−) = 𝜀𝑓,𝐼(𝑥 = (𝐿 − ℓ𝑐𝑟)

+), ℓ𝑐𝑟 ≤ 𝑥 ≤ 𝐿 − ℓ𝑠𝑡  (2.7.24h) 

𝜏𝑓,𝐼(𝑥 = (𝐿 − ℓ𝑐𝑟)
−) = 𝜏𝑓,𝐼(𝑥 = (𝐿 − ℓ𝑐𝑟)

+), ℓ𝑐𝑟 ≤ 𝑥 ≤ 𝐿 (2.7.24i) 

𝜀𝑓(𝑥 = 𝐿) = 0, ℓ𝑐𝑟 ≤ 𝑥 ≤ 𝐿 (2.7.24j) 

By substituting Eq. (2.7.24) into Eq. (2.7.23), constants 𝐶1,𝐼𝐼𝐼, 𝐶2,𝐼𝐼𝐼, 𝐶3,𝐼𝐼𝐼, and 𝐶4,𝐼𝐼𝐼, 𝐶5,𝐼𝐼𝐼, 

and 𝐶6,𝐼𝐼𝐼 are determined: 

𝐶1,𝐼𝐼𝐼 =

{
 
 

 
 −2𝛽𝜏𝑓(𝑒

2𝑘1𝐿 + 1)

𝑘1
2𝐸𝑓𝑟𝑓[𝑒

𝑘1(ℓ𝑦𝑑+ℓ𝑑𝑏) − 𝑒2𝑘1(𝐿−(ℓ𝑦𝑑−ℓ𝑑𝑏))]
, ℓ𝑦𝑑 ≤ 𝑥 ≤ ℓ𝑐𝑟

𝜀0
𝑘1
[𝑠𝑖𝑛ℎ( 𝑘1𝐿) − 𝑡𝑎𝑛ℎ(𝑘1ℓ𝑐𝑟) 𝑐𝑜𝑠ℎ( 𝑘1𝐿)], 𝐿 − ℓ𝑐𝑟 ≤ 𝑥 ≤ 𝐿

 (2.7.25a) 

𝐶2,𝐼𝐼𝐼  =

{
 
 

 
 2𝛽𝜏𝑓(𝑒

2𝑘1𝐿 − 1)

𝑘1
2𝐸𝑓𝑟𝑓[𝑒

𝑘1(ℓ𝑦𝑑+ℓ𝑑𝑏) − 𝑒2𝑘1(𝐿−(ℓ𝑦𝑑−ℓ𝑑𝑏))]
, ℓ𝑦𝑑 ≤ 𝑥 ≤ ℓ𝑐𝑟

𝜀0
𝑘1
[𝑡𝑎𝑛ℎ(𝑘1ℓ𝑐𝑟) 𝑠𝑖𝑛ℎ( 𝑘1𝐿) − 𝑐𝑜𝑠ℎ( 𝑘1𝐿)], 𝐿 − ℓ𝑐𝑟 ≤ 𝑥 ≤ 𝐿

 (2.7.25b) 
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𝐶3,𝐼𝐼𝐼 =
−2𝛽𝜏𝑓(𝑒

2𝑘2ℓ𝑑𝑏 + 1)

𝑘2
2𝐸𝑓𝑟𝑓[𝑒

𝑘2(ℓ𝑦𝑑+ℓ𝑑𝑏) − 𝑒𝑘2(ℓ𝑑𝑏−ℓ𝑦𝑑)]
, ℓ𝑑𝑏 ≤ 𝑥 ≤ ℓ𝑦𝑑 (2.7.25c) 

𝐶4,𝐼𝐼𝐼 =
2𝛽𝜏𝑓(𝑒

2𝑘2ℓ𝑑𝑏 − 1)

𝑘2
2𝐸𝑓𝑟𝑓[𝑒

𝑘2(ℓ𝑦𝑑+ℓ𝑑𝑏) − 𝑒𝑘2(ℓ𝑑𝑏−ℓ𝑦𝑑)]
, ℓ𝑑𝑏 ≤ 𝑥 ≤ ℓ𝑦𝑑 (2.7.25d) 

𝐶5,𝐼𝐼𝐼 =
−2𝛽𝜏𝑓(𝑒

2𝑘2ℓ𝑑𝑏 + 1)sinh(𝑘2ℓ𝑑𝑏)

𝑘2𝐸𝑓𝑟𝑓[𝑒
𝑘2(ℓ𝑦𝑑+ℓ𝑑𝑏) − 𝑒𝑘2(ℓ𝑑𝑏−ℓ𝑦𝑑)]

+
2𝛽𝜏𝑓(𝑒

2𝑘2ℓ𝑑𝑏 − 1)cosh(𝑘2ℓ𝑑𝑏)

𝑘2𝐸𝑓𝑟𝑓[𝑒
𝑘2(ℓ𝑦𝑑+ℓ𝑑𝑏) − 𝑒𝑘2(ℓ𝑑𝑏−ℓ𝑦𝑑)]

+ 𝜀0 +
2𝜏𝑓ℓ𝑑𝑏

𝐸𝑓𝑟𝑓
, 0 ≤ 𝑥 ≤ ℓ𝑑𝑏 (2.7.25e) 

𝐶6,𝐼𝐼𝐼 =
−2𝛽𝜏𝑓(𝑒

2𝑘2ℓ𝑑𝑏 + 1) 𝑐𝑜𝑠ℎ( 𝑘2ℓ𝑑𝑏)

𝑘2
2𝐸𝑓𝑟𝑓[𝑒

𝑘2(ℓ𝑦𝑑+ℓ𝑑𝑏) − 𝑒𝑘2(ℓ𝑑𝑏−ℓ𝑦𝑑)]
+

2𝛽𝜏𝑓(𝑒
2𝑘2ℓ𝑑𝑏 − 1) 𝑠𝑖𝑛ℎ( 𝑘2ℓ𝑑𝑏)

𝑘2
2𝐸𝑓𝑟𝑓[𝑒

𝑘2(ℓ𝑦𝑑+ℓ𝑑𝑏) − 𝑒𝑘2(ℓ𝑑𝑏−ℓ𝑦𝑑)]
+ 𝜀0ℓ𝑑𝑏 + 𝛿 +

(𝛽 − 𝛼)𝑠𝑓

1 − 𝛽
+

𝜏𝑓

𝐸𝑓𝑟𝑓
ℓ𝑑𝑏

2 − 𝐶5,𝐼𝐼𝐼ℓ𝑑𝑏, 0 ≤ 𝑥 ≤ ℓ𝑑𝑏 (2.7.25f) 

 

2.7.3. Experimental studies 

In the previous section, a three-stage crack-strain transfer model was developed to describe 

the process by which substrate cracking leads to strain in a DFOS. In order to evaluate this model, 

experimental testing was conducted to validate strain distribution of uniform tensile strain field.  

2.7.3.1. Instrumentation, testing setup and loading protocol 

Experimental testing was carried out to validate the iterative effects of crack and tensile 

deformation occurred in the same position on the specimen. Specifically, a notched plate specimen 

was used to represent the combination effects of crack and uniform tension of two-dimensional 

specimens, as shown in Figure 2.7.4. 

  
(a) (b) 

Figure 2.7.4. Specimen preparation, instrumentation, and test set-up: (a) illustration of test set-up; and (b) 

photograph of the plate specimen on the load frame. 

Although this research was conducted using plate specimens, this research was conducted to 

validate the theoretical method which is applicable to various pipes because the method is based 

on strain measurement. The combined strain and cracks in pipelines will lead to the same strain 

distributions in the distributed fiber optic sensor. 

The plate specimen measured 812.8 mm (32 inches) in length, 76.2 mm (3 inches) in width 

and 2.54 mm (0.1 inch) in thickness. A notch was manually fabricated on one edge of the specimen 
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to represent crack, and length and width of the notch were 5 mm and 2 mm, respectively. Two 

optical fibers were attached on the two surfaces of plate specimen in the designed layout (green 

lines on the plate). The optical fiber was passed through the crack at both sides of plate to measure 

the iterative effects of crack and uniform tension occurred in the same position crossing a DFOS. 

For each optical fiber, one end was connected to the data acquisition system for the DFOS, and 

the other end of the optical fiber was free. On each surface of the specimen, the distance between 

two adjacent paths of the optical fiber alignment was 38.1 mm (1.5 inches). 

2.7.3.2. Strain distribution results 

This section presents the results of strain distributions obtained from the DFOS installed on 

the specimen under varying loads, as shown in Figure 2.7.5. The strain values, resulting from the 

interaction between crack and tensile deformation, are plotted on the vertical axis, while the 

horizontal axis represents the distance along the DFOS, with the zero distance indicating the 

connector of the data acquisition system. The length range of the DFOS is chosen to display the 

strain distributions within the fiber optic cable installed on the plate specimen. 

Based on the test results and analytical study, Figure 2.7.5 compares half of measurement 

results symmetrical to cracking position against the strain distribution obtained from analytical 

study. Overall, the results measured from the DFOS, and the analytical results agree well with each 

other. Overall, the strain in the DFOS prohibits obvious strain transfer effect within the critical 

embedment length at crack and uniform strain field end of the DFOS. The discrepancy can be 

attributed to the operational error of measuring crack width using crack scope and the stress 

concentration at the grip end of specimen. 

 

Figure 2.7.5. Comparison of measurement results of the strain distribution from the DFOS with analytical 

results. (Ana. refers to analytical results). 

2.7.4. Summary 

This project conducted theoretical and experimental studies on the measurement of combined 

strains and cracks using DFOS. The strain distributions caused by loads and cracks were 
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superimposed in the measured strain distribution results. The combined results can be decomposed 

using the methods developed in this project. After the strain distributions are decomposed, the 

strain distributions caused by an individual effect can be analyzed to support the measurement of 

strain fields as well as the detection, localization, and quantification of cracks. 

 

2.8. Measurement of interactive dent and corrosion 

2.8.1. Overview 

The above research has shown that the combinations of strain changes and cracks can be well 

measured and differentiated using a DFOS based on the measurements of strain distributions. The 

research motivated further research on the combinations of other types of anomalies. In real 

practice, cracks are relatively rare compared with dent and corrosion, which exist in most in-

service pipelines more or less. When a pipe has both dent and corrosion which happen to occur at 

the same position of the pipe, both dent and corrosion can significantly affect the strain 

distributions measured from a DFOS passing through the position of dent and corrosion. It is 

essential to develop effective methods to detect and differentiate the effect of dent and corrosion 

on the strain distributions measured from DFOS deployed on pipelines. To address the above 

challenge, this study aims to: (1) develop an approach to measuring both dent and corrosion that 

occur at the same position of a pipe; and (2) investigate the interactive effects of dent and corrosion 

that occur simultaneously using DFOS data.  

2.8.2. Methods 

2.8.2.1. Materials and specimen preparation 

Experimental testing was carried out to evaluate and differentiate the iterative effects of 

corrosion and dent that occurred in the same position on the pipe specimen, as shown in Figure 

2.8.1. The pipe specimen was made of steel, which is commonly used for transmission natural gas 

and hydraulic fluid. The length, outer diameter, and wall thickness of the pipe specimen were 250 

mm, 38.1 mm (1.5 inch) and 1.65 mm (0.065 inch) respectively, which is shown in Figure 2.8.1(a).  

 

 

(a) (b) 
Figure 2.8.1. Dimensions of pipe specimen and installation of fiber optic cable: (a) dimensions of the pipe; 

and (b) installation of fiber optic cable on the pipe. 
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DFOS were attached on the surface of pipe specimens in the designed layout (yellow lines on 

the pipes), which is shown in Figure 2.8.1(b). To prepare the specimen for optical fiber installation, 

it was first immersed in a 5% concentration acetic acid solution to remove surface rust and then 

wiped clean using alcohol wipes. The optical fibers were then attached to discrete spots on the 

specimen according to a pre-designed layout aimed at covering a large area. Tape was used to 

secure the optical fibers in place during installation. Subsequently, fast-setting glue was applied to 

attach the optical fibers to the specimen at discrete points between the tape spots. After the glue 

had set, the tape was removed with caution to prevent damage to the fibers or the glue. Finally, a 

two-part epoxy was applied to the optical fiber for a robust attachment and reliable strain transfer 

between the specimen and the optical fiber. Any excess epoxy on the fiber optic cable was removed 

to prevent the impact on corrosion. The thickness of the epoxy layer was about 250 µm, which is 

around one tenth of the pipe thickness. The width of the epoxy was about 4-6 mm. The epoxy was 

cured at room temperature (22 ºC ± 2 ºC) and normal humidity (50% ± 5%) for 24 hours. 

2.8.2.2. Test set-up, instrumentation, and loading protocol 

The specimens were loaded under three-point bending to generate dent deformation at mid-

span using a universal load frame. The span length between two supports is 210 mm. The dent test 

was conducted under displacement control at a rate of 1 mm/min. The applied load was recorded 

by the load cell of universal testing machine, and an extensometer was instrumented to record the 

mid-span deflection of pipe specimens. Specifically, the optical fiber was passed through the dent 

region to measure the iterative effects of dent and corrosion. One end of optical fiber was 

connected to the data acquisition system for the DFOS, and the other end of the optical fiber was 

free. The details of the test set-up and instrumentation are shown in Figure 2.8.2.  

 

Figure 2.8.2. Photograph for instrumentation, and test set-up of pre-dent test. 

In this study, we used a data acquisition system (model: Luna ODiSi 6) to perform the OFDR 

measurement. The measurement accuracy specified by the manufacturer is ±5 με for strain and ± 

2.2 °C for temperature. The range of spatial resolution was 0.65 mm to 10.4 mm.  
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The pipe specimens were immersed in a 3.5% sodium chloride solution at room temperature 

(25 °C ± 2 °C) for corrosion tests after the dent testing. Figure 2.8.3(a) illustrates the setup used 

for the corrosion tests. Plastic blocks were used to support the pipes at both ends, exposing the 

bottom of the pipes to the sodium chloride solution, as exemplified in Figure 2.8.3(b).  

To compensate for temperature variation, a distributed fiber optic temperature sensor was 

utilized, which could eliminate the influence of temperature on the measurement of strain 

distributions from the distributed fiber optic strain sensor, as depicted in Figure 2.8.3(c). The 

distributed sensing system was connected to the fiber optic cable for data acquisition, with 

Rayleigh backscattering signals measured and converted into strain distributions along the sensor. 

Each measurement took 20 seconds approximately, and the measurement frequency was 2 Hz. 

 
(a) 

 

 

(b) (c) 

Figure 2.8.3. Corrosion test of steel pipes: (a) test set-up; (b) investigated specimens; and (c) illustration 

of a pipe instrumented with DFOS. 

2.8.2.3. Investigated cases 

Table 2.8.1 presents a summary of the 14 cases studied in this research. The pipe specimens 

were divided into four categories: S0, which was the control specimen without dent deformation, 

S1 consisting of one specimen used to investigate the impact of five different measurement spatial 

resolutions of the DFOS (0.65 mm, 1.30 mm, 2.60 mm, 10.40 mm, and 20.80 mm), S2 consisting 

of three specimens used to study the effects of four different dent deformations (15%, 30%, 45%, 

and 60% of pipe outer diameter), and S3 containing four specimens to examine five different helix 

spacings (30 mm, 60 mm, 90 mm, 120 mm, and Straight line) for different sensor deployments. 
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The impact of coating thickness was not investigated in this study since previous research [30] 

found that it did not significantly affect accuracy. 

Table 2.8.1. Investigated cases of testing for dent and corrosion interactive effect 

Group Cases Spatial resolution 

(mm) 

Sensor deployment 

pattern 

Adjacent helix 

spacing (mm) 

Degree of 

deformation 

S0 (Ref.) 1 0.65 Helix 30 0 

S1 2 0.65 Helix 30 30% of OD 

3 1.3 Helix 30 30% of OD 

4 2.6 Helix 30 30% of OD 

5 5.2 Helix 30 30% of OD 

6 10.4 Helix 30 30% of OD 

7 20.8 Helix 30 30% of OD 

S2 8 0.65 Helix 30 15% of OD 

9 0.65 Helix 30 45% of OD 

10 0.65 Helix 30 60% of OD 

S3 11 0.65 Helix 60 30% of OD 

12 0.65 Helix 90 30% of OD 

13 0.65 Helix 120 30% of OD 

14 0.65 Straight line - 30% of OD 

Note: “Degree of deformation” refers to the ratio of dent depth over pipe outer diameter; “OD” refers 

to pipe outer diameter. 

 

2.8.3. Results and discussions 

2.8.3.1. Load-displacement curve and visual inspection 

Figure 2.8.4 shows the load-displacement curves and dent deformations of the pipe 

specimens. The pipe specimen under three-point bending exhibited a representative dent 

deformation with the applied displacement. The dent deformation increased with the applied 

displacement. All load-displacement curves consist of the loading part and the unloading part. 

  
(a) (b) 

Figure 2.8.4. Load-displacement of the pipe specimens under three-point bending: (a) Cases 1 to 10; and 

(b) Cases 1 and 11 to 14. 
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When the extent of dent deformation is smaller than 30% of the outer diameter of the pipes, 

the pipes showed similar load-displacement curves with three stages: (1) Stage 1: from “O” to “A”, 

where the bending load approximately linearly increases with the displacement. (2) Stage 2: from 

“A” to “B”, where the bending load increases with the displacement with a decreasing slope until 

reaching the peak load at point B. Both Stages 1 and 2 belong to the loading part. (3) Stage 3: from 

“B” to “C”, belonging to the unloading part, where the unloading force decreases with the 

unloading displacement. 

When the degree of dent deformation is greater than 30% of pipe outer diameter, the 

specimens showed similar curves with four stages: (1) Stage 1: from “O” to “A”, where the 

bending load approximately linearly increases with the displacement. (2) Stage 2: from “A” to 

“B”, where the bending load increases with the displacement with a decreasing slope until reaching 

the peak load at point B. (3) Stage 3: from “B” to “D”, where the load decreases with the increasing 

displacement. Stages 1 to 3 belong to the loading part. (3) Stage 4: from “D” to “C” belonging to 

the unloading part, where the unloading force decreases with the unloading displacement. 

Figure 2.8.5 shows an example of representative visual inspection results from one specimen 

in each testing group. Rust was generated on the external surfaces of pipes in groups S0 to S3. As 

the immersion time increased, the thickness of rust increased. Most rust was attached to the surface 

of the pipes, and only a small volume of rust was transported off the pipes. Since the corrosion 

products are expansive and have a lower density compared with intact steel, the diameter of the 

corroded pipe was increased. 

 

Figure 2.8.5. Photograph for pipe specimens immersed in the sodium chloride solution (3.5 wt. %) for 

corrosion experiments. 

2.8.3.2. Strain distribution results for pre-dent 

The dent tests were conducted using displacement control with a constant displacement rate 

of 1 mm/min. The applied load and displacement were measured by a load cell embedded in the 

load frame and an extensometer, respectively. Figure 2.8.6 shows the strain distributions measured 

by the DFOS installed on the pipe specimens under different loads. The vertical axis represents 

the strains resulting from dent deformation, while the horizontal axis represents the distance along 

the DFOS, with the zero distance at the data acquisition system's connector. Each figure's length 
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range is chosen to display the strain distributions within the fiber optic cable's installed length on 

the pipe specimens. 

The strain magnitudes increase with the dent deformations during loading. During unloading, 

the magnitudes of strain distributions decreased to a certain level due to the residual dent 

deformations. Based on the cases in groups S1 and S2, the peak strain and residual peak strain 

magnitudes near the dent position increased with increasing dent deformations, which is consistent 

with visual observations. In contrast, the peak strain and residual peak strain magnitudes near the 

dent position decreased with increasing adjacent helix spacing, as observed in the cases of groups 

S1 and S3. 

  
(a) (b) 

  
(c) (d) 

Figure 2.8.6. Strain distributions measured from the distributed fiber optic strain sensors deployed along 

the pipe specimens: (a) Cases 2-7 in group S1; (b) Case 8 in group S2; (c) Case 12 in group S3; and (d) 

Case 14 in group S3. 

2.8.3.3. Strain distribution results for dent-corrosion interactive effect 

The increase of the pipe diameter caused strain changes in the DFOS on the pipes. Figure 

2.8.7 shows the strain distributions measured from the DFOS at different immersion times (23 h, 

114 h, 268 h, 384 h, 504 h, 624 h, 744 h, 864 h, and 982 h). As shown in Figure 2.8.7(a), for the 

control specimen, uniform strain expansions were measured due to the individual corrosion effect, 
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which is consistent with visual inspection. Figure 2.8.7(b) shows representative strain distributions 

measured from the DFOS deployed on the specimens in group S1-2. Compared with results of S0 

at the same immersion durations, the values of strain distributions for S1-2 are much larger near 

dent region due to a dent-corrosion interactive effect. Non-uniform strain distributions are 

observed in interactive regions. The range of interactive regions is consistent with the residual 

strain distribution caused by dent effect. 

 

 
(a) (b) 

Figure 2.8.7. Strain distributions of pipe specimens under different immersion times: (a) Case 1 in group 

S0; (b) Cases 2-7 in group S1. 

With the coordinate of optical fiber correlated to the position of optical fiber on the pipe, the 

strain distribution along optical fiber can be converted to the strains on the helix layout on pipe. In 

one cycle of helix (B1-S1-T1-S1’-B2), it was found that the strain distribution due to residual dent 

follows a representative “M” shape: strains near the neutral axis reached the maximum positive 

value, and strains near the top and bottom reached the maximum negative value. It is consistent 

with the result of finite element analysis in Figure 2.8.8(a). The strain distribution due to corrosion-

dent interactive effect showed a representative “W” shape: strains near the neutral axis are troughs, 

and strains near the top and bottom are peaks. 

Besides, according to von Mises stress field of pipe shown in Figure 2.8.8(b), residual stress 

concentration occurs mainly on the top and bottom of pipe, but residual stresses on two side of 

pipe are close to zero. This result is also consistent with the corrosion strain distribution within 

interactive region: side points (S1, S1’, S2, S2’, S3, S3’, S4, and S4’) are located at the lowest 

points on the curve, but top and bottom points (T1, T2, T3, and T4; B1, B2, B3, and B4) are 

corresponding to the peak points on the curve. This results indicates that the interactive effect of 

dent to corrosion has a strong correlation with the residual von Mises stress in the pipe. 
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(a) 

 
(b) 

Figure 2.8.8. Finite element analysis results for optical fiber installed on pipe under three-point bending: 

(a) residual strain on optical fiber; (b) von Mises stress field of pipe. 

 

2.9. Measurement of interactive deformations and dent 

2.9.1. Overview 

The above research has motivated research on the combinations of global and local deformations, 

which are very often in real practice. A pipe can be subject to global deformations due to ground 

motions such as earthquakes and sliding, and local deformations such as dents can be caused by 

excavations and local defects. When a pipe has both global and local deformations which occur at 

the same position of the pipe, both global and local deformations can significantly affect the strain 

distributions measured from a DFOS passing through the position of local deformations. It is 

essential to develop effective methods to detect and differentiate the effect of global and local 

deformations on the strain distributions measured from the DFOS deployed on pipelines. To 

address the above challenge, this study aims to: (1) develop an approach to measuring global and 

local deformations that occur at the same position of a pipe; and (2) investigate the interactive 

effects of global and local deformations that occur simultaneously using DFOS data.  

2.9.2. Experimental program 

2.9.2.1. Materials and specimen preparation 

Experimental testing was carried out to evaluate and differentiate the iterative effects of 

bending, dent, notch, and dent that occurred at the same position of each pipe specimen. The pipe 
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specimen was made of carbon steel, which is commonly used for transmission natural gas and 

hydraulic fluid according to the standard ASTM A500 Grade B. The length, outer diameter, and 

wall thickness of the pipe specimen were 2550 mm, 114.3 mm, and 6.02 mm, respectively. 

The surface of pipe specimens were instrumented with DFOS network following a designated 

layout, which aimed to cover a significant area of the specimens. Prior to the installation of the 

optical fibers, the specimen was submerged in a 5% concentration of acetic acid solution to 

eliminate rust on the surfaces. The tape was used to secure the optical fibers in place during the 

installation process. Once in place, a fast-setting adhesive was used to attach the optical fibers to 

the specimens at specific points between the tape spots. After the adhesive had been set, the tape 

was carefully removed to prevent any damage to the optical fibers or adhesive. Finally, a two-part 

epoxy was applied to the optical fiber to ensure a sturdy attachment that would facilitate reliable 

strain transfer between the test specimen and the optical fiber. Any epoxy that spilled from the 

fiber optic cable was cleaned to prevent possible effects on pipe corrosion. 

