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1 Executive Summary 

To address DOT’s pressing need for safety and integrity maintenance of the existing pipeline 

infrastructure in the U.S., the proposed project focuses on multi-modal NDE and probabilistic 

performance evaluation of aging pipelines under interactive threats. This study will utilize 

experimental testing and numerical analysis to generate more realistic defect shapes and colony 

profiles, which will be used for characterization and validation of interactive defect NDE. In 

addition, probabilistic models of failure pressure of a pipeline containing corrosion and cracking-

like defects will be developed, achieving predictions that are unbiased with reduced variability and 

considering defect interaction. 

The technical impact of the proposed research can be summarized in four aspects: (1) The 

proposed multi-modal NDE framework enables the missing capability to assess interactive 

anomalies with the integration of lab-, field- and simulation-environment validation. (2) Various 

sources of uncertainties are quantified and appropriately propagated to risk assessment through 

probabilistic characterizing defect profiles in NDE, probabilistically modeling time-evolution of 

defect profile propagation, development of probabilistic capacity model considering interactive 

anomalies, and reliability analysis. (3) The developed probabilistic capacity model remove bias 

and improve the accuracy of the deterministic models, complement the deterministic models with 

characteristics of defect profiles, and preserve the simplicity of the deterministic models so as to 

enable the practical application of the proposed probabilistic models. (4) The corrosion defect 

interaction impact are probabilistically assessed, which is suitable for risk assessment. Overall, the 

results of reliable performance predictions generated from this research enable optimum 

monitoring/inspection, maintenance scheduling/methods, repair strategies/methods, and financial 

resource allocations and forecasting. 

The proposed project result in (1) a better understanding of the characterization of 

interactive anomalies in isolated and colony profiles using NDE and their impacts on the residual 

strength of a pipeline; (2) industry ready probabilistic prediction models for failure pressure of 

pipelines containing interactive anomalies, providing predictions that are unbiased with reduced 

variability; and (3) better knowledge of the propagation and quantification of prevailing 

uncertainties in prediction models for the quantitative risk management of pipelines.  
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1.1 Summary of Accomplishments 
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2 Introduction/Background and Objectives 

Oil and gas pipelines are a critical part of the infrastructure of modern society. The U.S. has about 

3 million miles of gas and liquid pipelines (including more than 400,000 miles of transmission 

pipelines), subjected to various potential threats during their service lives. In the past three decades, 

qualitative risk management has been widely used in industry practice for supporting cost-effective 

decisions to achieve specific acceptable levels of safety. Figure 1 shows a general process of the 

quantitative risk management for a pipeline, consisting of exposure, risk quantification, and 

decision-making. Once the potential threats are identified, the risk associated with those threats 

need to be assessed so that appropriate actions (such as mitigation, prioritizing of maintenance, 

repair and replacement) can be taken. Risk is typically defined as the product of the probability of 

failure and the consequence of failure.  

 
Figure 1. Quantitative risk management for pipeline. 

 

Based on the degree of impact for a consequence, a pressurized pipeline can fail in two 

distinctive failure modes: a small leak or a burst. In particular, a burst occurs when internal pressure 

exceeds the pressure resistance of the pipeline, and it usually leads to significant safety and 

environmental consequences. The capacity to resist internal pressure (or failure pressure) is reduced 

by the damage defects resulting from accidental impacts or material degradation such as metal 

corrosion and cracks. When damage defects are considered as a threat, nondestructive evaluation 

(NDE) technologies are able to detect the location and geometry of a damage defect with a high 
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degree of accuracy, such as magnetic flux leakage (MFL), eddy current (EC) including single 

frequency, multiple frequency and pulsed excitations, ultrasonic testing (UT). In recent years, 

technologies like electro-magnetic acoustical transducer (EMAT) in-line inspection (ILI) were 

developed that can capture many crack-like features and address undiggable challenges through 

research projects sponsored by PHMSA, however, the reliability and accuracy of using NDE 

and/or ILI for crack detection still need to be continuously improving. One key reason is that state-

of-the-art technologies are limited in identifying and characterizing interactive anomalies.  

Recent PHMSA studies have also confirmed that many pipe failures are not resulted from 

a single type of threat but threat interactions, including interactions of resident conditions with 

changing operations or environment. There is a major technical gap regarding characterization 

of the interactive anomalies and reliability assessment of pipeline under such anomalies. 

Therefore, to obtain accurate risk assessment, one needs a thorough understanding of the time-

dependent physical characteristics of interacting damage from advancements in NDE 

methodologies, the level of operation loading demand, the probabilistic capacity assessment 

considering time-evolution of anomalies, and quantification of all relevant uncertainties.  

2.1 Objectives 

The goal of this proposed study is to develop a probabilistic pipeline performance evaluation 

framework based on multi-modal NDE assisted by physical and mechanical modeling under 

interactive anomalies. This study utilizes experimental testing and numerical analysis to generate 

more realistic defect shapes and colony profiles, which will be used for characterization of 

interactive defects and validation of NDE. Meanwhile, the identified defect profile are used for the 

probabilistic defect time-evolution model development, which is crucial for reliability evaluation 

of pipeline performance under interactive defects. In addition, probabilistic models of failure 

pressure of a pipeline containing corrosion and cracking-like defects are developed, achieving 

predictions that are unbiased with reduced variability and considering defect interaction.  

Specific technical objectives are as follows: 

• Objective 1: Generate realistic corrosion and cracking defect profiles through laboratory 

testing and electrochemical simulation; 

• Objective 2: Establish an expanded NDE framework for interactive anomalies by 

probabilistic characterization of defect profiles; 

• Objective 3: Develop probabilistic failure pressure prediction models incorporating defect 
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interaction;  

• Objective 4: Investigate the impact of various physical quantities and uncertainty sources 

on pipeline reliability. 

2.2 Justification of Scope Adjustment 

For the experimental testing, the budget and time restrained us to explore the possibility to generate 

crack corrosion which is found to be much harder than general corrosion under lab conditions. 

Consequently, simulation of crack corrosion was not able to be conducted as no lab results are 

available for calibration. Here are the specific challenges that we encountered in the lab testing: 

• In the initial experimental testing, generating a general corrosion profile took almost 1.5 

years using flat samples under B117 and G85 environment. However, we found that the 

corrosion defect results cannot be used directly for probabilistic analysis because there are 

significant sample variations, and the corrosion depth profile unfortunately did not present 

a clear trend. The flat sample testing took around 1.5 years, and the samples were lost in 

the shipping transportation to MSU for NDE characterization. 

• Then, we conducted another corrosion environmental test under B117 exposure by using 

pre-damaged samples where a designed defect was introduced through grooving the 

samples. The B117 data are reasonable and can be used for probabilistic analysis and NDE 

testing. However, the pre-damaged samples testing took another 1.5 years.  

• Generating general corrosion defects alone took about 3 years, which exhausted all the 

budget that was budgeted for the 1.5-year Task 1; we completed the experimental part for 

corrosion depths data within the project time frame with the supplement of internal 

funding. 

For the NDE tasks, the NDE framework was not able to be tested in a field environment 

due to the difficulty of obtaining such data. However, MSU has focused their efforts on developing 

methodologies to characterize interacted corrosion defects. In addition, MSU also has tested the 

developed methodologies on the samples with general corrosion sent by UAkron. The step of using 

NDE data for reliability analysis was not complete due to time and budget constraints but it will 

be completed using other internal funding with the continued collaboration of the three 

universities. 

For probabilistic capacity model and reliability analysis, Marquette Research team has 

conducted a comprehensive work for pipeline with three scenarios: isolated corrosion defect, 
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colony of corrosion defects, and isolated crack defect. We encountered research challenges 

regarding the other two scenarios (i.e., colony of crack defect and colony of corrosion and crack-

like defects), which cannot be addressed during the project period. First of all, there is very limited 

existing data in the literature for colony crack-like defect or colony of corrosion and crack-like 

defects. It is worth mentioning that one study related to colony of crack-like defect has been 

experimentally conducted by a PRCI project that was completed in 2020 

(https://www.prci.org/192422.aspx); however, it contains only four burst tests. In addition to the 

lack of existing data, the plastic properties (or J-R curves) for the pipeline that are needed for 

numerical modeling are not reported in the literature, which makes the modeling validation 

impossible for these two scenarios. In summary, it needs one or two separate research projects to 

systematically investigate the last two scenarios as the experimental data is extremely limited. 

 

3 Objective 1: Lab Testing of Generating Realistic Corrosion Defect 

3.1 Experimental Program 

This objective is to generate realistic corrosion profiles through environmental exposure testing. 

The defect shapes and colony profiles will be used for NDE and for the probabilistic defect time-

evolution model development. 

The testing metal is a ground low-carbon steel with a similar composition to the API series 

pipeline metals. One type of metal sample was the flat sheet with the size of 3” × 3” × 3/32”. The 

second type of metal sample was the same flat sheet that was punched to generate a pre-damaged 

area on the surface. The punched scratch on the surface was around 0.63” long, 0.06” wide, and 

0.010” deep. The exact depth of the scratch was measured by infinite microscopy (IFM) 

measurement before and after exposure testing.  

One testing condition was the continuous salt spray of 5 wt.% NaCl fog following ASTM 

B117 salt spray testing protocol. The second testing environment is according to the ASTM G85 

standard where the samples were in exposure to a mixed solution consisting of 0.35 wt.% 

aluminum sulfate and 0.05 wt.% NaCl.  

After certain periods of time, the testing samples were removed from the environmental 

chamber for IFM characterization. The surface photos of the testing samples after exposure testing 

were included in Appendix A. 

3.2 Results and Discussion 

https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.prci.org%2F192422.aspx&data=05%7C01%7Cqindan.huang%40marquette.edu%7C510243cfaeac4b39b1f808dbb53a7cc0%7Cabe32f68c72d420db5bd750c63a268e4%7C0%7C0%7C638303035057949397%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=0QtFBI8bDlo%2FgE95xqgmHdmwkNXUJ4VwBThhJsJaMno%3D&reserved=0
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3.2.1 Flat sample results 

The infinite microscopy images for the testing flat samples from initial immersion to 8-week 

exposure in B117 environment are shown in Figure 2. The surface area of the metal under the 

exposure is 3” × 3” (demonstrated as the blue square in the 1st row of the figure), while the surface 

area for the infinite microscopy scanning is 3mm × 3mm (demonstrated as the red square in the 1st 

row of the figure). Five different locations on the testing metal were chosen for the infinite 

microscopy scanning, which is center, left top, left bottom, right top, and right bottom of the 

surface. Based on the change in the topography of the surface, the evolution of a corrosion profile 

can be observed. For example, some small corrosion spots can be detected on the right bottom of 

the surface after 8-week exposure. 

Besides topography, two quantities can be obtained from the infinite microscopy scanning: 

the average depth (davg) and the maximum depth (dmax) of the scanning area. To evaluate the depth 

of the whole surface area, the sample mean and sample standard deviation of davg and dmax from 

the five scanning locations were calculated and shown in Figure 3. The average depth and the 

maximum depth for duplicated samples are also included in Figure 3. In general, the means of davg 

and dmax increased with time during the 24-week exposure time in the B117 condition. The increase 

of dmax demonstrates the generation of corrosion depth under the corrosive environment. 

The same flat samples were also exposed in the environmental chamber following the 

ASTM G85 testing protocol and investigated by infinite microscopy characterization for the 

average depth and the maximum depth. Figure 4 shows the sample mean and sample standard 

deviation of davg and dmax from the five scanning locations of all the exposed samples during the 

24 weeks of G85 exposure. The average depth and the maximum depth for duplicated samples are 

also included in Figure 4. As expected, the samples showed a higher corrosion depth under G85 

immersion, which was a harsher environment than the B117 exposure.  

The fluctuations of the depth values are due to the sample variations because different 

samples were removed from the environmental chamber and tested at each testing period. After 

the pre-analysis of the IFM results of the flat samples, the big fluctuation brings large errors in 

probabilistic analysis, which cannot be further used for the analysis.  

In addition, all the flat testing samples were shipped to the Co-PI Dr. Deng at Michigan 

State University for NDE characterization at the end of March 2021, but all these samples were 

lost in transportation by USPS. Therefore, a second testing sample with the pre-damaged surface 
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was designed for exposure testing. 

3.2.2 Pre-damaged sample results 

The infinite microscopy characterizes the depth of the pre-damaged surface area of the testing 

sample. The details of IFM testing are described in Appendix A. One sample was continuously 

placed in the chamber, which means this sample was put back to the exposure after IFM 

characterization periodically, and its depth is shown in Figure 5. The other set of samples was 

initially put in the exposure and removed at a certain time, and their depths are shown in Figure 6. 

The depth change is defined below: 

Depth change = depth (time of testing) ‒ depth (initial) (3.1) 

Figure 7 shows the mean and standard deviations of the depth changes of all the samples. 

As shown in Figure 7, the change of depth presents a significant increase in the B117 exposure 

environment during the 36 weeks of exposure. The duplicated samples show small variations. 

Similarly, for G85 exposure testing, the depth of the continuously exposed sample is shown 

in Figure 8 and the other set of the testing samples is shown in Figure 9. The depth change of all 

the testing samples under the G85 exposure is shown in Figure 10. The depth change is less 

significant during the 36 weeks of exposure under the G85 environment, and the sample variations 

are large. 

The results of pre-damaged samples in B117 exposure demonstrate a good depth change 

and the sample variations are small. These samples after testing were sent to the Co-PI Dr. Deng 

at Michigan State University for NDE characterization in the fall of 2022.  

 



18 

 
Figure 2. Infinite microscopy images of the flat testing samples during B117 exposure testing 
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Figure 3. The sample mean and sample standard deviation of the average depth and the 

maximum depth of the scanning area of all the flat samples during B117 exposure testing. 
 

 
Figure 4. The sample mean and sample standard deviation of the average depth and the 

maximum depth of the scanning area of all the flat samples during G85 exposure testing. 
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Figure 5. The depth of the pre-damaged testing sample continuously under B117 exposure. 

 
Figure 6. The depth of the pre-damaged testing samples under B117 exposure. Orange: initial 

depth; green: the depth at the time of testing. 
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Figure 7. The change of the depth of the pre-damaged testing samples under B117 exposure. 

 

 
Figure 8. The depth of the pre-damaged testing sample continuously under G85 exposure. 
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Figure 9. The depth of the pre-damaged testing samples under G85 exposure. Orange: initial 

depth; green: the depth at the time of testing. 
 

 
Figure 10. The change of the depth of the pre-damaged testing samples under G85 exposure. 
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4 Objective 2: NDE Framework 

4.1 Eddy Current Array Methods for Interactive Corrosion Detection and 

Characterization 

Interactive defects detection and characterization in metallic pipes is one of the major challenges 

identified for pipeline integrity assessment. The group here previously has developed/is 

developing novel NDE and data processing methods for pipeline applications, including internal 

corrosion inspection using optical structured light 3D reconstruction and rendering techniques that 

significantly improves the damage detectability, and stress cracking corrosion (SCC) detection 

using multi-frequency electromagnetic techniques, remote field eddy current (RFEC) techniques, 

etc. assisted by machine learning (ML). While there are tremendous successes in these techniques, 

which work well for exposed pipes or “in-the-ditch NDE”, only Shear Horizontal (SH) guided 

wave testing has been proven to work in NDE of buried pipelines that poses a big challenge in 

field-testing to understand realistic interacting threats environment. In this task, the MSU NDE 

team develops a multi-modal electromagnetic and ultrasonic framework including Eddy Current 

Array (ECA), EMAT for generation of SH waves (low frequency-50kHz to 500 kHz), localized 

Rayleigh wave measurement using EMATs and air coupled transducers, and contact ultrasonic 

measurement for validation of guided wave results for better characterizing the identified 

interactive anomalies, as well as leveraging other techniques being developed by the group through 

the other successful programs sponsored by PHMSA. Defect localization and material 

characterization have always been a challenge for guided waves inspection in this community; and 

it is worth noted since SH waves have very little out-of-plane leakage, their energy is confined 

within the pipe walls and they can propagate for long distances. Therefore, any local changes to 

thickness or material degradation (loss in stiffness and density) can be detected using SH waves, 

which makes it a perfect candidate for the proposed corrosion/SCC/fatigue defects interaction 

study. Expanding from the ongoing PHMSA project, introduction of SH waves modality and 

dedicated signal processing algorithms for analyzing the interactive-damage-feature-encoded data 

is crucial for the success of the proposed work. 

4.1.1 ECA theory and parameter selection 

Eddy current testing (ECT) is a low-cost and robust method for nondestructive evaluation for 

various inspection purposes and matches well for corrosion detection which contains small defect 

depths. Rugged ECT sensors may be designed at high frequencies required from sub-mm damages. 
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As the coils will be small to meet high frequencies, they may also be duplicated as an ECA for 

faster scan times. This report demonstrates the concepts for designing or selecting an eddy current 

probe, and the procedure for scanning with a gantry system. 

The input to an ECT coil is a signal from a function generator with an input voltage 𝑣𝑣𝑖𝑖𝑖𝑖 

and frequency 𝑓𝑓. The output will be response voltage 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 affected by complex impedance and 

induced current density on the sample under test. Vital information for how to conduct ECT 

depends on the size of defect and material used. This is relevant to skin penetration, which 

determines the depth of the response, which is defined by: 

𝛿𝛿 =
1

�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 (4.1) 

With 𝛿𝛿 being the skin penetration depth, 𝑓𝑓 being the frequency, 𝜎𝜎 being electrical conductivity in 

𝑆𝑆/𝑚𝑚, and 𝜇𝜇 being magnetic permeability in 𝐻𝐻/𝑚𝑚, with 𝜇𝜇 = 𝜇𝜇𝑟𝑟 ∗ 𝜇𝜇0 where 𝜇𝜇𝑟𝑟 is realative 

permeability (unitless) and 𝜇𝜇0 being the permeability of free space with 𝜇𝜇0 = 0.4𝜋𝜋 ∗ 10−6𝐻𝐻/𝑚𝑚. 

By defining the thickness for skin depth 𝛿𝛿 for materials determining 𝜎𝜎 and 𝜇𝜇, a frequency 𝑓𝑓 may 

be selected based on coil properties. From depth measurements using infinite focus microscope 

(IFM) measurements, the range of damage is between about 100𝜇𝜇𝜇𝜇 and 900𝜇𝜇𝜇𝜇. For steel, 

conductivity has been measured to be 4.68 × 106𝑆𝑆/𝑚𝑚 on steel and 0.75 × 106𝑆𝑆/𝑚𝑚 within the 

corroded region, while relative permeability was measured around 60 for steel and 4 for the 

corroded region [1]. Because of the differences between the electromagnetic properties of steel 

and rust, the response of the eddy current density will also change, which change may be measured 

through 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜. To match the depth of corrosion at 900𝜇𝜇𝜇𝜇, a frequency around 104𝑘𝑘𝑘𝑘𝑘𝑘 is desired. 

Keep in mind there are several variables that keep this selection from being perfect. For example, 

how steels are processed will vary its electromagnetic properties. Another factor is lift-off between 

a coil in air versus the sample, which conductivity is suggested to be approximately zero 𝑆𝑆/𝑚𝑚 and 

relative permeability of 1 [2]. If the lift-off is too high, this will decrease the response of the signal 

which is not wanted. 

There are other important prospects to ECT scanning, including the usage of a gantry for 

scanning and array probes for faster scanning. A gantry may hold onto ECT probe provides 

accurate positional information via encoders with respect to throughput ECT data. Gantries may 

also read in commands for program mable scanning. Raster movement patterns are used, which 

will provide a 2D image of the scan. Since coils used for ECT testing may have small diameters 
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for high frequency testing, required for detection of corrosion with small damages, they can be 

replicated in an array pattern to decrease scan times. For example, a single coil running a raster 

scan of 𝑋𝑋 = 30𝑚𝑚𝑚𝑚 and 𝑌𝑌 = 30𝑚𝑚𝑚𝑚 at a desired 1𝑚𝑚𝑚𝑚 resolution along the shifting axis 𝑋𝑋, with 

scanning axis 𝑌𝑌 being dependent on the data acquisition frequency and gantry velocity. A single 

probe requires 30 shifts along 𝑋𝑋 to match the required resolution. If two coils 𝑐𝑐1 and 𝑐𝑐2 are 

implemented, strategically placed 1mm away from each other, then 𝑐𝑐1 may skip 𝑐𝑐2 for every shift 

to avoid redundancy, requiring 15 shifts which effectively decreases scan time by half. The 

downside to array probes is that each coil requires calibration in terms of gains to ensure each coil 

outputs similar output voltages. 

4.1.2 Procedure and results 

Ten steel samples containing weekly ASTM b117 standard corrosion were scanning, shown in 

Figure 11. Sample 1 starts at 1 week’s worth of corrosion, which the consecutive samples are 

corroded for 4 weeks afterwards until week 36. Each sample initially contained a defect about 

15 × 5𝑚𝑚𝑚𝑚 in area and approximately 0.1𝑚𝑚𝑚𝑚 in depth. An I-Flex ECA probe with an operating 

frequency range between 100 − 800𝑘𝑘𝑘𝑘𝑘𝑘 and 32 channels was used alongside an Ectane 2 testing 

instrument and Magnifi eddy current data acquisition and processing software. MATLAB was 

used for further post processing. Each channel is connected to a coil, with each coil being 2𝑚𝑚𝑚𝑚 in 

diameter. The array contains 2 columns of 16 rows probes along the X axis with a shift of 1mm 

between each column. This effectively gives the coverage at 34𝑚𝑚𝑚𝑚 with a resolution of 1𝑚𝑚𝑚𝑚 

from one swipe. However, because of lift off variation between the two columns, combining both 

results give unwanted results due to lift-off variation. It was decided to split the data between the 

two columns to obtain two different images, shown in Figure 12 and Figure 13, with a 1𝑚𝑚𝑚𝑚 shift 

along the Y axis between the two sets. This mitigates any tilt along the Y axis between columns 

during calibration and scanning, leaving only tilt along each individual column only the X axis. 
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Figure 11. Corroded samples and their respective labels. 

 

 
           

Figure 12. 2D post-processed data from real voltage component on corroded samples using the 
left column of coils. 
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Figure 13. 2D post-processed data from real voltage component on corroded samples using the 

right column of coils. 
 

The frequency used on the samples was selected at 100𝑘𝑘𝑘𝑘𝑘𝑘 as it was the resonance 

frequency of the probe to give the deepest readings under rust at around 920𝜇𝜇𝜇𝜇. An input voltage 

at 𝑣𝑣𝑖𝑖𝑖𝑖 = 10𝑉𝑉 and pre-amp gain at 55𝑑𝑑𝑑𝑑 was also used. Signals deeper than this range are expected 

to saturate, meaning more evaluation may take place from the surface to the end of the current 

density range. To calibrate gain per coil, the probe was placed 1𝑚𝑚𝑚𝑚 away from the far-side, or 

with the sample flipped up-side-down, of week 1’s sample. Magnifi’s calibration tool was used to 

obtain gain settings, which only one calibration was used for all samples. A Shapeoko CNC gantry 

was used for scanning the sample, repurposed for raster scanning with sub-mm positional accuracy 

of the probe. Magnetic encoders were installed on the gantry to give high positional accuracy of 

the sensor array to the Ectane and Magnifi, which synchronizes both data position and values. The 

z-axis consists of a leadscrew to maintain a constant lift-off between of 1𝑚𝑚𝑚𝑚 away from the 

surface. The sample was placed in a measured location on the gantry to enable consecutive 

scanning with minimal rotation of the sample or shifting. The setup is shown in Figure 14. 
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Figure 14. Eddy Current Array (ECA) NDE gantry setup. 

 

Factors such as probe or sample tilt or overall sample thickness will vary lift-off. These 

effects may be cancelled out in post processing. A zig-zag raster scan was conducted creating an 

image with a resolution of 0.1 × 0.1𝑚𝑚𝑚𝑚. The scanning area is 36 × 25𝑚𝑚𝑚𝑚 to cover the sample. 

To obtain a 0.1 resolution along the shifting axis 𝑋𝑋, the gantry moves the probe in 0.1𝑚𝑚𝑚𝑚 segments 

for 19 movements, between 0 and 2 − 0.1 = 1.9𝑚𝑚𝑚𝑚, as the difference between 2 consequitive 

coils on a column is 2𝑚𝑚𝑚𝑚. If both columns were used for one image, then only 9 movements 

would be needed between 0 and 1 − 0.1 = 0.9𝑚𝑚𝑚𝑚. For the scanning direction on axis 𝑌𝑌, 

resolution is dependent on aquisition speed and gantry velocity. To prevent 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 data, the gantry 

moved approximately 15𝑚𝑚𝑚𝑚/𝑠𝑠 to provide consistent data, though higher speeds have been tested 

with minor data loss. Each scan took around 33 seconds to finish to obtain raw data, including 

buffer times to prevent exeptions between reading and writing the gantry, and excluding time 

placing the samples in and out of the scanning system. 

Post processing operations are important for obtaining a clear image of the defects. The 

initial processing comes inside of Magnifi, which interpolates the raw eddy current data into a 2D 

voltage mapped image including real and imaginary components. In Matlab, the real data is 

detrended by creating a surface fit with polynomial order 5 along both axes and subtracting the 

results. The mean value of each 1D line is then subtracted, each along Y. After, a 10 × 2 median 

filter is used to remove speckle noise mostly in the scanning direction. The processing due to 

detrending placed the voltage into arbitrary units. For the 1D data, the results of the 16𝑡𝑡ℎ coil, near 

the middle of the probe, was processed by averaging each shifting axis result. The middle of the 

probe gave the best indication of where the original defects occur. The data is detrended by 

subtracting the mean of the 1D result against itself. Finally, the data is zeroed by using the "no 
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defect" region on the right edge as a reference, and the results are shown in Figure 15. 

 

 
Figure 15. 1D post-processed data from real voltage component on corroded samples using coil 

16. 

From the 2D and 1D results, damage can be clearly seen. A pattern develops between week 

1 and 36, showing the growth of corrosion with time. The original defect, which is seen clearly in 

week 1, deforms increasingly with time. Darker patterns on the 2D images indicate deeper damage, 

while brighter patterns imply corrosion defects above the surface of the sample. This effect has 

been discussed in other eddy current corrosion detecting literature [3]. Some saturation occurs in 

the later week samples due to the extent of corrosion, seen at the bottom of the 2D images between 

week 20 and 36. Some of this saturation may be due to differences in expected skin penetration, 

or even due to lift-off variation in calibration and scanning. The 1D results show drastic changes 

of depth pattern as corrosion increases with time. What is interesting is that depth does not 

consistently decrease with each passing week, only the increased deformations. There is also an 

increase in the defect’s length along the 𝑌𝑌 axis. 

There are some improvements that can be made in terms of the scanning procedure and 

post processing. This includes unbiasing each coil from the 2D results. There are "bars" seen in 

the 2D data sets, which represent the data collected from each coil. Differential mode scanning, 

where neighboring coils are subtracted, may help remove bias between coils. Precision tilt 

mechanisms may be placed on the sensor holder to calibrate tilt for these samples. An analysis can 

be done using gyroscopes and comparing rotational information between the sample and sensor 

may be useful in this regard. This would help the raw data from coil from being biased due to lift-



30 

off variation. Later works will examine how to convert this voltage into depth, which is a well-

known problem [4]. This would help give quantifiable information on how much damage is 

occurring rather than a more abstract "arbitrary voltage reading". Overall, the data collected shows 

exciting potential even with improvements for future works. 

4.2 Ultrasonic NDE methods for interactive corrosion detection and characterization 

The overall objective for Section 4.2 is to establish an expanded NDE framework for interactive 

anomalies by probabilistic characterization of defect profiles. The objective of using ultrasonic 

NDE methods is to develop numerical models and techniques for simulating guided waves (GWs) 

in pipeline geometries that include the plate wave equation to determine dispersion of GWs. Multi-

scale and multi-physics modeling, we primarily look into present techniques for simulating guided 

waves in pipelines that include the plate wave equation to determine dispersion of guided waves. 

Meanwhile, modeling defect accurately is crucial in the simulation studies, since the NDE 

responses based on the modeled defects will be used to optimize the sensor frequency. We have 

used finite element modeling (FEM) to accurately model and mesh defect geometry to study the 

resulting ultrasonic NDE response. Using FEM will help not only optimize sensor parameters (e.g., 

frequency), but also study the physics behind the interaction of guided waves with complex 

interacting defects, and the generation and reception of guided waves in pipelines. 

SHM and NDE of pipelines using ultrasonics requires a good understanding of defect 

signal vs. no-defect signal. While experiments can be carried out to understand this response, one 

should use a large set of data to effectively understand the differences. It would be efficient to 

develop an array of numerical models, which can simulate different materials and structural 

conditions to obtain their corresponding ultrasonic response for the complex anomaly scenario. 

This can further be used to develop the NDE and SHM protocols. In the sections to follow, we 

show the successful propagation of Ultrasonic Guided Waves (UGW) in a pipeline using a 2-D 

FEM based model, and also model corrosion pits and look at its respective ultrasonic NDE 

response. The idea behind this is to come up with a model and find the optimum parameters like 

frequency, excitation etc., that can be then utilized directly in models with realistic defect profiles 

that is to be developed/generated by the research group at UAkron. It also gives a clear idea 

between a defect and a no defect response that is desired before experimental studies are carried 

out. 

In order to build the numerical model, the COMSOL ® Multiphysics 5.4 software has been 
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used. Even though the final goal is to build a 3-D model, it is important to first understand the 

underlying physics behind the propagation of UGW in a pipeline. The 3-D models become 

computationally very costly for this purpose. Also, debugging and validating the results in a 3-D 

model are also much harder. Therefore, a 2-D axisymmetric model can be used where the 

symmetric nature of a cylindrical pipeline can be exploited. This approximates the wave 

propagating in the axial direction, which is sensitive to the circumferentially oriented defects. For 

axially oriented defects we employ wave propagating in circumferential direction. For our 

preliminary studies using axial and circumferential guided waves, we have considered Steel AISI 

4340, whose properties are enlisted in Table 1.  

Whenever an ultrasonic guided wave is propagated through a medium, multiple wave 

modes are generated. For large pipes we can safely assume the wave characteristics to be same for 

axial and circumferential waves. This is because the wave is dispersive in nature, and the number 

of different types of wave modes depends on the frequency and the thickness of the sample. The 

two primary modes though are the symmetric mode (S0) and the antisymmetric mode (A0). These 

two modes are generated at relatively lower frequencies. At higher frequencies, there are multiple 

wave modes, which makes detection and isolation of particular wave modes very difficult, and 

thereby also making detection of defect signatures harder as they might get buried in the signatures 

of various different wave modes. Basically, dispersion of the wave causes multiple wave modes 

that can make data interpretation incredibly hard. Therefore, only the A0 and S0 wave modes are 

generated, and these signatures are observed in samples with and without defects. It is therefore 

very important we have information about the different wave modes and the frequency they are 

generated at for a particular material and thickness. This information can be deduced by looking 

at the dispersion curves for Steel. Figure 16 shows the dispersion curve for Steel AISI 4340. 

 

Table 1. Properties of Steel AISI 4340 
Density 7850 kg/m3 

Young’s Modulus 205 GPa 

Poisson’s ratio 0.28 
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Figure 16. Dispersion curve for Steel AISI 4340 
 

We have chosen 25 KHz as the operating frequency for a pipe with a wall thickness of 20 

mm for which the modes generated are indicated in Figure 16. As desired, at this frequency and 

thickness, we will be able to generate only the A0 and S0 modes. 

The first step is to understand the ultrasonic NDE response from a pipeline without any 

defects, as it is important to establish a reliable baseline where there are no defects. Figure 17 

shows the sample geometry that is being considered. Since the goal of using ultrasonic guided 

waves is to perform long range ultrasonic testing, a 2 m long pipe was considered with a 20 mm 

wall thickness as mentioned before. 

500 kHz 
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Figure 17. Sample geometry for 2-D axisymmetric model to simulate axial waves in pipes. 

 

Figure 18 below shows the time domain representation of the excitation pulse used in this study. 

It is a typical ultrasonic tone burst signal modulated at 25 KHz with 10 cycles where it consists of 

a simple cosine signal modulated by a Hanning window. While Figure 19 shows the frequency 

domain representation of the burst signal, it is clearly observed that the peak lies at 25 kHz, which 

confirms the velocity of our excitation signal. Mathematically, it is represented by the equation 

below: 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑆𝑆𝑆𝑆𝑆𝑆(𝑤𝑤𝑤𝑤) ∗ �1 −
𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤𝑤𝑤)

𝑛𝑛 � (4.2) 

 

Sensor 
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Figure 18. Time domain representation of the burst signal 

 

 
Figure 19. Frequency domain representation of the burst signal 

 

The incident displacement is applied as shown in Figure 20 below. This way, the disturbance is 

applied across the whole circumference of the pipe. The quadrilateral (QUAD) elements available 

in COMSOL ® are used to mesh the whole domain. Also, a very fine mesh is used here where the 

minimum element size is 42 um. A time dependent analysis using the direct linear solver MUMPS 

available in COMSOL ® is used to simulate the ultrasonic guided wave in the pipeline. The total 

time span for the simulation is 2000 us while the time step is 2 us. The degree of freedom in these 
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simulations is 2026. 

 

 
Figure 20. Zoomed simulation model showing the excitation by the application of the burst type 

signal on transducer boundary. 
 

Now, looking at the velocity profiles of the ultrasonic guided wave, we can clearly 

distinguish and isolate the A0 and S0 modes. A point to note is that the transmitting and receiving 

points are the same, i.e., a pulse echo system was considered. Shown below in Figure 21 is the 

velocity profile or the A-scan where at the same point the disturbance was applied. 

 

The burst excitation is 
applied at this boundary 
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Figure 21. Velocity profile at (0,0) of the sample 
 

From Figure 16, S0 mode has a higher velocity, therefore the first arriving reflected wave 

packet would be the S0 mode. The next arriving wave packet would be the A0 which is not shown. 

The difference in time in the arrivals of the incident S0+A0 and the reflected S0 mode is 1290 us. 

Figure 22 below, shows the resulting A-scan at a location 0.5 m from the starting of the pipe. In 

this case, the difference in arrivals is much lesser at 975 us. It is also clearly visible that the A0 

mode arrives later i.e lower velocity and the S0 mode arrives faster i.e. higher velocity. This can 

easily be explained by looking at the dispersion curve in Figure 16. 

 

Incident S0+A0 

Reflected S0 
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Figure 22. Velocity profile at (0,0) and (0,0.5) of the sample 

 

A 3-D representation of the pipe in terms of the stress propagation is shown below in Figure 

23. Since it is an axisymmetric simulation, the phi component is constant and the below figure 

shows the stress propagation at the end of the simulation i.e. 2000 us. 

 

 
Figure 23. Von Misses Stress at time t=0.002 seconds 

 

An ultrasonic guided wave has been successfully launched through the sample. The A0 

and S0 wave modes are isolated easily and all the simulation parameters like the frequency, 

Incident S0+A0 

Incident S0+A0 

Reflected S0 

Reflected A0 

Reflected S0 
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excitation signal, mesh type and size, the type of solver have all been optimized. This model will 

serve as our baseline model for further analysis. The next step is to look at the ultrasonic NDE 

response in the presence of defects caused by corrosion, both internal and external. An 

understanding of the interaction of the propagated guided wave with defects is very essential for 

effective practical implementation. Pitting corrosion is one of the most dangerous forms of 

corrosion. Pitting corrosion is generally caused by environmental and material factors. For 

example, an abundance of chloride in the environment causes rapid pitting corrosion while 

inclusions in the material also aid in the process. Although there are many types of corrosion, only 

the modelling of pitting corrosion is undertaken this quarter. There are two main reasons for this, 

(1) the simplified damage models are easily generated for this type of corrosion and (2) it is the 

most common and dangerous type of corrosion occurring in metallic pipelines. Pitting is a 

localized phenomenon confined to a point or small area that takes the form of cavities. The 

combined effects of mechanical stress and pits severely affect the structural integrity of a pipeline. 

Pits can also very well act as sites for crack initiation. Generally, it is very difficult to accurately 

characterize the smaller sizes of corrosion pits. 

Previous work has shown that corrosion pits can be easily modelled as hemispherical 

cavities on the surface of the pipelines. A similar approach has been followed in this work, where 

a hemispherical cavity is modelled on the surface of the pipeline. In the initial case, a single pit or 

cavity has been modelled at a distance 0.5 m from the origin. The length of the pit is 10 mm and 

its depth 1 mm. Figure 24 below shows the modelled pit on COMSOL ®. 

Figure 25 gives the R velocity profile at the origin (0,0) and a 3-D representation in terms 

of the Von Misses stress. From Figure 25(a), we can clearly see some very small reflections arising 

in between the incident S0+A0 packet and reflected S0 mode packet. This is elaborated in the 

following Figure 26 and Figure 27, where a clear defect signature can be obtained by taking the 

difference between the ultrasonic NDE response when there is a pit and the response when there 

is no defect. 
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Figure 24. Cross section of the pipeline with a small pit 

 

 
 

 

Figure 25. (a) A-scan at (0,0) and (b) Von Misses stress at time t = 0.002s 
 

(a) (b) 
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Figure 26. Comparison of A-scans with baseline 

 

Clearly from Figure 26, it is observed the incident mode being free from reflection overlaps, while 

the reflected S0 mode shows clear difference in signature when there is a defect. The amplitude of 

the reflected S0 wave packet is clearly smaller when compared to the baseline model (i.e., no 

defect). This is attributed to the loss in the energy associated with reflected S0 mode from 

corrosion. Also, clear reflection though small pit is picked up in between the incident packet and 

the reflected S0 mode. Taking the difference between these two signals gives the defect signature 

arising directly from the defect. We have neglected the mesh noise to simplify the analysis. Figure 

27 gives the defect signature. 

The mechanics of corrosion and how it affects surfaces is a complex process. Hence, 

predicting the growth of pits requires extensive field and experimental study. The relationship for 

pit depth and time for a metal is loosely given as  

𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑘𝑘𝑇𝑇1/3 (4.3) 

where dpit is the pit depth, T the exposure time and k is a constant based on the water and alloy 

composition. For this quarter, the objective was to conduct a preliminary study, and hence we 

manually simulated different models with different pit depths. Figure 28 shows the simulation 

results for a pit with length 10 mm and depth 3 mm. 
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Figure 27. Defect Signature for pit with 1 mm depth 

 

 
Figure 28. A-scans and defect signature for pit with 3 mm depth 

 

As the pit depth increases, we see a clear increase in the amplitude of the reflections 

arriving between the two packets. The reflected S0 mode is also significantly smaller in amplitude 

as pit depth increases, thereby increasing the amplitude of the defect signature also shown in Figure 

28. Figure 29 shows the signature for a pit depth of 5 mm with the length still being 10 mm. A 

similar trend is also noticed when the pit depth is 5 mm.  
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Figure 29. A-scans and defect signature for pit with 5 mm depth 

 

In order to further quantify the different ultrasonic NDE responses obtained for different 

pit depths, Figure 30 below shows the defect signatures for pit depths 3 mm and 5 mm. The 

difference in signatures in terms of amplitude is very clear and could act as a viable feature during 

classification purposes. 

 

 
Figure 30. Defect signatures for pits with 3mm and 5 mm depths 

 

Since the scope of this project is to look at novel NDE methods to understand interacting 

anomalies and the corresponding response, the next step was to look at multiple pits around the 

same area. To simplify this and completely understand the physics, two pits were modelled 

adjacent to each other. The model geometry is shown below in Figure 31. Both the pits are 10mm 
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in length and 3mm in depth. 

 

 
Figure 31. 2 pits modelled adjacent to each other on the surface 

  

The A-scans and the defect signature is shown in Figure 32. In order to see a significant 

difference, the simulated A-scans here needs to be compared to the model with a single 3mm pit. 

Figure 33 compares the defect signatures for the two cases discussed. As expected, as the number 

of pits increases the amplitude of the defect signatures clearly increases, while the sheer shape of 

the wave itself is slightly different.  

 

 
 

Figure 32. A-scans and defect Signature for two pits with 3 mm depth 
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Figure 33. Defect signatures for single and double pit models. 

 

We modelled a 2D asymmetrical model in COMSOL ® 5 Multiphysics software, where 

we modelled corrosion as hemispherical pits or cavities of certain depths and lengths. Figure 18 

shows the burst excitation that is applied on the transducer boundary in our 2D asymmetrical 

model. The response for such corroded samples and clean samples were captured, and their simple 

difference gave rise to the pure defect signature arising from purely the corrosion pits. Also, since 

these pits/cracks normally exist in interactive colonies, the effect of number of pits has been 

studied. The material used was the normal Steel AISI 4340 usually found in many pipelines. 

 

 
Figure 34. (a) A-scan at (0,0) and (b) von misses stress at time t = 0.002s 

 

Figure 34 shows the velocity response of a pipe with an axial defect of 10mm in length and 

1 mm in depth, while Figure 34(b) shows the propagation of Von Misses stress inside the 3D pipe. 

Figure 35 below gives the comparison of NDE responses between a healthy signal and a defect 
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signal. Clear difference in signals was observed for the pipe with a defect. Taking the difference 

between these two signals in Figure 35 gives the defect signature arising directly from the defect. 

We have neglected the mesh noise to simplify the analysis. Figure 36 shows the defect signature. 

 
Figure 35. Comparison of A-scans with baseline 

 

 
Figure 36. Defect Signature for pit with 1 mm depth 

 

The mechanics of corrosion and how it affects surfaces is a complex process. Hence, 

predicting the growth of pits requires extensive field and experimental study. The relationship for 

pit depth and time for a metal is loosely given as, 

𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑘𝑘𝑇𝑇1/3 (4.4) 

where dpit is the pit depth, T the exposure time and k some constant based on the water and alloy 
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composition. Figure 37 below shows the effect of pit depth on the defect signature. A clear increase 

in the amplitude of the defect signature was seen. This was expected, because as the pit depth 

increases, the reflections from the pits are much stronger, and since we used a pulse echo setup, 

the reflections are much stronger. A similar argument can be made if the number of pits increase, 

and this is clearly reflected in the defect signatures seen in Figure 38. 

 
Figure 37. Defect signatures for pits with 3mm and 5 mm depths 

 

 
Figure 38. Defect signatures for single and double pit models. 
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4.2.1 Circumferential Guided Waves 

Circumferential guided waves have the advantage of limited area to be covered depending on the 

circumference. Thereby, dispersiveness of the waves do not hold any limitation for the 

interrogation giving the operator freedom to choose any frequency. Circumferential guided waves 

are lamb waves that are launched using specific arrangement of transducers like the axially 

arranged phased array elements. Such waves are different than the one-dimensional waves in tubes. 

Commercial handheld scanners are available that utilize such linear array to scan the pipe length 

with its axial movement. We consider such a transducer as a point source in the study to study the 

circumferential guided wave interaction with corrosion. Consider a case of wave propagation along 

the circumferential direction at a frequency of 50 kHz in a 6 mm thick steel pipe with a diameter 

of 200 mm. The geometry and defect types are shown in Figure 39. The location of a piezoelectric 

wafer type transducer at 0° along the circumference and defect location is shown in Figure 39(a). 

Figure 39(b) shows the pit formed by the Boolean subtraction of three circles from the surface of 

the pipe. Figure 39(c) shows three pits with a central spacing of 6 mm. Figure 39(d) shows a 

simulated interactive defect formed by combination of corrosion pit and a crack. Colony of 3 pits 

with the location of crack in the central pit has been considered. The length of the crack is 2 mm 

deep. Detection of single and two pit colony has also been considered which has not been shown 

in the figure. The crack length in Figure 39(d) is changed to 1 and 3 mm to simulate the effect of 

crack depth on guided wave propagation. 

 

 
(a)       (b) 
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(c)       (d) 

Figure 39. (a) Corrosion type defects located circumferentially around the pipe, (b) zoomed 
image showing dimensions of a single pit, (c) colony of three pits, and (d) interacting defects 

consisting of a colony of three pits with 2 mm deep crack in the central pit. 
 

Excitation applied across the wafer type transducer produces S0 and A0 guided waves in 

the pipe that propagate around the circumference as shown in Figure 40. The pipe being defect 

free has a wave propagating in both directions from the wafer exciter. With a higher velocity the 

S0 wave propagates towards another end leaving behind the slower moving A0 wave mode. The 

top and bottom section of the pipe has similar wave propagation pattern due to symmetric geometry 

and transducer arrangement. The von Mises distribution is captured at 0.14 ms, which is enough 

to see the separation of the S0 and A0 wave modes. The wave modes would travel all the way 

around the circumference and reach the exciter when there are no defects or other structural 

features obstructing them. The signal received by the same wafer exciter in case of a healthy pipe 

is shown in Figure 41. The first packet is the incident packet appearing when the wave is launched 

by the exciter itself. Following packets are the S0 and A0 wave modes respectively returning to 

the exciter after propagating through the circumference. The signals obtained in the presence of 

corrosion pits have been superimposed. Clearly the signals vary due to the reflections of S0 wave 

mode from the corrosion. The reflected packet from the A0 wave mode is mixed with the returned 

S0 and A0 wave response and requires further processing to obtain it. The single pit produces 

enough change in the signal to be detected in the presence of a real environment with ambient 

noise. The reflected wave packet amplitude changes with its spread as the pits increase. This serves 

as a good indicator of damage severity which can be estimated by a cumulative damage index. 

 



49 

 
 

Figure 40. Circumferential guided wave around the pipe seen from the von Mises stress profile 
across the cross section. 

 
Figure 41. Axial displacement response at the piezoelectric wafer transducer location with 

healthy, one pit, two pit colony and three pit colony conditions. 
 

Assuming that the three-pit colony is enough to introduce stress corrosion cracking, a crack 

is introduced at the middle pit with depth of 1 mm. The crack depth is further increased in steps of 

1 mm to obtain another two cases of severity. Such interactive damage produces signals shown in 

Figure 42. The reflected S0 wave mode packet significantly increases in amplitude. The reason is 

attributed to the reduced cross section causing proportionate reflection of S0 wave energy. The 
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change in amplitude and waveform with frequency content can be further studied for damage 

classification including interactive features.  

 
Figure 42. Axial displacement response at the piezoelectric wafer transducer location with three 
pit colony, interactive 3 pit colony with 1 mm crack, interactive 3 pit colony with 2 mm crack 

and interactive 3 pit colony with 3 mm crack conditions. 
 

4.2.2 Automated Signal Classification 

Simultaneously, the next step was to automate this process of feature selection and have a 

classification algorithm that can effectively predict the defect characteristics given a waveform. 

The advent of Machine Learning in signal processing, and especially in Nondestructive Evaluation 

has greatly helped this purpose. Neural Networks in brief are known as universal function 

approximators. But, for a complicated mapping, an exponential number of hidden units are 

required but such a large neural network may fail to train. Telgarsky investigated the importance 

of depth in neural networks. Deep neural networks encode a general belief that every function can 

be represented in terms of simpler functions and their combination can approximate the existing 

function. The underlying features can be extracted from the signal which has reduced a hectic and 

a time-taking feature engineering process. Each deep learning algorithm has its own pros and cons 

for wave response as features and is investigated by Rautela and Gopalakrishnan. Hence, choosing 

the right framework, architecture and the hyper parameters is a challenging task in itself. Deep 

learning techniques work by feed-forward propagation of input information to hidden layers to get 

some output. This output is not necessarily a true output (in a supervised learning setting). A back-
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propagation algorithm flows information backward (which is generally a loss value described by 

a cost function) while using a gradient descent-based optimization algorithm. During the procedure 

of continuous forward and backward passes, the learning parameters (weights, W and biases, b) 

are tuned to a value that minimizes the cost function.  

Current literature is bent towards the abovementioned optimization schemes but here, we 

have focused on using the Adam optimization. Adam is an adaptive learning rate optimization 

algorithm that’s been designed specifically to train deep neural networks. Adam is a combination 

of RMSprop and Stochastic Gradient Descent (SGD) with momentum. It utilizes the squared 

gradients to adaptively scale the learning rate like RMSprop as well as the moving average of the 

gradient (instead of the gradient itself) like SGD with momentum. A neural network-based 

learning algorithm maps feature space to target space by minimizing the loss function using an 

optimization scheme (Adam optimizer here) over a virtual surface created by the dataset in n-

dimensional vector space. A typical loss function is the mean-squared loss function (MSE). The 

formulation is presented in the equation below, 

 𝐽𝐽(𝑊𝑊,ℎ) =
1
𝑚𝑚
� 𝐿𝐿(𝑦𝑦, ŷ)
𝑚𝑚

𝑚𝑚=1

 (4.5) 

A very important aspect while building such automated classification schemes is to collect a good 

‘distinguishable’ dataset. By ‘distinguishable’, the dataset should contain signals that have features 

which vary for different conditions. Any neural network at the end of the day is a function 

approximator, and if there is no function to approximate i.e., when similar data is present, the 

networks fail. An important precursor to building accurate classification algorithms is to check the 

data for different features, and clean it if necessary. The features can range from simple features 

like temporal energy, peak amplitude, and time of flights to relatively more complicated features 

derived from Wavelet Transforms, Fourier Transforms and more.  

4.2.3 Dataset Analysis 

For this work, we only focus on the axial defect models for the dataset generation. We collected 

about 150 samples, which each collected individually were using the COMSOL models. The split 

up of the 150 samples is as shown below in Figure 43. Data collecting was a time-consuming 

process as each simulation took about 10 minutes, and 150 simulations adds up to about 25 hours 

of simulations. Hence our dataset is limited when it comes to the actual size. The simulation 

parameters are the same as reported in Section 4.2.1. The faulty signals were collected for range 
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of pit depths and lengths. Also, responses with different number of pits were collected. 

 

 
Figure 43. Split of the 150 samples collected for Classification 

 

At first, we look at the simple statistical nature of the data. Simple features like the mean 

and variance of a vector is computed for all the 150 samples. Figure 44 shows the same. It is clearly 

seen that there is clear difference in statistics of the NDE responses of the healthy and defect 

signals. 

 

 
Figure 44. (a) Mean of each sample for the classification dataset and (b) variance of each sample 

in the dataset (150 samples) 
 

Any NDE response is a time dependent data and also multiple frequencies at different 

times. Hence it is always important to analyze the temporal and spectral characteristics of such 

datasets. A simple way would be to look at the spectral and temporal energies of each signal. The 
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formulation for temporal energy is given below. 

E =
1
2
�𝑥𝑥𝑘𝑘(𝑡𝑡)2
𝑛𝑛

𝑘𝑘=1

 (4.6) 

While the spectral energy formulation is as given below, 

E =
1
2
�𝑋𝑋𝑘𝑘(𝑓𝑓)2
𝑛𝑛

𝑘𝑘=1

 (4.7) 

 

where Xk(f) is the Fourier transform of xk(t) and is defined as, 

𝑋𝑋𝑘𝑘(𝑓𝑓) = �𝑥𝑥𝑘𝑘(𝑡𝑡)𝑒𝑒
−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋

𝑁𝑁

𝑛𝑛

𝑘𝑘=1

 (4.8) 

 

Figure 45 shows the temporal and spectral energy spread for each of the sample. Once 

again, considerable difference is seen for healthy and defect responses. Kindly note that all 57 

responses of a healthy sample are expected to and has similar characteristics, both temporally and 

spectrally. 

 

 
Figure 45. (a) Spectral Energy spread for the classification dataset and (b) Temporal Energy 

Spread in the dataset (150 samples) 
 

The above analysis has given us a clear picture of the different features that can be 
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potentially used in the classification algorithm. The classification algorithm can be designed in 

two main ways. One method would be to feed in the raw A-scan itself, while the other would be 

to feed in the features as separate inputs post processing. The inputs can include the one’s discussed 

above, or go beyond in terms of Wavelet coefficients, Wigner distributions. Feeding in only the 

features reduces the dimensionality of the problem, and henceforth makes sit computationally 

more efficient, while at the same time there is a risk if the features chosen don’t really most 

accurately define the characteristics of a healthy or defect sample. This problem is avoided while 

feeding in the raw A-scan, but it makes it computationally more laborious. In our study, we have 

fed in the whole A-scan itself as the input, as it is not very clear from the study which feature 

influences the outcome most, and without that information, it would be very hard to choose the 

right set of features to train our network. 

The first step is to be able to design a network, to simply classify healthy and defect signals 

in separate classes accurately. We have used a simple Multi-Layer Perceptron Network, whose 

architecture is described below in Figure 46. The network is trained on 145 samples of the dataset, 

and is tested 5 randomly chosen samples from the dataset. It consists of 4 dense fully connected 

layers, with dropout layers to avoid overfitting. By using dropout layers, we ensure the network 

works well not only to seen data, but also to unseen data. The network predicts a final value to be 

close to 0 or 1. It is considered a defect if it’s close to 1, and healthy if it is close to 0. 

 
_________________________________________________________________ 

Layer (type)                 Output Shape              Param #    

================================================================= 

dense_105 (Dense)            (None, 1039)              1080560    

_________________________________________________________________ 

batch_normalization_81 (Batc (None, 1039)              4156       

_________________________________________________________________ 

dense_106 (Dense)            (None, 512)               532480     

_________________________________________________________________ 

batch_normalization_82 (Batc (None, 512)               2048       

_________________________________________________________________ 

dropout_53 (Dropout)         (None, 512)               0          
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_________________________________________________________________ 

dense_107 (Dense)            (None, 128)               65664      

_________________________________________________________________ 

batch_normalization_83 (Batc (None, 128)               512        

_________________________________________________________________ 

dropout_54 (Dropout)         (None, 128)               0          

_________________________________________________________________ 

dense_108 (Dense)            (None, 1)                 129        

================================================================= 

Total params: 1,685,549 

Trainable params: 1,682,191 

Non-trainable params: 3,358 

_______________________ 

Figure 46. Architecture of the Multi-Layer Perceptron Network used.  
 

The loss function used is the MSE function as described previously, while we have used 

an Adam optimizer. The activation function is Relu. Relu is typically used in neural networks to 

introduce nonlinearity in terms of the interaction of the inputs which is highly desired in practical 

problems. It is computed over 100 epochs, with a learning rate of 0.00001. Tuning the hyper 

parameters is a big aspect of building successful networks, and while there is no such right or 

wrong techniques to do so, it generally depends on the dataset and the architecture. We evaluate 

the performance of the network by the Mean Absolute Error (MAE) and the accuracy metric. One 

of the main takeaways during this was the significance of batch size while training. The batch size 

greatly influenced the performance of the network. The batch size is a hyper-parameter of gradient 

descent that controls the number of training samples to work through before the model's internal 

parameters are updated. Since our datasets was small, the chances the networks learn the same 

type of samples is a possibility. This will lead to over generalization of the problem, and the 

network won’t predict well on unseen samples. Hence with a batch size of four, we were able to 

achieve very good performance as described below. The training loss curve and the training MAE 

plot are shown in Figure 47 and Figure 48, respectively.  
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Figure 47. Training Loss for the MLP Network 
 

 

Figure 48. Training MAE for the MLP Network 
 

The loss function converged pretty well during the training, while mean absolute error also 

converged well. The performance is obviously limited by the fact that our dataset is very small, 

and it is boosted by the depth of our network. We then used the network to predict the nature of 

the response on unseen examples, and it predicts with almost 96% accuracy. The accuracy across 

the training procedure is shown in Figure 49. The jagged nature of the plots in the previous figures 

(loss, MAE and accuracy) might be probably due to the size of the small dataset. Neural Networks 
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generally need a lot of data to learn and predict very well on seen and unseen examples, and in 

fields like NDE and SHM, generating or collecting big datasets is a challenge. 

 

 

Figure 49. Training Accuracy for the MLP Network 
 

The prediction results for the 5 samples are shown in Figure 50. The network correctly 

predicts four of the five samples to have defects in them, while it predicts correctly the only healthy 

sample. Please note that predicting a value close to 0 indicates a healthy sample, while something 

close to 1 indicates a faulty pipe. 
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Figure 50. Prediction Results for the MLP Network 
 

4.2.4 Conclusions & Discussion 

We have been able to simulate circumferential ultrasonic guided waves inside a pipe with and 

without defects in order to optimize the necessary parameters. The interaction of circumferential 

guided waves in pipes with pits caused due to pitting corrosion has been captured. A comparison 

of signals with clear defect and a no-defect signal show capability to extract damage feature. The 

change in defect signatures with respect to pitting depth and number of pits is studied.  Also, we 

were able to come up with an effective classification scheme to classify healthy and defect NDE 

responses with accuracy. Given any A-scan, the network can easily predict the health of the pipe. 