In this study, the thickness of epoxy was about 250 µm (0.25 mm), which was about 1/10 of 

the thickness of specimens. The width of epoxy path was about 4-6 mm. The epoxy was cured in 

air at room temperature (22 ºC ± 2 ºC) and normal humidity (50% ± 5%) for 24 hours. The sensor 

installation for a continuous length of 1 m took less than 10 min by one person. 

2.9.2.1.2. Experimental set-up 

The specimens were loaded under four-point bending to generate dent deformation at the 

middle span using a universal load frame. The length between two loading points was 750 mm. 

The dent test was conducted under displacement control at a rate of 1 mm/min. The applied load 

was recorded by the load cell, and an LVDTs were instrumented to record the support and mid-

span deflections of pipe specimens. A high-resolution camera was used to capture the deformation 

of pipelines. The optical fiber was passed through the dent region to measure the iterative effects 

of bending and dent, bending and notch, and bending and dent/notch. One end of optical fiber was 

connected to the data acquisition system for the DFOS, and the other end of the optical fiber was 

free. In this study, a data acquisition system (model: Luna ODiSi 6) was employed to perform 

OFDR measurements. The measurement accuracy specified by the manufacturer is ±5 με for strain 

and ±2.2 °C for temperature. The details of testing setup and optical fiber layout is shown in Figure 

2.9.1. A total of 2 pipe specimens were investigated, designated as S1 and S2. 

Path-1 to Path-3 were installed along the length direction of pipe specimen. Path-1 was 

installed at the bottom of the pipe; Path-2 was installed along the neutral axis of the pipe; Path-3 

was installed near the top of the pipe; Path-4 was installed in helix layout along the circumference 

direction of pipe specimen, and the distance between adjacent helix is 101.6 mm. 
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(a) 

 
(b) 

Figure 2.9.1. Instrumentation and test set-up: (a) Photograph of test set-up; and (b) Illustration of the 

deployment of DFOS on the specimens. 

2.9.3. Results and discussions 

2.9.3.1. Load-displacement curves and visual inspection 

Figure 2.9.2 shows the load-displacement curves and visual inspection results of the pipes. 

The specimens showed similar curves with two stages: (1) Stage 1: elastic stage: the bending load 

increases with the displacement approximately linearly. (2) Stage 2: inelastic stage: the bending 

load increases with the displacement with a decreasing slope. In Stage 2, the pipes exhibited a 

representative interactive effect involving both local dent deformation and global bending 

deformation. Both dent deformation and global bending increased with the applied displacement. 

 
Figure 2.9.2. Load-displacement curves of specimens under four-point bending. 

2.9.3.2. Strain distributions 

Figure 2.9.3 shows the strain distributions measured from DFOS on the pipe under different 

loads. The vertical axis is the measured strains. The horizontal axis is the distance along the DFOS, 

with zero distance at the data acquisition system connector. Only the lengths of the DFOS installed 

on the pipe are displayed. The magnitudes of strain profiles increased as dent deformations 

increased during the loading process. 
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(a) 

 
(b) 

Figure 2.9.3. Strain distributions measured from the DFOS: (a) Path-1 to Path-3; (b) Path-4. 

According to Figure 2.9.3(a), strain distributions on Path-1 (bottom of pipe) mainly showed 

global bending effect. However, for Path-2 (neutral axis of pipe) and Path-3 (near top of pipe), 

obvious interactive effect was observed at two loading points, which makes it easy and straight 

forward to detect and locate and interactive effect of local dent and global bending deformation. 

According to Figure 2.9.3(b), strain distributions near two loading points showed obvious “M” 

shape in one period of the curve. By integrating DFOS Path-1 to Path-4, the interactive region is 

determined along both longitudinal direction and circular direction. 

2.9.3.3. Discussions 

The strain distributions on Path-4 can be further used to differentiate the interaction between 

global bending and local dent. Under a certain load, the corresponding strain distribution can be 

regarded as a one-dimensional signal along the space domain. The spatial frequency within the 

interactive region and out of interactive region are different: the spatial frequency of global 

bending effect is relatively low, and the spatial frequency of local dent effect is relatively high. By 

using fast Fourier transform, the signal from its space domain was converted to a representation in 

the frequency domain. With the increase of applying load value, strain distributions under different 

loads were converted to frequency domain and then replotted into a three-dimensional power 

spectrum, which is shown in Figure 2.9.4(a). 

The magnitude of power at the maximum load level is normalized to one and represented by 

color. It is observed that global bending effect occurred from the beginning of the test, but the local 

dent effect became obvious until the loading value larger than 30 kN, which is also consistent with 

the load-displacement curve. Moreover, if the normalization strategy is changed to: The 

magnitudes of powers at each load level are normalized to one (Figure 2.9.4(b)), it is observed that 

local stress concentration effect is detected almost from the beginning of the test, which is much 
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earlier than the occurring of local dent effect. Such early detection capability is promising to 

enhance the safety and operational management of pipelines. 

 
(a) 

 
(b) 

Figure 2.9.4. Normalized power spectrum of strain distribution: (a) the magnitude of power at the maximum 

load level is normalized to one; and (b) the magnitudes of powers at each load level are normalized to one. 

 

 

2.10. Measurement of interactive impact loads and corrosion 

2.10.1. Overview 

This paper presents an experimental investigation on the behavior of steel plates under the 

combination effects of impact loads and corrosion using discrete and distributed fiber optic 

sensors. A systematic assessment strategy is developed to estimate corrosion severity and 

structural response of steel plates under impact loads and corrosion. The steel plates were coated 

with epoxy and instrumented with FBG and OFDR sensors. The tested scenarios include impact 

loads, corrosion, and their combination. In all scenarios, the fiber optic sensors monitored the 

structural response of the steel plates. This research provides insights into the complex interaction 

between impact loads and corrosion in steel plates. 
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2.10.2. Methods 

2.10.2.1. FBG sensor 

FBG refers to a periodic and permanent modification of the refractive index within the core 

of an optical fiber [65]. FBG sensors measure alterations in the reflected signal originating from 

the grating structure, which is influenced by external parameters such as temperature and strain. 

The reflected wavelength, known as the Bragg wavelength (λ𝐵), is expressed as [66]: 

λ𝐵 = 2𝑛𝑒𝑓𝑓 ∧ (2.10.1) 

where 𝑛𝑒𝑓𝑓 is the effective refractive index; and ∧ is the grating period corresponding to the 

distance between two adjacent grating planes.  

When a wide spectrum light is projected to an FBG, the gratings selectively reflect a narrow 

band spectrum according to Eq. (2.10.1). The constructive interference between the light and the 

grating period causes a shift in the Bragg wavelength (∆λ𝐵) under temperature or strain changes. 

This Bragg wavelength shift can be expressed as [67]: 

∆λ𝐵 = λ𝐵[(1 − 𝑃𝑒)∆𝜀 + (α + ξ)∆T] (2.10.2) 

where λ𝐵 is the Bragg wavelength; Pe is the photo elastic coefficient of the fiber; ∆𝜀 is strain 

change; α and ξ are the respective thermal expansion coefficient and the thermo-optic coefficient 

of the fiber and are dependent on the material of fiber; and ∆T is the temperature change. After 

implementing temperature compensation, strain changes are correlated with changes in Bragg 

wavelength, enabling the measurement of corrosion-induced strains. 

2.10.2.2. Corrosion monitoring 

Distributed sensing systems can provide continuous and spatially resolved measurements, 

allowing for the detection of strain changes at multiple points along the entire length of the fiber. 

This enables comprehensive coverage and monitoring of large areas without the need for numerous 

individual sensors. However, it is important to note that distributed sensing typically does not 

provide the same high acquisition frequency as discrete FBG sensors. FBG sensors can offer very 

fast acquisition rates, making them suitable for capturing dynamic events and rapid changes in 

strain. Since this study aims to investigate the simultaneous effects of corrosion and impact loads, 

high-frequency measurements are crucial. Thus, FBG sensors are well-suited for the assessment 

of the dynamic response and effects under the combined action. 

2.10.2.3. Simplified sensing model for corrosion detection 

Pitting corrosion is usually characterized by the formation of localized cavities beneath the 

metal surface, serving as a site for rust accumulation, resulting in stress concentration at the 

corroded area [68]. To simulate the corresponding corrosion-induced strain, it is assumed that the 

growth of corrosion product primarily develops in the vertical direction. This assumption allows 

to model the effect of corrosion as an equivalent concentrated load applied to the surface where 

corrosion occurs. The FBG demonstrates the ability to accurately synchronize real-time changes 
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in Bragg wavelength, thereby enabling the detection and monitoring of strain changes induced by 

applied dynamic load and localized corrosion with high sensitivity. A sensing model is constructed 

to generalize the FBG-based method for detecting and monitoring corrosion phenomena. To 

reasonably evaluate pitting corrosion using the FBG-based sensing model, it is assumed that all 

corrosion products remain on the substrate and that the sensor is perfectly bonded to the metal 

surface. Consequently, the Bragg grating period can be simplified to a fixed support beam model. 

Figure 2.10.1 shows the simplified sensing model depicting the deformations of the FBG sensor 

under pitting corrosion and impact loading conditions. In Figure 2.10.1(a), when an equivalent 

upward force 𝐹𝑐 caused by corrosion is applied to the bottom of the optical fiber, the sensor will 

be stretched and protruding of corrosion product above the steel surface will lead to an upward 

displacement (∆𝑐). Similar downward bending deformation at the top of the fiber due to external 

loads will occur, as indicated in Figure 2.10.1(b). 

 
Figure 2.10.1. Deformations of a beam model under (a) pitting corrosion, and (b) impact load. 

The deformation of the FBG sensor ∆𝐿 either induced by pitting corrosion or impact loading 

can be calculated as: 

where 𝐿 is the deformed length of the FBG sensor; and 𝐿0 is the original length of the FBG sensor. 

Then, the stain in the FBG sensor, ∆𝜀, is expressed as: 

According to Eq. (2.10.2), ∆𝜀 can be estimated by the Bragg wavelength change, ∆λ𝐵: 

Integrating Eq. (2.10.6) into Eq. (2.10.5), ∆𝐿 is estimated by the Bragg wavelength change: 

For a triangular deformation, based on Eq. (2.10.4), the upward displacement, ∆𝑐, is: 

Plugging Eq. (2.10.7) into Eq. (2.10.8), ∆𝑐 is expressed by the Bragg wavelength change ∆λ𝐵: 

∆𝐿 = 𝐿 − 𝐿0 (2.10.4) 

∆𝜀 =
∆𝐿

𝐿0
=
𝐿 − 𝐿0
𝐿0

 (2.10.5) 

∆𝜀 =
∆λ𝐵

λ𝐵(1 − 𝑃𝑒)
 (2.10.6) 

∆𝐿 = 𝐿0 ∙
∆λ𝐵

λ𝐵(1 − 𝑃𝑒)
 (2.10.7) 

∆𝑐=
1

2
√𝐿2 − 𝐿0

2 =
1

2
√∆𝐿 ∙ (∆𝐿 + 2𝐿0) (2.10.8) 
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where 𝛼 =
1

λ𝐵(1−𝑃𝑒)
. ∆𝑐 can be used as an indicator to assess the severity of pitting corrosion.  

2.10.2.4. Pit depth estimation 

Pits can exhibit various shapes and geometrics. ASTM-G46 stipulates standard visual charts 

for various shapes of pits, as shown in Figure 2.10.2 [69]. Figure 2.10.2(a) shows trough pitting 

corrosion, which is characterized by the formation of small, elongated pits parallel to the surface. 

These pits can deepen and elongate gradually, leading to the formation of channels or grooves. On 

the other hand, sideway pitting corrosion are pits on the vertical or inclined surfaces of a substrate. 

These pits can appear as localized depressions or craters along the sidewalls, as shown in Figure 

2.10.2(b). One of the inherent risks associated with pitting corrosion is the misleading nature of 

surface pit openings as an indicator of sub-surface corrosion. This poses a significant challenge in 

accurately assessing the structural condition of components. Despite the appearance of minimal 

surface damage, the presence of substantial sub-surface corrosion can undermine the stability and 

performance of the affected structures. To ensure a thorough and reliable evaluation, it is 

imperative to employ a comprehensive technique and method that can penetrate beyond the 

surface, enabling an accurate assessment of the extent and influence of pitting corrosion on 

structural integrity. 

 
Figure 2.10.2. Standard cross-sectional shapes of pits. 

The modeling of pit depth can be simplified as a two-dimensional (2D) problem, focusing on 

the penetration that poses a significant threat to critical structural elements by perforating the steel 

substrate. For the coated steel substrate, pitting corrosion is expected to occur beneath coatings, 

allowing the ingress of environmental agents. As discussed in reference [66], in order to facilitate 

the estimation of pit depth in corrosion assessment, a generalized shape model is proposed by 

capturing the geometric characteristics of various pitting shapes, which is able to represent most 

cases, as illustrated in Figure 2.10.3. 

∆𝑐=
𝐿0
2
√𝛼∆λ𝐵 ∙ (𝛼∆λ𝐵 + 2) (2.10.9) 
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Figure 2.10.3. Generalized shape of pitting corrosion. 

The total volume of corrosion product 𝑉 of various cross-sectional shapes of pitting corrosion 

can be calculated as [66]: 

where 𝑉0 is the volume of original steel; 𝑉𝑐  is the volume of the corrosion product above the steel 

surface; 𝐴𝑖 and ℎ𝑖 are the area and height of element of original steel, respectively; 𝐴𝑗 and ℎ𝑗  are 

the area and height of the element of corrosion product above the steel surface, respectively. If a 

triangle needle cross-sectional shape of the pit is assumed, Eq. (2.10.10) can be expressed as: 

where 𝐴0 and 𝐴𝑐 are the area of the corrosion product above the steel surface and the pit, 

respectively; 𝑑 is the pit depth; and ∆𝑐 is the upward displacement caused by corrosion protruding. 

Based on our previous study, it can be assumed that 𝐴𝑐 is approximately 1.2 times larger than 𝐴0, 

where 𝐴𝑐 = 1.2𝐴0. Thus, Eq. (2.10.11) can be rewritten as: 

Pitting corrosion leads to the formation of protrusions on the steel surface as corrosion 

product accumulates and covers the pits. The volume of the corrosion build-up varies depending 

on its constituents and differs from that of the original steel 𝛼-𝐹𝑒. Table 2.10.1 shows the volume 

ratio 𝑐, revealing that the corrosion product can expand by a factor of 1.5 to 6 compared to the 

volume of the original iron. Thus, the total volume of corrosion product 𝑉 can be estimated as: 

Table 2.10.1. Volume ratio 𝒄 of corrosion product with different constituents 

Rust 𝛼-𝐹𝑒 𝐹𝑒𝑂 𝐹𝑒𝑂4 𝛼, 𝛾-𝐹𝑒2𝑂3 𝛼, 𝛾, 𝛿, 𝛽-𝐹𝑒𝑂𝑂𝐻 𝐹𝑒(𝑂𝐻)2 𝐹𝑒(𝑂𝐻)3 𝐹𝑒2𝑂3 ∙ 3𝐻2O 

Volume ratio, c 1.0 1.5-1.8 2.0 2.0-2.1 2.8-3.5 3.8 3.0 6.0 
 

Combining Eq. (2.10.12) and Eq. (2.10.13), the pit depth d is expressed as: 

𝑉 = 𝑉0 + 𝑉𝑐 = ∫ 𝐴𝑖ℎ𝑖

𝑑

0

+∫ 𝐴𝑗ℎ𝑗

∆𝑐

0

 (2.10.10) 

𝑉 = 𝑉0 + 𝑉𝑐 =
𝐴0𝑑

3
+
𝐴𝑐∆𝑐
3

 (2.10.11) 

𝑉 =  
𝐴0
3
(𝑑 + 1.2∆𝑐) (2.10.12) 

𝑉 =  𝑐𝑉0 (2.10.13) 

𝑑 =
1.2∆𝑐
𝑐 − 1

 (2.10.14) 
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Thus, by integrating Eq. (2.10.9) into Eq. (2.10.14), the pit depth 𝑑 can be estimated by 

monitoring the Bragg wavelength change as: 

where 𝛼 =
1

λ𝐵(1−𝑃𝑒)
. 

2.10.2.5.Corrosion rate assessment 

The total mass loss 𝑚 caused by corrosion can be calculated by: 

where 𝜌 is the density of corrosion product, and 𝑉 is the total volume of corrosion product. 

Assuming that pitting corrosion product mainly develops vertically, the total volume of 

corrosion product 𝑉 is proportional to the upward displacement ∆𝑐, so 𝑉 can be expressed as: 

where 𝑘1 is the linear scaling factor between the volume of corrosion product and the induced 

upward displacement. Combining Eq. (2.10.16) and Eq. (2.10.17), the total mass loss can be 

estimated as: 

The 𝐶𝑅 is defined as the derivative of the total mass loss of a metal with respect to time. Thus, 

𝐶𝑅 can be expressed as: 

Thus, by integrating Eq. (2.10.9) into Eq. (2.10.19), the average 𝐶𝑅 can be estimated from 

the measured Bragg wavelength change of the FBG sensor: 

where 𝛼 =
1

λ𝐵(1−𝑃𝑒)
. 

2.10.3. Experimental program 

2.10.3.1. Materials and specimens 

Steel plates specimens made of ASTM A36 hot-rolled steel were adopted, with dimensions 

of 170mm×170mm×3mm. Four holes with a diameter of 13mm were punched on the four corners 

of each steel plate to fasten it on a test table, as shown in Figure 2.10.4(a). Before installing the 

fiber optic sensors, the surfaces of steel plates were cleaned with acetone to enhance the bond 

between epoxy and steel. Then, FBG sensors and DFOS were deployed on the steel plates, as 

depicted in Figure 2.10.4(b). The DFOS covered a large area of the plate. Therefore, for each plate, 

𝑑 =
0.6𝐿0 ∙ √𝛼∆λ𝐵 ∙ (𝛼∆λ𝐵 + 2)

𝑐 − 1
 (2.10.15) 

𝑚 = 𝜌𝑉 (2.10.16) 

𝑉 = 𝑘1 ∙ ∆𝑐 (2.10.17) 

𝑚 = 𝜌𝑘1 ∙ ∆𝑐 (2.10.18) 

𝐶𝑅 =
𝑑𝑚

𝑑𝑡
= 𝜌𝑘1

𝑑∆𝑐
𝑑𝑡

 (2.10.19) 

𝐶𝑅 =
𝜌𝑘1𝐿0
2

∙
𝑑√𝛼∆λ𝐵 ∙ (𝛼∆λ𝐵 + 2)

𝑑𝑡
 (2.10.20) 
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a 2-meter OFDR-based DFOS and an FBG sensor were deployed to monitor the growth and 

distribution of corrosion, as well as the dynamic response.  

 

Figure 2.10.4. Test specimens and instrumentation: (a) An example of the test specimen, (b) schematic 

diagram of the test instrumentations, and (c) schematic diagram of the specimen structure. 

The DFOS was arranged in a serpentine pattern with 11 sensing segments, measuring 100 

mm in length and spaced 10 mm apart, creating a square sensing area of 100mm x 100mm. Super 

glue was used to attach each sensing segment and Bragg grating period, and tape was also utilized 

to secure the U-turn points. To differentiate the multiple distributed sensing segments for each 

specimen, they were labeled numerically from 1 to 11. The DFOS was connected to a distributed 

interrogator (ODiSi 6100 series) manufactured by LUNA using a stand-off cable. The gauge pitch 

of the DFOS was set to a minimum value of 0.65 mm. The FBG sensor was mounted at the center 

of the specimen using super glue, positioned adjacent to the intermediate (No. 6) distributed 

sensing segment, where impact loads were expected to be applied. The FBG sensors were 

connected to an FBG high-frequency interrogator (si155 series) manufactured by LUNA, with an 

acquisition frequency of 500 Hz. Following the instrumentation of FOS, DuralcoTM 4461 adhesive 

epoxy, a free-flowing liquid adhesive, was applied to the test specimens to simulate common 

conditions adopted in industrial applications, as shown in Figure 2.10.4(c). To protect the optical 

fibers and prevent premature failure due to applied impact loads, the thickness of epoxy coating 

was controlled at 1.5 mm using a professional drawdown bar. Then, the specimens were left to 

cure for 72 hours at an ambient temperature of approximately 24-27℃, ensuring that the epoxy 

coating reached the necessary hardness for subsequent corrosion and impact loading tests. 

2.10.3.2. Test setup 

To investigate the interaction between corrosive environments and dynamic loading on 

epoxy-coated steel, a series of tests were conducted in three groups: individual impact load, 

individual corrosion, and combined impact load and corrosion. In the impact load tests, a repetitive 
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impact cycle was implemented. A 2-kg calibration weight was dropped freely to apply an impact 

load onto the center of the test specimens, as shown in Figure 2.10.5(a).  

 

 

Figure 2.10.5. Photos and schematic of the test setups. 

The setup for the impact loading tests also involved the placement of a rubber tube in the 

central area of each specimen to ensure consistent positioning of the weight during impact tests, 

as shown in Figure 2.10.5(b) and Figure 2.10.5(c). Within each impact cycle, sequential impact 

tests were conducted at 10-minute intervals with varying impact heights (12.5mm, 25mm, and 

50mm). The contact time between the weight and the test specimen during each impact test was 5 

seconds. The impact velocities and forces for each impact condition are listed in Table 2.10.2. In 

the corrosion tests, a 100mm diameter PVC pipe was affixed to the central sensing area of each 

specimen using epoxy resin, as shown in Figure 2.10.5(d). The pipe was then filled with a 3.5% 

NaCl solution to create a corrosive environment. To expedite the corrosion process, an artificial 

crack measuring 20mm in length was introduced using a soft grinding wheel with a diameter of 

25mm. The crack was positioned 2mm away from the FBG sensor to facilitate corrosion beneath 

the sensor, enabling detection and further exploration of the interaction between corrosion and 

impact. The corrosion tests were carried out for a duration of 43 days (1032 hours). The test setup, 

illustrated in Figure 2.10.5(e), allowed for the assessment of the combined effects of impact 
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loading and corrosion. The impact load cycle was repeated every six days, resulting in a total of 

six impact load cycles throughout the 43-day corrosion process, until sensor failure occurred. 

Table 2.10.2. Impact parameters 

Impact height (mm) Velocity (m/s) Force (N) 

12.5 0.5 30 

25.0 0.7 35 

50.0 1.0 40 

   

A total of 12 plates were tested, with 4 specimens in each group, including one specimen for 

temperature compensation. The plates subject to impact tests and combined tests were divided into 

three working conditions, according to the heights of impact tests. A comprehensive investigation 

encompassing 21 test cases was conducted, as indicated in Table  2.10.3. 

Table 2.10.3. Investigated cases under three working conditions 

Working condition Case Corrosion time (h) Impact height (mm) 

Corrosion C1 1032 - 

 C2 1032 - 

 C3 1032 - 

Impact loading I1-1 - 12.5 

 I1-2 - 25.0 

 I1-3 - 50.0 

 I2-1 - 12.5 

 I2-2 - 25.0 

 I2-3 - 50.0 

 I3-1 - 12.5 

 I3-2 - 25.0 

 I3-3 - 50.0 

Corrosion & impact loading C&I1-1 1032 12.5 

 C&I1-2 1032 25.0 

 C&I1-3 1032 50.0 

 C&I2-1 1032 12.5 

 C&I2-2 1032 25.0 

 C&I2-3 1032 50.0 

 C&I3-1 1032 12.5 

 C&I3-2 1032 25.0 

 C&I3-3 1032 50.0 
    

 

2.10.4. Results and discussion 

2.10.4.1. Specimen resistance to corrosion under impact loads 

2.10.4.1.1. Effect of impact load on corrosion development 

Figure 2.10.6 shows the changes in Bragg wavelength resulting from individual corrosion 

and combined corrosion with impact. As the FBG sensor was limited to a sensing length of 10mm 
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and installed at the center of the test specimen, it primarily reflected the corrosion and impact 

response in that central area. In Figure 2.10.6(a), the total wavelength changes of the three test 

specimens during the corrosion process were very close, indicating similar severity of corrosion 

in the central regions. They exhibited consistent trends in three phases of wavelength variation, as 

observed in previous studies [70, 71]. Phase 0 represented the initial stage of corrosion, where rust 

began to fill the poses between the adhesive and FBG sensors; Phase 1 denoted the rapid 

development period characterized by a high corrosion rate; Phase 2 signified the stabilized 

corrosion progression, where the accumulation of corrosion products hindered oxygen diffusion 

and further contact with the steel, resulting in a slower corrosion rate. The remaining wavelength 

changes primarily reflected residual strain. Throughout the total 1032 hours of corrosion exposure, 

phase 0, phase 1, and phase 2 lasted about 290 hours, 175 hours, and 567 hours, respectively.  

 
Figure 2.10.6. Bragg wavelength change: (a) corrosion test, and (b) combined corrosion and impact test. 