This opens up the prospect of using sensory data (either A-scans or images) to characterize 

corrosion pits completely. The next question is to develop an algorithm that can predict the 

characteristics of the defect in terms of its effective area, depth and location. For this, a much larger 

dataset needs to be collected and more rigorous signal processing schemes in terms of using 

Wavelet transforms among others. 

The results obtained by simulating circumferential guided waves hold possibility of 

determining the damage parameters using a large dataset generated for different pit depths, pit 

lengths and number of pits, and for different transducer parameters like operation frequency and 

feature extraction techniques. The simulation results provide results to design a circumferential 
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transducer for experimental validation of these results are shown in Section 4.3. In terms of 

furthering a complete classification algorithm, the next step is to develop or improve the existing 

algorithm to predict defect characteristics like pit depths, length and location. Convolutional 

Neural Networks seem to work well with time dependent data and regression-based problems. The 

final classification scheme can characterize both axial and circumferential corrosion in terms of 

the depth, length, area, location and the number of pits. Looking at the bigger picture, other NDE 

methods like Electromagnetic NDE, Electromagnetic Acoustic Transducers are to be developed to 

not only characterize corrosion, but any pipeline related defects in general, and have a model that 

fuses data from different NDE modalities to predict most types of defects in a pipeline and 

characterize the defect in terms of its most basic characteristics. 
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4.3 Dataset Preparation for Machine Learning based Data Analysis 

As discussed in Section 4.2, the dataset consists of 57 healthy responses and 93 defect responses. 

All the responses are collected from the axial guided wave model for corrosion pits. For simplicity, 

three different configurations have been considered. The first configuration is the healthy pipe, 

which is defect-free. The second configuration has one corrosion pit in the pipe, while the third 

configuration has a colony of two pits in the pipe. The length of the corrosion pits varies from 1 

mm to 5 mm, while the depth of the pits varies from 5 mm to 20 mm. The operating frequency of 

the model is 25 KHz. In the last section, some basic features of the dataset were examined, which 

is shown in Figure 44 and Figure 45. The four features could be potentially used as feature vectors 

in various characterization algorithms. In this section, more complex features are added using some 

signal processing tools. 

4.3.1 Cross Entropy Analysis 

The Cross Sampling Entropy Method (CSamp-En) is mainly used to evaluate the degrees of 

asynchrony and dissimilarity of two time series in the same system. Please note that the responses 

collected in the dataset are velocity time histories. The CSamp-En method is based on the sampling 

Entropy method (SampEn) with a concept called Approximate Entropy that is basically a measure 

of the degree of irregularity or disorder in a measurement time series. When SampEn is lower, the 

sequence is more regular; the larger SampEn, the more irregular and complex the sequence 

becomes. SampEn is independent of the length of the data record and the algorithm uses the 

following parameters: threshold (r), sample length (m), and signal length (N). The length of the 

time series has no effect on the analysis results, and the results remain relatively consistent.  

The analysis step of a CSamp-En algorithm is similar to that in the SampEn analysis 

method. The difference is that the object of SampEn analysis is mainly a single time series signal 

system, whereas the CSamp-En method analyzes two different time series signals to establish a 

template space for each of the two signals. This method basically gives a measure of how similar 

two time series signals are in terms of a similarity number. In the scope of our work, the similarity 

of different defect responses with respect to the healthy signal can be computed, which can be used 

to define a related Damage Index (DI). The procedure of CSamp-En is similar to that of SampEn 

and can be summarized as follows. 

Let us define two time series signals: {𝑋𝑋𝑖𝑖} = {𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑖𝑖 , … . 𝑥𝑥𝑁𝑁} and �𝑌𝑌𝑗𝑗� =

{𝑦𝑦1,𝑦𝑦2, …𝑦𝑦𝑗𝑗 , … .𝑦𝑦𝑁𝑁}. Both the time series signals are of the same length N. The two signals are 
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then divided into templates of size m: 

𝑢𝑢𝑚𝑚(𝑖𝑖) = {𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1, … . 𝑥𝑥𝑖𝑖+𝑚𝑚−1}      1 ≤ 𝑖𝑖 ≤ 𝑁𝑁 −𝑚𝑚 + 1 (4.9) 

𝑣𝑣𝑚𝑚(𝑗𝑗) = �𝑦𝑦𝑗𝑗 ,𝑦𝑦𝑗𝑗+1, … … … … .𝑦𝑦𝑗𝑗+𝑚𝑚−1�    1 ≤ 𝑗𝑗 ≤ 𝑁𝑁 −𝑚𝑚 + 1 (4.10) 

A similarity number between um(i) and vm(j) is defined as nim(r), and can be expressed as: 

𝑛𝑛𝑖𝑖𝑚𝑚(𝑟𝑟) = � 𝑑𝑑[𝑢𝑢𝑚𝑚(𝑖𝑖), 𝑣𝑣𝑚𝑚(𝑗𝑗)]
𝑁𝑁−𝑚𝑚

𝑗𝑗=1

 (4.11) 

where, the maximum distance 𝑑𝑑[𝑢𝑢𝑚𝑚(𝑖𝑖), 𝑣𝑣𝑚𝑚(𝑗𝑗)] between the two template spaces um(i) and vm(j) is 

defined as: 

𝑑𝑑[𝑢𝑢𝑚𝑚(𝑖𝑖), 𝑣𝑣𝑚𝑚(𝑗𝑗)] = max{|𝑥𝑥(𝑖𝑖 + 𝑘𝑘) − 𝑦𝑦(𝑗𝑗 + 𝑘𝑘)|}       0 ≤ 𝑘𝑘 ≤ 𝑚𝑚 − 1 (4.12) 

𝑑𝑑[𝑢𝑢𝑚𝑚(𝑖𝑖), 𝑣𝑣𝑚𝑚(𝑗𝑗)] ≤ 𝑟𝑟      1 ≤ 𝑗𝑗 ≤ 𝑁𝑁 −𝑚𝑚 (4.13) 

When the distance between the two samples is smaller than the threshold, r, the two 

samples are considered similar; conversely, when the distance between the two samples exceeds 

r, the two samples are considered dissimilar. The threshold r can be chosen manually by the user. 

Through the use of different templates for similarity comparison and the calculation of the number 

of templates that exhibit the conditions of similarity, the number of similar samples in the ith 

template to those in the entire template space can be obtained. The similarity probability of the ith 

template can be calculated as: 

𝑈𝑈𝑖𝑖𝑚𝑚(𝑟𝑟)(𝑣𝑣||𝑢𝑢) =
𝑛𝑛𝑖𝑖𝑚𝑚(𝑟𝑟)

(𝑁𝑁 −𝑚𝑚)
 (4.14) 

The average probability of similarity for template m can then be obtained as: 

𝑈𝑈𝑚𝑚(𝑟𝑟)(𝑣𝑣||𝑢𝑢) =
1

𝑁𝑁 −𝑚𝑚
� 𝑈𝑈𝑖𝑖𝑚𝑚(𝑟𝑟)(𝑣𝑣||𝑢𝑢)
𝑁𝑁−𝑚𝑚

𝑖𝑖=1

 (4.15) 

The degree of dissimilarity resulting from the division of the two time-series by m points 

represents the degree of synchronization between the two template spaces. Finally, the sample 

space is composed of the sample of length m + 1, and the average similarity probability is 

calculated. The formula for calculating CSamp-En is expressed as: 

𝐶𝐶𝑆𝑆𝐸𝐸(𝑚𝑚, 𝑟𝑟,𝑁𝑁) = −ln �
𝑈𝑈𝑚𝑚+1(𝑟𝑟)(𝑣𝑣||𝑢𝑢)
𝑈𝑈𝑚𝑚(𝑟𝑟)(𝑣𝑣||𝑢𝑢)

� (4.16) 

In this investigation, the changes of both final CSamp-En and the similarity number nim(r) 

are studied for different corrosion configurations and different corrosion pit depth. The parameters 

used in this study are listed in Table 2. 
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Table 2. Parameters for CSamp-En 
Signal length, N 1038 

Template length, m 4 

Threshold (based on healthy response), r 0 

 

A DI based on the mean of the similarity numbers for different configurations is defined. 

The variation in the DI for different configurations is plotted in Figure 51, while the DI for different 

defect depths is plotted in Figure 52. From Figure 51, it is observed that there is a direct relationship 

between the number of pits and DI. As the number of pits increases in the colony, the absolute DI 

value increases, as shown in Figure 52. For defect depth, the DI value does increase for a defect 

depth of 5mm and 10 mm, but the DI values for defect depths of 15mm and 20mm are similar to 

that of 10mm. The increasing DI values basically indicate that the responses of a particular group 

are more dissimilar to the healthy response. This can be directly related to a conclusion that the 

samples corresponding to the particular group are relatively more damaged. For example, the 

samples with 5 mm defect depths have a smaller DI value compared to samples with 10 mm defect 

depths. This basically suggests that samples with 10 mm defect depths are more damaged, which 

is truth. A similar study is also conducted for changing the defect length (i.e., corrosion pit length).  

 

 
Figure 51. Normalized similarity number nim(r) vs number of pits 
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Figure 52. Normalized similarity number nim(r) vs defect depth 

 

When using the CSamp-En analysis, we were able to extract a DI that shows a direct 

relationship to the number of pits. However, the results are not as promising for different defect 

depths. Nevertheless, overall the algorithm presented above provides a valuable feature 

engineering tool. 

4.3.2 Hilbert Transform Analysis 

Hilbert Transform (HT) is one of the most commonly used signal processing tools to study time 

signals. Implementing a HT enables us to create an analytic signal based on some original real-

valued signal. HT gives the instantaneous amplitude of a signal, and it can be used to find the 

envelope of harmonic signals, which exactly is the nature of the response in our dataset. HT is 

mathematically described below for a signal u(t): 

𝐻𝐻(𝑢𝑢(𝑡𝑡)) =
1
𝜋𝜋
�

𝑢𝑢(𝑡𝑡)
𝑡𝑡 − 𝜏𝜏

𝑑𝑑𝑑𝑑
∞

−∞
 (4.17) 

Similar to how MSCE is studied as a potential DI, HTs of three different configurations 

(i.e., healthy, single pit and colony of pits) are computed. The results are shown in Figure 53. The 

two peaks (i.e., Peak I and Peak II) shown in Figure 53(a) are basically due to the two reflections 

seen in the raw signal. The two reflections are the S0 wavemode, and a combination of A0 and 

reflected S0 wavemodes. As shown in Figure 53, one can observe that though the S0 peak (i.e., 

Peak I) has little difference for different configurations, the second peak (i.e., Peak II) shifts 

slightly to the right with increasing number of pits in the colony. The increase is in the order of 

0.1-0.2 ms (as shown in Figure 53 (b)), which is significant considering the scale which we work 
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with.  

HTs of the signals from different defect depths are also computed and the results are shown 

in Figure 54. Similar to Figure 53, there is no distinct difference among the HT responses at Peak 

I, but the second peak certainly shows a difference between the responses from a damaged pipeline 

and a healthy response. Therefore, Hilbert Transform is another valuable tool to compute a feature 

that distinguishes different configurations and defect depths. A DI based on the HT can be easily 

defined to quantify the corrosion defects, which is part of the work planned for the future. 

 

 
Figure 53. (a) HT responses for increasing number of pits and (b) a zoomed-in version of Peak II 
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Figure 54. (a) HT responses for increasing defect depth and (b) a zoomed-in version of Peak II 

 

4.3.3 Multi-Layer Perception (MLP) Classifier Network 

In this section, we also tried to improve the robustness of the MLP based classifier network 

presented in the last section. For a quick recap, Figure 55 shows the architecture of the network 

that was used. Figure 56 shows the results when the trained model was used to predict on the 

unseen responses. For the dataset we defined above with well-labeled responses, the classification 

accuracy is defined as the fraction of correct predictions over the total number of predictions. The 

accuracy of this particular network was about 95%, which means that the MLP network performs 

really well.  

 
Figure 55. Multi-Layer Perceptron network for defect response classification 

 

In order to simulate a real-world experiment environment, additive white Gaussian noise 

(AWGN) of different Signal to Noise Ratio (SNR) levels are added to the training dataset. The 

model is then trained, and predicted on the unseen examples. For this analysis, three different SNR 

levels of 5, 10 and 20 are considered. The signal with a SNR level of 5 has the highest noise 

content, while the signal with a SNR level of 20 has the least noise content. Figure 57 shows a 

signal without noise, and a signal with an artificially added noise of SNR 5. As shown in Figure 

57 a signal with SNR 5 is highly distorted with noise, and training on such data is tricky and 

challenging. However, training with such high-level noises can make a model more robust and 

more generic in nature. As expected, the performance of the MLP drops as noise is added. Figure 

58 shows the performance of the model when it is trained on a dataset with a SNR level of 20. 

Though the accuracy drops to 93%, the model still correctly classifies healthy and defective 
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responses according to its true ground class as is visible from the confusion chart. 

 

 

Figure 56. (a) Prediction results for the MLP network and (b) confusion plot for the predicted 
results 

 

 
Figure 57. (a) Pure raw signal and (b) signal with additive white Gaussian noise (AWGN) added 

at SNR 5 
 

 



67 

 
 

Figure 58. (a) Prediction results for the MLP network trained with a dataset with SNR 20 (b) 
confusion plot for the predicted results 

 

Similarly, when the noise level is increased by maintaining a SNR level of 10, the 

performance further drops to 91% accuracy. Though it classifies the responses accurately, the 

absolute values the MLP is predicting for a defect are further away from 1, as is visible Figure 59. 

For a SNR level of 5, the accuracy further drops to 89%, and the network now falsely classifies a 

healthy response as a defective response as seen in Figure 60. But despite this error, the MLP 

network correctly classifies all defective responses correctly. Though this is not the best scenario, 

it is acceptable as when it comes to nondestructive evaluation, it is sometime acceptable to falsely 

classify healthy signals as long as defective signals are classified correctly. Thus, we are able to 

attain very good performance at SNR levels of 10 and 20, and acceptable performance at a SNR 

level of 5. 
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Figure 59. (a) Prediction results for the MLP network trained with a dataset with SNR 10 (b) 
confusion plot for the predicted results  

 

Figure 60. (a) Prediction results for the MLP network trained with a dataset with SNR 5 (b) 
confusion plot for the predicted results 

 

4.3.4 1D-Convolutional Neural Network 

The classifier network has been optimized by training it with signals added with different noise 

levels, thereby making the network robust and reliable. The next step is to develop 1D 

Convolutional Neural Network (1D-CNN) to help characterize the corrosion defects. 1D-CNN is 

known to extract inherent features from long time series data. Extensive research has gone into 



69 

using CNNs for defect localization and characterization in composites in the last few years. In the 

1D-CNN network proposed in this study, the input will be the velocity time histories obtained, and 

the output will be the defect parameters such as defect depth, defect length, and number of 

corrosion defects in the pipe. One of the reasons for adopting 1D-CNN is that it trains faster than 

recurrent neural networks.  

Sparse connections and parameter sharing are two important ideas in CNN, whereas, in a 

fully connected network (FCN), every neuron interacts with every other neuron. CNN helps to 

reduce the number of learnable parameters, which eventually saves memory and decreases the 

training time. CNNs are also very robust to external influences, and generally have been shown to 

perform well even when there is low level noise in the data. 1D-CNN works similar to a traditional 

CNN/2D-CNN, the only difference is that the inputs, kernels and feature maps are all in one 

dimension. Figure 61 shows the framework of the proposed 1D-CNN model. Please note the CNNs 

are data hungry, and with a current dataset of size 150 samples, it is incredibly hard to attain 

acceptable performance. Therefore, the current model shown is being fine-tuned using the small 

dataset, while simultaneously more data is being created using data augmentation techniques along 

with FEM simulations to populate the dataset.  

 

 
Figure 61. Architecture of the proposed 1D-CNN 

 

4.3.5 Conclusions 

In this Section, different defect features were established to be used in an overall learning paradigm 
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that leverages the best of Machine Learning based feature engineering algorithms, and Deep 

Learning based Convolutional Neural Networks (CNNs). A Multi Cross Entropy Analysis 

(MCEA) was conducted, and a Damage Index (DI) based on the similarity number was established 

to quantify the defect depths, and the number of corrosion defects. Also, Hilbert Transform (HT) 

analysis was conducted to establish another feature of interest. The multi-layer perception (MLP) 

classifier was further improved by training based on the data with different noise levels. It was 

seen that even at very high noise levels (such as SNR of 5), the performance of the networks was 

acceptable. Furthermore, a 1D-CNN network was proposed for characterization of corrosion 

defects, which currently is being fine-tuned. 

4.4 Ultrasonic Imaging Methods 

For the same corrosion samples for ECA imaging and data analysis, MSU team also acquired the 

immersive UT imaging data, which are shown in the figures below, compared with the IFM data 

obtained by Akron team. 

 

 
Figure 62. Sample 11 UT results: (a) 2D imaging/TOF map, (b) Estimated corrosion profile with 

uncertainties using UT, and (c) IFM estimated corrosion profile as ground truth. 
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Figure 63. Sample 12 UT results: (a) 2D imaging/TOF map, (b) Estimated corrosion profile with 

uncertainties using UT, and (c) IFM estimated corrosion profile as ground truth. 
 

 
Figure 64. Sample 13 UT results: (a) 2D imaging/TOF map, (b) Estimated corrosion profile with 

uncertainties using UT, and (c) IFM estimated corrosion profile as ground truth. 
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Figure 65. Sample 14 UT results: (a) 2D imaging/TOF map, (b) Estimated corrosion profile with 

uncertainties using UT, and (c) IFM estimated corrosion profile as ground truth. 
 

 

Figure 66. Sample 15 UT results: (a) 2D imaging/TOF map, (b) Estimated corrosion profile with 
uncertainties using UT, and (c) IFM estimated corrosion profile as ground truth. 
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Figure 67. Sample 16 UT results: (a) 2D imaging/TOF map, (b) Estimated corrosion profile with 
uncertainties using UT, and (c) IFM estimated corrosion profile as ground truth. 

 

 
Figure 68. Sample 17 UT results: (a) 2D imaging/TOF map, (b) Estimated corrosion profile with 

uncertainties using UT, and (c) IFM estimated corrosion profile as ground truth. 
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Figure 69. Sample 18 UT results: (a) 2D imaging/TOF map, (b) Estimated corrosion profile with 

uncertainties using UT, and (c) IFM estimated corrosion profile as ground truth. 
 

 
Figure 70. Sample 19 UT results: (a) 2D imaging/TOF map, (b) Estimated corrosion profile with 

uncertainties using UT, and (c) IFM estimated corrosion profile as ground truth. 
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Figure 71. Sample 20 UT results: (a) 2D imaging/TOF map, (b) Estimated corrosion profile with 

uncertainties using UT, and (c) IFM estimated corrosion profile as ground truth. 
 

It can be seen from both ECA and UT results that NDE results correlate with the IFM line 

data (corrosion “ground truth” profile) well. Futher research will be conducted in multi-modal data 

fusion that combines ECA, UT and IFM data at both measured data-level and feature-level. The 

time-dependent corrosion process and damage characterization will be performed with 

uncertainties quantification, and passed to the probabilistic modeling for failure pressure 

prediction.  
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5 Objective 3: Probabilistic models of failure pressure prediction 

5.1 Models for Pipeline with Single Corrosion Defect 

5.1.1 Background 

In practice, the remaining strength of pipelines with single corrosion defects has been popularly 

assessed using the ASME B31G [5], Modified ASME B31G [5], or RSTRENG [5] methods. These 

methods were developed based on the NG-18 equation proposed by the Battle Memorial Institute. 

More models based on the NG 18 equations were also developed later such as SHELL92 [6], 

RPA[7], and DNV RP-F101 [8]. On the other hand, other researchers (such as Netto et al [9]; 

Mustaffa and Van Gelder [10]; Wang and Zarghamee [11]) proposed failure prediction models 

based on Buckingham’s π theorem, which is a mathematical approach that allows the formation of 

dimensionless parameters consisting of various possible influencing parameters and then uses the 

dimensionless parameters to predict a quantity of interest [10]. Zhu and Leis [12] proposed a 

prediction model using the strain-hardening behavior of pipe materials. A comprehensive review 

of the existing prediction models has been reviewed in [13]. Note that all existing prediction 

models mentioned here were developed for pipelines under normal range temperatures. Separate 

prediction models need to be developed for pipelines under extremely low temperatures, which 

significantly change material properties (such as toughness) and thus pipeline capacity. For 

instance, Chen et al. [14] have developed a burst pressure model for corroded hydrogen storage 

pipeline at extremely low temperature.  

To appropriately incorporate the underlying uncertainties in the pipeline risk management, 

the model error of the remaining strength prediction model needs to be assessed. The model error 

reflects the bias and extent of variability in the prediction model; thus, it can be used to measure 

the performance of a prediction model. Several studies were conducted to compare the 

performance of some existing prediction models based on model error. For example, Zhou and 

Huang [15] performed model error comparison for 8 models (i.e., ASME B31G [5], Modified 

B31G [5], CPS [14] , CSA [15], DNV RP-F101for single defect (Part B) [8], PCORRC [16], 

RSTRENG [5] and SHELL92 [6]) based on 150 full-scale burst test results for pipelines with 

isolated real corrosion defects. They found that RSTRENG had the best performance overall, and 

all the models became more conservative for long corrosion defects. A similar model performance 

comparison was also done by Amaya-Gómez et al [13] but based on three categories of material 

toughness. The results showed that the performance of the models varied for different levels of 
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material toughness, implying that some models have applicability limits for specific material 

toughness. This is not surprising, as many of the prediction models were developed specifically 

for certain types of grade. Other studies compared prediction models based on the probability of 

failure but without incorporating model errors in the analysis. For instance, Hasan et al. [17] and 

Amaya-Gómez et al. [13] compared the failure probability results from different prediction models 

by only considering uncertainties in the operating conditions and the pipeline material and 

geometry properties. Based on the comparison study by Amaya-Gómez et al. [13], most of the 

existing prediction models are shown to be conservative with different levels of conservatism. 

Conservative methods may be good for design in terms of safety; but when they are applied in the 

risk management, it leads to unnecessary costs associated with inspection, repairs, and 

maintenance. Therefore, an accurate prediction model with less bias and variability is needed for 

decision-makings in a cost-effective risk management. 

5.1.2 Existing prediction models 

The assessment methods of the remaining strength of corroded pipelines can be classified into 

three levels based on the available level of information and the degree of precision required [17]. 

A Level-1 assessment method uses the maximum depth and projected axial length of a defect to 

evaluate the remaining strength. It does not consider the shape of the defect and defect interactions 

due to a cluster of corrosion defects; and is generally conservative. A Level-2 assessment method 

evaluates the remaining strength considering the possibility of interaction between defects or the 

impact of the defect shape. A Level 3 assessment refers to nonlinear finite element (FE) analysis 

method, which requires the maximum information of material properties and defect configuration; 

and this level assessment usually can provide accurate failure predictions with an error of around 

5%. 

In the literature, most of the prediction models for the remaining strength of a corroded 

pipeline are Level-1 assessment, which only considers maximum length and depth of the corrosion 

defect. Those models are applicable for isolated defects when defect interactions can be ignored, 

which is the focus of this study. In this section, the existing prediction models are reviewed first. 

The formulations of 24 existing prediction models are summarized in Appendix B. Table 3 is 

modified based on Amaya-Gómez et al. [11] and provides a comparison of these existing models 

in terms of application restrictions (i.e., yield strength level, pipeline grade, and defect geometry) 

and prediction performance based on the analysis conducted in this study. Note that the application 
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restrictions of most models are suggested during the model development. In this study, the 24 

existing models are grouped into six groups based on how the model is developed, and each model 

is given a short name based on its group number (as shown in Table 3). The first group of models 

(G1) is developed based on the NG-18 equation [27]; the second group (G2) is based on 

Buckingham’π theorem; the third group (G3) is constituted of models based on FE models with a 

plastic collapse failure criterion called PCCOR; the fourth group (G4) has the models that use a 

stress concentration factor in the model formulation and neglect the defect length; the fifth group 

(G5) is formed by models that use the strain-hardening behavior of pipelines; and the last group 

(G6) consists of models that are developed using other approaches. Also, Table 3 gives the defect 

length limit beyond which a defect is classified as a long defect in some models.
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Table 3. Comparison of 24 existing pressure failure prediction models 
Group Model Grade Other restrictions Long 

defect limit Performance comparison within the group a 

G1: Models 
based on NG-18 

G1-1: ASME B31G Original [3] Below X56 0.1 ≤ d/t ≤ 0.8 l2/Dt > 20 

All the models have similar performance and 
G1-7 has the best performance overall 

G1-2: Modified B31G [3] Below X65 0.1 ≤ d/t ≤ 0.8 l2/Dt > 50 
G1-3: SHELL92 [4] - d/t ≤ 0.85 - 

G1-4: RPA [5] Below X65 0.1 ≤ d/t ≤ 0.8 l2/Dt > 20 
G1-5: RSTRENG Effective Area [3] - 0.1 ≤ d/t ≤ 0.8 l2/Dt > 50 

G1-6: CSA Z662 [15] Below X65 - l2/Dt > 50 
G1-7: DNV RP-F101 [6] Except X80 - - 

G1-8: Fitnet FFS [19] - - l2/Dt > 20 
G1-9: Phan et al Modified NG-18 [20] - - - 

G2: Models 
based on 

Buckingham’s π 
theorem 

G2-10: Netto et al [7] X52 − X77 0.1 ≤ d/t ≤ 0.8, l/D ≤ 1.5, 
w/D ≥ 0.0785 - 

G2-11 overestimates the burst pressure and 
has the worst performance overall but can be 

suitable for shallow defects. 

G2-11: Mustaffa & van Gelder [8] - d/t ≤ 0.3, l/D ≤ 0.2, w/t>0.5 - 

G2-12: Netto et al [21] - Shallow, moderately deep, 
and deep-narrow defects - 

G2-13: Wang & Zarghamee [9] - - - 
G2-14: Phan et al. Modified - Netto et al. [20] - - - 

G3: PCORRC 
models 

G3-15: PCORRC [16] - - - 
G3-15 has the best performance overall 

G3-16: Modified PCORRC [22] X65 − X70 - - 

G4: RAM PIPE 
Requal models 

G4-17: Original Ram Pipe Requal [23] - - - G4 models do not perform well in general 
and have large variability, but G4-17 can be 

suitable for shallow defects. G4-18: Modified Ram Pipe Requal [23] - - - 

G5: Models 
using strain-
hardening 

G5-19: Zhu & Leis [10] Grade B and 
X80 Only - - Both models have good performance, 

particularly G5-19 G5-20: Zhu - X65 [24] X65 − X80 - - 

G6: Other 
approaches 

G6-21: Choi et al. [25] X65 - l2/Dt > 18 
G6-22 and G6-23 perform the best overall; 

particularly G6-23 is good for thin pipe 
thickness and medium and long defects 

G6-22: Chen et al. [26] X80 − X90 - l2/Dt > 25 
G6-23: CUP [27] X46 − X60 - - 

G6-24: Phan et al. - Modified Gajdoš et al. [20] - - - 
a The performance is based on three levels of σy, D/t, d/t, and l2/Dt
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5.1.3 Data Collection 

To evaluate the performance of the existing prediction models and to develop a robust and accurate 

model later, comprehensive failure pressure data are needed. The database established in this study 

consists of the data directly collected from literature and additional numerical data obtained from 

FE analysis conducted in this study.  

Data collected from literature 

A total of 401 different burst test results are collected from literature, out of which 83 are laboratory 

experimental burst tests and 318 are FE simulations. In all these experimental tests or simulations, 

single defects are introduced to the external surface of the pipeline. Table 4 summarizes the overall 

ranges of six important quantities in the whole dataset (i.e., collected data and numerical data 

generated in this study): yield strength (σy), ratio of pipe diameter to pipe thickness (D/t), ratio of 

defect depth to pipe thickness (d/t), ratio of defect length squared to the multiplication of pipe 

diameter and thickness (l2/Dt), ratio of defect width to defect length (w/l), and ratio of defect width 

to pipe diameter (w/D). These six quantities are listed out here because of their potential impact 

on failure pressure prediction, and they have been used in the failure pressure prediction as shown 

in Appendix B. Except σy and D/t, the other four quantities are related to defect geometry. Note 

that typically the information of w is not recorded. In the data collected from literature, 264 cases 

(more than a half of the total cases) do not contain w values. The overall ranges of w/l and w/D in 

Table 4 are based on the cases that have w values. 

 

Table 4. Data range of six important quantities 

Quantity Overall Range Level 1 Range 
(number of data) 

Level 2 Range 
(number of data) 

Level 3 Range 
(number of data) 

σy (MPa) [262   802] [262   433] 
(88) 

(433   508] 
(139) 

(508   802] 
(206) 

D/t [15.34   240.63] [10   40] 
(59) 

(40   60] 
(235) 

(60   250] 
(139) 

d/t [0.10   0.87] [0   0.33] 
(131) 

(0.33   0.67] 
(232) 

(0.67 1] 
(70) 

l2/Dt [0.018   8967.97] [0.018   18] (18   50] (50   8967.97] 

log (l2/Dt)  [-4.00   9.10]  
[-4.00   2.890] 

(287) 
(2.89   3.912] 

(71) 
(3.91   9.10] 

(75) 
w/l [0.02  10.92] - - - 
w/D [0.05   0.48] - - - 

 

To provide a better idea of how these six important quantities scatter over the database 
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collected from literature, Figure 72 shows the scatter plots of measured failure pressure (Pb) vs. 

the six quantities. In these plots, the circle and cross markers refer to the data obtained from 

experimental and numerical burst tests, respectively. Figure 72(a) displays the scatter plot of σy 

over Pb. As expected, the result indicates that in general higher yield strength leads to higher burst 

pressure, except a few cases circled by the dotted lines. It turns out these outline cases are the ones 

with low D/t values (referring to very thick-wall pipes), corresponding to the ones circled by the 

dotted lines in the scatter plot of D/t over Pb in Figure 72(b). Figure 72(b), (c) and (d) show the 

scatter plots of D/t, d/t, log (l2/Dt) over Pb, respectively. A negative correlation is all observed for 

each of these three plots, indicating that the pipe diameter to pipe thickness ratio, the defect depth, 

and the defect length have negative effect on the failure pressure, as expected. However, no clear 

trend is observed in both Figure 72 (e) and (f), indicating that the impact of defect width w may be 

insignificant on the burst pressure. Note that Figure 72(e) and (f) are plotted using only the data 

that have w information. 
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(a) σy 

 
(b) D/t  

 
(c) d/t 

 
(d) log (l2/Dt) 

 
(e) w/l 

 
(f) w/D  

 
○ Experimental  

 
× Numerical 

Figure 72. Scatter plots of burst pressure (Pb) vs. selected quantities 
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Additional numerical data 

To complement the data collected from literature, FE analysis is conducted to generate additional 

cases. Software ANSYS or ABAQUS has been widely used in research to obtain failure pressure 

of pipelines with defects. In this study, FE models are developed in ABAQUS. For computational 

efficiency, the corrosion defect is modeled as a rectangular shape. In addition, thanks to symmetry, 

only a quarter of the pipe with appropriate boundary conditions is modeled, as shown in Figure 73 

to further reduce the computational cost. ABAQUS Statics-General procedure is used for the 

analysis, and the burst pressure is determined when the von Mises stress at any point of the defect 

area reaches the ultimate tensile strength of pipe steel [25].  

 
     
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
Figure 73. A quarter of a corroded pipe modeled in ABAQUS 

 

Before the FE analysis is used to generate new cases, a few experimental burst test results 

from the literature are selected for the model validation. Table 5 shows the pipe material and 

geometry properties and defect geometry of the selected cases, and it also compares the failure 

pressure data reported in the literature (Pb,test) and the failure pressure obtained from the FE 

analysis (Pb,FE) conducted in this study. The cases are selected with the intention to cover a wide 

range of pipe grade: from AISI1020 Mild (low grade) to X100 (high grade). Please note that for 



84 

the selected cases where the information of w is missing, w is assumed, since the effect of w on 

the burst pressure is found to be insignificant. In this study, w is assumed to be 0.05πD based on 

an assumption used in Choi et al. [24]. As shown in Table 5, the error percentages, (Pb,test ‒ Pb,FE)/ 

Pb, are all within 10% except only one case (whose error is about 16%). This result validates the 

FE analysis.  

With the validated FE models, a total of 32 new additional cases are generated for the burst 

numerical analysis and the results are added to the database. The new cases are designed to cover 

the regions where the data collected from literature are scarce.  

Figure 74 shows the new FEM cases (marked as stars) and the cases collected from 

literature (marked as circles for experimental cases and crosses for FE cases) in terms of the four 

important quantities (σy, D/t, d/t, and log (l2/Dt)). The pipeline properties and defect geometries 

and FE results (Pb,FE) of these 32 new cases are provided in Table 6. 
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(a) 

 
(b) 

 

 
(c) 

     ○ Experimental burst tests from literature 
      × FE burst tests from literature 
      ∗ New FEM cases 

 
Figure 74. Scatter plots of selected quantities vs. yield stress (σy) 
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Table 5. Experimental testing cases selected from literature for validating the FE models 

 
 

Reference Grade Diameter 
D (mm) 

Thickness 
t (mm) 

σy 
(MPa) 

σu 
(MPa) 

d 
(mm) l (mm) w (mm) Pb,test 

(MPa) 
Pb,FE 

(MPa) 
Error 
(%) 

[7] AISI1020 Mild 42 2.73 264 392 1.58 42.00 13.00 37.02 36.66 0.97 
[7] AISI1020 Mild 42 2.73 264 392 2.24 21.00 13.00 34.55 33.42 3.28 
[29] X42 274 4.93 351 454 1.60 45.72 43.02a 14.99 16.24 8.33 

[29] X42 274 4.57 351 454 2.74 66.04 43.11a 12.67 13.03 -2.86 

[29] X46 323 8.64 356 469 2.16 63.50 50.79a 24.37 26.71 -9.59 
[29] X46 864 9.47 400 508 3.00 185.42 135.65a 10.56 11.18 -5.89 
[29] X52 273 5.26 389 502 1.73 139.70 42.89a 18.06 17.76 1.67 

[29] X52 612 6.40 433 535 2.57 1371.60 96.05a 9.81 8.20 16.44 

[29] X55 508 5.64 462 587 2.46 170.18 79.8a 11.51 11.59 -0.75 
[29] X55 507 5.74 462 587 3.02 132.08 79.60a 10.73 11.63 -8.44 
[30] X60 324 9.74 452 542 7.14 528 95.3 11.3 10.71 5.20 
[30] X60 508 14.8 414 600 9.7 500 95.3 15.8 16.24 -2.77 
[31] X65 762 17.5 465 564 8.75 300 50 19.8 20.08 -1.43 
[31] X65 762 17.5 465 564 8.75 100 50 24.3 25.85 -6.38 
[22] X70 762 15.9 532 627 7.95 300 50 21.5 20.62 4.08 
[32] X80 459 8.1 534 661 5.39 39.6 31.9 22.68 22.25 1.92 
[33] X80 459 8.00 589 731 3.75 40.00 32 24.20 25.85 -6.82 
[34] X100 1321 22.81 782 803 11.31 608.05 207.47a 18.10 18.64 -2.99 

[34] X100 1321 22.81 782 803 11.41 1108.13 207.47a 15.40 16.92 -9.93 
a w is assumed to be 0.05πD based on an assumption from [25]  



87 

Table 6. New FE models cases 

Grade Diameter 
D (mm) 

Thickness 
t (mm) 

σy 
(MPa) 

σu 
(MPa) d (mm) l (mm) w (mm) Pb,FE 

(MPa) 

AISI 1020 Mild 508 6.6 264 392 0.66 7.84 79.80 10.60 
AISI 1020 Mild 274 5 264 392 1.00 8.26 43.04 14.94 
AISI 1020 Mild 762 17.5 264 392 5.25 42.48 119.69 18.64 
AISI 1020 Mild 324 8.64 264 392 3.45 390.86 50.89 15.84 
AISI 1020 Mild 324 10.3 264 392 6.70 1160.31 50.89 10.67 

X52 324 5.08 389 502 0.51 9.05 50.89 17.13 
X52 762 17.5 389 502 3.50 70.04 119.69 24.97 
X52 508 14.8 389 502 8.14 640.70 79.80 17.42 
X60 459 8 414 600 0.80 8.20 72.10 22.88 
X60 762 17.5 414 600 3.50 42.48 119.69 29.36 
X60 324 10.3 414 600 6.18 57.77 50.89 34.50 
X60 459 8 452 542 0.80 8.20 72.10 21.25 
X60 762 15.9 452 542 4.77 40.49 119.69 24.23 
X55 508 6.6 462 587 0.99 12.92 79.80 16.74 
X55 324 8.64 462 587 3.02 32.08 50.89 32.34 
X80 508 5.74 534 661 0.57 7.31 79.80 16.43 
X80 324 5.08 534 661 0.76 9.05 50.89 22.81 
X80 762 17.5 534 661 7.88 42.48 119.69 32.34 
X80 324 8.64 534 661 4.75 644.01 50.89 19.19 
X80 324 10.3 534 661 8.24 1160.31 50.89 10.19 
X80 508 5.74 589 731 0.57 7.31 79.80 18.15 
X80 324 5.08 589 731 1.02 14.92 50.89 24.96 
X80 273 5.26 589 731 1.58 37.89 42.88 29.09 
X80 762 17.5 589 731 7.00 313.90 119.69 28.01 
X80 324 8.64 589 731 5.18 390.61 50.89 19.74 
X80 324 10.3 589 731 8.24 1160.31 50.89 11.24 

X100 508 5.74 782 803 0.57 7.31 79.80 20.51 
X100 324 5.08 782 803 1.02 14.92 50.89 28.71 
X100 273 5.26 782 803 1.58 22.98 42.88 34.57 
X100 762 17.5 782 803 7.00 115.48 119.69 38.22 
X100 324 8.64 782 803 5.18 644.01 50.89 20.61 
X100 324 10.3 782 803 8.24 1160.31 50.89 12.34 

  



88 

Performance comparison of existing models 

As shown in Table 3, some of the prediction models are developed for certain type of grade or 

defect geometry. Thus, it is more appropriate to compare the prediction models at different levels 

of grade and defect geometry. As indicated in Figure 72, the changes in four quantities (i.e., σy, 

D/t, d/t, and l2/Dt) have shown tendency to change the failure pressure; thus, the performance of 

the existing models can be compared at different levels of these four quantities. In particular, σy 

reflects material strength, D/t describes the level of the relative pipe wall thickness, and d/t and 

l2/Dt suggest the extent of corrosion. For simplicity, each quantity is classified into three 

predefined levels, as shown in Table 4. The three levels of σy correspond to low strength (level 1), 

moderate strength (level 2), and high strength (level 3). The three levels of l2/Dt are based on the 

long defect limit suggested in the literature, where l2/Dt = 18 suggested by Choi et al. [24] and 

l2/Dt = 50 suggested in [3]. The three levels of d/t correspond to shallow depth, moderate depth, 

and deep depth, respectively. The three levels of D/t correspond to thick wall, moderate thick wall, 

and thin wall, respectively.  

The performance of a prediction model can be quantified using mean (µres), standard 

deviation (σres), and mean squared error (MSE) of residuals (where residual refers to difference 

between the actual and the prediction values). In particular, MSE measures the combination of the 

prediction bias and variance. Figure 75 shows the performance comparison of the 24 models for 

three levels of σy, where the crosses refer to µres, the horizontal lines refer to µres ± σres, and solid 

dots are the MSE values. Note that the results for models G2-11, G2-12, G6-22, and G6-23 are 

calculated only using the cases that have the information of w, since these models require the w 

value.  

As shown in Figure 75, regardless the levels of σy, all prediction models (except G2-11 and 

G4-17) have positive µres (shown as cross markers above the horizontal line of zero residual, 

indicating they averagely underestimate the burst capacity. Figure 75 also indicates that most 

prediction models have smaller variability in the residuals for Level 2 (i.e., moderate strength) than 

for Levels 1 and 3 of σy, and the prediction variance is bigger for Level 1 of σy in general, shown 

in Figure 75(a). With MSE shown in Figure 75(d), one could also observe that most of models 

perform best in Level 2 and worst in Level 1. All these results indicate that the performance of 

each model changes from level to level.  
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(a) σy – Level 1 (low strength) 

 
(b) σy – Level 2 (moderate strength) 

 
(c) σy – Level 3 (high strength) 

 
(d) σy –MSE – All Levels 

● Level 1 (low strength) □ Level 2 (moderate strength) o Level 3 (high strength) 
Figure 75. Comparison of residual and MSE of each model for three levels of σy 
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Furthermore, different from all other models, G2-11 and G4-17 overestimate the burst 

capacity for all levels. Lastly, among G1 models, G1-7 has the best performance. Among G2 

models, G2-11 model has the worst performance. Among the two G3 models, G3-15 is better and 

comparable with the best ones of all levels. While the two G4 models do not perform well at all, 

the two G5 models are the top models overall. Among the four G6 models, G6-22 and G6-23 

perform best. The performance comparison of the existing models within their own groups is also 

summarized in Table 3. 

Figure 76(a)-(c) show the comparisons of MSE of the 24 models for three levels of the 

other three quantities: D/t, d/t, and l2/Dt, respectively. First, Figure 76(a) shows that most models 

have best performance for Level 3 of D/t (i.e., thin pipe thickness) and worst for Level 1 of D/t 

(i.e., thick pipe thickness). However, each model performs similarly among the three levels of d/t 

and l2/Dt except a few cases, as shown in Figure 76(b) and Figure 76(c). For example, models G2-

11 and G4-17 perform very differently for the three levels of d/t; models G2-12, G4-18, and G6-

23 perform much worse for Level 1 of l2/Dt (i.e., short defects); model G6-23 has much better 

predictions for Levels 2 and 3 of l2/Dt (i.e., medium and long defects). In addition, Zhou and Huang 

[12] found that the models considered in their study are more conservative for long defects, which 

is not observed in this study. The performance comparison of the existing models within their own 

groups based on levels of D/t, d/t, and l2/Dt are also summarized in Table 3. 

Furthermore, models are compared within their groups based on Figure 75 and Figure 76. 

The G1 models that are based on the NG-18 equations have similar prediction performance, and 

generally are pretty good models. Group G2 models based on Buckingham’s π theorem have 

significantly different performance. The G4 models (that are developed by using the stress 

concentration factor in the model formulation and neglecting the defect length) have the worst 

performance overall, indicating that the impact of the defect length cannot be neglected. The G5 

models based on the strain-hardening behavior of pipelines perform the best overall. 
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(a) D/t 

 
(b) d/t  

 
(c) l2/Dt 

● Level 1 (low strength) □ Level 2 (moderate strength) o Level 3 (high strength) 
Figure 76. Comparison of MSE of each model for three levels of D/t, d/t, and l2/Dt 
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5.1.4 Proposed prediction models 

As shown in Figure 75, the performance of the existing models changes with different levels of 

mechanical strength of the pipe material. This suggests that different failure pressure prediction 

models should be developed for different levels of mechanical strength. Figure 77(a) and Figure 

77(b) display the scatter plots of σy vs. the grade, and σu vs. the grade in the dataset, respectively. 

Figure 77 shows that the correlations between σy or σu and the grade are similar: strongly positive 

correlated. This suggests that it is appropriate to develop the failure pressure prediction models 

based on the levels of either σy or σu, as both could be used to reflect the grade level. In this study, 

two sets of models are developed: one set of models is based on three levels of σy and another set 

based on three levels of σu. Then these two sets of models are compared to determine the final set. 

For each level of σy or σu, the probabilistic failure pressure model follows the same 

multivariate linear regression formulation by adopting the existing prediction models as the 

independent variables: 

𝑌𝑌 = 𝜃𝜃0 + � 𝜃𝜃𝑖𝑖𝑦𝑦�𝑖𝑖
𝑚𝑚

𝑖𝑖=1
+ 𝜎𝜎𝜎𝜎 (5.1) 

where Y = predicted failure pressure or a suitable transformation; θi = model parameters; 𝑦𝑦�𝑖𝑖 = 

deterministic prediction from the 24 existing prediction models described in Appendix B; and σε 

= model error in which σ is the standard deviation of the model error (assumed to be constant) and 

ε is the standard normal random variable (i.e., normality assumption). When considering all the 

existing prediction models in Eq. (5.1), the model is a full model. Since not all the terms contribute 

to the model prediction, a model selection procedure is adopted to eliminate the ones that do not 

contribute statistically significantly to the prediction.   

Model development 

With Eq. (5.1), the full model for each level of σy or σu is assessed based on the data within the 

corresponding level. In particular, randomly selected 80% of the data (or called training data) in 

each level is used for the model development, while the rest 20% of the data (or called test data) 

in each level is used for validation. With the full model, an all-possible subset model selection 

procedure is used to reduce the model size to determine the final formulation [34]. Since the defect 

width w is missing for 61% of the cases (i.e., 264 cases) in the database, the four existing models 

that use w are not considered in the model development. Hence, the full model has a model size of 

20 (i.e., m = 20 in Eq. (5.1)), and the size of the reduced model varies from 1 to 19. In the all-
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possible subset model selection, all possible combinations of predictors are evaluated for each 

model size (or subset) and the best model from that subset is identified. Then those best models 

from all the subsets are compared to determine the final model.  

 
(a)  

 
(b)  

Figure 77. Scatter plots of (a) σy vs. grade and (b) σu vs. grade 
 

To compare the model performance for each subset, this study uses three statistics 

measures: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and 

standard deviation of model error (σ). Both AIC and BIC measure how well the model fits the data 

through log likelihood, log(L), with the consideration of the number of predictors used in the 

model, trading off the complexity of the model formulation with its accuracy. These two measures 

are calculated as below: 

𝐴𝐴𝐴𝐴𝐴𝐴 = 2𝑘𝑘 − 2 log(𝐿𝐿) (5.2) 
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𝐵𝐵𝐵𝐵𝐵𝐵 = 2 log(𝑛𝑛)𝑘𝑘 − 2 log(𝐿𝐿) (5.3) 

where k = number of estimated parameters in the model, and n = number of data points. The less 

value of AIC or BIC is, the better performance the model has. The standard deviation of model error, 

σ, measures the dispersity in the model prediction; and the lower σ  is, the better the model is. 

For each subset (i.e., the possible models with the same model size), all the statistics 

measures advocate the same model as the best model. However, when comparing all the best 

models from all the subsets, these three statistics measures may suggest different models to be the 

most desirable one. Note that since the predictors, 𝑦𝑦�𝑖𝑖, in Eq. (5.1) are actually existing deterministic 

models that also have different extents of complexity in their formulations; thus, using just the 

number of predictors in the model as the measure of the model complexity in AIC and BIC may 

oversimplify the complexity measurement in this study. Consequently, the final model is 

determined by using engineering judgement for the complexity of the formula, σ for the accuracy 

in this study, and AIC and BIC as selection criteria references. 

Probabilistic models 

Instead of pre-defining the three levels of σy or σu, the ranges that define the levels are optimized 

by minimizing the total residuals of the three models of the set. For all the models, it is found that 

when the model size goes up to 3 or more, the change in σ is insignificant. This indicates that it is 

not beneficial to choose a model with a size larger than 2. Table 7 shows the model selection results 

for the two sets of developed models: one set based on three levels of σy, and the other set based 

on three levels of σu. For each level, Table 7 also shows the existing models selected resulted from 

the model selection and standard deviation of the model error, σ, for model sizes 1 and 2.  

 

Table 7. Comparison of the best models of subsets 
Level based on σy 

Level 1 
262 ≤ σy < 430 MPa 

Level 2 
430 ≤ σy < 530 MPa 

Level 3 
530 ≤ σy < 802 MPa 

Model Size 1 2 1 2 1 2 
Existing model selected G6-24 G1-9, G3-15 G3-16 G1-7, G4-18 G3-16 G1-3, G1-4 

σ (MPa) 2.0139 1.8781 1.7722 1.6195 1.2625 1.1025 

Level based on σu 
Level 1 

392 ≤ σu < 600 MPa 
Level 2 

600 ≤ σu < 700 MPa 
Level 3 

700 ≤ σu < 891 MPa 
Model Size 1 2 1 2 1 2 

Existing model selected G6-24 G4-18, G6-24 G1-5 G1-2, G4-18 G1-3 G1-3, G4-18 
σ (MPa) 1.8442 1.8018 1.2253 1.0682 1.5616 1.3559 
 

Table 7 shows that overall, the models developed based on the levels of σu have lower 
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model errors compared to the ones based on the levels of σy, except the models for Level 3 of σu. 

For model size 2 on Level 3, such difference is not too significant. Therefore, the models based on 

the three levels of σu are preferred. For each level, as expected, the model with model size 2 has a 

smaller σ value (i.e., more accurate) than the one with model size 1; however, when such decrease 

becomes marginal, the model with a smaller model size (i.e., less complexity in model formula) is 

preferred. Accordingly, the final selected models are highlighted with grey shown in Table 7. Table 

8 shows the model formula and model parameter statistics of the final selected three models for 

the three levels of σu. 

5.1.5 Model performance evaluation 

Figure 78 provides the scatter plots of the point prediction of the proposed model, 𝑌𝑌� for each level 

of σu vs. the observed data, Ytest, that is the training data used for the model development. If the 

prediction is perfect, the dots should line up on the 1:1 line, shown as the solid line. The dashed 

lines are the mean ± 1 standard deviation of the model error. In these plots, the circle and cross 

markers refer to the data obtained from experimental and numerical burst tests, respectively. Figure 

78 shows that the dots are evenly scatter around the 1:1 line for both the experimental and 

numerical data, indicating that the developed models provide unbiased predictions. The scatter 

degree of the dots reflects the accuracy of the model. For example, Figure 78(a) shows a slightly 

larger scatter compared to Figure 78(b) and Figure 78(c), indicating that the Level 1 model is less 

accurate than the Levels 2 and 3 models, consistent with the model errors shown in Table 8. Figure 

78 also shows that most of experimental data is in Level 1, while only a few experimental data in 

Levels 2 and 3. Figure 78(a) indicates that the proposed model for Level 1 performs similarly for 

the experimental and numerical burst test data. However, as the experimental test data are very 

limited for Levels 2 and 3, one cannot conclusively evaluate the performance of the proposed 

models for the experimental cases for these two levels.  

Figure 79 shows the performance of the proposed models compared with the existing 

models at the three levels of σu. A shown in Figure 79, regardless the levels, the proposed models 

(labeled as PM in Figure 79) are unbiased and have the lowest MSE. Note that Figure 79 indicates 

that the performances of the existing models at the optimized three levels of σu are similar to the 

ones at the three predefined levels of σy shown in Figure 75. The same model, G5-19, that was 

identified as the best existing model based on the levels of σy shown in Figure 75 is also the best 
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existing model based on the levels of σu shown in Figure 79. Interestingly, G5-19 is not selected 

in the proposed models through the model selection.  

 
(a) Level 1 

 
(b) Level 2 

 
(c) Level 3 

○ Experimental burst tests 
           × FE burst tests 
 

Figure 78. Scatter plots of the failure pressure predicted by the proposed models vs. the observed 
pressure 

 

Table 8. Final selected model formula and model parameter statistics 

Level based on σu Formula 

Model Parameters 
θ0 θ1 θ2 

σ 
Mean Std Mean Std Mean Std 

Level 1 
392 ≤ σu < 600 MPa  θ0 + θ1𝑦𝑦�24 1.8469 0.3180 1.0281 0.0209 - - 1.8442 

Level 2 
600 ≤ σu < 700 MPa θ0 + θ1𝑦𝑦�2 + θ2𝑦𝑦�18 -2.3322 0.3774 1.0751 0.0271 0.2978 0.0273 1.0682 

Level 3 
700 ≤ σu < 891 MPa θ0 + θ1𝑦𝑦�3 + θ2𝑦𝑦�18 3.4948 0.6490 0.9381 0.0501 0.2420 0.0518 1.3559 
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(a) σu – Level 1 

 
(b) σu – Level 2 

 
(c) σu – Level 3 

 
(d) σu – MSE – All Levels 

● Level 1 □ Level 2 o Level 3 
Figure 79. Comparison of residual and MSE of the proposed models with the existing models for 

three levels of σu 
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To further evaluate the proposed models’ performance, Figure 80 shows the scatter plots 

of the point prediction of the proposed model or the besting existing model, G5-19, identified in 

Figure 79 vs. the observed data, Ytest using the validation data (i.e., the 20% of the data that is not 

used in the model development). Figure 80 displays that for each level the proposed model (marked 

as solid dots) has the unbiased predictions; and most of the solid dots are within the mean ± 1 

standard deviation of the model error, which validate the proposed model. On the other hand, the 

scatter of the predictions from the best existing model (marked as crosses) shows only unbiased 

for Level 1, slightly overestimation for Level 2, and underestimation for Level 3. Furthermore, 

based on the scatter size, the prediction from G5-19 is very similar to the proposed model for Level 

1, but the proposed model shows better accuracy for Level 2 and particularly Level 3. This 

indicates that the proposed models improve the accuracy from the existing models. 

 
(a) Level 1 

 
(b) Level 2 

(c) Level 3 

            ● Proposed model 
           × Best existing model 
 

Figure 80. Scatter plots of the prediction of proposed model and best existing model vs. the 
validation data (20% of data) 
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5.1.6 Sensitivity analysis 

Aforementioned, Figure 72 suggests that σy, D/t, d/t, l2/Dt have effects on the failure pressure; 

therefore, a sensitivity analysis is performed to evaluate the impact of these quantities on the 

proposed model predictions. Since the proposed models are developed based on the levels of σu, 

only three quantities (i.e., D/t, d/t, l2/Dt) are considered. For a comparison purpose, the sensitivities 

of these three quantities to the best existing model (i.e., G5-19) are also obtained.  

Figure 81 shows the changes in the pressure prediction of a pipeline with σu = 458 MPa 

(belonging to Level 1), D = 324 mm, and d = 2 mm, when varying d/t, D/t, and l2/Dt. For d/t and 

D/t (shown in Figure 81(a) and Figure 81(b) respectively), two cases are considered: one with a 

shorter defect length (l = 100 mm or l2/Dt = 5) and the other one with a longer defect length (l = 

350 mm or l2/Dt = 63). For l2/Dt (shown in Figure 81(c)), two cases are also considered: one with 

a shallow depth (d = 2mm or d/t = 33%) and the other with a deep defect depth (d = 5mm or d/t = 

83%).  

First, as expected, the predictions of both models decrease with the increase of the three 

quantities d/t, D/t, and l2/Dt. This indicates that both the proposed and the best existing models are 

sensitive to the pipe thickness and the depth and length of the corrosion defect. The rates of burst 

pressure decrease for both models are overall very similar for all the cases except the sensitvity to 

l2/Dt for the deep defect depth, where G5-19 has much greater rate of decrease than the proposed 

model when l2/Dt < 10. For d/t and D/t, the sensitivity results are similar for both shorter and longer 

length defects. For l2/Dt, the sensitivity depends on the depth of the defects: more sensitive for the 

deeper defect. In addition, for l2/Dt > 30, the change rates in both model predictions become flatter, 

which means that the models become less sensitive for long defect lengths. Note that the sensitivity 

analsysis for pipelines with σu in Levels 2 and 3 are found to be similar to the finding shown in 

Figure 81.  
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(a)  

 
(b)  

 
(c)  

    Proposed model prediction 
         Best existing model prediction 

 
D = 324 mm 

t = 6 mm 
σu = 458 MPa 

 
 
 

Figure 81. Sensitivity of the three selected quantities on pressure prediction 
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5.2 Probabilistic Models of Defect Interaction Identification and Failure Pressure for 

Pipelines with Interacted Corrosion Defects 

5.2.1 Background 

Many interaction rules have been developed in the past to identify defect interaction of adjacent 

defects, such as Kiefner and Vieth (KV) [26], POF [27], DNV RP F101 [8], API RP 579 [28], BS 

7910 [29], 6WT [30] and 3WT [5]. Recently, Li et al. [31] proposed an interaction rule expressed 

in terms of pipe diameter and/or thickness based on finite element (FE) analysis of models with 

short and long corrosion defects. Their interaction rule provides different formulations for different 

ranges of corrosion defect length; but the FE models only contain the adjacent defects with the 

same length, meaning the developed formula may not be suitable when the adjacent defects have 

different lengths. Mondal and Dhar [32] proposed an interaction rule for longitudinal spacing; 

however, the rule is developed using the adjacent defects with the same depth, meaning the rule 

may not be appropriate when the adjacent defects have different depths. In addition, Zhang and 

Tian [33] developed an interaction rule for longitudinal spacing considering defect depth and steel 

grade, but their interaction rule has the same limitation as the one proposed by Mondal and Dhar 

[32].  