Compared with Figure 2.10.6(a), Figure 2.10.6(b) shows the combined Bragg waveforms. 

The corrosion phases showed relatively gradual wavelength changes, whereas the impact 

responses demonstrated sudden increases in wavelength, indicating that impact loads exacerbated 

corrosion. Additionally, when comparing the total Bragg wavelength changes between individual 

corrosion and combined scenarios, it can be found that the applied impacts significantly promoted 

corrosion growth. For instance, the total wavelength changes of specimens C3 and C&I3 were 

90.93 pm and 627.45 pm, respectively, representing a 6.9-fold increase in wavelength after impact 

loading. Corrosion was accelerated to varying degrees under the influence of impacts. In Figure 

2.10.6(a), C1, C2, and C3 exhibited similar overall wavelength changes with values of 101.33 pm, 

80.73 pm, and 90.93 pm, respectively. However, the wavelength changes of C&I1, C&I2, and 

C&I3 at the end of the tests were 362.92 pm, 522.95 pm, and 627.45 pm, respectively, with 

significant differences, as shown in Figure 2.10.6(b). This can be attributed to differences in 

coating porosity or bonding properties between the coating and steel, resulting in diverse effects 

of impact loads on corrosion. 

To overcome the limitations of FBG sensors, DFOS offered real-time monitoring of corrosion 

development and distribution. Figure 2.10.7 to Figure 2.10.9 show the corrosion distribution before 
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and after each impact cycle for specimens C&I1, C&I2, and C&I3, respectively. These figures 

show the locations and values that exhibit the maximum strain changes.  

 

Figure 2.10.7. Effect of impact on corrosion distribution for specimen C&I1. 

 
Figure 2.10.8. Effect of impact on corrosion distribution for specimen C&I2. 
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Figure 2.10.9. Effect of impact on corrosion distribution for specimen C&I3. 

 
Figure 2.10.10. Visual inspection of specimens after rust removal. 

Corrosion originated from the areas where cracks were introduced in the epoxy coating. As 

time progressed, corrosion intensified and spread outward from these initial points. The strain 

distributions measured by DFOS provided a visual depiction of the gradual expansion of corrosion 

damage. However, due to the brittle and easily damaged nature of DFOS, the DFOS suffered 

premature damage before the 4th impact cycle test. Although DFOS could not complete the 

monitoring of the entire corrosion process, the corrosion distribution profile detected by DFOS 

closely aligned with the profiles observed in the visual inspection pictures shown in Figure 2.10.10. 

Furthermore, the strain changes measured at adjacent sensing points where FBG and DFOS 

were installed were nearly identical, as indicated in Figure 2.10.11. This validates the effectiveness 

and accuracy of DFOS in detecting corrosion distribution and severity. Moreover, a comparison 

of the corrosion area and severity before and after each impact clearly demonstrates that impact 

loading exacerbated corrosion, consistent with the abrupt increases in Bragg wavelength changes 

in Figure 2.10.6(b). Additionally, from Figure 2.10.7(g), Figure 2.10.8(g), and Figure 2.10.9(g), 

C&I1 experienced the least severe corrosion, as indicated by the maximum strain change of 233.33 

𝜇𝑚, while C&I3 exhibited the most extensive corrosion, with  a maximum strain change of 656.25 
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𝜇𝑚, resulting in the smallest and largest corroded areas, respectively. These findings suggest that 

the bonding performance of the coating was disrupted to varying degrees. Hence, the corrosion 

rate and severity are directly influenced by the performance of the coating.  

 
Figure 2.10.11. Strain changes of FBG and DFOS before and after each impact cycle. B denotes before 

impact cycles, and A denotes after impact cycles. 

2.10.4.1.2. Effect of impact loads on pit depth 

The pit depth of the test specimens was estimated using the developed generalized model, as 

described by Eq. (2.10.15). In addition, to assess the effect of impact loading on corrosion, the 

impact magnification index (𝜂𝑑) is defined as: 

𝜂𝑑 = 𝑑𝑐&𝑖/𝑑𝑐 (2.10.21) 

where 𝑑𝑐&𝑖 is the pit depth under the combined corrosion-impact test, and 𝑑𝑐 is the pit depth under 

the corrosion test. Based on the test results discussed in Section 5.1.1, impact loads have the 

potential to increase the pit depth. This suggests that the impact magnification index should be 

greater than 1, and a higher impact magnification index signifies a stronger influence of impact 

loading on corrosion development. 

Figure 2.10.12(a) shows the pit depth under both the corrosion test and the combined 

corrosion-impact test. At the end of the tests, the pit depth of the test specimens was also scanned 

using a Keyence Digital Microscope. The specimens subject to the combined action of corrosion 

and impact load exhibited greater pit depths compared with the specimens exposed to corrosion 

alone. The acceleration of impact load on corrosion progression was predominantly observed 

during the initial 450 hours, after which its influence gradually diminished. This behavior aligns 

with the pit depth development mechanism, where the early exposure phase is characterized by 

high growth rates (kinetic phase), followed by a phase controlled by oxygen concentration, 

resulting in slower development [72]. Specifically, specimens C2 and C&I2 displayed rapid pit 

depth development, reaching 262 𝜇𝑚 and 525 𝜇𝑚, respectively, after approximately 450 hours of 

corrosion exposure. Subsequently, the pit depths increased gradually to 295 𝜇𝑚 and 593 𝜇𝑚 until 

the end of the test. Similar patterns were also observed for specimens C&I1 and C&I3. 
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Figure 2.10.12(b) shows the impact magnification index, 𝜂𝑑, according to Eq. (2.10.21). 𝜂𝑑 

was above 2 consistently, and up to 4.35, showing a high influence of impact loads on corrosion, 

particularly during the initial stage of approximately 300 hours. Beyond this stage, the changing 

trend of 𝜂𝑑 gradually stabilized. Additionally, 𝜂𝑑 for specimens C&I2 vs. C2 and C&I3 vs. C3 

exhibited rapid increases in the early stage. In contrast, 𝜂𝑑 for specimens C&I1 vs. C1 was 

relatively stable throughout the corrosion process. The effect of impact loads on corrosion was 

influenced by the extent of damage to the performance of epoxy coating, as indicated by the 

contour of corrosion distribution in Figure 2.10.7 to Figure 2.10.9 and the visual inspection in 

Figure 2.10.10. Specimens C&I2 and C&I3 exhibited larger corrosion areas and more severe 

coating damage than C&I1, allowing for a more extensive interaction between corrosive agents 

and the steel substrate. Hence, the extent to which impact loading affected corrosion was 

influenced by the performance and damage of the coating. 

 
Figure 2.10.12. (a) Development of pit depth (𝑑), and (b) variation of impact magnification index (𝜂𝑑). 

Figure 2.10.13 compares the estimated and scanned pit depths. The scanned pit depth was 

close to the estimated pit depth, with a maximum difference of 1%, validating the accuracy of the 

proposed pit depth model. Notably, the scanned pit depths were slightly smaller than the calculated 

values, which could be attributed to the presence of residual corrosion products within the pits.  

 
Figure 2.10.13. Validation of pit depth estimation. Symbol % means the error of the estimated pit depth. 
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2.10.4.1.3. Effect of impact loads on corrosion rate 

Based on Eq. (2.10.18), the mass loss of the test specimens was evaluated from the measured 

Bragg wavelength change. Figure 2.10.14 shows a comparison of the mass loss between specimens 

under the corrosion test and those under the combined corrosion-impact test. The specimens 

subject to the combined condition exhibited greater mass loss compared to the specimens under 

the individual corrosion condition.  

 

 
Figure 2.10.14. Mass loss under individual corrosion and combined corrosion-impact conditions. 

When the total mass loss of the specimens under corrosion was similar, the specimens subject 

to the corrosion-impact condition showed notable differences in total mass loss. Specifically, the 

difference in total mass loss between C&I1 and C1 was much smaller than that between C&I2 and 

C2, and C&I3 and C3, with values of 1.41 g, 1.95 g, and 1.86 g, respectively. This discrepancy 

can be attributed to the lower severity of coating damage in C&I1, which hindered the corrosion 

solution from penetrating and interacting with the steel. In addition, it is worth noting that the mass 

loss increased rapidly during the first three cycles of impact loading and then gradually stabilized, 

aligning with the kinetic phase and concentration-controlled phase of corrosion development. 

An average CR can be calculated by Eq. (2.10.20) to assess corrosion. Figure 2.10.15 shows 

the variation of CR in the corrosion process. At the end of the test, the CR of the specimens subject 
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to the combined condition was noticeably higher than those under the individual corrosion 

condition. Specifically, C&I3 displayed the highest corrosion rate at 112 𝜇𝑚/year, while C3 had a 

corrosion rate of 16 𝜇𝑚/year. This pattern was also observed in other specimens, indicating that 

impact loading accelerated the corrosion rate. The rapid increase in corrosion rate due to the 

application of impact load was prominent during the initial approximately 450 hours of exposure 

and gradually declined thereafter. Furthermore, it is found that the promotional effect of impact 

load on the corrosion rate varied significantly among the specimens. In line with the findings from 

mass loss evaluation, specimens with more severe coating damage exhibited a more pronounced 

effect of impact loading on the corrosion rate. Moreover, referring to the NACE specification for 

pitting corrosion severity [73], it is categorized into four levels: low, moderate, high, and severe, 

with corrosion rates below 127 𝜇𝑚/year, 127-201 𝜇𝑚/year, 203-381 𝜇𝑚/year, and above 381 

𝜇𝑚/year, respectively. In Figure 2.10.15, the average corrosion rates of C&I2 and C&I3 exceeded 

127 𝜇𝑚/year, indicating a moderate corrosion severity, while the remaining specimens had 

corrosion rates below 127 𝜇𝑚/year, representing a low corrosion severity. 

 
Figure 2.10.15. Pitting corrosion warning according to NACE specification. 

2.10.4.2. Specimen resistance to impact loads under corrosion 

2.10.4.2.1. Effect of impact parameters on dynamic response 

Figure 2.10.16 to Figure 2.10.18 show the Bragg waveforms of impact loads monitored by 

FBG sensors under combined corrosion and impact loading conditions at three different impact 

heights (h): 12.5mm, 25.0mm, and 50.0mm, respectively. Six cycles of impact loads were applied 

throughout the corrosion process. In these figures, 0 represents the impact response without 

corrosion, while the 6th represents the last impact applied during the late stage of corrosion. The 

Bragg wavelength response exhibited three distinct phases of impact behavior across all cases:  

• Loading phase: At the initial application of the impact load, a triangle waveform of tensile 

deformation was observed, lasting about 1 to 1.5 seconds. 

• Stable phase: Following the loading phase, a stable period occurred as the load 

transitioned from dynamic to static. This phase typically lasted an average of 3.5 seconds. 

• Unloading phase: During impact unloading, a larger triangle waveform of compression 

deformation was formed, resulting in a residual Bragg wavelength. 
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Figure 2.10.16. Impact response detected by FBG (h=12.5mm). 

 

Figure 2.10.17. Impact response detected by FBG (h=25.0mm). 

 

Figure 2.10.18. Impact response detected by FBG (h=50.0mm). 

The influence of corrosion development on the dynamic motion process and the interaction 

between the free-fall weight and the test steel plate contributed to the varied patterns of wavelength 

variation. During the stable phase, the magnitude of Bragg wavelength changes increases with the 

number of impacts. Notably, a significant change in wavelength occurred between the 1st and 2nd 

impacts, followed by a gradual increase with subsequent impacts. This indicates that the impact 

response became more apparent as corrosion intensified, particularly during the initial stage of 

corrosion. For instance, the wavelength increases of C&I2-2 from 0 to the 2nd impact was 

196.55pm, accounting for 71.78% of the total wavelength change from 0 to the 6th impact. In 

multiple impact tests at the same free-fall height, the residual wavelength after impact unloading 

initially increased significantly, then fluctuated from the 3rd to the 5th impact, and decreased at 

the 6th impact. This can be attributed to the generation and protrusion of corrosion products, which 
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contributed to the residual wavelength. In the early stage of corrosion, rapid corrosion development 

led to the production of a substantial amount of rust. However, as rust accumulated and covered 

the corrosion pits, the corrosion process slowed down as it hindered the contact of steel with 

aggressive agents. In the combined test, impact loads not only densified the porous rust but also 

promoted its diffusion, explaining the decrease in residual wavelength observed at the 6th impact. 

Figure 2.10.19 compares the impact-induced wavelength changes at three different heights 

for the same number of impacts. In the initial uncorroded stage, as shown in Figure 2.10.19(a) to 

Figure 2.10.19(c), the wavelength changes caused by impacts at 12.5mm and 25.0mm are similar, 

but slightly smaller than those induced by impact at 50.0 mm impact.  

As the corrosion progressed, the differences in wavelength changes among the three impact 

heights became more pronounced. This can be attributed to the gradual reduction in stiffness of 

the corroded steel plates as corrosion intensified and corrosion products formed, leading to more 

significant dynamic responses. Higher impact heights resulted in more prominent dynamic 

responses during the stable phase, characterized by nonlinear increases in wavelength variation. 

For instance, C&I1-1, C&I1-2, and C&I1-3 had wavelength changes of 87.13pm, 136.93pm, and 

251.58pm at the 4th impact, respectively. This indicates that the wavelength changes at adjacent 

height levels increased by 1.57 and 1.84 times, respectively. After impact unloading, the residual 

wavelength also demonstrated an increase with higher impact heights, suggesting that higher 

impact heights resulted in more severe impairment of coating properties, such as bonding 

performance, ultimately leading to intensified corrosion. 

 

 
Figure 2.10.19. Comparison of impact responses under different free-fall heights. 
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Figure 2.10.19. Comparison of impact responses under different free-fall heights. 
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2.10.4.2.2. Impact energy dissipation 

To assess the impact load, an accelerometer was installed on the top surface of the specimen 

to measure the acceleration resulting from the applied impact load. To ensure the reliability and 

accuracy of the impact response assessment, only the peak acceleration data captured by the 

accelerometer were considered, mitigating any potential uncertainties or inconsistencies that could 

arise during the analysis. In addition, to intuitively evaluate the effect of corrosion on impact load, 

the impact energy dissipation index (𝜇) is defined as: 

𝜇 =
𝐴0 − 𝐴𝑛
𝐴0

× 100% (2.10.22) 

where 𝐴0 is the peak acceleration under the impact load without corrosion, and 𝐴𝑛 is the peak 

acceleration under the nth impact load. 

Figure 2.10.20 shows the relationship between peak acceleration and the number of impacts 

at different heights. In the 43-day corrosion progression, impact load tests were conducted every 

6 days, resulting in a total of 6 impact tests. The peak acceleration under the 0th impact represents 

the acceleration generated by the impact load without corrosion. A correlation can be observed 

between the peak acceleration and corrosion severity. This can be attributed to the reduced stiffness 

of the specimens caused by the corrosion-induced reduction in cross-section. Consequently, the 

ability of the specimens to withstand the applied impact load was diminished due to the detrimental 

effects of corrosion. Furthermore, it can be observed that the acceleration decay rate for the first 

four impact loads of specimens C&I2 and C&I3 was higher compared to the subsequent curves. 

Conversely, C&I1 exhibited a relatively steady decline in acceleration at a lower rate than the other 

specimens. This discrepancy can be attributed to the less severe corrosion experienced by C&I1, 

resulting in a relatively higher ability to withstand the impact load. Moreover, in all specimens, 

the acceleration decay rate under the 50.0 mm impact was significantly higher than that under the 

12.5mm and 25.0mm impacts, particularly during the first four impact loads. Subsequently, the 

decay rate decreased and approached a more consistent level. This indicates the general impact 

response of the specimens under the corrosion condition, with the rapid deterioration in the ability 

to withstand the impact load primarily occurring during the early stages of corrosion. 

 
Figure 2.10.20. Acceleration history at different impact heights. 
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Figure 2.10.21 shows the impact energy dissipation of the specimens under different heights 

of impact loads. The energy dissipation curves of 12.5 mm and 25.0 mm exhibited similar trends 

and values. The energy dissipation curve of 50.0 mm was higher, indicating a greater energy 

dissipation rate. Notably, in the 6th impact test, the impact energy dissipation at the three different 

impact heights became closer, with specimens C&I2 and C&I3 even exhibiting almost identical 

values. This suggests that the influence of impact height on energy dissipation gradually 

diminished as corrosion progressed. In addition, based on visual inspection, it is apparent that 

specimens with more severe corrosion exhibited higher energy dissipation. Specifically, the 

highest values of the impact energy dissipation index (𝜇) for specimens C&I1, C&I2, and C&I3 

were 74.17%, 83.39%, and 93.62%, respectively. This indicates that as corrosion became more 

pronounced, the specimens experienced greater energy dissipation during impact loading. 

 
Figure 2.10.21. Impact energy dissipation at different impact heights. 

2.10.5. Summary 

This research investigated the behavior of steel plates under the combination effects of impact 

loads and corrosion using discrete and DFOS via experiments. A systematic assessment strategy 

was developed to estimate the corrosion severity and structural response of steel plates under 

impact loads and corrosion. The interaction between impact loads and corrosion of steel plates was 

investigated. Based on the above investigations, the following conclusions can be drawn: 

• The experimental results demonstrate the feasibility and effectiveness of FBG sensors and 

OFDR-based DFOS in detecting impact load and corrosion, enabling real-time monitoring 

of their interaction. The measured Bragg wavelength change curves provided insights into 

the accelerated effect of impact load on corrosion, which was also observed in the corrosion 

distribution monitored by DFOS. This study revealed the correlation between the impact 

effect on corrosion and the performance of the coating. Specimens with more severe 

coating damage exhibited a more pronounced promotion of corrosion growth. 

• The developed FBG-based generalized model was utilized to estimate the pit depth, which 

was validated against the scanned depth of pits. The results revealed a rapid development 

of pit depth during the initial stage of corrosion. For instance, specimen C&I3 exhibited a 

pit depth of 546 𝜇𝑚 after approximately 450 hours of corrosion, gradually increasing to 

599 𝜇𝑚 by the end of the test. This behavior aligns with the typical pit depth development 
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mechanism, characterized by a kinetic phase with a high corrosion rate followed by a 

concentration-controlled phase with slower growth. Furthermore, the impact load was 

found to significantly amplify the pit depth of the specimens, as indicated by the pit depth 

magnification index 𝜂𝑑, which exceeded 2 for all specimens and reached a maximum of 

4.35. The trend of 𝜂𝑑 stabilized after the rapid increase induced by the first two cycles of 

impact loading. 

• The mass loss and average corrosion rate were estimated based on the measured Bragg 

wavelength change. The specimens subject to combined impact load-corrosion exhibited a 

greater mass loss compared to those subject to the individual corrosion test, indicating an 

intensified influence of the impact load on corrosion. Among them, specimens C&I1 and 

C1 showed the smallest difference in mass loss, with a value of 1.41g. This can be 

attributed to the relatively lower severity of coating damage caused by the impact load than 

the other specimens. In addition, the impact loading significantly exaggerated the average 

corrosion rate of the specimens, particularly in the early stage of corrosion. Specimens 

C&I3 and C3 showed the largest difference, with a value of 96 𝜇𝑚/year. Furthermore, 

according to the NACE specification, the average corrosion rate of specimens C&I2 and 

C&I3 was greater than 127 𝜇𝑚/year, indicating a moderate corrosion severity. 

• The impact response of the specimens showed a distinct three-phase Bragg waveform. It 

was observed that during the stable stage, the impact response became increasingly 

prominent with the intensification of corrosion, particularly in the initial stage of impact 

loading. For example, specimen C&I2-2 displayed a Bragg wavelength increase of 

196.55pm after the 2nd impact, which further rose to 273.83pm after the 6th impact. Besides, 

higher impact heights also resulted in more noticeable changes in Bragg wavelength. 

Similarly, the residual Bragg wavelength after impact unloading, influenced by different 

impact numbers and heights, followed the same pattern as the Bragg wavelength changes 

during the stable stage. This indicates that greater impact numbers and higher impact 

heights had a more pronounced effect on accelerated corrosion. 

• The acceleration resulting from the impact load decreased as corrosion advanced, 

indicating a reduction in specimen stiffness and a diminished ability to withstand the 

impact load. This can be attributed to the corrosion-induced reduction in the cross-section 

of specimens. Additionally, higher impact heights were associated with a higher 

acceleration decay rate. On the other hand, as corrosion progressed, the impact energy 

dissipation index 𝜇 increased. It was observed that specimens with more severe corrosion 

exhibited higher energy dissipation. For instance, specimen C&I3, which experienced the 

most severe corrosion under the 50.0mm impact, displayed a maximum 𝜇 value of 93.62%. 
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2.11. Measurement of interactive bending, dent, notch, and corrosion 

2.11.1. Overview 

This section elaborates the research on the measurement of combined bending, dent, notch, 

and corrosion. Both discrete and distributed fiber optic sensors were utilized, and their results 

were compared. The combined use of the discrete and distributed fiber optic sensors represents 

the implementation of a distributed fiber optic sensor network, which integrates the capabilities 

of the discrete and distributed fiber optic sensors. Laboratory experiments were conducted using 

full-scale steel pipes, which were instrumented with FBG sensors, DFOS, and conventional 

sensors such as LVDT displacement sensors.  

2.11.2. Materials and specimen preparation 

Experimental testing was carried out to evaluate and differentiate the iterative effects of 

bending, dent, notch, and corrosion that occurred at the same position of each pipe specimen. The 

pipe specimen was made of carbon steel, which is commonly used for transmission natural gas 

and hydraulic fluid according to the standard ASTM A500 Grade B [74]. The outer diameter, 

wall thickness, and length of the pipe specimen were 114.3 mm (4.50 inch) and 6.02 mm (0.237 

inch), 2,550 mm, respectively. The chemical composition and mechanical properties of the 

investigated pipe specimens is given in Table 2.11.1. 

Table 2.11.1. Chemical composition and mechanical properties of investigated pipelines  

Elements 

(wt. %) 

C Mn P S Cu 

≤ 0.3 ≤ 1.4 ≤ 0.045 ≤ 0.045 ≥ 0.18 

Mechanical 

properties 

Elastic modulus 𝐸 

(GPa) 

Yielding strength 

𝜎𝑦𝑑 (MPa) 
Tensile strength 

𝜎𝑡 (MPa) 

Elongation 

(%) 
𝜎𝑦𝑑/𝜎𝑡 

≥ 30 ≥ 290 ≥ 400 ≥ 23 ≤ 0.9 
 

Distributed fiber optic strain sensors were attached to the exterior surface of pipe specimens 

in a designed layout (yellow lines on the pipes). Before any installation of the optical fibers, the 

specimen was immersed in an acetic acid solution (concentration: 5%) to remove rust on the 

surfaces and then cleaned using alcohol wipes. Then, the optical fibers were attached to the 

specimens using tape at discrete spots following the designed layout which attempts to cover a 

large area of the specimens. The tape was used to hold the optical fiber in place during the 

installation process. Next, a fast-setting glue was used to attach the optical fibers to the specimens 

at discrete points between the tape spots. Once the glue was set, the tape was removed. The 

removal of tape must be careful to prevent damage to the optical fibers or the glue. Finally, a two-

part epoxy was applied to the optical fiber for a strong attachment with reliable strain transfer 

between the test specimen and the optical fiber. Any epoxy that flowed away from the fiber optic 

cable was cleaned to avoid potential effect on pipe corrosion. In this study, the thickness of epoxy 

was about 250 µm (0.25 mm), which was around one tenth of the thickness of the specimens. The 

width of epoxy path was about 4-6 mm. The epoxy was cured in air at room temperature (22 ºC 

± 2 ºC) and under normal humidity (50% ± 5%) for 24 hours. The installation of sensor for 

monitoring a continuous length of 1 m took less than 10 min by one person.  
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2.11.3. Experimental set-up 

The specimens were loaded under four-point bending to generate dent deformation at the 

middle span using a universal load frame. The length between two loading points is 750 mm. The 

dent test was conducted under displacement control at a rate of 1 mm/min. The applied load was 

recorded by the load cell of the reaction frame, and an LVDTs were instrumented to record the 

support and mid-span deflections of pipe specimens. High resolution camera and depth camera 

are utilized to capture the deformation of pipelines. Eight fiber Brag grating (FBG) sensors were 

installed on Path-1 to Path-4 along the same direction to validate the strain distribution results 

obtained from the DFOS. Specifically, the optical fiber was passed through the dent region to 

measure the iterative effects of bending and dent. Optical fiber Path-1 to Path-3 were installed 

along the longitudinal direction of pipes, and Optical fiber Path-4 was installed along the helix 

loop, which is shown in Figure 2.11.1.  

 

Figure 2.11.1. Specimen preparation, sensor instrumentation, and test setup for the bending-dent tests. 