To evaluate the performance of the existing rules, several studies have been conducted. For 

instance, Benjamin et al. [34] compared the performance of KV [26], POF [27], and DNV RP 

F101 [8] based on 26 finite element models of short corrosion defects. They found that the DNV 

interaction rule had the best performance. Similarly, Li et al. [31] compared their proposed 

interaction rule with 5 interactions rules (i.e., KV [26], POF [27], DNV RP F101 [8], API RP 579 

[28], and BS 7910 [29]), and the results show that their proposed interaction rules performed the 

best. In summary, although many interaction rules have been developed to identify defect 

interaction, the existing interaction rules are not consistent; and in addition, all of them are 

typically deterministic, which are not able to capture the inherent uncertainty in the defect 

interaction. Therefore, a probabilistic model that considers all the influencing factors (e.g., the 

defect depth, length and width, and pipeline strength, thickness, and diameter) is needed.  

Regarding failure pressure prediction, many models have been developed for pipelines 

with single corrosion defect, and only a few models were developed considering interacting 

defects. Nevertheless, the models developed for single corrosion defect such as the ASME B31G 

method [5], the RSTRENG 085dL method [5], and the DNV RP-F101 method for single defects 
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(Part B) [8] have been adopted to calculate the failure pressure of pipelines with interacting defects 

by using the maximum depth and overall length of the colony in those models. Moreover, model 

such as the RSTRENG Effective Area [5] developed for isolated complex-shaped defect can be 

used to calculate the failure pressure of colony of defects by incorporating the length of full wall-

thickness pipe that separates the adjacent defects as a part of the depth profile of the complex-

shaped defect [35]. Det Norske Veritas (DNV) with the cooperation of the BG Technology 

developed a method called DNV RP-F101 for interacting defects (Part B) [8]. In this method, the 

failure pressure of the colony corrosion defects is determined by the minimum value of all 

pressures based on each single defect within the colony and each possible combination of the 

adjacent defects. Note that the DNV approach cannot be implemented to the cases where individual 

profiles overlap when projected onto the longitudinal plane [36]. Benjamin et al. [35] proposed the 

Mixed-Type Interaction (MTI) method based on the DNV RP-F101 method for interacting defects 

(Part B) by considering the length of full wall-thickness pipe that exists between each pair of 

defects within a colony of random configuration; and it also considers the interacting defects 

whose individual profiles overlap when projected onto the longitudinal plane. In addition, Chen et 

al. [37] developed a method to predict the failure pressure for high strength pipeline with multiple 

corrosion defects, which follows the same procedure described above for the DNV RP-F101 

method for interacting defects (Part B) but with a different formulation to calculate the failure 

pressure for single defect and effective depth of the combined defects. 

The performance of some of the existing prediction models has also been compared by 

researchers in the literature. For example, Benjamin et al. [35] used laboratory tests to compare 

five assessment methods, the ASME B31G method [5], the DNV RP-F101 method for single 

defects (Part B) [8], the RSTRENG Effective Area method [5], the DNV RP-F101 method for 

interacting defects (Part B) [8], and the MTI method [35]; and the MTI method provides the most 

accurate predictions. In general, most of the models are found to be conservative, indicating when 

they are used in the pipeline risk management, they will lead to unnecessary repairs and 

maintenance. 

5.2.2 Existing model formulations 

Existing interaction models 

An interaction rule is a rule used to define if two adjacent defects interact and is generally 

expressed in terms of the spacing between the two individual defects (either longitudinal spacing 
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or circumferential spacing). Figure 82 shows a configuration of two defects (Defect 1 and Defect 

2) with the relevant geometric quantities. Most of the existing interaction rules can be written as 

[38]: 

𝑆𝑆𝐿𝐿 ≤ (𝑆𝑆𝐿𝐿)𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑆𝑆𝐶𝐶 ≤ (𝑆𝑆𝐶𝐶)𝐿𝐿𝐿𝐿𝐿𝐿 (5.4) 

where SL = longitudinal spacing, SC = circumferential spacing, (SL)Lim and (SC)Lim = longitudinal 

spacing limit and circumferential spacing limit defined by the interaction rule, respectively. If there 

are more than two defects in the colony, the interaction rule is then applied for all possible pairs 

of adjacent defects [36]. Table 9 provides the formulations for calculating (SL)Lim and (SC)Lim by 

various existing interaction rules in the literature. As shown in Table 9, some use the defect depth, 

length, or width in the spacing limits (e.g., POF [27]), while others use just pipeline thickness 

and/or diameter (e.g., KV [26]). The variation in the existing formulations shown in Table 9 

indicates that a consistent rule is still needed, and all the influencing factors (including the defect 

geometries and pipeline properties) should also be examined holistically. In addition, the existing 

interaction rules are deterministic, which are not able to capture the inherent uncertainty in the 

defect interaction. 

 
Figure 82. Configuration of two defects 

 

Existing capacity pressure prediction models 

The failure pressure of a pipe with a colony of corrosion defects is typically evaluated using an 

interaction rule and a Level-1 assessment method [35]. A Level-1 assessment method uses the 

maximum depth and projected axial length of a defect to evaluate the remaining strength (i.e., burst 

pressure capacity, Pb) [39]. When there is no defect interaction, the pressure capacity is determined 

by the smallest value of all pressures based on each single defect within the colony. In the 
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literature, the most commonly used Level-1 assessment methods are the ASME B31G method [5], 

the RSTRENG 085dL method [5] , and the DNV RP-F101 method for single defects (Part B) [8]; 

the formulations of these three prediction models are summarized in Table 10, labeled as L1-1, 

L1-2, and L1-3, respectively.  

 

Table 9. Existing interaction rules 
Interaction rules (SL)Lim (SC)Lim 

KV [26] 25.4 mm 6𝑡𝑡 
POF [27] min(6𝑡𝑡, 𝑙𝑙1, 𝑙𝑙2) min(6𝑡𝑡,𝑤𝑤1,𝑤𝑤2) 

DNV RP F101 [8] 2√𝐷𝐷𝐷𝐷 𝜋𝜋√𝐷𝐷𝐷𝐷 
API RP 579  [28] (l1 + l2) / 2* (𝑤𝑤1 + 𝑤𝑤2) / 2* 

BS 7910 [6] 2√𝐷𝐷𝐷𝐷* 3√𝐷𝐷𝐷𝐷* 
6WT [30] 6𝑡𝑡 6𝑡𝑡 
3WT [5] 3𝑡𝑡 3𝑡𝑡 

Mondal and Dhar 
[32] 

(15.91 − 7.69𝑑𝑑/𝑡𝑡)𝑡𝑡 
or 

(3 − 1.46𝑑𝑑/𝑡𝑡)√𝐷𝐷𝐷𝐷 
- 

Zhang and Tian 
[33] 

�3954.875 − 3956.144 ∙ 0.994𝑑𝑑/𝑡𝑡�𝑡𝑡 for X65 
or 

�27.831 − 33.22 ∙ 0.132𝑑𝑑/𝑡𝑡�𝑡𝑡  for X80 
- 

Li et al.[31] 
2√𝐷𝐷𝐷𝐷 ,                         𝑙𝑙/√𝐷𝐷𝐷𝐷 ≤ √20 
√𝐷𝐷𝐷𝐷,              √20 < 𝑙𝑙/√𝐷𝐷𝐷𝐷 ≤ √50 
𝑡𝑡,                                 𝑙𝑙/√𝐷𝐷𝐷𝐷 > √50 

0.1𝜋𝜋𝜋𝜋,      𝑙𝑙/√𝐷𝐷𝐷𝐷 ≤ √20 
0.05𝜋𝜋𝜋𝜋,     √20 < 𝑙𝑙/√𝐷𝐷𝐷𝐷

≤ √50 
𝑡𝑡,            𝑙𝑙/√𝐷𝐷𝐷𝐷 > √50 

t = thickness of pipeline 
D = outside diameter of pipeline 
d = identical defect depth for the two 
defects 

l = identical defect length for the two defects 
l1, l2 = defect lengths for the two defects, respectively 
w1, w2 = defect widths for the two defects, respectively 

*This formulation is an interpretation from the original reference by reference [31]. 
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Table 10. Existing capacity pressure prediction models 
Method Formulation 

ASME B31G 
(L1-1) 

𝑃𝑃𝑏𝑏 =

⎩
⎨

⎧2𝑡𝑡
𝐷𝐷

(1.1𝜎𝜎𝑦𝑦) �
1 − (2 3⁄ )(𝑑𝑑 𝑡𝑡⁄ )

1 − (2 3⁄ )(𝑑𝑑 𝑡𝑡⁄ )𝑀𝑀−1� , 𝑙𝑙2 𝐷𝐷𝐷𝐷⁄ ≤ 20

2𝑡𝑡
𝐷𝐷
�1.1𝜎𝜎𝑦𝑦�[1 − (𝑑𝑑 𝑡𝑡⁄ )]                     , 𝑙𝑙2 𝐷𝐷𝐷𝐷⁄ > 20

 (5.5) 

𝑀𝑀 = �1 + 0.8�
𝑙𝑙2

𝐷𝐷𝐷𝐷
� (5.5a) 

RSTRENG 085dL 
(L1-2) 

𝑃𝑃𝑏𝑏 =  
2𝑡𝑡
𝐷𝐷
�𝜎𝜎𝑦𝑦 + 69[𝑀𝑀𝑀𝑀𝑀𝑀]� �

1 − 0.85(𝑑𝑑 𝑡𝑡⁄ )
1 − 0.85(𝑑𝑑 𝑡𝑡⁄ )𝑀𝑀−1� 

𝑀𝑀 =

⎩
⎪
⎨

⎪
⎧�1 + 0.6275�

𝑙𝑙2

𝐷𝐷𝐷𝐷
� − 0.003375�

𝑙𝑙2

𝐷𝐷𝐷𝐷
�
2

, 𝑙𝑙2 𝐷𝐷𝐷𝐷⁄ ≤ 50

3.3 + 0.032�
𝑙𝑙2

𝐷𝐷𝐷𝐷
�                                        , 𝑙𝑙2 𝐷𝐷𝐷𝐷⁄ > 50

 

(5.6) 

(5.6a) 

DNV RP-F101 for 
single defects (Part B) 

(L1-3) 

𝑃𝑃𝑏𝑏 =
2𝑡𝑡𝜎𝜎𝑢𝑢�1 − (𝑑𝑑 𝑡𝑡⁄ )�

(𝐷𝐷 − 𝑡𝑡) �1 − (𝑑𝑑 𝑡𝑡⁄ )
𝑀𝑀 �

 (5.7) 

𝑀𝑀 = �1 + 0.31�
𝑙𝑙2

𝐷𝐷𝐷𝐷
� (5.7a) 

σy = yield strength of pipe material, σu = ultimate strength of pipe material, d: maximum depth of the 
corrosion defect, M = folias or bulging factor 
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Table 11. Summarized procedure for DNV RP-F101 for interacting defects (Part B) and MTI 
method 

Calculate the failure pressure of 
each single defect within the 
colony of defects, Pi 

𝑃𝑃𝑖𝑖 =
2𝑡𝑡𝜎𝜎𝑢𝑢�1 − (𝑑𝑑𝑖𝑖 𝑡𝑡⁄ )�

(𝐷𝐷 − 𝑡𝑡) �1 − (𝑑𝑑𝑖𝑖 𝑡𝑡⁄ )
𝑀𝑀𝑖𝑖

�
  𝑖𝑖: 1. . .𝑁𝑁 defects (5.8) 

𝑀𝑀𝑖𝑖 = �1 + 0.31�
𝑙𝑙𝑖𝑖2

𝐷𝐷𝐷𝐷
� (5.8a) 

Calculate the combined length 
of all combinations of adjacent 
defects, ljk 

𝑙𝑙𝑗𝑗𝑗𝑗 = 𝑙𝑙𝑘𝑘 + � �𝑙𝑙𝑖𝑖 + 𝑆𝑆𝐿𝐿𝑖𝑖�
𝑖𝑖=𝑘𝑘−1

𝑖𝑖=𝑗𝑗

    𝑗𝑗,𝑘𝑘 = 1 …𝑁𝑁 (5.9) 

where 𝑆𝑆𝐿𝐿𝑖𝑖 = longitudinal spacing between adjacent defects  

Calculate the effective depth of 
all combinations of adjacent 
defects, djk 

DNV RP-F101 for interacting defects (Part B)  

𝑑𝑑𝑗𝑗𝑗𝑗 =
∑ 𝑑𝑑𝑖𝑖𝑙𝑙𝑖𝑖𝑖𝑖=𝑘𝑘
𝑖𝑖=𝑗𝑗

𝑙𝑙𝑗𝑗𝑗𝑗
 (5.10) 

MTI method  

𝑑𝑑𝑗𝑗𝑗𝑗 =
𝑉𝑉𝑗𝑗𝑗𝑗

𝑙𝑙𝑗𝑗𝑗𝑗𝑤𝑤𝑗𝑗𝑗𝑗
 (5.11) 

𝑉𝑉𝑗𝑗𝑗𝑗 = �𝑑𝑑𝑖𝑖𝑙𝑙𝑖𝑖𝑤𝑤𝑖𝑖

𝑖𝑖=𝑘𝑘

𝑖𝑖=𝑗𝑗

    𝑗𝑗,𝑘𝑘 = 1 …𝑁𝑁 (5.11a) 

𝑤𝑤𝑗𝑗𝑗𝑗 = 𝑤𝑤𝑘𝑘 + � �𝑤𝑤𝑖𝑖 + 𝑆𝑆𝐶𝐶𝑖𝑖�
𝑖𝑖=𝑘𝑘−1

𝑖𝑖=𝑗𝑗

    𝑗𝑗,𝑘𝑘 = 1 …𝑁𝑁 (5.11b) 

where 𝑆𝑆𝐶𝐶𝑖𝑖 = circumferential spacing between adjacent 
defects  

Calculate the failure pressure of 
all combinations of adjacent 
defects, Pjk 

𝑃𝑃𝑗𝑗𝑗𝑗 =
2𝑡𝑡𝜎𝜎𝑢𝑢 �1 − �𝑑𝑑𝑗𝑗𝑗𝑗 𝑡𝑡⁄ ��

(𝐷𝐷 − 𝑡𝑡)�1 −
�𝑑𝑑𝑗𝑗𝑗𝑗 𝑡𝑡⁄ �
𝑀𝑀𝑗𝑗𝑗𝑗

�
  (5.12) 

𝑀𝑀𝑗𝑗𝑗𝑗 = �1 + 0.31�
𝑙𝑙𝑗𝑗𝑗𝑗

2

𝐷𝐷𝐷𝐷
� (5.12a) 

Determine burst pressure, Pb 𝑃𝑃𝑏𝑏 = 𝑚𝑚𝑚𝑚𝑚𝑚�∀𝑃𝑃𝑖𝑖 ,∀𝑃𝑃𝑗𝑗𝑗𝑗� (5.13) 
 

Alternatively, Level-2 assessment methods can be used for the failure pressure prediction 

for the pipe with interacting corrosion defects. A Level-2 assessment method evaluates the 

remaining strength by considering the possibility of interaction effect among defects and/or the 

impact of the defect shape [39]. Some of the Level-2 assessment methods are the RSTRENG 



107 

Effective Area method [5] (labeled as L2-4), the DNV RP-F101 method for interacting defects 

(Part B) (labeled as L2-5) [8], and the MTI method [35] (labeled as L2-6). The RSTRENG 

Effective Area method [5] developed by the ASME involves numerous measurements of the depth 

of the corrosion all over the corroded area, requiring therefore a longitudinal profile of the corroded 

area [5]; and the pressure prediction is calculated by: 

𝑃𝑃𝑏𝑏 =
2𝑡𝑡
𝐷𝐷
�𝜎𝜎𝑦𝑦 + 69[𝑀𝑀𝑀𝑀𝑀𝑀]� �

1 − A 𝐴𝐴0⁄
1 − (A 𝐴𝐴0⁄ )𝑀𝑀−1� (5.14) 

𝑀𝑀 =

⎩
⎪
⎨

⎪
⎧�1 + 0.6275�

𝑙𝑙2

𝐷𝐷𝐷𝐷
� − 0.003375�

𝑙𝑙2

𝐷𝐷𝐷𝐷
�
2

, 𝑙𝑙2 𝐷𝐷𝐷𝐷⁄ ≤ 50

3.3 + 0.032�
𝑙𝑙2

𝐷𝐷𝐷𝐷
�                                        , 𝑙𝑙2 𝐷𝐷𝐷𝐷⁄ > 50

 (5.14a) 

where A: longitudinal area of metal loss and A0: original uncorroded area of length l and thickness 

t. The failure pressure is obtained by evaluating all possible combinations of local metal loss with 

respect to original material using iteration and the lowest calculated failure pressure is retained as 

the failure pressure of the colony corrosion defects [5]. 

Compared to the RSTRENG Effective Area method, the other two existing methods 

involve several steps, which are summarized in Table 11, where the failure pressure is determined 

by the minimum value of all pressures based on each single defect within the colony and all 

possible combinations of the adjacent defects. Figure 83 adapted from DNV [8] shows a combined 

Defect jk defined by single Defect j to single Defect k with the defect depth profiles projected on 

the longitudinal plane. The only difference between these two methods is how the effective depth 

djk is calculated, where the DNV RP-F101 method for interacting defects (Part B) uses the surface 

area and the MTI uses the volume of the metal loss of individual defect within the combined 

defects. Lastly, using the minimum value of all calculated pressures also implies that these two 

existing models suggest the existence of the defect interaction when one of Pjk is the lowest 

calculated failure pressure.  
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Figure 83. Combining interacting defects 

 

5.2.3 Data Collection  

A comprehensive failure pressure data is established in this study, which is then used to evaluate 

the performance of the existing interaction rules and prediction models, and also to develop 

accurate interaction rule and failure pressure assessment method for pipeline with a colony of 

corrosion defects. The database established consists of the data directly collected from literature 

and additional numerical data obtained from FE analysis conducted in this study. 

Data collection from literature 

A total of 202 different burst test results are collected from past studies, out of which 25 are from 

laboratory experimental burst test and 117 are from FEM simulations. Table 12 provides a 

summary of the data collected, where dcluster, lcluster, and wcluster are the depth (maximum), length, 

and width of a cluster of defects, respectively. Since the failure pressure of a pipe with a colony of 

defects depends on the pipe material and geometry properties, defect geometry, and defect spacing, 

it is worthy to examine the correlation of the following quantities with the failure pressure (Pb) 

through scatter plots shown in Figure 84 using the data collected: yield strength (σy), ratio of pipe 

diameter to pipe thickness (D/t), ratio of maximum defect depth within a cluster of defects to pipe 

thickness (dmax/t), ratio of cluster defect depth to pipe thickness (dvol/t) where dvol is calculated from 

the volume of metal loss of the cluster (i.e., dvol = Vclus/(wclus⋅lclus)), ratio of cluster length squared 

to the multiplication of pipe diameter and thickness (lclus2/Dt), product of cluster width and cluster 

length (wclus·lclus), and ratio of cluster width to pipe diameter (wclus/D).  

In Figure 84, the circle and cross markers refer to the data obtained from experimental and 

numerical burst tests, respectively. Figure 84(a), the scatter plot of σy vs. Pb, shows that an overall 

increase of σy leads to a higher burst pressure, except a few cases circled by the dotted lines. These 
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cases may be explained by their low values of D/t (referring to very thick-wall pipes) as shown in 

the dotted circle in Figure 84(b). Figure 84(b) on the other hand indicates that a low D/t ratio 

(referring to very thick-wall pipes) leads to a high burst pressure, as expected. Figure 84(c), (d), 

(f) and (g) show the scatter plots of dmax/t, dvol/t, wclus·lclus, and wclus/D over Pb, respectively; no 

distinct trends between Pb and these quantities are found. However, Figure 84(e) indicates a 

negative correlation between Pb and log(lclus2/Dt). 

 

Table 12. Summary of the database collected from literature 
Grade D/t σy (MPa) σu (MPa) dcluster/t lcluster (mm) wcluster (mm) Counts 

X60 [30.00 - 57.08] [435 -452] [542 - 560] [0.25 - 0.80] [35.00 - 475.60] [35.00 - 418.39] 81 

X70 [57.25 - 58.05] [580 - 662] [728 - 773] [0.58 - 0.63] [110.00 – 430.00] [60.00 – 170.00] 16 

X80 [56.64 – 57.43] [534 - 589] [661- 731] [0.30 - 0.69] [39.60 - 1072.20] [31.90 - 383.90] 105 
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(a) σy 

 
(b) D/t 

 
(c) dmax/t 

 
(d) dvol/t 

 
(e) log(lclus

2/Dt) 
 

(f) wclus⋅lclus 

 
(g) wclus/D 

○ Experimental burst tests 
× Finite element burst tests 

Figure 84. Scatter plots of burst pressure (Pb) vs. selected quantities 

5 10 15 20 25 30 35 40

P
b

 (MPa)

400

450

500

550

600

650

700
y

 (
M

Pa
)

5 10 15 20 25 30 35 40

P
b

 (MPa)

25

30

35

40

45

50

55

60

D
/t

5 10 15 20 25 30 35 40

P
b

 (MPa)

0

0.2

0.4

0.6

0.8

1

d
m

ax
/t

5 10 15 20 25 30 35 40

P
b

 (MPa)

0

0.2

0.4

0.6

0.8

d
vo

l
/t

5 10 15 20 25 30 35 40

P
b

 (MPa)

-2

0

2

4

6

lo
g 

(l
cl

us

2
/D

t)

5 10 15 20 25 30 35 40

P
b

 (MPa)

0

2

4

6

8

10

w
cl

us
*l

cl
us

10 4

5 10 15 20 25 30 35 40

P
b

 (MPa)

0

0.2

0.4

0.6

0.8

1

w
cl

us
/D



111 

Additional numerical data 

As shown in Table 12, the existing data are only for three grades (i.e., X60, X70, and X80) and 

not for low grades (e.g., X42, X46, X52, or X55). To complement the existing data collected in 

the literature, FEMs are used to generate additional cases. In this study, the FEMs are developed 

in ABAQUS. For computational efficiency, the corrosion defect is modeled as a rectangular shape 

as shown in Figure 85. ABAQUS Statics-General procedure is used for the analysis, and the burst 

pressure is determined when the von Mises stress at any point of the defect area reaches the 

ultimate tensile strength of pipe steel [22].  

 

   
Figure 85. A corroded pipe modeled in ABAQUS 

 

A few laboratory test results from the literature are selected for the FEM validation. Table 

13 shows the summary of selected test cases and the burst pressure comparison of the test results 

and the FEM simulation results. Table 13 shows the defects spacing configuration of the selected 

test cases, and also compares the failure pressure data reported in the literature (Pb,test) and the 

failure pressure obtained from the FE analysis (Pb,FE) conducted in this study. In Table 13, all the 

selected test cases are grade X80 from [40] and [41], in which the stress-strain curves required to 

run the FEM analysis are provided.  
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Table 13. Selected cases for FEM validation 

Grade Specimen D (mm) 
Group of 
defects 

configuration 
t (mm) σy 

(MPa) 
σu 

(MPa) 
(Pb,test) 
(MPa) 

(Pb,FE) 
(MPa) 

Error 
(%) 

X80 IDTS 3 [19] 458.8 
 

8.10 534.1 661.4 20.31 20.48 -
0.8223 

X80 IDTS 4 [19] 458.8 
 

8.10 534.1 661.4 21.14 22.61 -
6.9328 

X80 IDTS 9 [20] 459.4 

 

8.00 589.0 731.0 23.06 22.97 0.4076 

X80 IDTS 10 [20] 459.4 

 

8.00 589.0 731.0 23.23 22.97 1.1365 

 

As shown in Table 13, the error percentages between Pb,test and Pb,FE for all cases are within 

10%. Therefore, the FE models are validated and can be used to assess the failure pressure for 

other defect scenarios. To cover a wide range of grade in the numerical cases, the stress-strain 

curves provided in the collected database with isolated defects are used to generate the FE models 

with colony defects, since the material stress-strain curves are independent of defects.  With the 

validated FE models, a total of 783 new numerical cases are generated. These added numerical 

cases are designed to cover a wider range of yield strength (σy ranging from 262 MPa to 782 MPa) 

and four quantities: D/t, dmax/t, lclus2/Dt, and wclus/D. Figure 86 shows the scatter plots of σy vs the 

four quantities based on the experimental and FE burst test data collected from literature and the 

new FEM data. As shown in Figure 86, the new cases are designed to cover the regions where the 

data collected from literature is scarce. It is worth stating that most of the total number of generated 

numerical cases (783) is originally generated in this study to understand the impact of various 

quantities (e.g., spacing, defect sizes, material properties) on the defect interaction. Table 14 

provides a summary of the numerical data generated in this study and the ranges covered in terms 

of D/t, σy, σu, and depth (maximum), length, and width of the cluster of defects. 

There are three situations in the database: (1) cases with interacted defects, (2) cases 

without interacted defects, and (3) cases in which defect interaction cannot be determined. In this 
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study, adjacent defects are considered to be interacted when the ratio of the actual burst pressure, 

Pa, to the burst pressure due to isolated defects, Pi, is less than 0.99 [31]. Table 15 summaries the 

numbers of the data points for each case in the total database (including the data collected from 

literature and the numerical data generated from this study). As shown in Table 15, most of the 

data are the cases with interacted defects; and also the colonies with two defects are the majority. 

 
(a) D/t  

(b) dmax/t 

 
(c) log(lclus

2/Dt) 
 

(d) wclus/D 

○ Experimental burst tests     × Finite element burst tests     *New FEM cases 

Figure 86. Scatter plots of selected quantities vs. yield stress (σy) 
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Table 14. Summary of the database generated from FE 
Grade D/t σy (MPa) σu (MPa) dcluster/t lcluster (mm) wcluster (mm) Counts 

AISI 1020 Mild [12.00 - 94.00] 264 392 [0.10 - 0.94] [42.48 - 489.13] [61.00 - 320.01] 29 

X42 [32.87 - 96.98] 351 454 [0.10 - 0.80] [40.00 - 517.37] [30.00 - 426.05] 115 

X46 [24.65 – 97.95] [356 - 400] [469 - 508] [0.10 - 0.79] [40.00 - 501.90] [30.00 - 497.67] 227 

X52 [22.23 – 98.97] [389 - 433] [502 - 535] [0.10 - 0.80] [40.48 - 462.10] [76.20 - 359.03] 34 

X55 [13.76 – 97.57] 462 587 [0.29 - 0.73] [82.66 - 468.59] [74.37 - 488.58] 10 

X60 [16.97 – 98.00] [414 - 452] [542 - 600] [0.10 - 0.95] [40.00 - 439.09] [30.00 - 421.38] 171 

X65 [28.98 – 91.45] 465 564 [0.10 - 0.80] [42.48 - 425.67] [76.20 - 441.23] 19 

X70 [13.23 – 96.77] [508 - 532] [627 - 667] [0.20 - 0.79] [107.13 - 585.86] [95.52 - 422.29] 23 

X80 [17.60 – 99.31] [534 - 589] [661 -731] [0.10 - 0.78] [40.00 - 493.24] [30.00 - 399.31 129 

X100 [14.00 – 100.00] 782 803 [0.10 - 0.96] [42.00 - 474.44] [47.00 - 481.78] 26 

 

Table 15. Number of data points 

Number of defects in the colony With 
interaction 

Without 
interaction 

Indeterminate 
interaction 

2 defects 453 353 20 
3 defects 111 0 4 
4 defects 16 1 2 

More than 4 defects 10 0 15 
 

5.2.4 Performance comparison of existing models 

The established database of pipelines is used to evaluate the performance of the existing 

interactions rules and failure pressure prediction models for colony of corrosion defects. Only the 

data with two defects are used to compare the performance of existing interaction rules, while all 

the data are used to compare the performance of existing failure pressure models. 

Existing interaction models 

The performance of an interaction rule can be quantified using a hit or miss approach. In the hit or 

miss approach, there are four possible outcomes: true positive (TP) - identifying no interaction 

when there is no interaction, true negative (TN) - identifying interaction when there is interaction, 
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false positive (FP) - identifying no interaction when there is an interaction, and false negative (FN) 

- identifying interaction when there is no interaction. Then the probability of correct detection, 

PCD, is used as model prediction accuracy and is calculated as: 

𝑃𝑃𝐶𝐶𝐶𝐶 =
𝑛𝑛𝑇𝑇𝑇𝑇 + 𝑛𝑛𝑇𝑇𝑇𝑇 
𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 (5.15) 

where nTP = number of TP tests, nTN = number of TN tests, and ntotal = total number of tests. 