One end of optical fiber was connected to the data acquisition system for the DFOS, and the 

other end of the optical fiber was free. In this study, a data acquisition system (model: Luna ODiSi 

6) was employed to perform OFDR measurements. The measurement accuracy specified by the 

manufacturer is ±5 με for strain and ±2.2 °C for temperature. 

2.11.4. Results and discussions 

2.11.4.1. Load-displacement curves and visual inspection 

Figure 2.11.2 shows two representative load-displacement curves and a photo of a pipe 

specimen subject to four-point bending loads. The tests were conducted under displacement 

control with a constant displacement rate. Different pipe specimens showed similar curves which 

have two main stages: (1) Stage 1: elastic stage, where the load approximately linearly increases 

with the applied displacement. (2) Stage 2: plastic stage, where the load increases with the applied 

displacement with a decreasing slope. The loading tests were terminated after the slope was lower 

than 5% of the slope at the beginning of the tests. During the bending tests, obvious bending 

deformations of the pipe specimens were observed. After the pipe specimens were unloaded, 

dents were observed from the pipes at the spots where the specimens were in direct contact with 

the loading apparatus. 
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Figure 2.11.2. Load-displacement curves of specimens under four-point bending.  

2.11.4.2. Strains 

The strains measured from DFOS and FBG sensors were compared, as shown in Figure 

2.11.3. FBG sensors FBG-1 to FBG-6 measured the strains along the longitudinal direction of the 

pipe following Path-1 to Path-3; and FBG sensors FBG-7 and FBG-8 measured the strains along 

the helix direction of the pipe following Path-4. Linear regression analysis was performed, and 

the coefficient of determination (R2) was calculated. The results indicate a strong correlation 

between the results obtained from the DFOS and FBG sensors, overall.  

  
(a) (b) 

  
(c) (d) 

Figure 2.11.3. Comparison of the strains obtained using DFOS and the FBG sensors: (a) FBG-1; 

(b) FBG-2; (c) FBG-3; (d) FBG-4; (e) FBG-5; (f) FBG-6; (g) FBG-7; and (h) FBG-8. 

y = 0.9812x

R² = 1

-5000

-4000

-3000

-2000

-1000

0

-5000 -4000 -3000 -2000 -1000 0

F
B

G
 s

en
so

r 
(µ

ɛ)

DFOS (µɛ)

FBG-1

y = 0.9955x

R² = 0.9999

-5000

-4000

-3000

-2000

-1000

0

-5000 -4000 -3000 -2000 -1000 0

F
B

G
 s

en
so

r 
(µ

ɛ)

DFOS (µɛ)

FBG-2

y = 0.9779x

R² = 0.9986

-5000

-4000

-3000

-2000

-1000

0

-5000 -4000 -3000 -2000 -1000 0

F
B

G
 s

en
so

r 
(µ

ɛ)

DFOS (µɛ)

FBG-3

y = 1.0532x

R² = 0.9998

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000

F
B

G
 s

en
so

r 
(µ

ɛ)

DFOS (µɛ)

FBG-4



Page 148 

 

  
(e) (f) 

  
(g) (h) 

Figure 2.11.3. Comparison of the strains obtained using DFOS and the FBG sensors: (a) FBG-1; (b) FBG-

2; (c) FBG-3; (d) FBG-4; (e) FBG-5; (f) FBG-6; (g) FBG-7; and (h) FBG-8. 

2.11.4.3. Quantification of pipe deflection 

The strain at each point of a pipe has longitudinal and circumferential components. Each of 

them includes bending and membrane strains. The membrane strain is constant in each cross 

section of the pipe, while the bending strain changes linearly regarding the neutral axis of the 

pipe under bending. When the pipe is only subject to the bending effect, the bending strain 

dominates, and the membrane strain can be neglected. 

After dents were generated in the pipe, the direction of dent deformation was downward. The 

maximum bending strain occurred at the surface of the pipe. The governing equation describing 

the relationship between the dent deformation and bending strain is shown in Eq. (2.11.1): 

𝜀𝑥
𝑏 = (𝑅 +

𝑡

2
)
𝜕2𝑤

𝜕𝑥2
 (2.11.1) 

where 𝜀𝑥
𝑏 is bending strain along the length (i.e., the longitudinal strain component) of the pipe; 

𝑅 is the mean radius of the pipe; 𝑡 is the wall thickness of the pipe; w is the dent deformation 

along the vertical direction; and x is the coordinate along the length of the pipe. 
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If the strain profile along the pipe is known, then the dent deformation can be calculated Eq. 

(2.11.2), which is an integration of Eq. (2.11.1): 

𝑤(𝑥) = ∫∫
2𝜀𝑥

𝑏

2𝑅 + 𝑡
𝑑𝑥 𝑑𝑥

𝑥

0

𝑥

0

+ 𝑎𝑥 + 𝑏 (2.11.2) 

where 𝑎 and 𝑏 are constants that can be determined by the boundary condition of the pipe. 

According to the trapezoidal integration method, Eq. (2.11.2) is re-written as Eq. (2.11.3): 

𝑤𝑛 =
𝑠𝑑

4(𝑅 +
𝑡
2
)
 [(2𝑛 − 3)𝜀𝑥1

𝑏 + 𝜀𝑥𝑛
𝑏 + 4∑(𝑛 − 𝑖)

𝑛−1

𝑖=2

𝜀𝑥𝑖
𝑏 ] (2.11.3) 

where 𝑤𝑛 is the dent deformation at the 𝑛-th point; and 𝑠𝑑 is the distance between the measuring 

points of strains. 

The bending deformation of the pipe specimen was reconstructed and compared with the 

data from the computer vision system and three LDVTs, as shown in Figure 2.11.4. The solid 

lines represent the shape of the deformed pipe obtained from the computer system method, the 

black dash lines represent shape of the deformed pipe derived from the strain distribution results, 

and the “*” markers represent the deflection of the pipe obtained from three LVDTs at different 

positions. The considered load increased from 0 to 60 kN.  

 

Figure 2.11.4. Deformation of the bottom of the pipe specimen obtained from shape reconstruction, LVDTs, 

and computer vision. 

The deformed shapes obtained from the three methods agree well with each other, validating 

the pipeline deflection can be reconstructed by proposed method. The discrepancy among the 

deflections obtained from three methods was attributed to inherent inaccuracy of the sensors such 

as the DFOS, LVDTs, and high-resolution camara, data acquisition systems, and positions of the 

DFOS, as well as boundary conditions. 

 

 



Page 150 

 

2.11.5. Corrosion-dent-crack interactive effect 

2.11.5.1. Specimen preparation and experimental set-up 

After dent was caused in steel pipes under bending loads, each pipe was cut into short 

segments, which are used to investigate the corrosion-dent-notch interactive effects. DFOS were 

attached to the exterior surfaces of the segments, as shown in Figure 2.11.5.  

  
(a) (b) 

 
(c) 

Figure 2.11.5. Corrosion test of steel pipes experienced bending tests: (a) exterior surface of a pipe; (b) 

top view of a pipe instrumented with DFOS; and (c) corrosion test set-up. 

The specimens were immersed in a sodium chloride solution (concentration: 3.5% by mass) 

in plastic containers for accelerated corrosion tests. The temperature was kept at room 

temperature (25 °C ± 2 °C). The fiber optic cable was connected to the DFOS system for data 

acquisition based on OFDR. Strain and temperature distributions along DFOS were measured. 

The measurement frequency was set at 2 Hz. 

2.11.5.2. Investigated cases 

Two representative pipe specimens, designated as C1 and C2, are listed in Table 2.11.2. Both 

of the two specimens had dent, and were subject to corrosion. Their main difference is that 

specimen C2 had a notch, which was manipulated to mimic the effect of a crack on the corrosion 

kinetics of the pipe. The dent depths of C1 and C2 were 11 mm and 10 mm, respectively. 
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Table 2.11.2. Investigated cases for combined corrosion, dent, and crack 

Group Cases Sensor deployment 

pattern 

Adjacent helix 

spacing (mm) 

Dent depth (mm) 

C1 Corrosion + Dent Helix 25 11 mm 

C2 Corrosion + Dent + Notch Helix 25 10 mm 
 

2.11.5.3. Results and discussions 

The increase in pipe diameter caused by corrosion was monitored, as shown in Figure 2.11.6. 

The change of strain distributions was measured from DFOS at different immersion time (from 

24 h to 549 h). The vertical axis represents the tensile strains induced by corrosion, and the 

horizontal axis represents the distance along the DFOS, with distance zero at the connector of the 

data acquisition system. In each figure, the length range of the DFOS is selected to show the 

strain distributions within the length of fiber optic cable wrapped on the pipes. 

  
(a) (b) 

Figure 2.11.6. Strain distributions measured from the DFOS along the pipes: (a) C1, and (b) C2. 

The corrosion test results show that tensile strains were generated in the DFOS with the 

increase of corrosion of both specimens. The tensile strains can be attributed to the expansion of 

the radius of the pipes with the growth of rusts, as elaborated in references. Compared with the 

strain distributions obtained from previous research, the strain distributions measured from the 

pipes with dent show high spikes and deep valleys, which can be attributed to dent because dent 

caused residual strains in the steel pipes and modified the microstructures of the pipes. Compared 

with specimen C1, specimen C2 showed higher spikes, which can be attributed to the presence 

of the notch where corrosion was accelerated. 

 

2.12. Investigations of different types of fiber optic cables and installation methods 

2.12.1. Overview 

This section elaborates the investigation into the measurement performance of different fiber 

optic cables, as shown in Figure 2.1.1, and three different fiber installation methods, as shown in 
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Figure 2.12.1. The three methods are designated as M1, M2, and M3. For the installation method 

M1, the fiber optic cable is continuously attached to the pipeline surface using adhesives (e.g., 

epoxy). For the installation method M2, the fiber optic cable is continuously attached to the 

surface of the pipeline using a metallic tape that covers the fiber optic cable for strain transfer 

and mechanical protection. For the installation method M3, the fiber optic cable is attached on 

the pipeline surface at discrete points with a certain spacing. The influences on different types of 

fiber optic cable and installation methods on strain measurements were compared.  

   
(a) (b) (c) 

Figure 2.12.1. Schematic of three installation methods of distributed sensors: (a) M1, (b) M2, and (c) M3.  

2.12.2. Experiments 

The test setup and deployment of fiber optic cables in the pipe are shown in Figure 2.12.2. 

Pipe specimens were tested under four point bending. Strain distributions were measured from 

the fiber optic cables. The positions of fiber optic cables are shown in Figure 2.12.2(c). 

 
(a) 

 
(b) 

 
(c) 

Figure 2.12.2. Test setup and sensor deployment: (a) setup, (b) sensor deployment, (c) cross section. 
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2.12.3. Experimental results and discussion 

Representative results are plotted in Figure 2.12.3. F1-M1 represents the first type of fiber 

optic cable deployed using method M1. Very high frequency noises have been filtered out. 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 2.12.3. Representative measurement results of strain distributions: (a) F1-M1, (b) F1-M3, (c) F2-

M1, (d) F2-M2, and (e) F2-M3. 
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More data have been measured from the different sensors during the experiments, and the 

other data are consistent with these representative data overall, so those data are not duplicated. 

All measurement results have been processed with temperature compensation, meaning that the 

effects of temperature change have been excluded, because the sensing methods developed in this 

research on various pipeline anomalies primarily focus on strain-based methods. 

The results from F1-M1 and F2-M1 show typical strain distributions for four-point bending 

tests, as illustrated in Figure 2.12.4(a), when the strain transfer effect (see section 2.2) and the 

local dent effect (section 2.9) are considered. The absolute magnitudes of strains measured from 

F1-M1 and F2-M1 are not equal because of the different loads and the different positions in the 

pipe specimen. Although their distances away from the neutral axis are shown the same in Figure 

2.12.1, there were errors in the experiments because the pipe specimen was not perfected placed 

without any rotation. Once the pipe was rotated, the distances of the sensors away from the neutral 

axis were changed. Besides, the pipe was slightly rotated during the loading tests due to the 

friction between the pipe and the test setup. Considering the above effects, it is believed that F1-

M1 and F2-M1 provided consistent measurements, and the main differences are their strain 

transfer lengths due to different coating thicknesses which affect the strain transfer coefficients. 

  
(a) (b) 

Figure 2.12.4. Illustration of strain transfer behaviors: (a) continuous transfer, and (b) stepped transfer. 

The results from F1-M3 and F2-M3 show typical stepped strain distributions, as illustrated 

in Figure 2.12.4(b). The step patterns are associated with the sensor deployment method. The 

strains between the adjacent attachment points are even because the sensor segment in between 

is free of external forces, and the strains are only transferred by the attachment points (i.e., epoxy). 

Therefore, a longer strain transfer length is demonstrated due to a lower strain transfer efficiency. 

Further in-depth research is needed to establish a holistic understanding of the strain transfer 

behavior of method M3. 

The results from F2-M1 and F2-M2 show that the deployment method M2 also provides a 

continuous strain transfer behavior, which is similar to the strain transfer behavior of method M1. 

If the results measured from method M1 are used as the reference, then the results measured from 

method M2 show a longer strain transfer length, meaning that method M2 has a lower strain 

transfer efficiency. However, it should be careful to extend this conclusion for other types of tape 
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because it is believed that the strain transfer efficiency is closely related to the material and the 

dimension (e.g., thickness) of the tape. Further in-depth research is needed to establish a holistic 

understanding of the strain transfer behavior of method M2.  

2.12.4. Summary 

The new findings from the above investigations can be summarized as follows: 

(1) The proposed fiber optic cables can be utilized as distributed strain sensors for sensing 

nonuniform strain distributions in pipes. Different fiber optic cables have different strain 

transfer lengths due to the strain transfer efficiency. The strain transfer length can be 

estimated using the methods elaborated in section 2.2.  

(2) The proposed sensor installation methods have different performance regarding the strain 

measurements. Attaching fiber optic cables to pipes using continuous adhesives such as 

epoxy (method M1) provides reliable strain measurements and efficient strain transfer; 

however, the installation method is time-consuming and labor-intensive, motivating the 

development of robots for enabling automatic sensor installation while maintaining 

consistent sensor installation quality. Attaching fiber optic cables to pipes using tapes 

(method M2) offers higher time efficiency; however, the strain transfer efficiency can be 

reduced, depending on the type of tape adopted. Attaching fiber optic cables to pipes 

using adhesives at discrete points (method M3) also achieves high time efficiency, but 

the strain transfer efficiency is reduced. Further in-depth research is needed to establish 

a holistic understanding of the strain transfer behavior of methods M2 and M3. 

 

2.13. Detection of excavation near pipelines 

2.13.1. Overview 

This section elaborates the research on measurement of impact for excavation-related issues. 

The detection of impact is a challenging problem for underground pipelines which are unseen to 

excavation crews while the consequences of impacting pipelines during excavation can be serious. 

This project developed a strain-based method to detect impact effects using distributed fiber optic 

sensors based on the OFDR technique. Experiments of pipelines subjected to various boundary 

and loading conditions have been conducted, and signal analysis has been performed to develop 

and assess the performance of the method. 

2.13.2. Experiments 

The test setup of the pipe which was instrumented with distributed fiber optic sensors are 

shown in Figure 2.13.1. This test setup was adopted to simulate underground pipelines subjected 

to excavation-induced impact loads. Soil bags were placed on the top of the pipe specimen, which 

was also surrounded by soil, aiming to simulate the underground conditions of embedded pipes. 

Various types of fiber optic cables were installed on the external surface of the pipe specimen, 

including distributed strain sensors and distributed temperature sensors which were utilized for 

temperature compensation. Two hammers (steel and rubber) were used to apply the impact loads. 
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Figure 2.13.1. Illustration of the test setup for underground pipe subjected to excavation-induced impact. 

Two types of pipe materials were investigated, which are steel and polyvinyl chloride (PVC), 

both being widely used in underground pipelines. The dimensions of the steel pipes are stated in 

section 2.11. The PVC pipe specimens measured 2 m in length and 102 mm in outer diameter, 

and the wall thickness was 5.8 mm. 

2.13.3. Experimental results and discussion 

Three experiments were conducted using different types of pipes to investigate the feasibility 

of detecting impacts applied to pipes. A set of representative results are shown in Figure 2.13.2. 

The data were measured from a distributed fiber optic sensor attached to the surface of a steel 

pipe, and the steel hammer was used to impact the pipe measuring 3 m in length. 

The measurement results show that the distributed fiber optic sensor is sensitive to impacts 

applied to the pipe. When an impact was applied to the pipe, the energy density is largely reduced, 

as evidenced by the sparse sensing points. Such a response of the distributed fiber optic sensor 

can be attributed to the high-frequency vibration of the pipe after the impact was applied.  

There was a short time period, which is a couple of milli seconds, when the energy density 

of the output signal was zero. Then, after a few milli seconds, the distributed fiber optic sensor 

repicked the signals, and the energy density returned to normal condition, the same as the signals 

before the impact was applied.  

The above observations from the measurement results imply that it is possible to utilize the 

distributed fiber optic sensor to detect impact loads applied to pipelines. To further investigate 

the impact detection performance, the strain measurement data at two selected cross sections of 

the pipe specimen have been plotted in time domain, as shown in Figure 2.13.3. The measurement 

results from two different cross sections of the steel pipe specimen are displayed. These two 

sections include an impacted section (x = 2 m) and a section (x = 3 m) away from the impacted 

section of the pipe specimen. 

These time domain strain measurement results also show that the strain response is zero at 

the impacted time instant, as marked by the red circles. Such a sensing response indicates that is 

possible to pinpoint the time instant when the impact load was applied to the pipe specimen. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 2.13.2. Strain distribution along the pipe at different time instants: (a) at t=46.6 s, (b) t=47.0 s, (c) 

t=47.003 s, (d) t=47.004 s, (e) t=47.008 s, and (f) t=47.012 s. 

 



Page 158 

 

  
(a) (b) 

Figure 2.13.3. Strain measurements at: (a) x = 2 m, and (b) x = 3m. The red circles mark the time when 

the impact was applied. 

To achieve higher accuracy and robustness of determining the impact time instant, short time 

Fourier transform (STFT) has been used to conduct time-frequency analysis of the distributed 

sensor data, as shown in Figure 2.13.4. The time-frequency diagrams show the energy distribution 

as a function of frequency and time.  

The procedure of performing STFT starts with dividing a long duration signal into numerous 

short duration segments of signals with equal time duration. Then, Fourier transform is performed 

for each short duration segment, generating the Fourier spectrum for each segment. Finally, the 

energy is plotted as a function of frequency and time, known as a spectrogram. 

The time-frequency diagrams or spectrograms show that the energy distribution varies with 

time. In particular, at the time instant when impact loads are applied, the energy dropped to low 

value (-70 dB), which is consistent with the observations from Figure 2.13.3, therefore facilitating 

the determination of the impact time.  

Another interesting observation from the time-frequency diagrams is that the time duration 

of the low energy band, or called the bandwidth of low energy, is associated with the distance 

away from the impacted cross section. In this experiment, the impacted section was at x = 2 m. 

The bandwidth if the widest at the impacted section, and the bandwidth showed a decreasing 

trend as the distance from the impacted section increased, as evidenced by Figures 2.13.4(a) to 

2.13.4(c). Such observations make it possible to locate the impact loads. Consistent results have 

been obtained from other experimental cases, such as the tests of PVC pipes, different lengths of 

pipes, different types of hammer, different thicknesses of soil, and so on. The results are not 

duplicated in this section.  

The limitation of this research is that the determination of the impact time and location relies 

on visual inspection of the sensing signals. When the pipeline is long, it will be impractical to use 

the proposed method. It is important to develop machine learning methods for automations.  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 2.13.4. STFT of strain measurements versus time at different cross sections along the pipe specimen: 

(a) x = 0.5 m, (b) x = 1 m, (c) x = 1.5 m, (d) x = 2 m, (e) x = 2.5 m, and (f) x = 3 m. 
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2.13.4. Summary 

The new findings from the above investigations can be summarized as follows: 

(1) The proposed method is promising for detecting the time and location of impact loads 

applied to underground pipelines. The time-frequency diagrams created via STFT are 

useful for accurately determining the impact time and location based on visual inspection. 

The impact time can be determined by the time instant of the low energy band, and the 

bandwidth can be used to locate the impact event. This method can be applied to various 

types and dimensions of pipes subjected to different types of impact loads. 

(2) It is promising to develop machine learning methods to automate the interpretation of 

distributed fiber optic sensor data for monitoring impact events for underground pipelines 

which have long lengths. Further research is necessary to develop machine learning 

methods for automating impact monitoring in the pipeline industry. 

 

 

3. Conclusions 

In this project, the university research team has developed and evaluated a distributed fiber 

optic sensor network for monitoring interactive anomalies of pipelines, aiming to improve the 

safety, facilitate pipeline management, reduce inspection and maintenance expenses, extend the 

service life of pipelines, and promote transport efficiency of pipelines by minimizing downtime. 

The distributed fiber optic sensor network has been deployed on various sizes of pipelines and 

utilized to measure strain fields of pipelines, as well as cracks, corrosion, and impacts applied to 

pipelines. The performance of distributed fiber optic sensor networks has been evaluated through 

comprehensive laboratory experiments using pipes under various testing conditions. Specifically, 

the distributed fiber optic sensor network has achieved the following capabilities: 

• Measurement of 3D arbitrary strain fields of pipelines. Detailed strain fields of pipelines 

can be provided by the distributed fiber optic sensor network in real time. The strain fields 

can be subsequently utilized to assess the mechanical condition of pipelines and guide the 

operation and maintenance of pipelines. 

• Detection, localization, quantification, and visualization of cracks in pipelines. Detailed 

crack conditions of pipelines can be measured by the distributed fiber optic sensor network 

based on the measurement of strain distributions. A theoretical model of cracked pipelines 

has been developed and validated to support the measurements. 

• Detection, localization, quantification, and visualization of buckling/dents in pipelines. 

Detailed global and local deformations of pipelines can be measured by the distributed 

fiber optic sensor network based on the measurement of strain distributions. A theoretical 

model of globally and locally deformed pipelines has been developed and validated to 

support the measurements. 
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• Detection, localization, quantification, visualization, and warning of pipeline corrosion. 

Detailed corrosion conditions of pipelines can be measured by the distributed fiber optic 

sensor network based on the measurement of strain distributions. A theoretical model of 

corroded pipelines has been developed and validated to support the measurements. 

• Detection and discrimination of interactive anomalies of pipelines. The investigated cases 

of interactive anomalies included: (1) global and local deformations (bending and dents); 

(2) deformations and cracks; (3) deformations and corrosion; (4) deformations, impacts, 

and corrosion; and (5) deformations, cracks, and corrosion.  

• Detection and monitoring of impacts applied to pipelines. The impacts can be applied by 

third-party excavation or digging, which can possibly cause severe damages to pipelines. 

The capability of detecting impacts applied to pipelines has the potential to determine the 

time and location of impacts. This information is important for pipeline operators to decide 

when to mitigate or repair the damaged pipes in order to improve the safety of pipelines. 

Based on these capabilities, further investigations reveal that the different types of anomalies 

promote each other and accelerate the degradation of pipelines when the anomalies occur at the 

same positions of a pipeline. For example, the occurrence of dent promoted the corrosion of pipes 

at the dent spots because the dents caused residual stresses and modified the microstructures of 

pipe materials in a negative way. The promotional effects make interactive anomalies more 

dangerous than individual anomalies for pipeline safety. It is essential to monitor the initiation and 

development of interactive anomalies for pipelines.  

The investigations on various types of fiber optic cables and their installation methods reveal 

that the types of fiber optic cables and their installation methods have significant effects on the 

measurement results and the sensing performance of distributed fiber optic sensors. It is important 

to select appropriate types of fiber optic cables and installation methods in specific applications. 

In general, it is recommended to use packaged fiber optic cables for practical applications since 

the packaging provides mechanical protection for the survival of fiber optic cables in construction. 

When distributed fiber optic sensors are utilized for monitoring pipelines, the measurement 

performance such as the accuracy and spatial resolution is associated with numerous parameters 

such as the type of fiber optic cable, the sensor installation method, and the spatial resolution. 

These parameters should be carefully selected depending on the specific application. 

When appropriate parameters are selected, the measurement accuracy of crack opening width 

can achieve the scale of 10-20 micrometers in the laboratory experiments. Distributed fiber optic 

sensors can detect and monitor the development of microcracks and major cracks. The opening 

widths of microcracks monitored can be as narrow as tens of micrometers. However, it must be 

noted that the performance of distributed fiber optic sensors in field applications can be different 

from the laboratory test results. Further evaluation in relevant environments is yet to be performed. 
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4. Future Work 

The capabilities developed in this preliminary research have created new opportunities for 

advancing the monitoring and management of pipelines. The following work has been identified, 

aiming to further the research and development toward commercialization and field applications 

of the developed distributed fiber optic sensor network. 

(1) Evaluation of the performance of the developed approaches for other types and sizes of 

pipes. In this research, some experimental tests were conducted using small pipes or other 

specimens such as bars and plates. It is important to test the sensor installation methods 

and the sensor data analysis methods in further experiments using large pipe specimens 

and in field testing.  

(2) Development, evaluation, and implementation of machine learning methods for automatic 

interpretation of data provided by distributed fiber optic sensor network deployed on pipes 

subject to interactive anomalies. Preliminary research has been conducted and shown that 

it is promising and feasible to interpret the data measured by distributed fiber optic sensor 

networks with advanced machine learning methods. The preliminary research is briefly 

reported in this section. 

(3) Development, evaluation, and implementation of methods for efficient installation of fiber 

optic cables on the surfaces of pipelines. Considering the long distance of pipelines, it is 

time-consuming to install fiber optic cables along pipelines in practice. It is important and 

urgent to develop effective and efficient methods for installing fiber optic cables. Robots 

are promising solutions for the installation of fiber optic cables as distributed sensors for 

pipeline applications. 

(4) Development, evaluation, and implementation of an Internet of Things (IoT) platform for 

automatic generation and utilization of digital twins of smart pipelines instrumented with 

distributed fiber optic sensor networks for improved asset management. This research has 

shown that it is feasible to generate and update digital twins with the data measured by 

distributed fiber optic sensor networks, accompanied by the machine learning methods for 

automatic data interpretation. Further research is necessary to integrate the developed 

methods into cloud and mobile devices for remote access of digital twins and remove 

control of distributed fiber optic sensor networks and pipelines for safety and efficiency. 

(5) Education and training of students and pipeline professionals for developing the next-

generation workforce for the pipeline industry. It is important to develop courses and 

certificate programs to support the vision for smart pipelines.  

 

4.1. Challenges and objectives of AI assisted data analysis and interpretation 

The research in Section 2 demonstrates the superior capabilities of DFOS networks for real-

time in-situ monitoring of pipelines. The various anomalies were detected, located, quantified, and 
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visualized based on the measurements of strains from DFOS and the developed sensor data 

analysis methods. For example, spikes can be identified from the strain distributions in DFOS 

deployed on pipes with cracks, and the identified spikes can be utilized to locate and quantify 

cracks of pipes without having to precisely predict the positions of cracks in advance.  

However, in real practice, it is challenging for human experts to analyze and interpret the 

measurements from long-haul DFOS deployed on pipelines because of the large amount of data 

and the complexity of data analysis. While it is feasible for engineers to manually perform data 

processing, analysis, and interpretation for laboratory experiments with a short sensor length and 

limited number of cracks, manual operation is time-consuming in real applications. In addition to 

the low efficiency, the reliability of data analysis and data interpretation is also limited by the 

existence of human errors. It is challenging for engineers to identify, locate, and quantify the 

severity of various anomalies in host structures and monitor the development in real time. It is 

essential to automate the data analysis and interpretation to promote the application of DFOS for 

real-time monitoring of large structures. 

Recently, with the advancement in data science, machine learning has shown great promise in 

facilitating data analysis and interpretation. However, to date, there are limited studies on the 

analysis of DFOS data. Karypidis et al. [75] proposed an autoencoder to help judge whether a 

concrete beam was damaged or not. The autoencoder was not used to assess the damage type and 

damage locations. Song et al. [76] proposed a convolutional neural network model to detect the 

presence of cracks based on strain distributions measured from DFOS measuring 50 m in length. 

Two spatial resolutions, which are 100 mm and 200 mm, were investigated. Cracks were located 

using windows with a fixed width which was determined through a trial-and-error process. Dai et 

al. [77] proposed a support vector machine to identify the extension of a crack in a steel frame 

based on the strain time history diagrams from a finite element model. 

Previous research showed that it is promising to develop machine learning approaches to 

automatically interpret sensor data. To advance the capabilities toward engineering applications, 

further research is necessary to address various challenges: 

• First, the existing research on using machine learning approaches to interpret DFOS 

data employed supervised learning methods that require manually labelling a large 

amount of sensor data.  

• Second, the existing research focused on strain distributions measured at relatively 

coarse spatial resolutions.  

• Third, it is still unknown whether the machine learning approaches are robust to 

different types of fiber optic cables with various protective packages.  

Under such circumstances, this research project developed supervised and unsupervised 

machine learning approaches to automatically interpret DFOS data at different spatial resolutions 

to identify, locate, quantify, and visualize cracks, aiming to eliminate human interventions and 

human errors, enable real-time monitoring and interpretation of cracks, and maximize efficiency. 
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This research has three primary novelties: 

(1) A framework is presented to integrate the capabilities of the machine learning 

approaches to automatically identify, locate, and quantify cracks from the strain 

distributions measured from DFOS.  

(2) Both unsupervised and supervised machine learning approaches are developed to 

minimize human interventions in the inference of DFOS data for crack monitoring. A 

trend analysis method is developed to detect and locate cracks. Mathematical features 

are proposed to represent the DFOS data. The robustness of the proposed approaches 

to the spatial resolution and the sensor package is evaluated.  

(3) A 3D building information modeling (BIM) approach is developed based on the ability 

to intelligently interpret sensor data to visualize cracks. The BIM serves as a live 

digital twin of the monitored structure. The model is updated in real time by using the 

DFOS measurements interpreted by the machine learning approaches.  

4.2. Strain distribution-based method 

4.2.1 Overview 

The main components of the framework for the automatic interpretation of cracks are shown 

in Figure 4.2.1. There are five components:  

(1) Data collection. Strain distributions are measured from DFOS.  

(2) Crack identification. Both unsupervised and supervised machine learning approaches are 

developed to identify cracks from the measured strain distributions.  

(3) Crack localization. An algorithm is developed to locate cracks from the strain distributions 

measured from DFOS.  

(4) Crack quantification. An algorithm is developed to quantify the crack width based on the 

DFOS data.  

(5) Crack visualization. A crack visualization approach based on BIM is developed to visualize 

the initiation and the evolution of cracks in the monitored structure. 

 

Figure 4.2.1. Proposed framework of automatic interpretation of cracks from DFOS measurements. 
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4.2.2 Crack identification 

4.2.2.1 Collection of strain distribution 

A spool of single-mode optical fiber (Corning® SMF-28e+® fiber ) adopted in this research 

[78], as shown in Figure 4.2.2(a). The optical fiber consisted of a fused silica fiber core, a fused 

silica fiber cladding, and protective coatings made using multiple layers of polymer. The optical 

fiber served as a DFOS, which provides continuous measurement of temperature and strain along 

its entire length, and the transmission line. This study adopted a commercial sensing system (Luna 

ODiSi 6200 [79]) to perform measurements based on the OFDR [80]. The spatial resolution, 

measurement distance, sampling frequency, and measurement accuracy were 0.65 mm, 100 m, 1 

Hz, and ±5 µε, respectively. 

 
 

(a) (b) 

Figure 4.2.2. Distributed fiber optic sensors: (a) the structure of the fiber; and (b) crack measurement. 

The identification of cracks from a simple beam instrumented with a DFOS is shown in Figure 

4.2.2(b). As a crack is generated, the DFOS passing the crack is stretched to a high strain level. 

The DFOS is not ruptured due to the protective coatings through the strain transfer effect, which 

causes a transfer length less than 100 mm at each side of the crack for the adopted optical fiber. 

The peak in the strain curve indicates the position of the crack in the beam. 

4.2.2.2 Feature extraction 

Both cracks and other factors such as strain gradients and noises are able to cause peaks in the 

measured strain distributions, as depicted in Figure 4.2.3. This represents a technical challenge in 

automatic interpretation of sensor data.  

  
(a) (b) 

Figure 4.2.3. Two representative segments of strain distributions: (a) a crack; and (b) not a crack. 
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This study proposes to use 20 mathematical statistical features of the strain distribution to 

represent cracks, as listed in Table 4.2.1. The results of the mathematic statistical features form a 

dataset denoted as 𝐷𝑐𝑎𝑙𝑐. Some mathematical statistical features are illustrated in Figure 4.2.4. 

Table 4.2.1. Extracted mathematical statistical features from the segments of strain distributions 

Order Symbol Description 

1 F1 The maximum strain (Figure 4.2.4(a)) 

2 F2 The standard deviation 

3 F3 The first quartile (Figure 4.2.4(a)) 

4 F4 The third quartile (Figure 4.2.4(a)) 

5 F5 The strain at the beginning (Figure 4.2.4(a)) 

6 F6 The strain at the end (Figure 4.2.4(a)) 

7 F7 The relative position of the maximum strain (Figure 4.2.4(a)) 

8 F8 The slope before the maximum strain (Figure 4.2.4(a)) 

9 F9 The slope after the maximum strain (Figure 4.2.4(a)) 

10 F10 The difference between the maximum and the minimum strains (Figure 4.2.4(a)) 

11 F11 The difference between the cumulative relative strains before and after the 

maximum strain (Figure 4.2.4(a)) 

12 F12 The difference between the strains at the beginning and end (Figure 4.2.4(a)) 

13 F13 The difference between the real distribution and the fitted normal distribution 

(Figure 4.2.4(c)) 

14 F14 The number of peaks, obtained by SciPy signal library 

15 F15 The direction of the strain distribution, calculated by Eq. (4.2.1) 

16 F16 The tail of the strain distribution, calculated by Eq. (4.2.2) 

17 F17 The sum (Figure 4.2.4(b)) 

18 F18 The test result of the null hypothesis 

19 F19 The p-value of the Shapiro-Wilk normality test 

20 F20 The full width at half maximum (Figure 4.2.4(a)) 

 

   
(a) (b) (c) 

Figure 4.2.4. Mathematical statistical features: (a) F1, F3, F4, F5, F6, F7, F8, F9, F10, and F12; (b) F11 

and F17; and (c) F13.  

The direction or orientation of strain distribution (i.e., feature F15) is assessed by the Fisher-

Pearson coefficient of skewness, which is a metric evaluating the symmetry of data [81]: 
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𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =

1
𝐿
∑ (𝑥𝑗 − 𝑥̅)

3𝐿
𝑗=1

√[
1
𝐿
∑ (𝑥𝑗 − 𝑥̅)

2𝐿
𝑗=1 ]

3
 (4.2.1) 

where L is the numbers of the strain values in the segment, 𝑥𝑗 is the j-th strain, and 𝑥̅ is the average 

strain of the segment of strain distribution. 

The tail of each segment of strain distribution (i.e., the feature F16) is assessed by kurtosis, 

which is a smoothness metric. The tail of each segment of strain distribution is calculated as [81]: 

𝑡𝑎𝑖𝑙 =
1

𝐿
∑(

𝑥𝑗 − 𝑥̅

𝜎
)
4𝐿

𝑗=1

 (4.2.2) 

where 𝜎 is the standard deviation of the segment of strain distribution. 

The test result of the null hypothesis (i.e., the feature F18) and the p-value (i.e., the feature 

F19) are calculated from the Shapiro-Wilk hypothesis test, which examines whether a set of data 

follow a normal distribution. The similarity between each segment of strain distribution and 

random variables sampled from the standard normal distribution is calculated [82]. The values of 

the test result of the null hypothesis and the p-value range between 0 and 1, and number 1 means 

that the segment of strain distribution follows a normal distribution. 

4.2.2.3 Unsupervised learning methods 

The architecture of the unsupervised learning model is shown in Figure 4.2.5. The model has 

an autoencoder representation learning module and a clustering learning module. The input data 

are the features extracted from strain distributions. The autoencoder representation learning 

module includes an encoder and a decoder, as shown in Eq. (4.2.3) and Eq. (4.2.4). The 

autoencoder reconstructs the input data and compares the difference between the input data and 

the hidden representation of the input data in an unsupervised way, as shown in Eq. (4.2.5) [83].  

𝒉 = 𝑓(𝑊ℎ𝒙 + 𝑏ℎ) (4.2.3) 

𝒛 = 𝑓(𝑊𝑧𝒉 + 𝑏𝑧) (4.2.4) 

𝒆 = ‖𝒉 − 𝒙‖ (4.2.5) 

where 𝑓 is the nonlinear transformation function; b and W are the bias and weight of the neural 

network, respectively; x is the input vector; h is the hidden representation of the input vector; ‖∙‖ 

denotes the Euclidean distance between two vectors; and e is the reconstruction error, which is the 

difference between the reconstructed vector 𝒛 and the original input vector x. 

The structure of the autoencoder is shown in Table 4.2.2. The encoder and the decoder consist 

of four fully-connected (FC) layers [84], respectively. Activation functions are used after the FC 

layers, including the hyperbolic tangent (Tanh) function [85] and the sigmoid function [86]: 

𝑡𝑎𝑛ℎ(𝑥𝑎) =
𝑒𝑥𝑎 − 𝑒−𝑥𝑎

𝑒𝑥𝑎 + 𝑒−𝑥𝑎
 (4.2.6) 
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𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥𝑎) =
1

1 + 𝑒−𝑥𝑎
 (4.2.7) 

where 𝑥𝑎 is an input value. The output dimension of the hidden layer is three, meaning all the 

DFOS data are compressed into a 3D space with low errors. 

 

Figure 4.2.5. Architecture of the proposed autoencoder-based unsupervised learning model. 

Table 4.2.2. Structure of the autoencoder neural network 

Layer Component Input size Output size Layer Note 

1 

Encoder 

(20, 1) (16, 1) FC + Tanh  

2 (16, 1) (8, 1) FC + Tanh  

3 (8, 1) (5, 1) FC + Tanh  

4 (5, 1) (3, 1) FC Hidden layer 

5 

Decoder 

(3, 1) (5, 1) FC + Tanh  

6 (5, 1) (8, 1) FC + Tanh  

7 (8, 1) (16, 1) FC + Tanh  

8 (16, 1) (20, 1) FC + sigmoid  

 

The clustering learning module was realized using the K-means clustering algorithm due to 

its simplicity and effectiveness [87]. The input of the K-means clustering algorithm was the output 

of the hidden layer in the autoencoder module. The K-means clustering algorithm categorized all 

the compressed DFOS data into two disjointed clusters. Because the DFOS data representing no 
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cracks are typically irregular, the cluster represented no cracks when its test results of the null 

hypothesis and the p-value were close to 0. In this case, the other cluster indicated that the DFOS 

data represent cracks. 

The unsupervised learning model was implemented in Python 3.7 using PyTorch [88]. The 

training epoch was set at 300; the batch size was set at 32; the learning rate was set at 0.0001; and 

the loss function was the mean squared error (MSE). The Adam algorithm was used for stochastic 

gradient descent. In addition to the autoencoder-based unsupervised learning method, three 

representative unsupervised learning algorithms, which are the K-means clustering [89], Birch 

[90], and Gaussian mixture [91], were compared with the autoencoder-based method. 

4.2.2.4 Supervised learning methods 

Eight supervised learning methods were investigated for crack identification, which are (1) 

the random forest [92], (2) the ridge classifier [93], (3) the linear support vector machine with a 

linear kernel (SVM-linear) [42], (4) the support vector machine with a radial basis function kernel 

(SVM-RBF) [94], (5) the decision tree [95], (6) the k-nearest neighbors [96], (7) the multi-layer 

perceptron [97], and (8) the extreme gradient boosting (XGBoost) algorithm [98]. Hyperparameter 

tuning was performed for each of the machine learning models. 

4.2.3 Crack localization 

The flowchart of the proposed crack localization approach is shown in Figure 4.2.6. When a 

DFOS passes through cracks, each crack is identified by a peak in the strain distribution. The strain 

distribution is split into segments along the length of the DFOS. Each segment was analyzed by 

the machine learning models to identify cracks. When a segment is judged as a crack signal, the 

position of the segment is registered as the position of the crack.  

 

Figure 4.2.6. Flowchart of the crack localization approach proposed to analyze the strain distributions. 

A trend analysis algorithm is presented to locate cracks, as shown in Figure 4.2.7. First, the 

strain distribution is stored in row A. Then, the data in row A is shifted to the left with one interval 

to form row B. Next, the difference between the data in row A and row B is calculated and stored 
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in row C. The data in row C is input into the unit step function, as shown in Eq. (4.2.8) [99], to 

obtain row D. The data in row D is shifted to the right with one interval to form row E. Finally, an 

exclusive operation is performed for the data in row D and row E to obtain row F, where the 

position of number “1” indicates the position of the crack. 

𝑥𝐷 = 𝐻(𝑥𝐶) = {
1, 𝑥𝐶 > 0
0, 𝑥𝐶 ≤ 0

 (4.2.8) 

where 𝑥𝐶 and 𝑥𝐷 are the data in row C and row D, respectively; 𝐻(∙) is the unit step function. 

 
Figure 4.2.7. Main procedure of the localization algorithm. “XOR” represents exclusive operation. 

4.2.4 Crack quantification 

In recent research, the crack width was calculated using the strain distribution in the vicinity 

of the crack, as shown in Figure 4.2.8(a). The area of the strain distribution curve is the theoretical 

crack width. A method presented in section 2 for calculating the crack width using the strain 

distribution measured from DFOS is shown in Figure 4.2.8(b). The crack length can be determined 

by the positions of the intersection points of the cracks and DFOS, as shown in Figure 2.3.9. The 

intersection points can be connected to infer the crack length. 

 
(a) (b) (c) 

Figure 4.2.8. Determination of crack width using the measured strain distribution: (a) the theoretical 

method; (b) the method proposed in reference [11]; and (c) the method proposed in this study.  
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The strain distribution is represented by a series of columns. The width of each column is 

equal to the spatial resolution of the DFOS. The sum of the areas of the columns is used to obtain 

the crack width. To improve the accuracy of crack quantification, the column width is reduced 

using the nearest interpolation algorithm [100], as shown in Figure 4.2.8(c). The measured strain 

distribution was expanded five times. The sum of the areas of the columns in Figure 4.2.8(c) is 

closer to the shaded area in Figure 4.2.8(a) than the sum of the areas of the columns in Figure 

4.2.8(b), meaning that the proposed method outperforms the previous method. 

4.2.5 Crack visualization 

This study proposes to develop a live 3D digital twin based on BIM and compare the 3D 

digital twin with a 2D contour of cracks. The live 3D digital twin is established in three steps: (1) 

The real-time information about cracks, such as the widths and positions of cracks, is stored in a 

cloud database (e.g., MongoDB 6.0). (2) A BIM model is constructed using a BIM program (e.g., 

Autodesk Revit). (3) The crack database and the BIM model are connected using linking tools 

(e.g., Revit DB link) to make the BIM model updatable by the crack database. When the 

information about cracks is updated by the measurements from DFOS, the BIM model is updated.  

4.2.6 Performance metrics 

The performance of crack identification is evaluated using accuracy, precision, recall, and F1-

score [101]: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4.2.9) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4.2.10) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4.2.11) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4.2.12) 

where TP, FP, FN, and TN are the number of successfully detected cracks; FP is the number of 

wrongly detected cracks; FN is the number of missed cracks; and TN is the number of successfully 

detected non-cracks, respectively. 

The performance of the crack localization method is assessed in terms of the localization error, 

which is the difference between the location determined by the proposed method and the manually 

marked location regarding the distance.  

The performance of the crack quantification method is evaluated using the coefficient of 

determination (R2) [101]: 

𝑅2 = 1 −
∑ (𝑤𝑘 − 𝑤𝑘̂)

2𝑁
𝑘=1

∑ (𝑤𝑘 − 𝑊̅)2
𝑁
𝑘=1

 (4.2.13) 

where N is the number of cracks; 𝑤𝑘 and 𝑤𝑘̂ are the true crack width and estimated crack width of 

the k-th sample, respectively; and 𝑊̅ is the average of all the true crack widths. 
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4.2.7. Experiments and collected dataset 

4.2.7.1 Experiments 

The experiments are introduced in section 2.2.3.6.3. The contents are not duplicated here. 

4.2.7.2. Collection and evaluation of dataset 

Two methods were used to generate a DFOS dataset. The first method was experiment, and a 

total of 64,450 data were collected. Each strain distribution was divided into 1,000 segments along 

the sensor length, including 445 segments for “crack” and 555 data segments for “no crack”. The 

simulated strain distributions included random Gaussian noises with a mean value of zero. The 

simulated strain distributions were added to the dataset. A total of 1,500 data segments were 

generated. The experimental and simulated data were pre-processed to extract 20 mathematic 

features. The total data number were 2,500 (Table 4.2.3), including 20% experimental data that 

were randomly selected as a test dataset and the remaining data were used as a training dataset. 

Table 4.2.3. Statistics of the segments of strain distributions 

 Crack No crack All 

Experimental data 445 555 1,000 

Simulation data 750 750 1,500 

Experimental + Simulation data 1,195 1,305 2,500 
 

The Pearson correlation coefficients for the 20 features in the calculated dataset 𝐷𝑐𝑎𝑙𝑐 is shown 

in Figure 4.2.9. Most of the Pearson correlation coefficients off the diagonal were less than 0.7. 

The maximum correlation coefficient off the diagonal was 0.77, indicating that multicollinearity 

did not occur, and the 20 features in the dataset were appropriate.  

 
Figure 4.2.9. Results of the correlation matrix of the mathematical features in the calculated dataset. 
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The 20 statistical results of the features in the calculated dataset 𝐷𝑐𝑎𝑙𝑐 are listed in Table 4.2.4. 

For each feature, the results include the range, average, skewness, and kurtosis. The skewness and 

kurtosis of a dataset are utilized to evaluate whether the dataset follows a normal distribution. The 

skewness ranged from -0.62 to 7.54, and the kurtosis ranged from -1.74 to 60.75. Most of the 

skewness and kurtosis were between -2 and 2, revealing that most of these features followed a 

normal distribution.  

Table 4.2.4. Statistics of the variables in the calculated dataset 

Variable Unit Range Average Skewness Kurtosis 

F1 𝜇𝜀 400 to 18,593 5,693 0.90 -0.90 

F2 𝜇𝜀 0 to 5,702 2,980 -0.29 -1.68 

F3 𝜇𝜀 13 to 6,291 2,118 0.71 -0.79 

F4 𝜇𝜀 107 to 14,375 7,376 -0.16 -1.74 

F5 𝜇𝜀 1 to 2,475 842 0.31 -0.60 

F6 𝜇𝜀 0 to 2,702 850 0.42 -0.36 

F7 1 0 to 0.99 0.48 -0.02 -0.42 

F8 1 0 to 361.19 91.86 1.13 -0.34 

F9 1 0 to 365.41 92.10 1.09 -0.42 

F10 𝜇𝜀 1 to 16,991 9,545 -0.28 -1.66 

F11 1 0.01 to 166.07 7.01 7.54 60.75 

F12 𝜇𝜀 -1,514 to 1,504 -8 -0.05 2.34 

F13 1 7.05 to 40.64 27.89 -0.53 -1.24 

F14 1 0 to 23 4.84 1.16 0.03 

F15 1 -1.51 to 1.37 0.23 -0.62 0.36 

F16 1 -1.88 to 0.58 -1.08 0.76 0.52 

F17 𝜇𝜀 1,213 to 680,041 481,176 -0.18 -1.61 

F18 1 0.76 to 0.99 0.90 -0.28 0.98 

F19 1 0 to 0.99 0.15 1.78 2.14 

F20 mm 0 to 130.65 13.83 3.23 13.83 

 

4.2.8. Results and discussion 

4.2.8.1 Identification 

The results of crack identification are shown in Figure 4.2.10. The accuracy, precision, recall, 

and F1-score of the autoencoder-based unsupervised learning model are 0.94, 0.93, 0.94, and 0.94, 

respectively. The accuracy, precision, recall, and F1-score of the XGBoost supervised learning 

model are 0.98, 1.00, 0.96, and 0.98, respectively. 

The crack identification results of the unsupervised learning model are plotted in Figure 

4.2.11. In Figure 4.2.11(a), “no crack” data are mixed with crack data, meaning that the 

distributions of cracks were complex in the 3D space, making it more difficult to distinguish 

“crack” and “no crack” data. In Figure 4.2.11(b), the unsupervised learning model effectively 

identified some cracks. 
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(a) (b) 

Figure 4.2.10. Results of the confusion matrices of the crack identification model: (a) autoencoder-based 

unsupervised learning model, and (b) XGBoost supervised learning model.  

  
(a) (b) 

Figure 4.2.11. Visualization of crack identification results: (a) ground truth; and (b) clustered results. The 

3D coordinates are from the hidden representation layer in the autoencoder-based model. 