Apparently, a good model should have a high value of PCD. 

Figure 87 displays the performance of seven existing interaction rules: KV [26], POF [27] 

, DNV RP F101 [8], API RP 579 [31], BS 7910 [31], 6WT [30], and 3WT [5]. Note that not all 

the existing interaction rules listed in Table 9 are compared in Figure 87 due to their inapplicability 

to most of the data used in this study. For example, the interaction rules purposed by Mondal and 

Dhar [32], and Zhang and Tian [33] are only suitable to the cases where the adjacent defects have 

the same depth. As shown on Figure 87, POF, API RP 579, and 6WT interaction rules have better 

performance compared to the rest of the interaction rules. Both model POF and API RP 579 are 

based on defects length and width, while the interaction rule 6WT is based on only pipe thickness, 

t. Even though these three interaction rules have similar performance, there is a lack of consistency 

in the formulations of the spacing limits. 

 
Figure 87. Comparison of the existing interaction rules using PCD 

 

Existing prediction models 

The performance comparison of the existing failure prediction models for pipeline with colony of 

defects is conducted using the mean, standard deviation of the ratio of the predicted to the actual 

burst failure pressures, Pb/Pa. With the interaction rule 6WT, three Level-1 assessment methods 

(i.e., the ASME B31G method [5], the RSTRENG 085dL method [5] , and the DNV RP-F101 

method for single defects (Part B) [8]), labeled as L1-1, L1-2, and L1-3, respectively are compared 
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with three Level-2 assessment methods (i.e., the DNV RP-F101 method for interacting defects 

(Part B) [8], the RSTRENG Effective Area method [5], and the MTI method [35]), labeled as L2-

4, L2-5, and L2-6, respectively. Since the DNV RP-F101 method is only applicable to the cases in 

which the individual defect profiles do not overlap projecting onto the longitudinal plane, the 

model performance comparison is done using two data sets: the 1st set refers to the subset of 698 

data where the individual defect profiles do not overlap projecting onto the longitudinal plane and 

the 2nd data set refers to all the data (i.e., 985 data). The comparison results are shown in Figure 

88, where the crosses refer to mean of Pb/Pa and the horizontal bars refer to mean ± 1 standard 

deviation. 

 
(a) Using the subset 

 
(b) Using all the data 

Figure 88. Comparison of existing failure pressure models 
 

As shown in Figure 88(a), all the 6 models except L2-6 underestimate the failure pressure, 

resulting in mean of Pb/Pa lower than 1. Also, Figure 88(a) clearly indicates that the Level-2 

assessment methods perform better than the Level-1 assessment methods. This shows that 
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assessment methods that use defect depth profile and consider all combinations of adjacent defects 

give better failure prediction than using interaction rules. In addition, the MTI method (L2-6) 

performs the best for the 1st data set. When using all the data, Figure 88(b) compares the 

performance of 5 models and the DNV RP-F101 method (L2-5) is not included in the comparison. 

Similar to the results shown in Figure 88(a), all the models except L2-6 underestimate the failure 

pressure; the Level-2 assessment methods have better performance; and the MTI method (L2-6) 

performs the best.  

5.2.5 Model development 

Proposed defect interaction rule 

As aforementioned, the existing rules are not consistent and are deterministic. Therefore, a 

probabilistic model that holistically considers all the influencing factors including defects 

configuration and pipe material and geometric properties is developed.  

Since the interaction identification response is categorical (i.e., interaction or no 

interaction), a classification algorithm is suitable to develop the model. In particular, a logistic 

classification algorithm is adopted, where the binary response is denoted as Y (setting Y = 0 for 

indicating interaction and Y = 1 for indicating no interaction), and independent variables are 

denoted as X1 = {xi}. Thus, the probability of no interaction is expressed as follow: 

𝑃𝑃(𝑌𝑌 = 1) =
1

1 + exp[−(𝛽𝛽0 + ∑ 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖𝑚𝑚
𝑖𝑖=1 )] (5.16) 

where βi = coefficients for the logistic classification and xi = pipe properties and adjacent defects 

characteristics variables. Five normalized variables and their 2nd order interaction among these five 

variables are used here to construct X1, as shown below: 

𝑿𝑿𝟏𝟏 = �
𝐷𝐷
𝑡𝑡

 ,
𝜎𝜎𝑢𝑢
𝜎𝜎𝑦𝑦

,
𝑑𝑑1
𝑑𝑑2

,𝑁𝑁𝑆𝑆𝐶𝐶 =
𝑆𝑆𝐶𝐶

𝑤𝑤1 + 𝑤𝑤2
,𝑁𝑁𝑆𝑆𝐿𝐿

=
𝑆𝑆𝐿𝐿

𝑙𝑙1 + 𝑙𝑙2
, 2nd order interaction variables� 

(5.17) 

where d1, l1, w1 = depth, length, and width of Defect 1, respectively; d2, l2, w2 = depth, length, and 

width of Defect 2, respectively; and 𝑁𝑁𝑆𝑆𝐶𝐶 and 𝑁𝑁𝑆𝑆𝐿𝐿  = normalized spacing in circumferential and 

longitudinal direction, respectively. The basic five variables used in X1 are constructed to reflect 

all the influencing factors such as defect geometry, colony configurations, and pipe geometrical 

and material properties. Considering all the 2nd order interaction among the five basic variables, a 
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total of 20 variables are resulted in X1.  

When considering all the 20 variables in Eq. (5.16), the model is a full model. A model 

selection procedure, all possible subset model selection, is adopted to eliminate the ones that do 

not contribute statistically significantly to the prediction. The models that have any model 

parameters with p-values greater than 5% are excluded in the model selection. In addition, a 

maximum model size of five (i.e., five variables in a model) is considered to avoid complex model 

formulations, and the model performance for each model size is compared using two statistical 

measures: adjusted R-squared (R2adj) and mean absolute error (MAE) that is defined as follow: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�|𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (5.18) 

where 𝑦𝑦𝑖𝑖 = true value, 𝑦𝑦𝚤𝚤�  = prediction, and n is the number of data points. The model with the 

highest R2adj and lowest MAE is the most desirable model for the subset with the same model size 

(i.e., the same number of variables in the model). Note that when comparing all the best models 

from all the subsets, these two statistical measures may suggest different models to be the best one. 

Randomly selected 80% of the data with two defects (called training data) is used for the model 

selection, while the rest 20% of the data (called test data) is used for the model validation.  

After conducting the model selection, it was found that the most desirable model with 

model size 5 is also the best model overall compared with other model sizes. Table 16 shows the 

five variable terms selected in this best model and the statistics of the corresponding model 

parameters in the final model. Note that the proposed interaction rule captures the influencing 

factors such as the defect depth, length and width, and pipeline strength, thickness and diameter. 

Also, 𝑁𝑁𝑆𝑆𝐶𝐶 or 𝑁𝑁𝑆𝑆𝐿𝐿  is involved in every variable term, indicating normalizing spacing plays a critical 

role in the interaction prediction, as expected. Using the test data, the proposed model gives a MAE 

value of 0.3303 that is close to the MAE value of 0.2892 when the training data is used, indicating 

that the proposed model is valid. 

Table 16. Variables and model parameter statistics for the final interaction prediction model 
Model 

Parameters 
𝛽𝛽0 

(Intercept) 
𝛽𝛽1 

(𝑁𝑁𝑆𝑆𝑆𝑆 ⋅ 𝑁𝑁𝑆𝑆𝑆𝑆) 
𝛽𝛽2 

(𝑁𝑁𝑆𝑆𝑆𝑆 ⋅ 𝐷𝐷/𝑡𝑡) 
𝛽𝛽3 

�𝑁𝑁𝑆𝑆𝑆𝑆 ⋅ 𝜎𝜎𝑢𝑢/𝜎𝜎𝑦𝑦� 
𝛽𝛽4 

(𝑁𝑁𝑆𝑆𝑆𝑆 ⋅ 𝑑𝑑1/𝑑𝑑2) 
𝛽𝛽5 

(𝑁𝑁𝑆𝑆𝑆𝑆2 ) 
Model 
Error 

Mean -2.0064 -3.7185 -0.1509 7.6713 -1.7564 3.0116 0 

Standard 
deviation 0.1730 0.5868 0.0255 0.9760 0.5131 0.3082 0.3733 
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To further evaluate the performance of the proposed model, Figure 89 compares the 

proposed model (based on MAE and PCD using all the collected data with two defects) with three 

existing interaction rules, POF [27], API RP 579 [31], and 6WT [30] interaction rules, which found 

to have better performance than other existing rules shown in Figure 87. Figure 89 shows that the 

proposed model has the highest PCD and the lowest MAE, indicating that the proposed model has 

the best performance. This best performance of the proposed model also shows that it is important 

to holistically include all the influencing factors in the model development. 

 
(a) MAE 

 
(b) PCD 

Figure 89. Comparison of the proposed rule (PR) with three best existing interaction rules 
 

Proposed failure pressure prediction model 

As shown in Section 4.3.2, the MTI method performs the best compared to the rest of the existing 

models for failure pressure prediction of pipelines with colony of corrosion defects. However, it 

is found that in many cases when there is a defect interaction, the pressure predicted by the MTI 

method is actually the pressure based on a single defect not interacted defects. This means the 

failure pressure for interacted defects calculated in the MTI method was not able to capture the 

impact of defect interaction well for those cases. Therefore, a new failure pressure prediction 

model for interacted defects is proposed by adding a correction factor to the MTI prediction, and 
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the proposed model is expressed as follow: 

𝑃𝑃𝑏𝑏 = α𝑃𝑃𝑏𝑏,𝑀𝑀𝑀𝑀𝑀𝑀 (5.19) 

α = 𝜃𝜃0 + � 𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗
𝑚𝑚

𝑗𝑗=1
+ 𝜎𝜎𝜎𝜎 (5.19a) 

where Pb,MTI = minimum of the failure pressures of all combinations of adjacent defects by the 

MTI method; and α = correction factor, which is modeled using a multivariate linear regression 

formulation in which θj = model parameters; X2 = {xj}= independent variables; and σε = residual 

model error in which σ is the standard deviation of the model error (assumed to be constant) and ε 

is the standard normal random variable (i.e., normality assumption). Five normalized variables and 

their 2nd order interaction among these five variables are used to construct X2, as shown below: 

𝑿𝑿𝟐𝟐 = �
𝐷𝐷
𝑡𝑡

 ,
𝜎𝜎𝑢𝑢
𝜎𝜎𝑦𝑦

,
𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑡𝑡

,𝑁𝑁𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
√𝐷𝐷𝐷𝐷

,𝑁𝑁𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

=
𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
√𝐷𝐷𝐷𝐷

 , 2nd order interaction variables� 

(5.20) 

where dclus = maximum depth of the combination of adjacent defects with the low failure pressure; 

lclus and wclus = overall length and width of the combination of adjacent defects with the low failure 

pressure, respectively. Note that both normalized quantities 𝑁𝑁𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑁𝑁𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 reflect the defects 

spacing in longitudinal and circumferential direction, respectively. Considering all the 2nd order 

interaction among the five basic variables, a total of 20 variables are resulted in X2.  

The model selection used in Section 5.1 is also applied here to eliminate the variables that 

do not contribute statistically significantly to the prediction. The maximum model size is chosen 

to be five and the model performance for each model size is compared using the standard deviation 

of the model error, σ, which measures the prediction accuracy in the model prediction. The model 

with the lowest σ is the most desirable model. 

The model development is conducted using the data with colony of defects that are 

identified to have interaction. Table 17 shows the three variable terms selected in the best model 

and the model parameter statistics in the correction factor, α. As shown in Table 17, all three 

variable terms include either quantities 𝑁𝑁𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 or 𝑁𝑁𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, indicating the colony spacings play an 

important role in the pressure prediction to account for the defect interaction, as expected.  

The performance of the proposed model (PM) for the failure pressure is compared with the 
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MTI method and Level-1 assessment methods such as the model developed by Kere and Huang 

(KH) [42] and the DNV RP-F101 method for single defects (Part B) (L1-3) [8]. Using the data 

with interacted defects, Figure 90 shows the results of the model performance comparison where 

the cross refers to mean of Pb/Pa and the horizontal lines refer to mean ± 1 standard deviation. 

Figure 90 indicates that the models L1-3 and KH underestimate the burst pressure, and the MTI 

method overestimates the burst pressure, while the proposed model provides unbiased prediction. 

Also, the proposed model has slightly smaller variability in Pb/Pa compared to the MTI method. 

Therefore, one can conclude that the correction factor proposed improves the MTI method for 

calculating the failure pressure prediction of a pipe with interacted defects. 

 

Table 17. Variables and model parameter statistics for the correction factor 

Model parameters 
𝜃𝜃0 

(Intercept) 

𝜃𝜃1 

�𝑁𝑁𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ⋅ 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝑡𝑡� 

𝜃𝜃2 

�𝑁𝑁𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ⋅ 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝑡𝑡� 

𝜃𝜃3 

�𝑁𝑁𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
2 � 

Model 
Error, σε 

Mean 1.1087 -0.1885 -0.0369 0.0112 0 

Standard 
deviation 0.0085 0.0091 0.0038 0.0009 0.0918 

 

 
Figure 90. Comparison of the proposed model (PM) with the MTI method and two Level-1 

assessment methods 
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5.3 Models for Pipeline with Single Crack-like Defect 

5.3.1 Background 

For pipelines with crack-like defects, the burst failure pressure has been assessed using the 

“pipeline specific” methods and “generic” methods [43]. The “pipeline specific” methods are 

developed for the pipeline industry and include models like the original Ln-Sec [44], modified Ln-

Sec [45], and CorLASTM [46]. The “generic” methods are standards such as API 579 [28] and BS 

7910 [29] using failure assessment diagram (FAD). In fact, different formulas are used to assess 

the failure pressure of pipelines with crack-like defects depending on the thickness of the pipeline 

(i.e., thin-walled or thick-walled pipeline), the extend of the defect (i.e., through-wall or part-wall 

defect), and the location (i.e., internal or external surface) and orientation (i.e., inclined, 

longitudinal or circumferential) of the crack. For example, the Battle Memorial Institute developed 

the equations called “NG-18 equations” for pipelines subjected to only internal pressure with 

longitudinally oriented through-wall and part-wall defects [44]. Staat [47] proposed prediction 

equations for thick-walled pipes containing axial cracks. Also, model like PRCI MAT-8 [48] were 

developed to assess the failure pressure for pipelines with longitudinal seam weld cracks. The API 

579 [28] and BS 7910 [29] provide formulations for different levels of assessment accuracy for 

thin-walled and thick-walled pipelines that contains through-wall and part-wall crack-like defects 

oriented longitudinally or circumferentially on the internal or external surface of the pipeline.  

To evaluate the performance of the existing models, several studies have been conducted. 

For instance, Tandon et al. [49] compared three models (i.e., modified Ln-Sec, CorLASTM, and 

API 579-version 2007) using the ratios of the actual to the predicted burst failure pressures based 

on 15 full scale burst test data. The results showed that the modified Ln-Sec and CorLAS models 

both have an average error of about 7% and the API 579 about 22%. Also, Hosseini [50] compared 

the performance of four models (i.e., original Ln-Sec, CorLAS, BS 7910-version 2005, API 579-

version 2007) using the percent error of predictions based on 4 full scale burst test data. The 

CorLAS model was found to be the best model and the BS 7910 model was the most conservative. 

In addition, Yan et al. [51] performed model error comparison of five models (i.e., original Ln-

Sec, CorLAS, BS 7910-version 2005, API 579-version 2007 and R6-Rev4 Amendment 10 [52]) 

using the ratios of the actual to the predicted burst failure pressures based on 112 full scale burst 

test data. Their results showed that the CorLAS model has the best performance, and the original 

Ln-Sec, BS 7910, and API 579 are in general conservative, which is not suitable to be used in the 
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risk assessment of pipelines.  

In this Section 5, firstly, a comprehensive database (consists of experimental and numerical 

data, a total of 160 data sets) is established, which consists of the data collected from the literature 

and the numerical data obtained from validated finite element models conducted in this study using 

the extended finite element method (XFEM). Then, a performance comparison of five existing 

prediction models (i.e., original Ln-Sec, modified Ln-Sec, CorLAS, API 579 and BS 7910) is 

conducted. Next, the proposed failure pressure model is developed by adding a correction factor 

to an existing model (i.e., the modified Ln-Sec model that is identified to be the best existing model 

in terms of prediction accuracy); and the correction factor is constructed using a multivariate linear 

regression fitted by the database established. Lastly, a life cycle cost analysis of a pipeline with a 

single crack like defect is conducted to evaluate the impact of failure prediction models on the 

expected total life cycle cost of pipelines. 

5.3.2 Existing prediction models 

In the literature, the most models used to predict the failure pressure model of pipelines with single 

crack-like defects are the original Ln-Sec [44], modified Ln-Sec model [45], CorLAS [46], and 

failure assessment diagram (FAD) methods such as API 579 [28] and BS 7910 [29]. These models 

are described in this section. 

Ln-Sec Model 

Ln-Sec (log-secant) model also known as NG-18 equation is a semi-empirical model developed 

by the Battle Memorial Institute in the late 1960s to predict the burst pressure of pipes containing 

longitudinally oriented surface cracks subjected to only internal pressure [44]. The burst pressure, 

Pb is computed using the minimum of the values using two criteria, the flow stress and fracture 

toughness dependent criteria, and can be expressed as, 

𝑃𝑃𝑏𝑏 = min �
2𝑡𝑡𝑡𝑡𝑓𝑓
𝐷𝐷

∙
1 − 𝑎𝑎/𝑑𝑑𝑤𝑤

1 − (𝑎𝑎/𝑑𝑑𝑤𝑤)𝑀𝑀𝑇𝑇
−1 ,    

4𝑑𝑑𝑤𝑤𝜎𝜎𝑓𝑓
𝜋𝜋𝜋𝜋

∙
1 − 𝑎𝑎/𝑑𝑑𝑤𝑤

1 − (𝑎𝑎/𝑑𝑑𝑤𝑤)𝑀𝑀𝑇𝑇
−1  arcos�𝑒𝑒

−𝜋𝜋𝜋𝜋𝑚𝑚𝑚𝑚𝑚𝑚
2

8𝑐𝑐𝑒𝑒𝑒𝑒𝜎𝜎𝑓𝑓
2
�� (5.21) 

𝑀𝑀𝑇𝑇 =

⎩
⎪
⎨

⎪
⎧ �1 + 0.6275

�2𝑐𝑐𝑒𝑒𝑒𝑒�
2

𝐷𝐷𝑑𝑑𝑤𝑤
− 0.003375

�2𝑐𝑐𝑒𝑒𝑒𝑒�
4

(𝐷𝐷𝑑𝑑𝑤𝑤)2 ,    
�2𝑐𝑐𝑒𝑒𝑒𝑒�

2

𝐷𝐷𝑑𝑑𝑤𝑤
≤ 50

3.3 + 0.032
�2𝑐𝑐𝑒𝑒𝑒𝑒�

2

𝐷𝐷𝑑𝑑𝑤𝑤
                                           ,     

�2𝑐𝑐𝑒𝑒𝑒𝑒�
2

𝐷𝐷𝑑𝑑𝑤𝑤
> 50

  (5.21a) 

𝜎𝜎𝑓𝑓 = 𝜎𝜎𝑦𝑦 + 68.95 MPa (5.21b) 



124 

2𝑐𝑐𝑒𝑒𝑒𝑒 = 𝐴𝐴/𝑎𝑎 (5.21c) 

where D = outside diameter of the pipe, dw = wall thickness of the pipe, 2ceq = equivalent length 

of crack, a: depth of crack, A = actual area of the surface crack along its length, σf = flow stress of 

the pipe material, σy = yield strength of the pipe material, MT = folias or bulging factor of pipe, 

and Kmat = fracture toughness of the pipe material. If actual value of Kmat is not available, it can be 

approximated using the following empirical expression: 

𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚
2 =

𝐶𝐶𝑣𝑣𝐸𝐸
𝐴𝐴𝑐𝑐

 (5.21d) 

where Cv = upper shelf energy determined from tests of Charpy V-notch impact specimens, Ac = 

cross-sectional area of the Charpy specimen used, and E = Young’s modulus of the pipe material. 

Modified Ln-Sec Model 

As the original Ln-Sec model underestimates the failure pressure for long and shallows defects, it 

was then modified by Kiefner [45] in 2008 by adding a correction factor. The modified Ln-Sec 

model formulation is given by: 

   𝑃𝑃𝑏𝑏 =
2𝑡𝑡𝑡𝑡𝑓𝑓
𝐷𝐷

∙
1 − 𝐴𝐴/𝐴𝐴0

1 − (𝐴𝐴/𝐴𝐴0)𝑀𝑀𝑇𝑇
−1 ∙

arcos�𝑒𝑒
−𝜋𝜋𝜋𝜋𝑚𝑚𝑚𝑚𝑚𝑚

2

8𝑐𝑐𝑒𝑒𝑒𝑒𝜎𝜎𝑓𝑓
2
�

arcos�𝑒𝑒
−
𝜋𝜋𝜋𝜋𝑚𝑚𝑚𝑚𝑚𝑚

2

8𝑐𝑐𝑒𝑒𝑒𝑒𝜎𝜎𝑓𝑓
2∙

1

1−�𝑎𝑎𝑡𝑡�
0.8

�

 (5.22) 

where A0 = reference area = 2c⋅dw in which 2c = l = crack length 

CorLASTM 

CorLAS™ is a software-based model developed to assess axially oriented crack-like surface flaws 

subjected to only internal pressure using elastic-plastic fracture mechanics [46]. This model applies 

two failure criteria to evaluate the burst pressure: one criterion is based on flow strength and the 

other one is based on the fracture toughness of the pipe material. The burst pressure is assessed 

by: 

𝑃𝑃𝑏𝑏 = min�𝜎𝜎𝑓𝑓,𝜎𝜎𝑙𝑙� ∙
2𝑡𝑡
𝐷𝐷
∙

1 − 𝐴𝐴/𝐴𝐴0
1 − (𝐴𝐴/𝐴𝐴0)𝑀𝑀𝑇𝑇

−1 (5.23) 

Where MT can be calculated using Eqs. (5.21a), σl = local stress at the tip of the crack when failure 

occurs. The flow stress, σf, can be evaluated by either Eq. (5.21b) or the following equation that is 
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generally recommended: 

𝜎𝜎𝑓𝑓 =
𝜎𝜎𝑦𝑦 + 𝜎𝜎𝑢𝑢

2
 (5.23a) 

where σu = ultimate strength of the pipe material. The local stress, σl, is calculated iteratively by 

setting applied integral J equal to the fracture toughness of the pipe material, Jc, and J depends on 

σl and the corresponding function is given as: 

𝐽𝐽 = 𝑄𝑄𝑓𝑓𝐹𝐹𝑠𝑠𝑠𝑠𝑎𝑎 �
𝜎𝜎𝑙𝑙2𝜋𝜋
𝐸𝐸

+ 𝑓𝑓3(𝑛𝑛)𝜀𝜀𝑝𝑝𝜎𝜎𝑙𝑙� (5.23b) 

where Qf = elliptical flaw shape factor, Fsf = free-surface factor, f3(n) = function of strain-hardening 

exponent, n = strain-hardening exponent, and εp = plastic strain. The formulation to calculate Jc 

can be found in [46]. 

FAD models 

FAD models are developed based on fracture mechanics and can be used to assess failure pressure 

of pipeline with crack-like defects with two key parameters: the load ratio, Lr, and the toughness 

ratio, Kr, which are calculated using the following expressions [28]: 

𝐿𝐿𝑟𝑟 =
𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟
𝜎𝜎𝑦𝑦

 (5.24) 

𝐾𝐾𝑟𝑟 =
𝐾𝐾𝐼𝐼
𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚

 (5.25) 

where σref = reference stress and KI = stress intensity factor [7]. 

Figure 91 is modified based on [28] and illustrates the concept of the FAD models. The 

failure pressure is determined by finding the pressure that causes the assessment point (Lr, Kr) to 

fall on the assessment or cut-off line [51]. In this study, the models based on this FAD principle 

are the API RP 579 (version 2016) [28] and the BS 7910 (version 2013) [29], which define the 

assessment line differently. 

API RP 579 

The API RP 579 model includes three assessment levels to evaluate the failure pressure depending 

on the available information on material and geometry properties of the pipeline and operating 

conditions [28]. Specifically, Level 1 assessment uses limited information on pipe properties, crack 

geometry, and operations conditions such as the length and depth of crack, operating temperature, 

and loads. Level 2 assessment requires further detailed information on material properties, loading 
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conditions, and the state of stress at the location of the flaw. Level 3 assessment requires the 

maximum information on material properties and crack geometry such as stress-strain curve, 

geometry and material dependent FAD, and crack growth; thus, Level 3 assessment usually can 

provide most accurate failure predictions. However, considering the information available for the 

data collected in this study, Level 2 assessment is considered for the model prediction evaluation. 

The assessment line function for Level 2 is defined as: 

𝐾𝐾𝑟𝑟 = (1 − 0.14𝐿𝐿𝑟𝑟2)[0.3 + 0.7exp (−0.65𝐿𝐿𝑟𝑟6)]        for 𝐿𝐿𝑟𝑟 < 𝐿𝐿𝑟𝑟(max) (5.26) 

𝐿𝐿𝑟𝑟(max) =
𝜎𝜎𝑦𝑦 + 𝜎𝜎𝑢𝑢

2𝜎𝜎𝑦𝑦
 (5.26a) 

where Lr(max) defines the cut-off line. Then the assessment point is calculated using Eqs (5.24) and 

(5.25) with values of σref, KI, and Kmat which can be estimated through [28]. 

 
Figure 91. Illustration of the FAD 

 

BS 7910 

The BS 7910 have three options to evaluate the failure pressure based on the application and 

materials data available [29]. Option 1 is a conservative procedure that does not require the stress-

strain curve. Option 2 uses a material-specific stress-strain curve. Option 3 generates a FAD using 
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numerical analysis and is not limited to materials showing ductile tearing. In this study, BS 7910 

Option 1 is used since the stress-strain curve is not always available. The followings equations are 

used to describe the assessment line function: 

𝐾𝐾𝑟𝑟 =

⎩
⎪
⎨

⎪
⎧�1 +

1
2
𝐿𝐿𝑟𝑟2�

−1/2

∙ [0.3 + 0.7exp (−𝜇𝜇𝐿𝐿𝑟𝑟6)],     𝐿𝐿𝑟𝑟 ≤ 1

𝐾𝐾𝑟𝑟,1 ∙ 𝐿𝐿𝑟𝑟
(𝑁𝑁−1)/(2𝑁𝑁),      1 < 𝐿𝐿𝑟𝑟 < 𝐿𝐿𝑟𝑟(max)

0,      𝐿𝐿𝑟𝑟 ≥ 𝐿𝐿𝑟𝑟(max)

         (5.27) 
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𝐸𝐸
𝜎𝜎𝑦𝑦

, 0.6� (5.27a) 

𝑁𝑁 = 0.3 �1 −
𝜎𝜎𝑦𝑦
𝜎𝜎𝑢𝑢
� (5.27b) 

𝐿𝐿𝑟𝑟(max) =
𝜎𝜎𝑦𝑦 + 𝜎𝜎𝑢𝑢

2𝜎𝜎𝑦𝑦
 (5.27c) 

where Kr,1 refers to Kr by setting Lr = 1. Then the assessment point is calculated using Eqs. (5.24) 

and (5.25) with values of σref, KI, and Kmat which can be estimated through [29]. 

5.3.3 Data Collection  

A comprehensive failure pressure data with longitudinally oriented single crack-like defect is 

established in this study, which is used to evaluate the performance of the existing prediction 

models, and also to develop failure pressure assessment method. The database established consists 

of the data directly collected from literature and additional numerical data obtained from FE 

analysis conducted in this study.  

Data collected from literature 

A total of 122 different laboratory experimental burst test results of thin-walled pipes (i.e., D/dw ≥ 

20) with external longitudinal oriented single crack are collected from literature. Table 18 provides 

a summary of the data collected. Since the failure pressure of a pipe with crack-like defect depends 

on the pipe material and geometry properties, and defect geometry, it is worthy to examine the 

correlation of the following quantities with the failure pressure (Pb) through scatter plots shown in 

Figure 92 using the data collected: yield strength (σy), Charpy shelf energy (Cv), ratio of pipe 

diameter to pipe thickness (D/dw), ratio of defect depth to pipe thickness (a/dw), and ratio of defect 

half-length to pipe thickness (c/dw). 