This study compared 12 machine learning methods in terms of the efficiency and accuracy of 

crack identification. The hyperparameters of each machine learning model were optimized. The 

hyperparameters of the SVM-Linear and the SVM-RBF were optimized using the random search 

method [102]. The hyperparameters of the other machine learning methods were optimized using 

a grid search method [103]. K-fold cross-validation [104] was used to evaluate the generalizability 

of machine learning models, and k was equal to 5. The performance of the 12 machine learning 

methods is compared in Table 4.2.5. 

The comparison shows that the XGBoost model outperforms the other machine learning 

models. The autoencoder-based model outperformed the other unsupervised learning models. The 

autoencoder-based method without feature extraction did not perform as well as the autoencoder-

based method with feature extraction, revealing the feature extraction is effective in this study. 

Regarding the computation efficiency, the autoencoder-based model took 0.07 s, and the XGBoost 

model took 0.03 s to analyze 200 segments of strain distribution. The computation efficiency is 

adequate for real-time crack measurements. 



Page 175 

 

Table 4.2.5. Performance comparison using different machine learning methods 

Type Methods Time (s) Accuracy Precision Recall F1-score 

Unsupervised 

learning 

Gaussian mixture 0.22 0.34 0.94 0.46 0.62 

Birch 0.31 0.53 0.55 0.94 0.68 

K-means 0.11 0.56 0.56 0.92 0.69 

Autoencoder-based without 

feature extraction 
0.10 0.57 0.54 0.98 0.70 

Autoencoder-based 0.07 0.94 0.93 0.94 0.94 

Supervised 

learning 

Ridge classifier 0.01 0.69 0.97 0.36 0.53 

SVM-RBF 0.07 0.76 0.66 1.00 0.80 

K-nearest neighbors 0.16 0.85 0.99 0.71 0.82 

Decision tree 0.02 0.85 0.85 0.85 0.85 

Random forest 0.26 0.93 0.96 0.90 0.92 

SVM-Linear 0.05 0.97 1.00 0.94 0.97 

Multi-layer perceptron 0.06 0.97 0.99 0.96 0.97 

XGBoost 0.03 0.98 1.00 0.96 0.98 
 

The simulation data have been used to assist the training of the supervised learning models. 

The ratio of the number of simulation data to the number of experimental data was employed to 

control the mix of the simulation and experimental data. Four ratios were investigated, which are 

0:1, 0.5:1, 1:1, and 1.5:1. All the data in the testing set were experimental data. The use of the 

simulation data enhanced the accuracy of the supervised learning models, as shown in Table 4.2.6. 

The F1-scores of the XGBoost model and autoencoder-based model increased with the ratio.  

Table 4.2.6. Effect of the simulation data on the F1-score of machine learning methods 

Number of data 
Ratio XGBoost Autoencoder-based 

Simulation  Experiment 

0 1,000 0:1 0.97 0.88 

500 1,000 0.5:1 0.98 0.91 

1,000 1,000 1:1 0.98 0.93 

1,500 1,000 1.5:1 0.98 0.94 
     

Regarding the labeling, the supervised learning methods relied on a large amount of labeled 

data. In this research, a total of 1,500 DFOS data measured from the tested beam were manually 

labelled. In practices, more DFOS data must be labeled to apply the supervised learning methods 

to large-scale structures. In comparison, the unsupervised learning methods eliminate the time-

consuming labeling effort. Manual labeling operation also may involve mislabeling and reduce the 

accuracy and reliability. 

In summary, the autoencoder-based unsupervised learning method performs slightly lower 

than the supervised learning method in terms of the accuracy of crack identification. However, the 

unsupervised learning method has higher efficiency than the supervised learning method because 

the unsupervised learning method does not require manual labeling of DFOS data. Thus, there is 

a trade-off between the labeling and accuracy. When the dataset size is small, supervised learning 

methods with manual labeling is a good choice to achieve high accuracy. When the dataset size is 

large, unsupervised learning method is an alternative to achieve high efficiency.  
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4.2.8.2 Localization 

The crack localization results using the proposed methods are shown in Figure 4.2.12. The 

DFOS data under different loads are plotted along the beam in Figure 4.2.12(a). With the proposed 

crack localization algorithm, the peaks of all cracks were located, as shown in Figure 4.1.12(b). 

The supervised identification model was used to distinguish the cracks. The locations of cracks 

under different loads are shown in Figure 4.2.12(c).  

Compared with manually annotating the cracks in Figure 4.2.12(d), cracks C2 to C21 were 

identified and located by the proposed approach. Crack C1 was not identified by human experts, 

and it did not generate a visible peak in the strain distributions. The positions of the identified 

cracks were the same as those identified manually.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.2.12. Crack localization results: (a) strain distributions; (b) possible cracks; (c) located and 

identified cracks; and (d) manually located cracks in previous research (permitted reprint). 
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4.2.8.3 Quantification 

The results of crack width measured by the crack scope, calculated by the proposed method, 

and calculated by an existing method are shown in Figure 4.2.13. The calculation results of the 

proposed method were close to the measured crack widths. Regarding accuracy, R2 of the proposed 

method was 0.950, which is higher than the result (0.938) of the existing method. The improvement 

of accuracy can be attributed to the finer resolution because accuracy is associated with the spatial 

resolution of the DFOS.  

 

Figure 4.2.13. Results of crack quantification from the proposed approach and manual calculation. 

4.2.8.4 Visualization 

The cracks can be visualized in a 2D crack contour, as shown in Figure 4.2.14. The dark red 

areas indicate significant cracks. The center lines of these cracks and the corresponding crack 

widths are marked on the map. Only visible cracks with a crack width greater than 1 mm are 

automatically marked in the crack map. The cracks were mapped, showing the positions and 

widths of cracks. The model is updated in real time automatically. The model can be used to 

support sophisticated management of structures with cracks. The  model can be utilized to visualize 

multi-scale cracks. The crack information is standardized and stored for subsequent analysis of 

crack evolution. The cracks obtained by the proposed method are visualized in a 2D projection. 

 
Figure 4.2.14. Crack visualization results presented in a 2D contour for the tested specimen. 
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4.2.9. Comparison with existing studies 

The approaches proposed in this study and existing approaches are compared in Table 4.2.7. 

The features used for the comparison include: (1) whether human intervention is necessary; (2) 

whether crack identification is achieved; (3) whether crack localization is achieved; (4) whether 

crack quantification is achieved; and (5) the format of the crack visualization presentation. 

Most existing studies required manually labelling the DFOS data or manually selecting strain 

segments that represent cracks [49]. The supervised and unsupervised machine learning methods 

proposed in this research are utilized to detect cracks automatically. Regarding crack localization, 

a strain distribution was divided into different segments using a fixed-width window and located 

cracks by identifying cracks for each segment of the DFOS sensor [76]. Domaneschi et al. 

integrated DFOS with camera [106] and acoustic emission [107] to achieve local and global crack 

detection and localization. However, this method relies on the acoustic emission technique [107]. 

This study implemented a strain trend analysis algorithm to find peaks for strain distribution to 

achieve accurate crack localization. Regarding crack visualization, this study develops a 3D digital 

twin to display cracks, while the existing methods used 2D strain contours to present cracks. 

Table 4.2.7. Comparison between this research and the state-of-the-art studies 

Source Year Sensor Algorithm 
Human 

intervention 
A1 B1 C1 D1 

This 

study 
2023 DFOS 

XGBoost and 

Autoencoder 
Low Yes Yes Yes 3D 

[77] 2022 DFOS SVM High Yes No No / 

[76] 2020 DFOS CNN High Yes Yes No / 

[75] 2019 DFOS Autoencoder High Yes No No / 

[106] 2021 DFOS and camera DIC2 Low Yes Yes Yes / 

[107] 2020 
DFOS, acoustic 

emission, and camera 
DIC2 Low Yes Yes Yes 2D 

[49] 2021 DFOS / High Yes Yes Yes 2D 

[105] 2022 DFOS / High Yes Yes Yes / 
1 “A”, “B”, “C”, and “D” denote detection, localization, quantification, and visualization, respectively. 
2 “DIC” indicates the digital image correlation technique. 

 

 
 

4.2.10. Discussion on DFOS parameters 

This section discusses the spatial resolution, the strain transfer effect, and the measurement of 

microcracks near widely opened cracks. The spatial resolution of DFOS showed large effects on 

the measurement accuracy of crack width when cracks were monitored using DFOS under three 

different spatial resolutions, which are 0.65 mm, 1.3 mm, and 2.6 mm, respectively [27]. Based on 

the DFOS data obtained from experiments, the proposed machine learning approaches were 

applied to detect and quantify cracks automatically. The representative F1 scores of the crack 

detection and the R2 values of the crack quantification are shown in Table 4.2.8. When the spatial 

resolution is changed, the high performance of the proposed methods is retained, revealing that the 

proposed approaches are robust to the spatial resolution. 
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Table 4.2.8. Effect of the different spatial resolution on the performance of the proposed methods 

Spatial resolution 

(mm) 

XGBoost method  Autoencoder-based method 

Detection Quantification  Detection Quantification 

0.65 0.98 0.95  0.94 0.95 

1.3 0.95 0.95  0.95 0.95 

2.6 0.95 0.95  0.94 0.95 
 

The presence of the protective coatings of DFOS has significant effects on the strain results 

via the strain transfer effect, which enables the use of DFOS to monitor cracks because the abrupt 

strain change in the DFOS passing through a crack opening is distributed over a long length, also 

known as the development length, thus protecting the DFOS from being ruptured. When DFOS is 

utilized to monitor cracks, the strain transfer effect on the strain results is naturally imposed 

because the strain distributions measured from the DFOS are already the strain results under strain 

transfer effect. Based on the previous study [27], cracks were respectively evaluated using DFOS 

with three different coating thicknesses, which are 242 mm, 650 mm, and 900 mm, because the 

coating thickness directly affects the strain transfer effect. In this research, the proposed 

approaches are applied to detect and quantify cracks using the experimental data. The 

representative results are listed in Table 4.2.9. When the coating thickness is changed, the high 

performance of the proposed methods is retained, revealing that the proposed approaches are 

robust to the strain transfer effect of DFOS. 

Table 4.2.9. Effect of the strain transfer on the performance of the proposed methods 

Coating thickness (µm) 
XGBoost method  Autoencoder-based method 

Detection Quantification  Detection Quantification 

242 0.98 0.95  0.94 0.95 

650 0.97 0.95  0.95 0.95 

900 0.95 0.95  0.94 0.95 
      

It is still a challenge to use DFOS to precisely detect and quantify microcracks near widely 

opened cracks because the strain spikes caused by the microcracks near major cracks are usually 

concealed by the spikes caused by major cracks. Both the strain spikes that are caused by 

microcracks and major cracks are subject to the strain transfer effect. When microcracks are too 

close to major cracks, their strain transfer lengths will be overlapped, and microcracks do not 

provide visible and distinct local peaks along the length of measured strain distribution, making it 

difficult to distinguish the spikes of microcracks.  

 

4.3. Strain contour-based method 

4.3.1. Research objectives 

The method in section 4.2 shows the feasibility of automatic interpretation of DFOS data in 

the context of crack monitoring. However, the method identifies cracks via segmenting DFOS data 

into short segments. Four limitations have been identified:  

• First, it is difficult to ensure that the segmentation operation will not split one crack into 

multiple segments.  
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• Second, the existing approaches treat a crack detection task as a binary classification task, 

inconsistent with the fact that a single segment may contain multiple cracks, which 

compromises the detection accuracy.  

• Third, it is difficult to determine the appropriate width of segments. The width was 

selected via trial and error. It is unknow whether the adopted segment width is applicable 

to other cases.  

• Fourth, the performance of the existing approaches relies on a large amount of training 

data. However, it is difficult to establish a large database. Besides the lack of data, the 

database is often unbalanced because the majority of DFOS data is for crack-free 

conditions. 

To address these challenges, a deep learning approach was developed to interpret spatially-

distributed cracks from DFOS data automatically. The approach innovates in three aspects:  

• First, a modified You Only Look Once (YOLO) method is developed to identify and 

locate cracks.  

• Second, a transfer learning strategy is implemented to address the problem of the lack of 

DFOS data for the training of the deep learning model.  

• Third, a new split-and-merge method is developed to improve the multi-crack detection 

accuracy.  

The generalizability of the proposed approach is evaluated using test results from two types 

of experiments. This research will promote the applications of DFOS for structural health 

monitoring through improving the capability of intelligent analysis of the DFOS data while 

achieving high accuracy and high efficiency.  

4.3.2. Overview of methods 

Figure 4.3.1 shows the framework of the proposed approach, which includes seven main 

modules: (1) Collection of DFOS data. Strain distributions are collected with appropriate spatial 

resolution and sampling frequency, aiming at supporting the monitoring of cracks without 

overburdening data storage demands. (2) Generation of strain contour images. Strain distributions 

are converted into strain contour images. (3) Image augmentation. Seven methods are used to 

enlarge the dataset size. (4) Improved YOLOv5 network. An improved YOLOv5 network is 

developed to detect and locate cracks from strain contour images. (5) Transfer learning. Transfer 

learning is incorporated to enhance the performance of the deep learning model. (6) Data splitting 

and recovery. A split-and-merge method is proposed to handle DFOS data with many data points. 

(7) Quantification of crack width. A method is proposed to calculate the crack width. The above 

methods are elaborated in the following subsections. 

When a DFOS passes through a crack, the DFOS will be stretched by the crack to achieve a 

high tensile strain, which is seen as a sharp spike in the strain distribution measured from the 

DFOS. The presence of the protective coating of the fiber optic cable protects the DFOS from 

rupturing at the crack [28]. When the crack opening width is narrow, as shown in Figure 4.3.2(b), 

the bond between fused silica and polymer coating is retained. When the crack is widened, the 

polymeric coating will rupture, and debonding will occur between the fused silica fiber and the 
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polymeric coating, as shown in Figure 4.3.2(c). The occurrence of interfacial debonding helps 

transfer the abrupt deformation at the crack over a long length of the fused silica fiber via the strain 

transfer effect, thus reducing the magnitude of tensile strains and postponing the rupture of the 

fused silica fiber. While it is promising to use DFOS to monitor cracks, the challenge is that there 

are too many cracks to monitor by human experts in real practices, as shown in Figure 4.3.2(d). 

 
Figure 4.3.1. Framework of the proposed approach to intelligently monitor cracks based on DFOS data. 

 

   
(a) (b) (c) 

 
(d) 

Figure 4.3.2. Monitoring cracks using DFOS: (a) cross section of a DFOS; (b) a narrow crack and strain 

distribution; (c) a wide crack and strain distribution; (d) distributed cracks and strain distribution. 

4.3.3. Converting strain distributions into contour images 

Because the amount of data measured by DFOS is too large to interpret by engineers, this 

subsection presents a method to convert the strain distribution measured from DFOS into a strain 
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contour image to facilitate the interpretation of the strain distribution based on deep learning. The 

main procedure of generating a strain contour image is shown in Figure 4.3.3. 

First, an arbitrary strain distribution can be expressed as a one-dimensional matrix: 

𝜺𝒂 = [𝜀1 𝜀2 ⋯ 𝜀𝑁] (4.3.2) 

where 𝑁 is the total number of data points of the arbitrary strain distribution, and 𝑁 is an integer 

greater than 1. Each element of the matrix represents a strain value.  

Second, the strain distribution is replicated in a new dimension to form a 2D matrix, which 

has 640 rows and N columns, because the default YOLOv5 script sets the input image size to 640 

× 640 pixels, as shown in Eq. (4.3.3). The image size can be different, as long as the images are 

clear. The effect of the image size on the data interpretation results is investigated in Section 4.2. 

𝜺𝒃 = [

𝜀1 𝜀2 ⋯ 𝜀𝑁
⋯ ⋯ ⋯ ⋯
𝜀1 𝜀2 ⋯ 𝜀𝑁

] (4.3.3) 

Third, in each row of the matrix, a total of M strain values are inserted between each pair of 

adjacent data points through linear interpolation [108], as shown in Eq. (4.3.4). This step is used 

to generate more strain data points between adjacent sensing points through interpolation, aiming 

to provide a smooth representation of the strain distribution using strain contour images. 

𝜺𝒄 = [

𝜀1 𝜀1,1 ⋯ 𝜀1,𝑀 𝜀2 ⋯ 𝜀𝑁
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
𝜀1 𝜀1,1 ⋯ 𝜀1,𝑀 𝜀2 ⋯ 𝜀𝑁

] (4.3.4) 

where 𝑀 = ⌊
640𝑆𝑅

100
⌋. ⌊∙⌋ denotes the round down function, and SR is the spatial resolution of the 

DFOS (unit: mm). The number of columns of 𝜺𝒄 is (𝑀𝑁 + 𝑁 −𝑀). In this study, SR is equal to 

0.65 mm, which was deemed appropriate for measuring cracks.  

Fourth, the elements in 𝜺𝒄 are used to calculate the red (R), green (G), and blue (B) values of 

each pixel of a strain contour image according to Eq. (4.3.5) to Eq. (4.3.7). The equations for 

generating strain contour images are elaborated in reference [109].  

𝑅(𝜀) = 255{

0, 𝜀 < 𝜀𝑚𝑖𝑛 + 0.5∆𝜀

4(𝜀 − 𝜀𝑚𝑖𝑛 − 0.5∆𝜀)

∆𝜀
, 𝜀𝑚𝑖𝑛 + 0.5∆𝜀 ≤ 𝜀 < 𝜀𝑚𝑖𝑛 + 0.75∆𝜀

1, 𝜀 ≥ 𝜀𝑚𝑖𝑛 + 0.75∆𝜀

 (4.3.5) 

𝐺(𝜀) = 255

{
 
 

 
 

4(𝜀 − 𝜀𝑚𝑖𝑛)

∆𝜀
, 𝜀 < 𝜀𝑚𝑖𝑛 + 0.25∆𝜀

1, 𝜀𝑚𝑖𝑛 + 0.25∆𝜀 ≤ 𝜀 < 𝜀𝑚𝑖𝑛 + 0.75∆𝜀

4(𝜀𝑚𝑖𝑛 + ∆𝜀 − 𝜀)

∆𝜀
, 𝜀 ≥ 𝜀𝑚𝑖𝑛 + 0.75∆𝜀

 (4.3.6) 

𝐵(𝜀) = 255{

1, 𝜀 < 𝜀𝑚𝑖𝑛 + 0.25∆𝜀

4(𝜀𝑚𝑖𝑛 + 0.5∆𝜀 − 𝜀)

∆𝜀
, 𝜀𝑚𝑖𝑛 + 0.25∆𝜀 ≤ 𝜀 < 𝜀𝑚𝑖𝑛 + 0.5∆𝜀

0, 𝜀 ≥ 𝜀𝑚𝑖𝑛 + 0.5∆𝜀

 (4.3.7) 
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where 𝜀 is an arbitrary strain, and ∆𝜀 = 𝜀𝑚𝑎𝑥 − 𝜀𝑚𝑖𝑛, where 𝜀𝑚𝑎𝑥 and 𝜀𝑚𝑖𝑛 are the maximum and 

minimum values, respectively. The RGB values are put into three matrices, respectively, which 

have the same dimensions as 𝜺𝒄.  

 

 
Figure 4.3.3. Flowchart of generating intuitive crack images using DFOS data. 

Finally, the RGB matrices are converted into a colored strain contour image, as shown in 

Figure 4.3.3. A strain contour image is a graphic representation of the measured strain distribution. 

3.3.4 Data augmentation 

To enlarge the dataset size, seven augmentation methods are applied, including translation, 

scaling, flipping, hue, saturation, lightness, and mosaic [110]. Representative examples are shown 

in Figure 4.3.4. For each image from the training dataset, mosaic augmentation randomly merges 

four images, followed by performing random translation and scaling.  

Then, the generated image is randomly flipped, and the hue, saturation, and lightness are 

randomly adjusted. The use of these data augmentation methods increases the variability of data 

and reduces the training time since the augmented dataset requires less graphics memory in the 

model training process. 

 



Page 184 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 4.3.4. Representative examples of the seven data augmentation methods: (a) the original image; (b) 

flipping; (c) translation; (d) scaling; (e) hue; (f) saturation; (g) lightness; and (e) mosaic. 

4.3.5 Improved YOLOv5 network 

A deep learning network is developed to detect and locate cracks from strain contour images 

based on the YOLOv5 network, which is a cutting-edge artificial intelligence method [111]. The 

improved network is based on the original YOLOv5 network, consisting of three main parts: a 

backbone, a simplified neck, and a lightweight head, as shown in Figure 4.3.5. 

The backbone is used to extract the feature information from input strain contour images. The 

simplified neck fuses the extracted feature information and generates three scales of feature maps. 

The output part detects the objects from the generated feature maps [112]. Each part is composed 

of different layers. “Conv” represents convolution, normalization, and activation operations. The 

two numbers after “Conv” are the kernel size and stride size of the convolutional operations, 

respectively. “C3” is the cross-stage partial (CSP) network with three convolutional layers. 

“Concat”, “SPPF”, and “UpSample” represent the concatenation layer, spatial pyramid pooling 

fast (SPPF) layer [111, 113], and up-sample layer, respectively. More details about these blocks 

are available in reference [111]. The improved YOLOv5 network has a total of 22 blocks and 

5,235,014 trainable parameters. 

Compared with the original YOLOv5, three modifications were made. First, transformer 

blocks were added to the backbone and neck. The original feature extraction network of YOLOv5 

depends on the convolution layers, which extracts features from the input images but lacks the 

ability to handle long measurements from DFOS. A transformer block was added to the backbone 

to extract the features of images [114]. The architecture of the transformer block is shown in Figure 

4.3.6. The input data of the transformer block is a sequence of fixed-size image patches with 

linearly embedded location information. The transformer block has multi-head self-attention [115] 
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and multilayer perceptron layers. Following each layer, residual connections are performed with a 

summation operation. The normalization layers of the original YOLOv5 network are removed to 

reduce the number of parameters and improve the computational efficiency [116]. 

 

Figure 4.3.5. Architecture of the improved YOLOv5 network with a backbone, a neck, and a head. 

 

Figure 4.3.6. Architecture of the transformer block in this study. “⊕” indicates an adding operation. 

Second, the number of detection heads is reduced to one. In the original YOLOv5 network, 

three heads are utilized for different sizes of detection targets. In this study, the dimensions of 

DFOS detection boundaries are countable. The height of the crack boundary was fixed at 640. The 

width of images is determined by the specific task and settings of DFOS. In this case, using three 
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heads for multiple detection becomes insignificant and increases the complexity of the 

architecture. Thus, the extra heads are removed to simplify the network. There is only one head in 

the improved YOLOv5 network. 

Third, unnecessary convolutional blocks in the neck are removed to further simplify the 

network. Compared with the original YOLOv5 network, the improved YOLOv5 network reduces 

the number of blocks from 25 to 22 (by 12%) and reduces the number of trainable parameters from 

7,022,326 to 5,235,014 (by 25%). 

4.3.6 Transfer learning 

Transfer learning is applied to enhance the performance of the improved YOLOv5 model 

because of the lack of data. Figure 4.3.7 shows the workflow of transfer learning. First, DFOS data 

are generated using the strain transfer methods established in previous research [24, 25]. Second, 

based on the DFOS data, strain contour images are created. The data augmentation methods are 

applied to enlarge the dataset size. Third, the improved YOLOv5 model is trained using the strain 

contour images, and the trained parameters are stored. Fourth, DFOS data from various 

experiments are utilized to create strain contour images. Finally, the improved YOLOv5 model is 

retrained using the strain contour images obtained from tests.  

 

Figure 4.3.7. Flowchart of the transfer learning strategy adopted to improve the training of the model. 

4.3.7 Data splitting and recovery 

DFOS can continuously measure strains along its entire length. The length of a single DFOS 

can be up to hundreds of meters to kilometers. Although engineers can judge cracks based on strain 

distributions or strain contour images, it is difficult for engineers to monitor cracks in real time 

when a long DFOS is used to measure many cracks. When a YOLOv5 model is used, it is feasible 

to automate the data analysis process, but directly using the images created by the entire strain 

distributions from a long DFOS had limited effectiveness in crack detection tasks. To address this 

issue, a split-and-merge approach is proposed, as shown in Figure 4.3.8. 
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Figure 4.3.8. Workflow of the split-and-merge approach for crack detection with a long DFOS. 

First, the strain contour image from a long DFOS is divided into many sub-images with equal 

width and height by employing a sliding window. For each pair of adjacent sub-images, half of the 

width is overlapped to avoid splitting the pixels of a crack into two sub-images. Half-width is 

adopted to minimize the overlap of images. Second, the sub-images are fed into the improved 

YOLOv5 model to detect cracks. Third, the crack detection results are merged to generate a large 

contour image according to their spatial positions, which are determined by the width and positions 

of the sliding windows. Finally, a non-maximum suppression (NMS) algorithm is implemented to 

eliminate the overlapped areas of the contour images and improve the overall accuracy [117]. 

4.3.8 Quantification of crack width 

The crack width can be calculated using strain distributions measured from DFOS [118, 119]. 

One of the methods is to calculate the crack width by performing an integration operation of the 

strain distribution. The operation requires determining the boundaries of each crack, as shown in 

Figure 4.3.9. This study uses the improved YOLOv5 model to locate the boundaries of each crack. 

Linear interpolation is performed to increase the spatial resolution of the strain distribution. 

Finally, the crack width is calculated by performing an integration operation of the strain 

distribution, as marked by the green area under the strain peak. 
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Figure 4.3.9. Quantification of crack width using an integration method based on the detection results.  

4.3.9. Implementation and performance evaluation 

4.3.9.1 Datasets 

The proposed approach was implemented into the analysis of the DFOS data measured from 

a specimen tested under four-point bending. The length of the DFOS was 3.5 m. When the 

sampling resolution was 0.65 mm, the DFOS obtained 5,384 data points in one measurement. The 

test specimen was instrumented with two paths of DFOS. In the experiment, the DFOS measured 

25 sets of strain distributions, which are referred to as the original strain distributions. The original 

strain distributions were divided into about 1000 segments of strain distributions with the same 

segment length. Among those segments of strain distributions, a total of 235 segments had cracks 

and were used as experimental data. In addition to the test data, 685 simulated strain distributions 

were obtained using a strain transfer model proposed in references [24, 25]. The strain distributions 

were randomly combined to augment the dataset size. The numbers of tested and simulated strain 

distributions were increased to 235×5 = 1175 and 685×5 = 3425, respectively. In each strain 

distribution, the number of cracks ranged from one to five. 

The three datasets used in this study are shown in Table 4.3.1. The original strain distributions 

were utilized to test the performance of the trained model. The experimental data extracted from 

the original strain distributions were utilized to train, validate, and test the deep learning model. 

The simulated data were used for transfer learning. 
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Table 4.3.1. Summary of the dataset used in this study 

Name Number 
Number after 

combination 

Number of contour images 
Used for 

Common Augmented 

Original DFOS data 25 / 25 / Testing 

Experimental data 235 1,175 1,175 1,175 All 

Simulated data 685 3,425 3,425 3,425 Transfer learning 

 

Representative examples of the generated strain contour images are shown in Figure 4.3.10. 

The comparison of the simulated strain contour images with the experimental strain contour 

images reveals that the simulation method is reasonable. The generated strain contour images were 

manually labelled using labelme [120]. The strain contour images in the training dataset were 

augmented using the method elaborated in section 4.4, as shown in Figure 4.3.10(f). 

 
(a) 

     
(b) (c) (d) (e) (f) 

Figure 4.3.10. Examples of contour images generated with DFOS strain data: (a) long DFOS contour; (b) 

experimental contour with one crack; (c) experimental contour with five cracks; (d) simulated contour with 

one crack; (e) simulated contour with five cracks; and (f) augmented experimental contour. 

 

4.3.9.2 Detection and quantification of cracks 

The improved YOLOv5 network was coded with Python [121] and trained for 100 epochs. 

The learning rate and the batch size were set to 0.01 and 32, respectively. The weight decay was 

0.0005 with the stochastic gradient descent (SGD) as the optimizer. The training, validation, and 

testing were conducted on Google Colaboratory using a 2.30-GHz Intel Xeon (R) CPU, 13-GB 

RAM, and a 15-GB Tesla K80 GPU.  

The loss curves are shown in Figure 4.3.11, showing desired performance. The performance 

of the proposed deep learning model for crack detection is assessed using standard metrics 

commonly employed, including precision [122], recall [122], F1 score [122], and mean average 

precision (mAP) [123]. These metrics were calculated based on the ground truth values in the 

datasets and the estimated values from the proposed deep learning model. These metrics provide 

a comprehensive and reliable assessment of the accuracy and effectiveness in detecting cracks. 

Regarding mAP, mAP@0.5 and mAP@0.5:0.95 were considered. mAP@0.5 is the mAP value 
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when the intersection over union (IOU) is higher than 0.5. mAP@0.5:0.95 is the average of mAP 

values when the IOU is from 0.5 to 0.95 with an interval of 0.05. More details about the metrics 

are available in references [122, 123]. 

 

Figure 4.3.11. The loss curves of the training and validation process of the improved YOLOv5 model. 

The performance improvement of the model in the training process is shown in Figure 4.3.12. 

In the first 20 epochs, the precision, recall, and F1 score rapidly increased from 0 to 0.9. After 100 

epochs, the precision, recall, F1 score, mAP@0.5 and mAP@0.5:0.95 reached 0.923, 0.929, 0.926, 

0.959, and 0.888, respectively.  

The trained YOLOv5 model was then used to detect cracks from the strain contour images 

generated from 130 sets of DFOS data. The 130 contour images were not used in the training of 

the model, so they were unseen data for the trained model. All cracks were detected by the 

modified YOLOv5 model, regardless of the number of cracks. Three representative examples of 

crack detection results are shown in Figure 4.3.13. The efficiency of the modified YOLOv5 model 

was evaluated in terms of the processing time for the strain contour images. With a strain contour 

image including 10,000 strain data, the average processing time was shorter than 0.05 s. 

  
(a) (b) 

Figure 4.3.12. Results of the performance metrics of the deep learning model for crack detection in the 

training process: (a) precision, recall, and F1 score and (b) mAP@0.5 and mAP@0.5:0.95. 
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(a) (b) (c) 

Figure 4.3.13. Representative examples of crack detection results of the proposed YOLOv5 model based on 

experimental data: (a) two cracks; (b) three cracks; and (c) four cracks. 

The effect of the contour image size on the detection accuracy of the modified YOLOv5 model 

is investigated. Three different contour image sizes were used to generate strain contours, 

including 512 × 512, 640 × 640, and 1280 × 1280 pixels. Then, the generated strain contours were 

used to train and test the proposed modified YOLOv5 model. The mAP@0.5 of the modified 

YOLOv5 models using different image sizes remained the same, demonstrating that the accuracy 

of the model was not significantly affected by the image size. It is worth noting that the images 

must be large enough to be identifiable by human observers. A default image size of 640 × 640 

pixels for the YOLOv5 model was utilized in this study. 

The performance of the proposed approach with the modified YOLOv5 model and transfer 

learning is compared with the performance of the other approaches, as listed in Table 4.3.2. The 

comparison results reflect the benefits of the modifications of the YOLOv5 network and the 

incorporation of transfer learning. Compared with the original YOLOv5 model, the modified 

YOLOv5 model achieved higher accuracy and efficiency. For example, the mAP@0.5:0.95 was 

increased from 0.782 to 0.894 (by 14.3%), and the number of trainable parameters was reduced 

from 7,011,538 to 5,235,014 (by 25.3%). It should be noted that there is a trade-off between the 

performance and computational complexity of the deep learning model. By adding transformers, 

the mAP@0.5 increased from 0.885 to 0.948, and the number of trainable parameters increased to 

7,011,922. The data augmentation methods increase the diversity of the training data and improve 

the mAP@0.5 from 0.930 to 0.959. 

Table 4.3.2. Effect of each improvement point on the crack detection performance 

Algorithm F1 score mAP@0.5 mAP@0.5:0.95 Number* 

YOLOv5 0.922 0.885 0.782 7,011,538 

YOLOv5 + Transformer 0.924 0.948 0.850 7,011,922 

YOLOv5 + Transformer + reduced head 0.933 0.951 0.863 7,008,070 

YOLOv5 + Transformer + reduced head + 

simplified neck ( = Proposed network) 
0.926 0.959 0.888 5,235,014 

Modified YOLOv5 without data augmentation 0.920 0.930 0.826 5,235,014 

Modified YOLOv5+ transfer learning 0.936 0.968 0.894 5,235,014 
* The number of trainable parameters.  
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The performance of the improved YOLOv5 model for crack detection was compared with 

four other advanced deep learning models, which are YOLOv8, YOLOv5, YOLOv4, YOLOv3, 

Faster R-CNN [124], RetinaNet [125], fully convolutional one-stage (FCOS) [126], and single 

shot multibox detector (SSD) [127], which were trained and evaluated using the same dataset as 

the improved YOLOv5 model. The results of performance metrics are plotted in Figure 4.3.14. 

The highest accuracy and efficiency were achieved by the proposed modified YOLOv5 model, 

followed by the YOLOv8 model and faster RCNN model. The YOLOv8 model reached a good 

mAP@0.5 of 0.915, higher than that of the YOLOv5 model. However, the YOLOv8 model was 

not modified using the proposed methods. The faster RCNN model reached the third highest 

mAP@0.5, which is 0.870, but the processing time for each measurement was 0.147 s, much 

longer than that of the improved YOLOv5 model (0.008 s). 

 

Figure 4.3.14. Performance comparison for the improved YOLOv5 model and eight other models. 

To test the scalability of the proposed approach, DFOS data obtained from long DFOS were 

utilized. Representative results are shown in Figure 4.3.15(a). The image has 3,200×640 pixel and 

multiple cracks. When the modified YOLOv5 model was directly applied without incorporating 

the split-and-merge operation, multiple cracks were detected as a single crack by mistake. The 

cracks on the right side were not detected. After the proposed split-and-merge operation was 

incorporated with a fixed window measuring 640×640 pixel for data splitting and a threshold of 

IOU of 0.8, all cracks were successfully detected, and the different cracks were differentiated, as 

shown in Figure 4.3.15(b). These results reveal that it is essential to incorporate the split-and-

merge operation in handling long DFOS data that involve complex crack distributions.  

 
(a) 

 
(b) 

Figure 4.3.15. Detection results of the long fiber optic data: (a) directly using the trained deep learning 

model and (b) using the proposed split-and-merge approach in Section 2.7. 
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Based on the crack detection results, the opening widths of 103 cracks were quantified. The 

performance of crack quantification was evaluated using the coefficient of determination (R2) in 

the range of 0 to 1, and 1 means no error. The evaluation results are shown in Figure 4.3.16. The 

value of R2 was 0.998, indicating high accuracy. 

  
(a) (b) 

Figure 4.3.16. Calculation results of crack width: (a) comparison between the calculated results by the 

proposed method and the manual calculated results, and (b) statistics of the calculated results. 

In addition to the quantification of crack widths, the proposed method enabled the statistical 

analysis of crack patterns, as shown in Figure 4.3.16(b). The results showed that 61% cracks were 

finer than 0.4 mm, demonstrating the capability of the proposed approach to detect small cracks.  

The capabilities of detecting, locating, and quantifying cracks facilitate the visualization of 

cracks, as shown in Figure 4.3.17. In the experiment, the minimal and maximum widths of the 

detected cracks were 0.19 mm and 0.85 mm, respectively. The detected cracks and their widths 

can be visualized. 

 

Figure 4.3.17. Mapping cracks and their widths. Red lines represent detected cracks. The numbers on the 

top represent the crack width and the unit is millimeter. 

4.3.9.3. Discussion on generalization performance 

The generalization performance of the proposed approach was tested using 10 new datasets. 

The first 5 datasets were obtained from a tensile test, as shown in Figure 2.3.1. A crack was 

manipulated by using two bars which could slide along two U-shaped channels. The crack widths 

ranged from 0.05 mm to 2.53 mm. The spatial resolution and coating thickness of DFOS have a 

significant effect on the monitoring of cracks. In the tensile tests, different spatial resolutions were 

considered, including 0.65 mm, 1.30 mm, and 2.60 mm. The use of different spatial resolutions 

generated three DFOS datasets. The use of different coating thicknesses of fiber optic cables (650 
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µm and 900 µm) generated two DFOS datasets. Five other datasets were generated by adding 

Gaussian white noises to the test data from the tests. Five noise-to-signal ratios of Gaussian white 

noise were considered, which are 1%, 2%, 3%, 4%, and 5%. 

The performance of the proposed approach in crack detection and crack width quantification 

tasks is shown in Table 4.3.3. The performance of the proposed approach in the beam tests was 

used as the baseline. When the new datasets were analyzed using the trained model, the high values 

of the F1 score, mAP@0.5, mAP@0.5:0.95, and R2 were retained, revealing that the proposed 

approach is robust to the use cases involving different spatial resolutions, fiber optic cables, and 

environmental noises. The minimal detected crack width was 0.05 mm. 

Table 4.3.3. Generalizability of the proposed approach on crack detection and quantification 

No. Source of the dataset 
Spatial 

resolution (mm) 

Coating thickness 

(µm) 
mAP@0.5 R2 

/ Baseline 0.65 1,332 0.968 0.998 

1 Tensile experiment  0.65 242 0.965 0.994 

2 Tensile experiment  1.30 242 0.978 0.997 

3 Tensile experiment  2.60 242 0.965 0.995 

4 Tensile experiment  0.65 650 0.975 0.996 

5 Tensile experiment  0.65 900 0.981 0.998 

6 Baseline + 1% noise 0.65 1,332 0.965 0.997 

7 Baseline + 2% noise 0.65 1,332 0.962 0.990 

8 Baseline + 3% noise 0.65 1,332 0.960 0.986 

9 Baseline + 4% noise 0.65 1,332 0.957 0.981 

10 Baseline + 5% noise 0.65 1,332 0.955 0.972 

 

4.3.10. Summary 

This project developed a deep learning approach to intelligently monitoring and interpreting 

spatially-distributed cracks based on strain distributions measured from DFOS in real time. Based 

on the above investigations, the following conclusions are drawn: 

• The improved YOLOv5 model successfully detected spatially-distributed cracks based on 

the strain distributions measured from DFOS. The results of F1 score, mAP@0.5, and 

mAP@0.5:0.95 of the improved YOLOv5 model were respectively 0.936, 0.968, and 

0.894. The average processing time of 10,000 strain data was shorter than 0.05 s. The 

modification of the YOLOv5 model improved the performance in terms of accuracy and 

efficiency. The improvement was attributed to the addition of transformer blocks and the 

simplification of the neck and head. The improved YOLOv5 model also outperformed 

eight other advanced deep learning methods. 

• The incorporation of the transfer learning method improved the accuracy of the improved 

YOLOv5 model. The improvement was attributed to the addition of simulation data of 

strain distributions that increased the total number of data instances from 1175 to 4600. 

The mAP@0.5 was increased from 0.959 to 0.968. The improvement indicates that the 
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proposed transfer learning method can transfer useful features from the simulation data to 

the experimental data. 

• The proposed approach was applied to quantify the opening widths of 103 cracks. The R2 

value was 0.998, indicating that the proposed approach accurately quantified the crack 

widths. In this research, the crack widths were in the range of 0.05 mm to 0.85 mm. Further 

research is necessary to test the performance of the proposed approach for the 

measurements of a wider range of crack widths.  

• The robustness of the proposed approach was evaluated in different test scenarios with 

different types of test setup, specimens, crack patterns, and fiber optic cables. The crack 

detection performance was retained with an mAP@0.5 of 0.985. In addition, five types of 

Gaussian white noises were added into the beam testing data to evaluate the performance 

of the proposed approach under environmental variations. The mAP@0.5 was higher than 

0.955, revealing that the proposed approach was robust to noises. 
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Appendix: Literature review 

A literature review was performed on existing pipeline detection methods and applications in 

the pipeline industry. The emphasis of the review was placed on understanding the strengths and 

limitations of existing methods, and identifying the challenges of monitoring interactive defects.  

Pipelines are critical assets to the economy of the nation and security of modern communities 

[128]. Pipelines are considered the most preferred method of transportation of energy products and 

water from the economic, safety, and environmental points of view [129]. The total length of 

existing pipelines is phenomenal. Worldwide existing pipelines are more than 2 million miles (3.2 

million km), and the fatalities due to accidents per ton-mile of petroleum products are respectively 

87%, 4%, and 2.7% lower than those transported using truck, ship, and rail [130]. Thus, pipelines 

have been seen as the safest and most widely installed infrastructure [131].  

However, pipeline incidents can cause serious ecological issues, casualties, and financial loss, 

particularly when the detection of pipeline leakage is delayed. According to PHMSA, there were 

more than 11,900 pipeline incidents in the U.S. in the past 20 years, which costed nearly $8.4 

billion, killed over 300 people, and caused over 1300 injuries [132]. Unexpected pipeline failure 

can occur when the time dependent integrity threats are coupled with stable anomalies. ASME 

B31.8S identified nine primary threat conditions, which fall into three main categories: time-

dependent threats (external, internal, and stress corrosion), stable threats (manufacturing, 

fabrication or construction, and equipment), and time-independent (third party or mechanical 

impacts, incorrect operations, environment-related/outside forces) [133].  

Historical pipeline failures indicate that there are multiple factors that lead to pipeline failure 

[134]. Individual threats can be at “acceptable” levels, but there are circumstances when two or 

more anomalies occur coincidentally and interact with each other, causing serious consequences. 

Many pipeline incidents result from interactive anomalies which tend to cause more severe 

damages or pipeline failure greater than individual anomalies and the superposition of individual 

anomalies [135]. An example is earth movement exacerbating construction-related imperfections 

such as wrinkle-bends or certain vintages of girth welds. Either of these two conditions, absent the 

other, may not be a significant threat to pipeline safety. However, when they are both present at 

the same location, the resulting condition could be a concern [136]. Another example is the loss 

of corrosion protection, meaning a combination of aging coating, aggressive environment, and 

rapid corrosion growth that may lead to failure. This type of failure is not simply a corrosion 

failure, but a corrosion control system failure. Similar observations can be drawn for failures due 

to external interference and stress corrosion cracking [137]. Time-independent and time-dependent 

threats may also interact with resident threats on pipelines [138], such as: 

• Corrosion can initiate from deficits due to manufacturing imperfections or damage 

• Flooding in the area near pipeline right-of-way (ROW) can cause defects 

• External corrosion and latent third-party damage 

• Stress corrosion cracking at bottom side dents and/or at narrow axial external corrosion 

• Fatigue at defects 
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Based on these analysis, it is difficult to eliminate pipeline incidents due to the diverse causes 

[139]. To mitigate the impacts of pipeline incidents, it is important to monitor pipelines for timely 

detection of breaches of integrity, as early detection of threats will allow quick responses, hence 

reducing the loss rate, injuries, and other social and environmental consequences due to pipeline 

failures [140]. In this project, a survey of pipeline integrity assessment methods was conducted 

based on IM regulations which allow four types of methods [141]: 

• ILI: ILI is an internal pipeline inspection technique that uses magnetic flux leakage, 

ultrasound, eddy current, or other technologies to locate and characterize indications of 

defects, such as metal loss or deformation. The sensors are mounted on a device (known 

as a “smart pig”), which is inserted into a pipeline segment between a launching station 

and a receiving trap. The device moves through the pipe, scanning the pipe for specific 

types of defects. Pipeline segments that can accommodate ILI tools are considered 

“piggable”. Different sensors have been used to detect different defects [142]. 

• Pressure testing: A pressure test can be used as a strength or leak test. A common type of 

pressure test is a hydrostatic test, which involves taking the pipeline out of service and 

pressurizing a section of pipe with water to a much higher percentage of the pipe material's 

maximum design strength than the pipe will ever operate at with natural gas. This verifies 

the capability of a pipeline to safely operate at the maximum allowable operating pressure 

and can reveal weaknesses that could lead to defects and leaks in the pipe. Pressure testing 

of pipelines is designed to find critical seam defects (as well as other defects caused by 

corrosion, stress corrosion cracking, and fatigue) by causing the pipe to fail at these critical 

defect locations [143]. 

• Direct assessment: Direct assessment relies on the examination of the pipeline at pre-

selected locations to evaluate a pipeline for external corrosion, internal corrosion, or stress 

corrosion cracking threats. Most of the pipeline segment being inspected is usually not 

directly examined. Direct assessment uses multiple steps (four steps for external and 

internal corrosion, and two steps for stress corrosion cracking). For example, for external 

corrosion direct assessment, the steps are (NACE 2008): pre-assessment (the operator 

determines the feasibility of external corrosion direct assessment, determines external 

corrosion direct assessment regions, and selects tools for indirect inspection), indirect 

inspection (the operator conducts above-ground inspections, such as a close interval 

survey, to identify and classify indicators of corrosion and pipe coating defects), direct 

examination (the operator excavates the pipe at selected locations to measure actual 

corrosion damage), and post-assessment (the operator determines reassessment intervals 

and evaluates the effectiveness of the direct assessment process). This method requires 

the identification of regions within the pipeline segments for excavation and direct 

examination. Therefore, although a pipeline segment is inspected with direct assessment, 

typically only several small sub-segments, which are selected based on the corrosion 

severity prioritized by the indications from indirect inspection, are examined [144].  

• Other technologies: These technologies include methodologies that follow performance 

requirements with documentation or methods that are industry-recognized, approved, and 

published by an industry consensus standards organization. A staggering number of 

different technologies are available and are being developed for inspection and monitoring 
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of pipelines, such as sensor technologies, which cover a wide range of physical principles, 

including electrical, optical, radiographic, chemical, and acoustic domains [145]. 

The above methods have been used successfully to prevent, detect, and mitigate the pipeline 

threats individually, but the same level of guidance is not as readily available for real-time 

monitoring of interactive anomalies [146]. Most methods focused on threats independent of each 

other, and only examines a small part of pipeline segment, which may result in overlooking the 

potentially more damaging effect of interactive anomalies, the result of which is more damaging 

than either of the individual threats themselves [147, 148]. For example, ILI tools can only consider 

“piggable” pipeline segments, which means not all pipelines contain a suitable ILI tool launcher 

and/or receiver [149]. Another problem is that the typical pipeline segment is roughly 50-100 miles 

long. Some pipelines are longer. Therefore, ILI is a tool for pipeline inspection, and it cannot be 

used for real-time monitoring of pipelines [150]. Moreover, intelligent pigs require a clean pipeline 

to function correctly, which means debris or obstruction in the line could lead to a stuck pig [151]. 

At the same time, there are weaknesses of pressure testing and direct assessment: pressure testing 

is a kind of destructive method; direct assessment involves multiple steps and only examines a 

small sub-segment of pipeline [152, 153].  

In this project, an important task is to review promising inspection and real-time monitoring 

technologies for interactive anomalies of pipeline, such as fiber optic sensors [154, 155], acoustic 

emission [156, 157], ultrasonic [158, 159], ground penetration radar [160, 161], and infrared 

thermography [162, 163]. Research gaps and future research issues that required attention in the 

field of real-time monitoring for pipeline interactive anomalies are discussed.  

Reviewed methods 

Various inspection methods for real-time monitoring for pipeline anomalies were reviewed. 

These methods have been classified into hardware- and software-based methods [164, 165], or 

classified into direct methods, indirect methods, and other methods [166]. The methods have been 

classified based on different working principles: electromagnetic, acoustics, vibrations, robots, and 

fiber optic sensors [167]. A detailed classification of these methods is shown in Figure A1.  

 

Figure A1. Flow chart of real-time monitoring methods for interactive anomalies. 
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The following sections attempt to cover the most commonly used sensor technologies while 

also including recent research into sensor advancements. The review begins with sensors that rely 

on electromagnetic phenomena. Thus, this section focuses on magnetic flux leakage (MFL), eddy 

current sensing, broadband electromagnetic, and ground penetrating radar (GPR). Then, the review 

focuses on the inspection technologies that rely on acoustics and vibrations, including ultrasonic 

inspection, guided wave testing (GWT), acoustic emission (AE) and sonar mapping, respectively. 

Finally, ILI is reviewed as robot technologies. The operational principle, strengths and weaknesses 

of these methods are discussed in the subsequent sections. 

Electromagnetic methods 

Magnetic flux leakage (MFL) 

MFL method uses strong, powerful magnets to induce a saturated magnetic field around the 

wall of a ferrous pipe. If the pipe is in good condition, a homogeneous distribution of magnetic 

flux is obtained; however, anomalies will alter the distribution of the magnetic flux. The damaged 

areas cannot support as much magnetic flux as undamaged areas, resulting in an increase of the 

flux field at the damaged areas [168]. In other words, a damaged pipe causes a flux leakage. This 

aberration is referred to as the leakage, hence the name magnetic flux leakage. The properties of 

the leaked magnetic field can provide information about the cause of leakage. By scanning the 

surface systematically, defects in a pipeline can be detected and mapped out. Depending on the 

application, three different methods for magnetizing the pipe wall are available: direct current 

(DC) magnetization, alternating current (AC) magnetization, and permanent magnets [169].  

AC magnetization in an external circuit is used to generate an oscillating magnetic field across 

the pipe surface. Due to its oscillating nature, eddy currents, which produce an opposing magnetic 

field, will be generated (i.e., the “skin effect”). The skin effect limits the magnetic field to a smaller 

area and also prevents the field from penetrating deeper into the pipe wall [170]. However, devices 

based on AC current are readily available, low cost, and easy to control. Due to low surface 

penetration, AC magnetization is mainly used for surface and near-surface inspection.  