Figure 92(a), the scatter plot of σy vs. Pb, shows that an overall increase of σy leads to a 

higher burst pressure as expected. Figure 92(b) on the other hand indicates that a low D/dw ratio 
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(referring to very thick-wall pipes) leads to a high burst pressure, except for a few cases circled by 

the dotted lines. These cases may be explained by their values of crack depth close to half of pipe 

thickness as shown in the dotted circle in Figure 92(c). Figure 92(c)indicates a negative correlation 

between Pb and a/dw, while Figure 92(d) shows a positive correlation between Pb and a/c. Figure 

92(e) shows the scatter plot of Cv over Pb, and no distinct trend is shown.   

 

Table 18. Summary of the database collected from literature 
Grade D/dw σy (MPa) σu (MPa) Cv (J) a/dw a/c Counts 

X52 [48.70 – 94.9] [341 – 456] [487 – 627] [21.69 – 42.03] [0.24 – 0.92] [0.02 – 0.34] 19 

X60 [32.15 – 103.96] [379 – 510] [536 – 634] [27.12 – 135.00] [0.19 – 0.77] [0.02– 0.24] 22 

X65 [66.80 – 100.48] [363 – 514] [525 – 656] [10.85 – 132.87] [0.25 – 0.87] [0.0032 – 0.14] 12 

X100 [55.76 – 73.89] [739 – 795] [171 – 261] [10.85 – 132.87] [0.19 – 0.55] [0.02 – 0.12] 4 

15Mo3 22.23 246 570 84 [0.78 – 0.95] [0.07 – 0.38] 11 

34CrMo4 [26.08 – 32.29] [703 – 878] [874 – 990] [59 – 81] [0.51 – 0.99] [0.08 – 0.48] 16 

4134V [30.46 – 34.05] [1048 – 1096] [1138 – 1179] [21.69 – 27.12] [0.62 – 0.96] [0.13 – 0.51] 19 

St 35 22.23 336 486 76 [0.25 – 0.90] [0.02 – 0.24] 13 

St 70 [86.26 – 86.73] [529 – 543] [670 – 695] [50 – 115] [0.68 – 0.95] [0.05 – 0.09] 6 
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(a) σy 

 
(b) D/dw 

   
(c) a/dw 

 
(d) a/c 

 
(e) Cv 

 
 

Figure 92. Scatter plots of burst pressure (Pb) vs. selected quantities 
 

Additional numerical data 

To complement the existing data collected in the literature, FEMs are used to generate additional 

data points. In this study, the FEMs are developed in ABAQUS. While modeling cracking growth 

using the conventional FE methods is challenging due to the need of mesh conformity to the 

geometry discontinuities and remeshing as crack grows, the extended finite element method 

(XFEM) has been developed to addresses these challenges [53]. The XFEM was introduced by 

Belytschko and Black [54] and it extends the conventional FEM through using the partition of 

unity property of finite elements by adding enriching degrees of freedom with special displacement 

functions to the finite element approximation.  

In Abaqus/Standard, XFEM uses a traction-separation model for crack propagation 
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consisting of a crack initiation criterion and a damage propagation law. The crack initiation criteria 

available in Abaqus/Standard [53] are the maximum principal stress (Maxps), the maximum 

principal strain (Maxpe), the maximum nominal stress (Maxs), the maximum nominal stress 

(Maxe), the quadratic nominal stress (Quads), and the quadratic nominal strain (Quade). The 

available damage propagation criteria are fracture energy (Gc) and displacement of crack tip at 

failure. In the literature, the Maxps or Maxpe and Gc criteria are the most used criteria to model 

crack propagation in XFEM. For example, Lin et al. [55] used the Maxps and Gc criteria to simulate 

crack propagation in pressurized steel pipes; and Okodi et al. [56] used the Maxpe and Gc criteria 

to predict the burst pressure of longitudinally cracked pipelines. In fact, the Maxpe criterion can 

be represented as follows [53]: 

𝑓𝑓 = �
〈ε𝑚𝑚𝑚𝑚𝑚𝑚〉
𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚
𝑜𝑜 � (5.28) 

where f = maximum strain ratio, 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚= maximum principal strain, 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚
𝑜𝑜 = maximum allowable 

principal strain, and the Macaulay brackets indicates that a purely compressive strain does not 

cause damage initiation. When f reaches a value of one, damage is assumed to initiate. The fracture 

energy Gc is the energy required to create a unit of crack area. Since Maxpe and Gc are material 

properties, which can be obtained by calibration using the burst test results obtained from 

literature. With the obtained Maxpe and Gc, this material is then used to generate additional XFEM 

models of pipelines with longitudinally oriented single crack-like defect to determine the failure 

pressure. 

For computational efficiency, only half of the pipe (i.e., mid length of pipe) with 

appropriate boundary conditions is modeled due to the symmetry condition, as shown in Figure 

93. Also, the crack is modeled to have semi elliptical shape. The model is meshed using 8-node 

fully integrated linear brick elements (C3D8) for the solid part and linear quadrilateral elements 

(S4R) for the shell part; and elasto-plastic materials are used. Furthermore, Statics-General 

procedure is used for the analysis and an internal pressure is gradually applied until the pipe fails. 

Failure is determined when the crack propagation reaches the last elements of the wall thickness 

of the pipe. Figure 94 illustrates the crack propagation in one of the selected cases: the crack 

propagates until the last element of the wall thickness of the pipe, which causes the pipe to fail. 
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Figure 93. Crack propagation in a pipe modeled in Abaqus 
 

To calibrate the parameters Maxpe and Gc, the J integral of the material, Jmat, is calculated 

first using the J integral for linear elastic material under mode loading I expressed as follows [57]: 

𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚 =
𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚
2

𝐸𝐸′
 (5.29) 

where E′ = E for plane stress condition and E′ = E/(1 – ν2) for plane strain condition in which ν = 

Poisson’s ratio of the material. Using the calculated Jmat (a measure of the fracture toughness of 

the material) as a starting value for Gc (referring to fracture energy), Maxpe and Gc are calibrated 

by trial and error using a few experimental testing data collected from the literature. Table 19 

summarizes the pipe material properties and defect geometries of the experimental testing [58]. 

As shown in Table 19, there are four different materials, expect X52 the other three materials have 

four different cases. For each material, Maxpe and Gc are calibrated so that the difference between 

the failure pressure obtained from the FE analysis (Pb,FE) conducted in this study and the failure 

pressure data reported in the literature (Pb,test) is small as much as possible. Table 19 shows that 

with the calibrated Maxpe and Gc, the error percentages, (Pb,test ‒ Pb,FE)/ Pb, are all within 10% for 

all cases. Thus, Maxpe and Gc are obtained for the selected materials, and the FE models with these 

four materials are validated. It is worth stating that the accuracy of the XFEM parameters depends 

on the number of burst test data used for calibration. Okodi et al. [59] assert that there is inherent 

error in calibrating damage parameters using few burst test results. However, because of the 
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limitation of burst test data available in the literature, the damage parameters can only be obtained 

based on the limited data available. 

 

Table 19. Experimental testing cases selected for calibrating Maxpe and Gc and calibrated results 

Grade D 
(mm) 

t 
(mm) 

σy 
(MPa) 

σu 
(MPa) 

Jmat 
(N/mm) 

a 
(mm)  

2c 
(mm) 

Pb,test 
(MPa) 

Pb,FE 
(MPa) 

Error 
(%)  Maxpe GC 

(N/mm) 

X52 [49] 508 6.4 350 497 50.63 3.8 30 10.92 10.98 -0.55 0.02 50 

X60 [50] 508 5.70 433 618 43.5 

2.17 200.00 10.10 10.18 -0.79 

0.084 50 2.68 200.00 9.30 9.06 2.58 
2.74 200.00 9.60 8.90 7.29 
2.91 200.00 8.83 8.65 2.04 

4134V 
[58] 

237 7.0 

1096 1179 62.16 

4.34 201.00 60.42 66.01 -9.25 

0.07 50 236 7.4 5.44 25.40 65.89 68.43 -3.85 
237 7.6 5.72 50.80 51.88 52.64 -1.46 
237 7.4 6.27 69.85 33.32 34.40 -3.24 

4134V 
[58] 

236 7.4 

1048 1138 38.70 

5.64 50.80 48.10 48.29 -0.40 

0.07 40 236 7.3 6.25 50.80 39.70 41.72 -5.09 
237 7.2 5.77 51.80 38.50 35.95 6.62 
237 7.3 6.30 69.85 32.50 32.53 -0.09 

 

With the damage parameters of these four materials, 38 new numerical cases are generated. 

These added numerical cases are designed to cover a wider range of three quantities: D/t, a/dw, and 

a/c. Figure 94 shows the scatter plots of σy vs the three quantities based on the experimental and 

FE burst test data collected from literature and the new generated numerical cases. As shown in 

Figure 94, the new cases are designed to cover the regions where the data collected from literature 

is scarce. The pipeline properties and defect geometries and FE results (Pb,FE) of these 38 new 

cases are provided in Table 20. 
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(a) D/dw 

 
(b) a/dw 

  
(c) a/c 

○ Experimental burst tests from literature 
∗ New FEM cases 

Figure 94. Scatter plots of selected quantities vs. yield stress (σy) 
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Table 20. New FE models cases 

Grade D  
(mm) 

t 
(mm) 

σy  
(MPa) 

σu  
(MPa) 

CVN 
 (J)  

d 
(mm) 

2c  
(mm) 

Pb,FE  
(MPa) 

X52 250.00 8.33 350 497 23.05 0.83 10.18 38.41 
X52 400.00 8.00 350 497 23.05 1.60 26.72 21.54 
X52 315.00 7.88 350 497 23.05 2.36 472.54 20.90 
X52 450.00 7.50 350 497 23.05 3.53 429.27 10.78 
X52 508.00 7.26 350 497 23.05 1.09 100.11 15.07 
X52 300.00 8.57 350 497 23.05 2.14 14.53 30.97 
X52 215.00 8.60 350 497 23.05 7.31 863.68 6.85 
X52 425.00 7.73 350 497 23.05 7.34 896.43 1.83 
X52 762 7.62 350 497 23.05 6.86 207.13 2.09 
X52 600 6.67 350 497 23.05 5.33 49.26 6.99 
X52 510 6.00 350 497 23.05 2.40 247.91 8.93 
X60 250.00 8.33 433 618 43.50 0.83 10.18 44.67 
X60 400.00 8.00 433 618 43.50 1.60 26.72 25.24 
X60 315.00 7.88 433 618 43.50 2.36 472.54 24.50 
X60 450.00 7.50 433 618 43.50 4.28 429.27 10.42 
X60 508.00 7.26 433 618 43.50 1.09 13.55 19.02 
X60 300.00 8.57 433 618 43.50 2.14 14.53 36.34 
X60 215.00 8.60 433 618 43.50 7.31 863.68 9.22 
X60 425.00 7.73 433 618 43.50 7.34 698.14 2.41 

4134V 508 5.64 1048 1138 21.69 0.56 11.95 29.01 
4134V 615 8.79 1048 1138 21.69 1.76 44.58 34.33 
4134V 315 3.94 1048 1138 21.69 1.18 12.96 30.56 
4134V 250 5.56 1048 1138 21.69 2.22 37.27 49.28 
4134V 350 8.75 1048 1138 21.69 4.38 150.43 38.55 
4134V 300 6.00 1048 1138 21.69 3.60 12.16 47.96 
4134V 215 8.60 1048 1138 21.69 8.17 317.73 11.22 
4134V 400 6.67 1048 1138 21.69 1.00 231.43 40.66 
4134V 275 5.00 1048 1138 21.69 1.25 744.79 38.27 
4134V 425 4.25 1048 1138 21.69 2.98 517.76 9.15 
4134V 762 9.53 1096 1179 27.12 0.95 19.01 33.64 
4134V 350 7.78 1096 1179 27.12 2.33 19.19 58.05 
4134V 215 8.60 1096 1179 27.12 3.44 43.00 96.21 
4134V 335 5.58 1096 1179 27.12 1.12 117.56 39.23 
4134V 450 5.00 1096 1179 27.12 0.75 13.59 29.38 
4134V 475 8.64 1096 1179 27.12 2.16 473.26 37.96 
4134V 515 5.15 1096 1179 27.12 2.32 230.81 16.45 
4134V 220 3.14 1096 1179 27.12 1.10 528.15 24.97 
4134V 236 3.93 1096 1179 27.12 2.16 371.17 22.02 
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Performance comparison of existing models 

The performance comparison of the existing failure prediction models considered in this study is 

conducted using the mean, standard deviation of the ratio of the predicted to the actual burst failure 

pressures, Pb/Pa. Note that only the original Ln-Sec and modified Ln-Sec models are applicable to 

all the data points (i.e., 160 data points). The CorLAS model is only applicable to data that meets 

the application restriction listed in Table 21, which corresponds to 136 data points. For the API 

RP 579 and BS 7910 models, the equations for calculating σref  and KI in this study are only 

applicable to data satisfying the application restriction listed in Table 21, resulting that only 93 

data points are applicable for API 579 and 143 data points for BS 7910. Therefore, to be fair for 

all the models, the comparison is performed using the common data points (i.e., 81 data points) 

that are applicable to all the models. Also, it is worth stating that instead of using the software 

CorLASTM, the method used by the software was directly used to calculate the failure pressure. 

Figure 95 shows the performance comparison of the five existing models, where the crosses refer 

to mean of Pb/Pa and the horizontal bars refer to mean ± 1 standard deviation. As shown in Figure 

95, all prediction models (except Corlas) averagely underestimate the failure pressure (shown as 

cross markers below the horizontal line of 1.0). Figure 95 also indicates that most prediction 

models have big variability, particularly API RP579 model. One could also observe that the 

modified Ln-Sec model has the best performance with the smallest bias and variation. 

Furthermore, Figure 95 shows that the API RP579 and BS 7910 models are overly conservative, 

and this can be understood by the fact that the models based on FAD are developed to avoid failure 

rather than failure prediction [51]. 

 

Table 21. Conditions for using the CorLAS , API 579 and BS7910 models in this study 
Models Application constrain Crack and geometry dimensional limits 

CorLAS Pipeline with 
 σy/E <0.005 - 

API 579 Cylinder subjected to internal 
pressure and containing 
longitudinally oriented 

surface cracks with semi-
elliptical shape 

0 ≤ a/dw ≤ 0.8 
0.03125 ≤ a/c ≤ 2.0 

0 ≤ dw/(D/2 ‒ dw) ≤ 1.0 

BS 7910 
0 ≤ a/dw ≤ 0.8 

0.05 ≤ a/c ≤ 1.0 
0.1 ≤ dw/(D/2 ‒ dw) ≤ 0.25 
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Figure 95. Comparison of existing failure pressure models 

 

5.3.4 Proposed model development 

As shown in the previous section, the modified Ln-Sec model performs the best compared to the 

rest of the existing models for failure pressure prediction of pipelines with single like-crack 

defects. Here, the proposed failure pressure, Pb, is modeled by adding a correction factor, α, to the 

modified Ln-Sec model, PMod Ln -Sec, to improve the model prediction accuracy. The proposed 

model can be expressed as follows: 

𝑃𝑃𝑏𝑏 = α ∙ 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀 𝐿𝐿𝐿𝐿−𝑆𝑆𝑆𝑆𝑆𝑆 (5.30) 

This correction factor, α, is modeled using a multivariate linear regression formulation in this study 

as follows: 

α = 𝛽𝛽0 + � 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖
𝑚𝑚

𝑖𝑖=1
+ 𝜎𝜎𝜎𝜎 (5.31) 

where βi = model parameters; X = {xi} = independent variables; and σε = residual model error in 

which σ is the standard deviation of the model error (assumed to be constant) and ε is the standard 

normal random variable (i.e., normality assumption). Four normalized variables and their 2nd order 

interaction among these four variables are used here to construct X, as shown below: 

𝑿𝑿 = �
𝐷𝐷
𝑑𝑑𝑤𝑤

 ,
𝜎𝜎𝑢𝑢
𝜎𝜎𝑦𝑦

,
𝑎𝑎
𝑑𝑑𝑤𝑤

,
𝑎𝑎
𝑐𝑐

,
𝑐𝑐
𝑑𝑑𝑤𝑤

,
𝑙𝑙

�𝐷𝐷𝑑𝑑𝑤𝑤
,

  
2nd order interaction� (5.32) 
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Considering all the 2nd order interaction among the four basic variables, a total of 27 variables are 

resulted in X. When considering all the 27 variables in Eq. (5.31), the model is a full model. An 

all-possible-subset model selection is adopted to eliminate the ones that do not contribute 

statistically significantly to the prediction [25]. In addition, a maximum model size of five (i.e., 

five variables in a model) is considered to avoid complex model formulations, and the model 

performance for each model size is compared using the model error standard deviation, σ. The 

model with the lowest σ is the most desirable model. 

The model development is conducted using the database established in this study. After 

model selection, it is found that the model with size 5 is the best model overall compared with 

other sizes models. Table 22 shows the variables selected and the statistics of the corresponding 

model parameters in the final model. It is worth noting that the data ranges used for the model 

development are D/dw in [22   100], a/dw in [0.10   0.99], and a/c in [0.0032   0.5140]. The 

prediction performance of the proposed model is then compared with the modified Ln-Sec model 

through the mean, standard deviation of the ratio of the predicted to the actual burst failure 

pressures, Pb/Pa, using all the data (i.e., 160 data points) as shown in Figure 96, where the cross 

refers to mean and the horizontal lines refer to mean ± 1 standard deviation. Figure 96 indicates 

that the modified Ln-Sec model and the proposed model provides unbiased prediction. However, 

the proposed model shows smaller variability in Pb/Pa. Therefore, one can conclude that the 

correction factor proposed improves the modified Ln-Sec model accuracy. 

Table 22. Variables and model parameter statistics for the correction factor 
Model 

Parameters 
β0 

Intercept 

β1 

a/dw 
β2 

D/dw · a/dw 
β3 

D/dw · c/dw 
β4 

σu/σy · a/dw 
β5 

(σu /σy)2 
Model 
Error 

Mean 0.889 1.205 -1.841*10-3 5.665*10-5 -1.280 0.256 0 

Standard 
deviation 0.111 0.334 6.377*10-4 6.443*10-6 0.263 0.0656 0.124 
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Figure 96. Comparison of Pb /Pa using the modified Ln-Sec model (Mod Ln-sec) and the 

proposed model (PM) 
 

5.3.5 Sensitivity analysis 

To obtain a better understanding of how material and geometry properties and crack sizes impact 

the failure pressure, a sensitivity analysis is performed to evaluate the impact of four selected 

quantities (i.e., σy, D/dw, a/dw, and c/dw) on both the proposed model and the modified Ln-Sec 

model, for a comparison purpose. Figure 97 shows the changes in the pressure prediction of a 

pipeline (that has σy = 433 MPa, σu = 618 MPa, D = 508 mm, dw = 5.7 mm, a = 2 mm, and c = 50 

mm) when varying D/dw, a/dw, and c/dw.  

Overall, as shown in the four plots Figure 97, the predicted burst pressure are sensitive to 

all four quantities, showing the importance of these quantities in the model. Secondly, the trends 

of the change in Pb over the quantities are similar for both models, meaning that adding the 

correction factor in the proposed model does not fundementally change the relationship between 

those quantities to the predition.  

As expected, the failure pressure predictions of both models increase with the increase of 

σy as shown in Figure 97 (a); and the change rates are the same for both models. Meanwhile, Figure 

97(b), Figure 97(c) and Figure 97(d) show that the predictions of both models decrease with the 

increase of D/dw, a/dw, and c/dw; however, the change rate in the proposed model is higher 

(particularly for a/dw), meaning the proposed model is more sensitive to the wall thickness ratio 

and crack depth. In addition, the predicted pressure from the proposed model is higher than the 

existing model expect when a/dw>0.5 as shown in Figure 97(c). 
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(a)  

   
(b)  

  
(c)  

 
(d)  

            Proposed model prediction                       Modified Ln-Sec prediction 
Figure 97. Sensitivity of the four selected quantities on pressure prediction 
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6 Objective 4: Uncertainty Impact on Pipeline Reliability 

6.1 Background 

A pressurized pipeline generally fails in two distinctive modes: small leak (when a corrosion defect 

penetrates the pipe wall thickness) or a burst (when the operating pressure of the pipe exceeds the 

burst pressure of the pipe) [35]. To evaluate the impact of the proposed prediction models on the 

pipeline structural performance, the probability of the burst failure of a pipeline with corrosion 

defect using the proposed models is evaluated. The probability of failure, Pf, is defined as the 

conditional probability of attaining or exceeding prescribed limit states given a set of boundary 

variables, and can be written as: 

𝑃𝑃𝑓𝑓 = � 𝑓𝑓(𝑿𝑿)𝑑𝑑𝐗𝐗
 

𝑔𝑔(𝑿𝑿)≤0

 
(6.1) 

where f(X) is the joint probability density function of a vector of random variables, X; g(X) is 

limit-state function; and g(X) ≤ 0 refers to the failure domain. This probability is assessed by 

conducting a reliability analysis such as Monte Carlo simulations and First/Seconds Order 

Reliability Methods (FORM/SORM). The limit-state function for a burst failure is defined as 

follow: 

𝑔𝑔(𝐗𝐗) = 𝑃𝑃𝑏𝑏 − 𝑃𝑃𝑝𝑝 (6.2) 

where Pb is the pressure capacity of the pipe (that is usually estimated by the failure pressure 

prediction model), and Pp is the demand (that is the operating pressure of the pipe). In practice, 

reliability index is calculated to measure the pipe performance, and a generalized reliability index 

is defined as [36]: 

𝛽𝛽 = Φ−1�1 − 𝑃𝑃𝑓𝑓� (6.3) 

where Φ‒1 refers to the inverse of cumulative distribution function of standard normal distribution. 

6.2 Case Study I 

In this session, the reliability index is calculated based on the failure pressure prediction based on 

either the proposed models (shown in Table 8) or the best existing model (i.e., G5-19) for pipelines 

with single corrosion defect. The random variables, X, used in the reliability analysis and their 

distribution information are listed in Table 23. The model errors of the best existing models are 

calculated using the established database so that they could be accounted in the reliability analysis. 

Comparing the model errors in Table 23 indicates that the best existing models are biased 
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(especially for Level 3) and have larger standard deviations of model errors compared to the 

proposed models, consistent with the observations in Figure 80. 

 

Table 23. Distribution parameters of random variables used in Case Study I 
Random variable Distribution COV 

(%) 
Level 

1 
Level 

2 
Level 

3 
Level 

1 
Level 

2 
Level 

3 
Outside diameter of pipe, D (mm) Normal 5 324 16.2 
Nominal wall thickness, t (mm) Normal 5 6 0.3 

Defect depth, d (mm) Normal 5 - - 
Defect length, l (mm) Normal 5 100 or 350 5 or 17.5 

Yield strength, σy (MPa) Normal 3 357 534 589 10.71 16.02 17.67 
Ultimate strength, σu (MPa) Normal 3 458 661 731 13.74 19.83 21.93 

Operating Pressure, Pp (MPa) Normal 5 7.61 11.39 12.57 0.38 0.57 0.63 
Model error in the proposed model 

(MPa) Normal - 0 0 0 1.84 1.07 1.36 

Model error in the best existing 
model (MPa) Normal - 0.39 -0.53 0.90 2.23 1.39 2.45 

 

Figure 98 compares the reliability index of pipelines with the failure pressure capacities 

calculated based on either the proposed models or the best existing models for three materials 

(corresponding to three levels of σu) under various levels of corrosion depths (d/t varying from 0% 

to 90%) and two levels of defect lengths (means of l = 100 mm and 350 mm). As expected, the 

reliability index decreases with the increase of the defect depth on the pipe for a given defect 

length; the reliability index is smaller for longer defect length. Also, the defect length impact 

becomes more significant when the corrosion depth increases. This indicates that both corrosion 

depth and length are critical particularly when corrosion becomes worse. 

When comparing the reliability curves resulted from the two pressure prediction models 

(solid lines vs. dashed lines in Figure 98), one can notice that the reliability based on the proposed 

models is higher than the one based on the best existing model, especially for smaller d/t. Such 

difference is bigger for the defect with l = 350mm and also bigger for material with Level 3 σu. 

For example, Figure 98(c) shows that for a defect depth of 40% of wall thickness and a defect 

length of 350 mm the reliability index based on the proposed model and best existing model are 

about 3.9 (Pf = 0.000048) and 2.3 (Pf = 0.0107), respectively, which is substantially different. In 

this case, using the best existing model may lead to unnecessary costs associated with repairs and 

maintenance prompted by the lower reliability index calculated. This result indicates that the 

failure pressure prediction model plays an important role in the reliability evaluation of a pipeline; 
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the difference resulted from the proposed models and the best existing models is not negligible. 

  
(a) Material with Level 1 σu 

  
(b) Material with Level 2 σu 

  
(c) Material with Level 3 σu 

                Proposed model 
                Best existing model 
 
                      

Figure 98. Defect depth-dependent reliability index based on the proposed models and best 
existing models for pipelines with single corrosion defect 

 

In addition, importance analysis [62] are used to identify important uncertainty sources that 

contribute most to the variability of the pipeline performance. Figure 99 shows the absolute value 

of importance measure, γ, of each random variable that considered in the reliability analysis. For 

all three scenarios, the top two most important variables are wall thickness (t) and model error in 

the burst pressure model. This indicates the majority of uncertainties stem from wall thickness and 

burst pressure prediction. In addition, the plots in Figure 99 also indicate the defect depth becomes 

more important when corrosion becomes more severe, as expected. Lastly, the defect length and 

width are among the least important variables.  
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(a) Material with Level 1 σu 

 
(b) Material with Level 2 σu 

 
(c) Material with Level 3 σu 

 

Figure 99. Absolute values of importance measures based on the proposed models for pipelines 
with single corrosion defect assuming l = 100mm 

 

To evaluate the impact of the model error (that reflects the model accuracy) in the 

performance evaluation, Figure 100 compares the reliability curves with and without considering 

the model errors for the same three pipe materials in Figure 98 under various levels of corrosion 

depths (d/t varying from 0% to 90%) and one level of defect length (mean of l = 350 mm). Similar 

to Figure 98, the reliability index difference between the solid line (obtained using the proposed 

model) and the dashed line (obtained using the best existing model) is substantial particular for 

material with Level 3 σu, as shown in Figure 100(c). For either the proposed or best existing 

models, it is apparent that the model error has a great impact on the reliability index; and 

considering model error has a much lower index value. For instance, the reliability index calculated 
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based on the proposed model for the pipeline with Level 3 σu and a defect depth of 20% are about 

8.4 and 6.4 without and with model error respectively. This shows that if the model error is not 

considered, the overestimated reliability index can cause a delay of the pipeline maintenance and 

repair, leading to unexpected pipeline failure with tremendous consequences (both economically 

and environmentally). Therefore, it is important to include the model error in the reliability 

evaluation of corroded pipelines. In summary, based on Figure 98 and Figure 100, one can 

conclude that the performance of a failure pressure prediction model plays a critical role in 

determining the structural performance of corroded pipelines. 

 
(d) Material with Level 1 σu 

 
(e) Material with Level 2 σu 

 
(f) Material with Level 3 σu 

                Proposed model 
                Best existing model 
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Figure 100. Defect depth-dependent reliability index calculated with and without the model error 
for the proposed models and best existing models for pipelines with single corrosion defect 

 

6.3 Case Study II 

To evaluate the impact of defects interaction on the structural integrity of pipelines, the time-

dependent probability of the burst failure of a pipeline with two corrosion defects is evaluated. The 

pressure capacity of the pipeline with the colony of defects is calculated based on an interaction 

rule and failure pressure prediction models. When defect interaction is identified, the proposed 

model for interacted defects is applied. When there is no defect interaction identified, the pressure 

capacity is determined by the smallest value of all pressures based on each single defect within the 

colony using the failure pressure equation in the MTI method, which is also the DNV RP-F101 

method for single defects (Part B). Note that the interaction rules (that are based on defect 

geometries) and the failure pressure prediction models are time-dependent, as they depend on 

defect sizes. Thus, the probability of failure is time-dependent, 

To predict the defect size time-evolution, the corrosion growth model developed by Caleyo 

et al. [63] is considered here, and it is written as:  

𝑑𝑑𝑚𝑚(𝑡𝑡) = 𝑘𝑘(𝑡𝑡 − 𝑡𝑡0)𝛾𝛾 (6.4) 

where dm(t) = average value of the maximum pit depth at time t; t0 is the corrosion initiation time; 

and k and γ are the pitting proportionality and exponent factors, respectively. Considering a mixed 

type of soil, the value of k and γ are estimated to be 0.164 mm/year and 0.780, respectively [63]. 