In DC magnetization, a unidirectional magnetic field is generated and can penetrate more than 

10 mm into a pipe surface. As the residual magnetic field may interfere with other electronic 

components (e.g., using other electronic sensors in the future) or with any welding process (e.g., 

before the pipe segment is welded to the pipeline during the pipe-laying process), demagnetization 

of the pipe wall may be needed after using DC magnetization. 

Permanent magnets are the most commonly used method for pipe wall magnetization. The 

penetration of magnetic fields generated by permanent magnets is similar to those of DC magnetic 

fields. The high energy density of rare earth magnets allows for small-sized magnets and coupled 

with the fact that no power is needed, make permanent magnets popular for MFL. 

Although primarily used to detect corrosion, MFL tools can also be used to detect features 

that were not originally designed to identify [171]. The modern High Resolution MFL tool is 

proving to be able to accurately assess the severity of corrosion features, define dents, wrinkles, 
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buckles, and, in some cases, even cracks. There are cases, where large non-axial oriented cracks 

have been found in a pipeline that was inspected by a magnetic flux leakage tool [172-174]. 

Advantages of MFL sensors in real-time monitoring of pipeline interactive anomalies is that 

the testing mode is non-invasive and accurately detects any kind of metal loss in a pipeline 

including cracks, corrosion, and the thinning of pipe walls [175]. Owing to their robust magnetic 

and sensor designs, MFL inspection devices ensure an excellent anomaly detection performance, 

even under harsh operating conditions [176]. 

Despite the advantages that make MFL a popular tool for pipeline inspection, there remain 

some drawbacks that are still subjects of research:  

a) MFL is usable only on ferrous pipes and requires access to the surface of the pipe [177]. 

b) MFL measurements are influenced by the dimensions of the MFL tool, including the 

distance between magnet poles, speed of the pig, and quality of the brushes [178, 179]. 

c) External factors such as the strength of magnetic field in the pipe wall, reading 

experience, and debris in pipeline affect the MFL readings [180]. The strength of the 

applied magnetic field should be adjusted based on the pipe wall, with thick walls 

requiring stronger fields in order to reach full saturation. Reading MFL signals requires 

skill and experience. The distance of MFL tool to surface can also be affected by debris, 

further complicating interpretation of measurements.  

d) The orientation of the defect along the pipe also affects the sensitivity of the MFL tool 

in detecting defects [181]. If the magnetic field direction is parallel to the defect shape, 

the magnetic field may not be deflected adequately to detect the anomaly. 

Eddy current sensing 

Eddy currents are another common non-destructive testing tool and are useful for crack 

detection and material thickness measurements. Eddy currents are circular patterned electrical 

currents due to changes of a magnetic field passing perpendicularly to the conductor. A varying 

magnetic field can be created by passing an alternating current into a coil. When the varying 

magnetic field penetrates the target inspection surface, induction occurs, and eddy currents are 

generated in the surface material. Due to their circular path, the eddy currents in the pipe wall 

produce a secondary magnetic field which is opposed to the primary field inducing it. Anomalies 

in the pipeline, such as cracking or corrosion, leads to a change of flow direction of eddy current, 

and then causes disruptions in the eddy current. Based on this effect, anomalies can be detected, 

and their properties determined by evaluating the amplitude and the phase shift between the input 

and output signals [182]. Several different methods are available: conventional eddy current, 

remote field eddy current (RFEC) [183], pulsed eddy current (PEC) [184], Lorentz force eddy 

current (LEC), and magnetic eddy current (MEC) [185]. 

RFEC is a method using low-frequency alternating current whose main application is finding 

defects in steel pipes and tubes. The main differences between RFEC and conventional eddy 

current is in the coil-to-coil spacing. The RFEC probe has widely spaced coils to pick up the 

through-transmission field. The conventional eddy current probe has coils or coil sets that create a 
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field and measure the response within a small area, close to the object being tested. In PEC, the 

coil is electrified using a current following a pulse or step function, thus effectively exciting 

multiple frequencies simultaneously.  

With the introduction of strong permanent magnets, eddy currents can be generated by relative 

motion between a constant magnetic field (e.g., a permanent magnet) and the pipeline surface. 

Lorentz forces are generated against the conductive metal of the pipe wall as the conductor moves 

relative to a magnetic field. By measuring the push back force on the magnet, defects can be 

detected in a pipeline. This process is generally called LEC testing. 

MEC method introduces a magnetic field (in a similar manner as MFL) that can increase the 

effective measurement depth of eddy current inspection. Magnetization of the ferromagnetic 

pipeline material decreases the permeability of the pipe wall and thus increases the penetration 

depth of the eddy current.  

In-line inspection tools equipped with an eddy currents detection system are considered in the 

industry as reliable inspection devices with high sensitivity and accuracy for the detection of 

internal corrosion, especially when combined with a geometry sensor for scanning the pipe surface 

for geometric anomalies such as dents [186]. RFEC seems to be the prevailing technology in the 

drinking water industry for inspection of ferromagnetic pipes and ferromagnetic components in 

composite pipes [187]. For example, the commercial RFEC systems are widely used for detecting 

broken wires in prestressed concrete pipes [188]; the See Snake tool is applied to small-diameter 

ferromagnetic pipes [189]; what’s more, the PipeDiver RFEC tool can be used to inspect large-

diameter ferromagnetic pipes [190]. The Commercial PEC system has been used for inspection of 

insulated pipe/vessels in chemical plants and the oil and gas industry [191]. 

The advantages of the technology in real-time monitoring of interactive anomalies include: 

a) The technology does not require the sensors to be in contact with a pipe wall [192]. 

b) RFEC can work in nonferromagnetic materials such as copper and brass [193]. 

c) PEC allows the interrogation of multiple depth layers at the same time [194]. 

d) The inspection tool is compact and can be easily deployed by remotely operated 

vehicles [195].  

e) Compared with MFL, less power is needed for MEC (about 10 kA/m for MFL versus 

3 kA/m for MEC). The synergy with the eddy current system means that greater 

distances can be inspected for a lower energy cost [196, 197]. 

A drawback of the eddy current is that the penetration depth is dependent on the AC frequency 

of the coil. The penetration depth decreases with frequency. Thus, with operations normally at 

higher frequencies, the eddy current method is limited to skin-level defects. While low-frequency 

excitation can provide additional depth, the energy required to maintain the excitation may be 

prohibitive [198].  

Broadband Electromagnetic (BEM) 

Unlike the conventional eddy current technique, which uses a single frequency for testing, the 

broadband electromagnetic technique transmits a signal that covers a broad frequency spectrum 
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ranging from 50 Hz to 50 kHz [199]. A transmitter coil passes an alternating current to the pipe 

surface, which generates an alternating magnetic field. The alternating magnetic field induces a 

time varying voltage on the metallic pipe wall. This voltage produces eddy currents in the pipe 

wall, which induce a secondary magnetic field. Wall thickness is indirectly estimated by measuring 

signal attenuation and phase delay of the secondary magnetic field [200].  

BEM technology has been used for condition assessment of water mains [201]. Commercial 

BEM system now is available to measure corrosion pits [202]. The BEM system is being further 

modified to facilitate the inspection of pipes exposed in keyhole excavations. This will help acquire 

information about pipe condition without disrupting service or full access excavations [203]. 

Compared with other electromagnetic inspection methods, advantage of application of BEM 

in real-time monitoring of pipeline is that BEM is immune to electromagnetic interference and 

differs from other electromagnetic inspection methods due to its frequency independence [204]. 

A primary drawback is that it can only be used on ferrous materials to measure wall thickness, 

quantify graphitization, and locate broken wires in prestressed concrete cylinder pipes [205]. 

 

Ground Penetrating Radar (GPR) 

GPR is a non-invasive high-resolution instrument which utilizes electromagnetic wave 

propagation and scattering techniques to detect alterations in the magnetic and electrical properties 

of soil in the pipeline surrounding [206]. GPR antennae transmit electromagnetic wave pulses into 

the ground. The propagation of electromagnetic waves in soils is governed by parameters such as 

permittivity, magnetic permeability and conductivity. The occurrences of leaks increase the 

moisture content of the soil nearby and cause dielectric variation. Reflections occur at the 

interfaces between media with different electrical properties. The time lag between the transmitted 

and reflected waves determines the depth of the objects. The reflections are detected by a receiving 

antenna and subsequently interpreted [207]. A three-dimensional GPR image is obtained using the 

raw field data after significant work of software processing.  

From the perspective of system design, GPR falls into three main categories [208]: (1) Time 

domain: impulse GPR. (2) Frequency domain: frequency modulated continuous waveform, 

stepped frequency continuous waveform, and noise-modulated continuous waveform GPR. (3) 

Spatial domain: single frequency GPR. 

The GPR has proved impressive potential as an effective non-destructive tool for detecting 

underground objects [209]. Conventional GPR systems are operated from the ground surface. In-

pipe GPR systems were also reported [210]. Such systems use two or three antennae with different 

frequencies to investigate the structure of the surrounding soil, the interface between the soil and 

pipe, and the structure of the pipe. A prototype ground penetrating imaging radar (GPIR) was 

recently developed within a European Commission supported project “WATERPIPE” [211]. The 

capabilities of this high resolution GPIR reportedly include: (1) detecting leaks and damages in 
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water pipelines of all types of materials; (2) penetrating the ground to a depth of up to 200 cm; (3) 

image resolution of less than 50 mm. 

GPR can potentially identify leaks in buried liquid pipes either by detecting underground voids 

created by the leakage or by detecting anomalies in the depth of the pipe as the radar propagation 

velocity changes due to soil saturation with leakage [212].  

However, GPR signals can be corrupted by environmental noise [213]. The effectiveness of 

GPR may be significantly reduced for buried pipelines, depending on the depth of the pipe and the 

use of covering media such as concrete. Similarly, the operation is limited to a clay soil 

environment as iron pipe corrosion materials can hide cast iron pipelines from the GPR. In 

addition, they are not applicable for long pipeline networks [214].  

Acoustics and Vibrations 

Ultrasonic inspection 

Ultrasonic testing is a non-destructive test method that utilizes sound waves to detect 

anomalies such as cracks, inclusions and laminations in parts and materials. It can also be used to 

determine a material’s thickness, such as measuring the wall thickness of a pipe to monitor pipeline 

corrosion [215].  

The ultrasonic module to monitor pipeline corrosion is based on the measurement of the time-

of-flight of ultrasonic signals reflected from internal/external surfaces of the pipe wall and flaws 

[216]. With a knowledge of the speed of sound in the liquid and in the pipe wall, it is relatively 

straightforward to determine the distances between the transducer and the inner and outer pipe 

walls and thereby determine the thickness of the pipe wall.  

A typical ultrasonic crack detection inspection system consists of several transducers operated 

in an impulse-echo mode acting as both emitter and receiver. Slanted probes are used to ensure 

that the incident ultrasound signals are refracted in a manner such that they will propagate under 

45° inside the pipe [217]. After emitting an ultrasonic testing pulse, each transducer listens for 

echoes originating from discontinuities in the pipe wall. Partial reflection of the ultrasound occurs 

at interfaces, such as the interface between two different materials, or cracks, inclusions and 

laminations in a homogeneous medium. External and internal crack echoes and their amplitudes 

can be assigned to associated time-of-flights. Reflected signals will be transformed into an 

electrical signal. Information about location, size and orientation received from the signals can be 

determined. Ultrasonic crack detection tools are designed for the detection of either circumferential 

or axial cracks [218]. 

Ultrasonic sensors are typically used in several configurations. As a single crystal, the sensor 

can be used to emit an unfocused, divergent beam of ultrasound along a straight trajectory. With 

multiple crystals, the sensors can form a sensing array that can reconstruct a cross-sectional image 

of the monitored structure. Furthermore, by adjusting the time delay of when each crystal emits 

the ultrasound wave, the overall wave front can be steered in order to cover a larger area and detect 

a wider range of defect orientations [219]. For example, efforts with an array of ultrasonic 
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transducers have recently aimed to achieve online monitoring of pipeline wall thickness, and thus 

corrosion and erosion using ultrasound transducers can be permanently installed, and a map of a 

section of pipeline wall can be monitored [220]. 

Another widely used technique for ultrasound-based sensing is time-of-flight-diffraction 

[221]. In time-of-flight-diffraction, two ultrasound arrays are used as a transmitter and receiver, 

respectively. Instead of measuring only the reflection of the ultrasound waves, the time-of-flight 

diffraction technique also measures the effects of wave diffraction due to the edges/tips of defects 

in the pipe material. The expected signals come from lateral waves, which travel along the surface, 

and from the reflection of the wave from the opposing surface of the pipe wall. If a defect is present 

between the transmitter and receiver, then additional waves will arrive between the lateral and 

backwall reflection arrival times. Because this method has higher power potential than other non-

destructive test types, ultrasonic testing can produce images that are more clearly defined than 

other methods and indicate characteristics deeper than surface level. Ultrasonic testing services for 

a variety of industries, including oil, gas, power generation and water supply [222]. 

Although ultrasonic inspection techniques offer excellent resolution in spot checking pipelines 

for anomalies, the use of these techniques for inspecting an entire pipeline is time consuming and 

expensive [223]. In addition, removal of pipeline coating is required for inspection, which makes 

point by point ultrasonic inspection become a more formidable problem [224]. It is promising to 

incorporate ultrasonic tools into ILI for inline inspection of pipelines. 

Guided wave testing (GWT) 

The guided wave technique (GWT) is based on the capability of propagating a wave over a 

long distance [225]. Guided waves are elastic waves that travel within a finite body. Elastic waves 

can be a combination of the fundamental longitudinal and shear waves, which can combine to form 

more complex types of waves (e.g., Rayleigh waves, Lamb waves, and Love waves) [226]. The 

propagation of the waves is guided by the geometry and boundary conditions of the body, hence 

the name “guided wave”. When these guided waves encounter an anomaly or pipe feature, laminar 

waves reflect back to the transducer’s original location (the transducers are used for both excitation 

and detection of the signals). The time-of-flight for each signature is calculated to determine its 

distance from the transducer. The amplitude of the signature determines the size significance of 

the defect. 

Guided waves for pipeline inspection are usually generated in two ways. One way is using an 

array of angled piezoelectric transducers wrapped around the circumference of the pipeline. 

Another way is to use electromagnetic acoustic transducers (EMAT), which can excite guided 

waves through either the Lorentz or magneto strictive principles [227]. One of the key advantages 

of piezo-based transducers is the capability of generating stronger signals compared with EMATs. 

For EMATs, they do not require much surface preparation because they are non-contact and are 

not affected by non-metallic debris on the surface. What’s more, EMATs can be affected by any 

residual magnetic field in the pipeline and require more power than piezo-based transducers.  
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GWT can provide a much longer range (up to 100 m) inspection albeit at a lower resolution. 

Access to only a few points along the pipeline is required without the need to remove coatings for 

most of the pipeline [228]. The trade off in range and resolution is mainly due to the use of lower 

frequency waves (10–100 kHz) for GWT compared to the range of ultrasonic inspection [229]. 

Furthermore, the direction of the waves in GWT is also perpendicular to those used in ultrasonic 

inspection and will thus travel along the length of the pipeline [230]. Defects such as pipe wall 

thinning (e.g., due to corrosion), weld imperfections, cracks, and notches cause anomalous 

reflections with an amplitude that is proportional to the change in the cross-sectional area of the 

pipe at the defect [231].  

For long-term monitoring, where the transducer array is permanently installed onto the 

pipeline, the use of a baseline (i.e., benchmark) is beneficial for detecting changes in the pipeline 

over time. The baseline signal can be effectively subtracted from the current signal to quantify 

changes. In this regard, index-based techniques have been developed to further provide insight into 

the pipeline status [232].  

The guided wave system was originally designed for use on above-ground exposed or 

insulated pipes. It has been applied to buried and subsea pipes, but the range of inspection will be 

shorter due to the rapid attenuation of the signals [233]. To overcome this kind of weakness, 

recently, guided waves can be modulated using schemes such as pulse position modulation to 

encode information, which means a transducer can transmit a modulated guided wave through the 

pipeline to be received by another transducer further along the pipeline. Through a series of 

transmissions, information could theoretically be carried through the pipeline. Changes to the 

baseline of the transmission signal could also serve as a warning sign for damage in the pipeline. 

Such a communication method can allow a network of sensors to be permanently installed along 

a pipeline if there is power and a way to send and receive guided waves. Recent work in guided 

wave communications in different media is promising [234-236], and practical application to 

subsea pipelines is foreseeable in the near future.  

Despite the advantages of GWT, there remain some drawbacks that inform further research: 

a) Lower frequency waves can travel further than high frequency waves but are unable to 

effectively interact with small defects [237].  

b) Guided wave signal is typically in the form of a pulse, and multiple excitation frequencies 

are inevitably involved, which may make signals from the desired mode drowned out by 

the coherent noise [238]. 

c)  Viscous coatings such as bitumen and concrete will dampen the wave energy and limit 

the range of GWT [239].  

d) The geometry of the pipe can also limit the range of GWT. Sharp bends in the pipeline 

can severely distort signals, and the selected mode can be converted to other propagation 

modes due to the change in geometry [240].  

e) Welds, clamps and flanges will cause reflections that attenuate the energy of guided 

waves and thus limit the inspection range [241]. 

f) The presence of dispersion, scattering, and multiple modes can make data interpretation 

a difficult task [242].  
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Acoustic emission (AE) 

According to American Society of Mechanical Engineering standard [243], acoustic emission 

(AE) is defined as “the class of phenomena whereby transient elastic waves are generated by the 

rapid release of energy from localized sources within a material, or the transient waves so 

generated”. AE employs the release of localized stress energy within a pipeline structure (noise or 

vibration) due to several mechanical events, such as material failure, friction, cavitation, and 

impact, to detect the occurrence of pipeline leakage. By listening to these AE wave patterns with 

an array of dispersed sensors and by characterizing the wave pattern, the occurrence and severity 

of these events can be identified [244].  

Acoustic methods for leak detection can be divided into two classes [245]: active and passive. 

Active methods detect pipeline defects by listening to the reflected echoes of sound pulses emitted 

due to leakage. On the contrary, passive methods detect defects by listening to changes in sound 

generated by pressure waves in the pipelines.  

There are three major categories of acoustic sensors namely hydrophones, geophone and 

acoustic correlation techniques. Hydrophones require direct contact with hydrants and/or valves, 

while geophones listen to leaks on the surface directly above the pipeline. At the same time, steel 

rods can also be inserted into the buried pipe to transmit signals to mounted sensors on the rods. 

In acoustic correlation method, two sensors are required to be positioned on either side of the pipe 

to detect leakage. The time lag between the acoustic signals when the sensors sense a leak is used 

to detect and identify the point of leakage [246, 247]. 

The use of acoustic emission methods for pipeline leaks detection have been reported in 

several studies [248-250]. In addition, severe obstruction of the pipe lumen can be detected within 

several kilometers [251]. 

Experimental investigation of pipeline leakage subjected to socket joint failure using acoustic 

emission and pattern recognition was proposed in [252]. This indicates that acoustic emission-

based methods can exhibit high sensitivity over long distances. Jia et al. conducted a gas leakage 

detection experiment on a gas pipeline length of 3.13 km using measured acoustic waves with the 

sensors positioned at different locations along the gas pipeline [253]. they concluded that applying 

acoustic emission for detecting leakage on pipeline networks can achieve early leaks detection, 

estimation of leak sizes and leak point localization [254]. Chen et al. demonstrated that small pipe 

leaks signal can be efficiently differentiated from noise and effectively localized. For prestressed 

concrete pipes, steel wires break release energy and cause a series of discrete events, which can be 

monitored by acoustic technics. As suggested by Shehadeh et al. [255], monitoring the AE, and 

thus the pipe stress, can be a method for real-time monitoring of the subsea pipeline. While such 

leakage detection research has not yet been deployed in subsea conditions, it is foreseeable that 

additional marinization redesigning of sensor and instrumentation components will be able to 

bridge the gap from lab testing to field implementation. 
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In general, the benefit of using acoustic emission for monitoring of pipeline network are easy 

utilization of interrogation and the convenience of installation as it does not require system 

shutdown for installation or calibration.  

An important drawback is their high susceptibility to noise sources, such as system noises, 

environmental noises, radio chatter, wind, Doppler effects, etc. To eliminate system noises, various 

techniques, such as band pass filtering [256], Fast Fourier Transform (FFT) and time-averaging 

Wigner-Ville distribution [253], can be used. Acoustic sensors can be used along with other 

sensors to overcome these limitations.  

Sonar mapping 

Sonar refers to the use of sound waves underwater to detect objects, typically for navigation 

and mapping. In the pipe inspection field, it has been adapted to provide information about 

elements in the pipe that are submerged below the water line. These may include submerged debris 

in the pipe (sewers), grease level (sewers), differential settling and other submerged deformations 

and defects. A sonar system may consist of an underwater scanner unit, collapsible sonar siphon 

float, sonar processor/monitor, skid set, and all necessary interconnect cables [257]. Each pulse 

provides an outline of the cross-section of the submerged part of the pipe [258]. Accurate 

measurements can be performed based on these outlines. 

The sonar profiling system can be used with different frequencies to achieve different goals 

[259]. High frequency sonar can provide a higher resolution scan, but a high-resolution pulse 

attenuates quickly and therefore has a relatively low penetration capability. In contrast, low 

frequency sonar has a high penetration capability but is limited in its scanning resolution. High 

frequency sonar can be suitable for clear water conditions, turbid water with high concentrations 

of suspended solids may require a lower frequency signal. Small defects are more likely to be 

observed by a high frequency signal.  

A system that integrates multiple sonars for use in submerged and large semi-submerged 

pipelines is also available. The use of multiple sonars overcomes the disadvantages of using one 

sonar and one ping at a time to map. However, depending on the size of the sonar array, 

computational costs can become increasingly significant. Thus, although costing more than the use 

of a single sonar, the use of multiple sonars may save the costs for long-term monitoring [260]. 

Wideband sonars are capable of a multi-frequency (each frequency component backscatters 

differently depending on the material reflecting the pulse) scan to obtain maximum information. 

Advantages of wideband sonars include higher resolution and wide range for customization and 

optimization according to the situation [261]. Wideband sonar has been recently used to not only 

inspect the positioning of subsea pipelines, but also inspect whether flow is being obstructed in 

pipeline [263]. 

Regarding the drawbacks of sonar devices, they cannot be operated above and below the water 

line simultaneously and they cannot be used for gas pipes. In addition, the cost of sonar inspections 

varies depending on the diameter of the pipe to be inspected.  
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Robots 

In-Line Inspection (ILI) 

In the last few decades, pipeline inspection gauges (PIGs) have become more prevalent for 

ILI and non-destructive evaluation of the pipelines [263, 264]. The advanced versions of these 

autonomous systems, also called “smart pigs”, can move inside pipelines and measure 

irregularities that may represent corrosion, cracks, joints, deformation (e.g., dents, pipe ovality), 

laminations or other defects (e.g., weld defects) in the pipeline.  

The most common ILI methods that have been installed on smart PIGs and confirmed to be 

successful for pipeline inspection are MFL [265], ultrasonic transducers [266], electromagnetic 

acoustic transducers (EMAT) [140] and eddy currents [267].  

However, certain constraints seriously limit the applications of the aforementioned methods.  

• In the MFL method, it is difficult to effectively saturate the entire cross section of the 

pipeline with magnetic flux, and the servicing process involves frequent calibration. 

Moreover, the method is not suitable to inspect non-ferrous pipelines [268, 269].  

• The ultrasonic transducers method works well in liquid pipelines; however, the application 

in gas pipelines is not common since it requires liquid coupling between the transducer 

and the surface of the pipeline [270]. Ultrasonic transducer is more suitable for thick-wall 

pipelines rather than thin-wall pipelines (less than 7 mm) [271]. Echo loss is another major 

challenge reported in the literature [272].  

• The EMAT method cannot be used in non-conductive materials such as plastics or 

ceramics, and it is not suitable for long pipeline inspection, which requires high power 

and complex signal processing in real-time [273]. This method faces challenges for high-

speed scanning in pipelines, and it can be applicable up to 2.5 m/s [274].  

• The eddy current method requires deep magnetic penetration in ferrous pipelines, and the 

major drawback is the spacing problem, which occurs while mounting the sensor array on 

the circumference of the smart pig [275, 276].  

• Recently, a few ILI methods have been developed for the inspection of pipelines such as 

closed-circuit television (CCTV) [161] and mechanical contact probe (MCP) [277]. For 

CCTV methods, the high-power supply and lack of visibility inside the long pipelines are 

the drawbacks [278]. The MCP method can inspect only convex defects such as deposit 

corrosion. It is not suitable for cavity corrosion or metal loss corrosion, and the friction 

involved in the inspection process is a major risk [268]. 
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