On the other hand, no defect length or width growth models are available; thus, the corrosion defect 

length and width growths are simply calculated using a corrosion defect length to depth ratio and 

a corrosion defect width to depth ratio, respectively.  

The random variables, X, used in the reliability analysis and their distribution information 

are listed in Table 24. Figure 101 compares the time-dependent reliability index of a pipeline with 

the failure pressure capacities calculated based on various interaction rules: the proposed 

interaction rule (PR) developed in this study and three existing interaction rules (i.e., KV [26], 

DNV RP F101 [8], and 6WT [30]). For a comparison purpose, Figure 101 also shows the reliability 

index curve of the pipeline when only one defect is considered: dashed line for considering Defect 

1 only and black solid line for considering Defect 2 only.  

As expected, the reliability index decreases with time since defects grow with time. The 

reliability index curve based on the interaction rules KV or 6WT overlaps with the one that 
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considers only Defect 2, which indicates that the interaction rules KV and 6WT do not recognize 

any defect interaction during the 75-year time window. Meanwhile, the interaction rule DNV 

identifies the defect interaction around year 40, and then the corresponding reliability index 

dropped from a value of 6.0 (Pf = 9.87×10-10) to a much lower level, 3.7 (Pf = 1.08×10-4), due to 

the identified interaction. On the other hand, the proposed rule (PR) identifies the defect interaction 

much earlier, around year 4, where the reliability index curve drop occurs accordingly. Figure 101 

clearly shows that the interaction effect plays a critical role in the time-dependent performance 

evaluation of a pipeline with colony of corrosion defects. In this case study, using the existing 

interaction rule KV, 6WT or DNV does not recognize the interaction at all or at a much later time, 

which may cause a delay of the pipeline maintenance and repair leading to unexpected pipeline 

failure usually with both adverse consequences economically and environmentally. 

 

Table 24. Distribution parameters of random variables used in Case Study II 

Random variable Distribution COV (%) Mean Standard 
deviation 

Outside diameter of pipe, D (mm) Normal 5 324 16.2 
Nominal wall thickness, t (mm) Normal 5 6 0.3 

Yield strength, σy (MPa) Normal 3 534 16.02 
Ultimate strength, σu (MPa) Normal 3 661 19.83 

Operating pressure, OP (MPa) Normal 5 14 0.7 
Corrosion defect length to depth ratio - - 5 - 
Corrosion defect width to depth ratio - - 2 - 

Defect 1 corrosion initiation time, t0,d1 (year) - - 3 - 
Defect 2 corrosion initiation time, t0,d2 (year) - - 2 - 

Initial longitudinal spacing, SL,init, between 
defects (mm) - - 100 - 

Initial circumferential spacing, SC,init, between 
defects (mm) - - 50 - 
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Figure 101. Reliability index versus operating time based on different interaction rules 

 

6.4 Case Study III 

In this section, a case study of a pipeline with a crack-like defect is considered to evaluate the 

impact of failure prediction models on the life-cycle cost. The framework of expected life-cycle 

cost developed by Kere and Huang [64] is used in this study. The framework is developed based 

on a decision tree model with the use of analytical methods to evaluate events. The expected total 

life cycle cost consists of cost of inspection, repair, and failure with the consideration of discount 

rate and service life. Using the total probability concept, the expected total life cycle cost is 

determined by adding each conditioned expected total cost on a given number of failures 

occurrence during the service life multiplied by the probability of the corresponding failure 

occurrences, and is written as: 

𝐸𝐸[𝐶𝐶𝑇𝑇] = �𝐸𝐸�𝐶𝐶𝑇𝑇,𝑘𝑘�
𝑛𝑛

𝑘𝑘=0

= �𝑃𝑃𝑓𝑓,𝑘𝑘 ∙ 𝐸𝐸[𝐶𝐶𝑇𝑇|𝑘𝑘 failures]
𝑛𝑛

𝑘𝑘=0

 (6.5) 

where CT,k = cost due to the scenario when k failures occur during the service life, Pf,k = probability 

of k number of failures occurrence during the service life, and E[CT|k failures] = expected total 

cost given k number of failures occurrence. In particular, Pf,k and E[CT|k failures] are calculated 

using the formulations given in [64], where the probabilities of different numbers of failure 

occurrences are probabilistically assessed using probability distribution of failure time with the 
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consideration of the impact of repair actions that are possibly taken after each planned inspection, 

and the probability distribution of failure time is determined based on the time-dependent 

probability of failure. The probability of failure is defined as in Eq. (6.2). Note that the failure 

pressure prediction model is time-dependent, as it depends on defect size. Thus, the probability of 

failure is time-dependent.  

To predict the defect size time-evolution due to fatigue loading, the Paris law proposed by 

Paris and Erdogan [65] is considered in this study, which is expressed as follows: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐶𝐶(∆𝐾𝐾)𝑚𝑚 (6.6) 

where a = crack size; N =number of cycles; C and m = material constants; and ∆K = stress intensity 

range. The stress intensity range is given by [66] 

∆𝐾𝐾 = 𝑌𝑌(𝑎𝑎)∆𝜎𝜎√𝜋𝜋𝜋𝜋 (6.6a) 

where Y = geometry factor depending on the geometry of the crack, a, and ∆σ = stress range. For 

simplicity, Y is assumed to be constant. Using an iterative process with an initial crack size, a0, the 

defect size time-evolution, a(t), can be predicted. For this case study, the parameters used in the 

crack growth model are listed in Table 25. 

Figure 102(a) shows the crack defect growth over time, t, for this case study, where the 

solid line refers to the prediction with mean values of coefficient and the dotted line refers to the 

mean prediction ± 1 standard deviation. Figure 102(a) indicates that the variability in the defect 

depth prediction is very small for lower value of t, but starts to become significant with increase 

in t. Next, the burst pressure capacity is evaluated using the proposed failure pressure model (PM) 

and the modified Ln-Sec model (Mod Ln-Sec) separately, and the predicted failure pressure, Pb(t), 

is shown in Figure 102(b). With the same material and geometry properties used by Hosseini et al 

[50] as shown in Table 6 and an operating pressure assumed as a normal random variable with a 

mean of 8 MPa and standard deviation of 0.4 MPa, the probability of burst failure, Pf(t), can be 

assessed through Eq. (6.2) using reliability analysis. Figure 102(c) shows the resulted Pf(t) using 

PM or Mod Ln-Sec for the failure pressure prediction. For a better visualization of the impact of 

the pressure prediction model on the probability of failure, Pf(t) is also plotted in the logarithmic 

scale as shown in Figure 102(d). As expected, Figure 102(b) shows that the failure pressure 

prediction using either of the models decreases with the increase of t, while the probability of 

failure increases with t as shown in Figure 102(c) and Figure 102(d), since the defect depth 
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increases with time. Moreover, Figure 102(b) shows that Mod Ln-Sec is not sensitive to the defect 

gowth for t < 30 years in this case study; and the predicted pressure from PM is much higher than 

the one from Mod Ln-Sec especially when t > 48 years. Because of the difference in the failure 

pressure prediction (that is the failure pressure prediction from PM is much higher than the one 

from Mod Ln-Sec), Figure 102(d) shows that the probability of failure using PM is much smaller 

compared to the one using Mod Ln-Sec model. 

For the life cycle cost analysis, the unit costs for inspection (CI), repair (CR), and failure 

(CF) are assumed: CI = ain⋅C0, CR = ar⋅C0, and CF = af⋅C0, where ain (= 0.0177), ar (= 0.243), and af 

(= 100) are multiplicative factors for inspection, repair, and failure, respectively. Those factor 

values are chosen based on the ranges presented in Gomes and Beck [67]. Also, the discount rate 

is assumed to be 2%, considering a service life of 50 years. For simplicity, we assume that the 

inspection interval, Δt, is fixed and set to be 10 years, and the defect repair threshold, dr, is the 

variable. Specifically, dr is set to be within the range of [15   30%] of the wall thickness, dw. Using 

Eq. (6.5) by setting n = 2 (i.e., ignoring the consequence due to 3 or more failure occurrences), the 

expected total cost, E[CT], is calculated. Figure 103 displays E[CT] and its three components 

E[CT,0], E[CT,1], and E[CT,2] for different values of dr/dw considering PM and Mod Ln-Sec in the 

probabilities of failures evaluation. It found that the lowest E[CT] value shown in red circle in 

Figure 103(a) occurs at dr/dw = 0.23 and 0.20 using PM and Mod Ln-Sec, respectively. The optimal 

defect repair threshold, dr, using Mod Ln-Sec is smaller since the probability of failure using Mod 

Ln-Sec is bigger (as shown in Figure 102(d)), and lower dr is preferred for higher probability of 

failure to increase the chance of performing maintenance actions, which can prevent event failure. 

For both models PM and Mod Ln-Sec, Figure 103(b), shows that the expected total cost given no 

failure occurrence, E[CT,0], decreases with the increase of dr/dw, since the number of possible 

repairs decreases with the increase of dr/dw. E[CT,0] using PM is higher because the probability of 

no failure is higher for PM. The expected total cost given one failure, E[CT,1], shown in Figure 

103(c) and the expected total cost given two failures, E[CT,2], shown in Figure 103(d) increase with 

dr/dw, because the probability of failure using both models increase due to the lower number of 

possible repair actions when setting a higher repair criterion. Figure 103(c) indicates that E[CT,1] 

using PM can be neglected for dr/dw< 0.23 and Figure 103(d) shows that although E[CT,2] using 

Mod Ln-Sec is higher compared to the one using PM, E[CT,2] is negligible for both models. The 

results from Figure 103 clearly indicate that the failure pressure model considered in the life cycle 
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cost analysis influences the decision making in the risk management. 

 

Table 25. Distribution parameters of random variables used in Case Study III 
Random variable Distribution Mean STD 

Outside diameter of pipe, D (mm) Normal 508 [50]  25.4 

Nominal wall thickness, dw (mm) Normal 5.7 [50] 0.285 

Yield strength, σy (MPa) Normal 433 [50] 12.99 

Ultimate strength, σu (MPa) Normal 618 [50] 18.54 
Estimated fracture toughness, Kmat 

(MPa2⋅m)  Normal 335.49 16.77 

Material parameter, C lognormal 2.3⋅10-12 
[68]  

6.9⋅10-13 
[68] 

Material parameter, m Normal 3.0 [68]  0.3 [68] 

Geometry function, Y - 1 - 

Stress range, ∆σ (MPa) Weibull 14 1.4 

Number of load cycles per year, N - 106 - 

Initial crack depth, a0 (mm) Normal 0.3 0.03 

Crack length, 2c (mm) - 100 - 
 

 
(a) Crack defect depth growth 

 
(b) Failure prediction, Pb 
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(c) Probability of failure, Pf 

 
(d) Probability of failure, log(Pf) 

Figure 102. Time evolution of a/dw, Pb, and Pf  calculated for Case Study III 
 

 
(a)  

 
(b)  

 
(c)     

(d)  

Figure 103. Expected total cost versus inspection interval considering Pf (t) evaluated by the 
proposed model (PM) and the modified Ln-Sec for pipelines with single crack-like defect 
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7 Conclusions 

To achieve the 1st objective, the ground low-carbon steel samples of flat sheet and pre-damaged 

sheet were exposed to two different environments (ASTM B117 and G85) to generate realistic 

corrosion profiles. The flat samples corroded during the exposure under two environments 

demonstrated by increased corrosion depth through IFM characterization; however, the sample 

variations were very big. The pre-damaged samples were sensitive to B117 environment that had 

increased corrosion depth of the scratched area with small sample variations; however, the depth 

change was less significant under the G85 environment, and the sample variations were large. The 

pre-damaged samples in B117 exposure were for NDE characterization. 

To achieve the 2nd objective, the MSU NDE team has been tackling the challenge of 

interactive defects detection and characterization in metallic pipes, crucial for pipeline integrity 

assessment. The team developed a multi-modal electromagnetic and ultrasonic framework that 

leverages the benefits of various NDE and data processing methods such as machine learning. This 

framework includes Shear Horizontal (SH) guided wave testing, which has proven effective for 

NDE of buried pipelines, a task that typically presents significant field-testing challenges. In terms 

of Eddy Current Array (ECA) work, the team developed the ECA sensing probe, robust post-

processing operations to convert raw eddy current data into clear 2D voltage mapped images of 

the defects. Regarding ultrasonic NDE work, the team focused on establishing an expanded NDE 

framework for interactive anomalies by probabilistically characterizing defect profiles. They used 

finite element modeling (FEM) for accurate defect modeling and to study the resulting ultrasonic 

NDE response. The team also developed numerical models that simulated different materials and 

structural conditions, to obtain their corresponding ultrasonic response for the complex anomaly 

scenario. MSU team also developed Machine Learning based feature engineering algorithms and 

Deep Learning based Convolutional Neural Networks (CNNs) for better characterizing the 

identified interactive anomalies. Despite high noise levels, the performance of the networks 

remained acceptable. 

To achieve the 3rd objective, three tasks are performed. The first task is to develop 

probabilistic failure pressure models for pipelines with a single corrosion defect using a 

comprehensive database established in this study. The database is established by collecting data 

from literature and adding new numerical data generated from finite element models. With the 

established database, the performance of existing failure pressure prediction models for pipelines 
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with a single corrosion defect is compared. Then probabilistic failure pressure models are proposed 

using multivariate linear regression with existing failure pressure prediction models as independent 

variables. Also, a sensitive analysis is performed to evaluate the impact of influencing quantities 

on the proposed models.  

The second task to meet the 3rd objective is to develop a probabilistic interaction rule and 

failure pressure prediction model for pipelines with interacting corrosion defects based on a 

comprehensive database established in this study. The database is established by collecting data 

from literature and adding new numerical data generated from finite element models. Using the 

database, the performance comparison of existing interaction rule is conducted first. Then a 

probabilistic interaction rule is proposed by using the logistic regression algorithm with pipe 

properties and adjacent defects characteristics (e.g., defect, length, and width of defects and 

spacing dimensions between defects) as independent variables. The proposed interaction rule is 

also compared with the existing interaction rules. Next, existing failure prediction models are 

compared using the established database. Then, the proposed failure pressure is developed by 

adding a corrosion factor to the best existing model identified. The correction factor is formulated 

using multivariate linear regression with pipe properties and adjacent defects characteristics as 

independent variables. 

The third task to meet the 3rd objective is to develop a probabilistic failure pressure model 

is developed for pipelines with a single crack-like defect using a comprehensive database 

established in this study. The database is established by collecting data from literature and adding 

new numerical data generated from finite element models. In particular, extended finite element 

method (XFEM) is utilized to overcome the challenge of modeling cracking growth with the 

conventional finite element method, which is the need of mesh conformity to the geometry 

discontinuities and remeshing as crack grows. With the established database, a performance 

comparison of existing failure pressure prediction models for pipelines with a single crack-like 

defect is conducted. Then, the proposed failure pressure model is developed by adding a correction 

factor to the best existing model identified. The correction factor is modeled using a multivariate 

linear regression with pipe properties and crack defect characteristics as independent variables. 

Then, the proposed model is compared with the best existing model and a sensitive analysis is 

performed to evaluate the impact of influencing quantities on the proposed model.  

To meet the 4th objective, three case studies are conducted. In the Case Study I, a reliability 
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analysis is performed to assess the impact of the failure pressure model of pipeline with a single 

corrosion defect on the structural performance. In the Case Study II, the time-dependent 

probability of the burst failure of a pipeline with two corrosion defects is evaluated, which is used 

to understand the importance of the prediction model for defect interaction identification in the 

pipeline integrity prediction. In Case Study III, a life-cycle cost analysis of a pipeline with a single 

crack-like defect is performed to evaluate the influence of the predicted failure pressure of pipeline 

with cracking on the expected total life cycle cost of pipelines. 

Based on the results of this study, the following conclusions are drawn: 

• The ground low-carbon steel can corrode under ASTM B117 and ASTM G85 exposure 

conditions. Pre-damaged samples showed increased corrosion depth and small sample 

variations during 36 weeks of exposure in B117. Large sample variations were found for 

the pre-damaged samples under G85 exposure and for flat samples.  

• IFM is a powerful tool to characterize corrosion depth on the metal surface.  

• The SH waves, having little out-of-plane leakage and thus being able to propagate over 

long distances within the pipe walls, are excellent for detecting local changes in thickness 

or material degradation. 

• The ECA results indicated that damage could be clearly seen and monitored over time, 

showing the growth of corrosion and the deformation of the original defect. Despite some 

limitations related to saturation in later samples and some bias in the data, future 

improvements should include removing bias between coils and using precision tilt 

mechanisms for calibration. 

• Ultrasonic GWs successfully propagated in a pipeline using a 2-D FEM based model and 

also corrosion pits and their ultrasonic NDE response are successfully modelled. 

• Most existing burst failure pressure prediction models for pipelines with single corrosion 

defects are conservative, but the models that use the strain-hardening behavior of pipelines 

have good prediction performance. Particularly, model G5-19 developed by Zhu & Leis 

[10], is found to be the best existing model.  

• Among the existing interaction rules considered, the POF, API RP 579, and 6WT 

interaction rules have better performance. 

• Among the existing failure pressure prediction models for pipelines with interacted 

corrosion defects, Level-2 assessment methods such as the RSTRENG Effective Area 
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method, the DNV RP-F101 method for interacting defects (Part B), and the MTI method 

have better performance than Level-1 assessment methods; and the MTI method performs 

the best. 

• Among the existing failure pressure prediction models for pipelines with crack-like defects 

(i.e., Ln-Sec, modified Ln-Sec, Corlas, API RP 579, and BS 7910), the modified Ln-Sec 

performs the best. 

• FEM constructed in ABQUS is successfully used for burst testing simulation for pipelines 

with single corrosion defect or interacted corrosion defects; XFEM constructed in 

ABAQUS is successfully used for burst testing simulation for pipelines with crack-like 

defects. 

• The sensitivity analysis reveals that the proposed models for pipelines with single corrosion 

defects and model G5-19 are sensitive to the pipe thickness and the depth and length of the 

corrosion defect. Also, both models are more sensitive to the defect length for deeper 

defects but become less sensitive for long defects length. 

• The proposed interaction rule that is a function of colony configuration, defect geometries, 

pipe material and geometrical properties is more accurate than all the existing interaction 

rules used in this study. 

• The correction factor proposed improves the MTI method for the failure pressure 

prediction of pipeline with interacted corrosion defects. 

• The correction factor proposed improves the modified Ln-Sec by reducing the variability 

in the prediction, which could offer more accurate performance evaluation for risk 

management.  

• The sensitivity study shows that the proposed pressure model for pipelines with crack-like 

defects is sensitive to yielding strength, cracking geometries, and the pipe all thickness 

ratio; in particular, the proposed model is more sensitive to the crack depth than the existing 

model, the modified Ln-Sec model. 

• The reliability analysis in Case Study I shows that the depth and length of corrosion defect 

are crucial in the reliability evaluation of corroded pipelines, especially when the corrosion 

become worse; the performance of a failure pressure prediction model plays a critical role 

in determining the structural performance of corroded pipelines; and one should not ignore 

the uncertainty in the model error of the failure pressure prediction model. 
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• The importance analysis in Case Study I shows that wall thickness and model error in the 

burst pressure prediction model are the two most important random variables that 

contribute to the variability of the pipeline performance. This result shows that reducing 

the uncertainty in the wall thickness estimation is important and continuing improvement 

burst pressure prediction model can make significant impact. 

• The time-dependent reliability curves obtained in Case Study II show that defect 

interaction significantly decreases the reliability of the pipeline, indicating capturing the 

interaction effect is critical in the corrosion risk management of pipelines. 

• The expected life cycle costs obtained in Case Study III show that the burst pressure 

prediction model used to evaluate the probability of failure plays a role in the risk 

management of pipelines. 

7.1 Net Safety Impact 

The results of this study address DOT’s pressing need to maintain safety and integrity of the 

existing pipeline infrastructure in the U.S under interactive threats. An expanded and new multi-

modal NDE framework is developed enabling the missing capability to assess interactive 

anomalies with integration of lab-, field- and simulation-environment validation. A crucial body 

of knowledge of interactive anomalies and their properties has been established and facilitated for 

future design of assessment models and standards. In addition, the propagation of the anomaly 

profile (either isolated or colony defect) will be captured through probabilistic defect time-evaluation 

models based on NDE data. The improved accuracy in the pressure failure prediction and the 

appropriate consideration of defect interaction and prevailing uncertainties facilitate the 

development and application of quantitative risk management for pipelines. The use of reliable 

performance predictions (through the proposed NDE, defect time-evolution model, and failure 

pressure model) enables optimum monitoring/inspection, maintenance scheduling/methods, repair 

strategies/methods, and financial resource allocations and forecasting. 

7.2 Future Work 

The lab testing condition to generate cracking corrosion needs to be studied and understood in 

the future. The corrosion profile of the cracking corrosion can also be investigated if it can be 

easily generated in lab conditions. 

Regarding NDE, research will focus on multi-modal data fusion that combines ECA, UT, 

and IFM data at both the measured data-level and feature-level. Time-dependent corrosion process 
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and damage characterization will be performed with uncertainties quantification and will be used 

for failure pressure prediction. 

Concerning pipelines with crack-like defects, the probabilistic model was developed for 

thin-walled pipelines containing single crack-like defects. However, two other scenarios (i.e., 

colonies of crack-like defects or corrosion and crack-like defects) can occur on the surface of a 

pipeline. Therefore, a review of existing methodologies for determining the failure pressure for 

pipelines with interacting crack-like defects and existing rules for identifying cracking defect 

interaction need to be conducted. Due to extremely limited testing data available for these two 

scenarios, research is needed for conducting burst testing. With a reasonable database, 

improvement on the burst pressure models and interaction rules can be made for more accurate 

prediction.    
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Appendix A: Exposure Testing Results of Task 1 

Surface photos of flat samples after exposure testing  

 
Figure A1.  The flat testing samples after 24 weeks of exposure in B117. 

 

 
Figure A2. The flat testing samples after 28 weeks of exposure in G85 testing. 
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Pre-damaged samples exposure testing and IFM analysis 

Exposure testing 

The upper and lower sides around the scratch were covered by black tape to prevent corrosion, 

which is the black region in Figure B3. Then, the metal samples were placed in a salt fog chamber 

for exposure testing. The samples were continuously sprayed with 5 wt.% NaCl solution 

circulating at 35° C (ASTM B117 standard condition). ASTM G85 standard where samples were 

in exposure to a mixed solution consisting of 0.35 wt.% aluminum sulfate and 0.05 wt.% NaCl. 

 

 
Figure A3. Schematic of a metal sample for exposure testing. 

 
Surface cleaning 

After salt fog exposure testing, the tapes were removed. The punched scratch region was washed 

with a mixed solution of HCl, Sb2O3, and SnCl2 to remove corrosion products.  

IFM characterization 

The depth of the exposed metal samples was observed by IFM. The blue region in Figure B4 is 

the IFM scanning area. It covered the scratch and the tape-protected region of the metal. The 

protected region was used as a reference point for the measurement. The first scan of the blue area 

gave a depth distribution, and it also presented the lowest point in the punched scratch region. 

Then, a second measurement used a line profile that went through the lowest point and the 

reference point to measure the depth. An example of the line profile is shown in Figure B5.  

The depth before exposure testing was measured exactly the same approach by IFM. The 

scanning area didn’t cover the left and right end of the punched scratch because these areas were 

sloping surfaces of the corners which were not smooth.  
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Figure A4. Schematic of IFM scanning area for a metal sample. 

 
 

 
Figure A5. Line profile of a metal sample (#11 after 1-week exposure). 
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Surface photos of pre-damaged samples   

 
Figure A6. The pre-damaged steel sample before the exposure testing. 

 

 
Figure A7. The pre-damaged testing samples after 24 weeks of exposure testing in B117: before 

surface cleaning (top) and after surface cleaning (bottom). 
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Figure A8. The pre-damaged testing samples after 24 weeks of exposure testing in G85.  
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Appendix B: Existing models of burst failure prediction for pipeline with single corrosion 

defect 

G1-1 - ASME B31G Original [3] 
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G1-2 - Modified B31G (RSTRENG 0.85dL) [3] 
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G1-5 - RSTRENG Effective Area [3] 
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G1-8 - Fitnet FFS [18] 
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G1-9: Phan et al. - Modified NG-18 [19] 
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G3-16: Modified PCORRC [73] 
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G6-21: Choi et al. [24] 
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G6-22: Chen et al. [25] 
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where 𝐶𝐶1 = 0.1075, 𝐶𝐶2 = −0.4103, 𝐶𝐶3 = 0.2504    
 

G6-24: Phan et al. - Modified Gajdoš et al. [19] 

𝑦𝑦�24 =
2𝑡𝑡𝜎𝜎𝑢𝑢
𝐷𝐷

�1 −
1.24678 �𝑑𝑑𝑡𝑡�

1 + 12.6739 �𝑡𝑡𝑙𝑙�
� (B.24) 

 


	1 Executive Summary
	1.1 Summary of Accomplishments
	Peer-reviewed journal publications
	Conference proceedings
	Oral and Poster Presentations
	Student Contributors


	2 Introduction/Background and Objectives
	2.1 Objectives
	2.2 Justification of Scope Adjustment

	3 Objective 1: Lab Testing of Generating Realistic Corrosion Defect
	3.1 Experimental Program
	3.2 Results and Discussion
	3.2.1 Flat sample results
	3.2.2 Pre-damaged sample results


	4 Objective 2: NDE Framework
	4.1 Eddy Current Array Methods for Interactive Corrosion Detection and Characterization
	4.1.1 ECA theory and parameter selection
	4.1.2 Procedure and results

	4.2 Ultrasonic NDE methods for interactive corrosion detection and characterization
	4.2.1 Circumferential Guided Waves
	4.2.2 Automated Signal Classification
	4.2.3 Dataset Analysis
	4.2.4 Conclusions & Discussion

	4.3 Dataset Preparation for Machine Learning based Data Analysis
	4.3.1 Cross Entropy Analysis
	4.3.2 Hilbert Transform Analysis
	4.3.3 Multi-Layer Perception (MLP) Classifier Network
	4.3.4 1D-Convolutional Neural Network
	4.3.5 Conclusions

	4.4 Ultrasonic Imaging Methods

	5 Objective 3: Probabilistic models of failure pressure prediction
	5.1 Models for Pipeline with Single Corrosion Defect
	5.1.1 Background
	5.1.2 Existing prediction models
	5.1.3 Data Collection
	Data collected from literature
	Additional numerical data
	Performance comparison of existing models

	5.1.4 Proposed prediction models
	Model development
	Probabilistic models

	5.1.5 Model performance evaluation
	5.1.6 Sensitivity analysis

	5.2 Probabilistic Models of Defect Interaction Identification and Failure Pressure for Pipelines with Interacted Corrosion Defects
	5.2.1 Background
	5.2.2 Existing model formulations
	Existing interaction models
	Existing capacity pressure prediction models

	5.2.3 Data Collection
	Data collection from literature
	Additional numerical data

	5.2.4 Performance comparison of existing models
	Existing interaction models
	Existing prediction models

	5.2.5 Model development
	Proposed defect interaction rule
	Proposed failure pressure prediction model


	5.3 Models for Pipeline with Single Crack-like Defect
	5.3.1 Background
	5.3.2 Existing prediction models
	Ln-Sec Model
	Modified Ln-Sec Model
	CorLASTM
	FAD models
	API RP 579
	BS 7910

	5.3.3 Data Collection
	Data collected from literature
	Additional numerical data
	Performance comparison of existing models

	5.3.4 Proposed model development
	5.3.5 Sensitivity analysis


	6 Objective 4: Uncertainty Impact on Pipeline Reliability
	6.1 Background
	6.2 Case Study I
	6.3 Case Study II
	6.4 Case Study III

	7 Conclusions
	7.1 Net Safety Impact
	7.2 Future Work

	References
	Appendix A: Exposure Testing Results of Task 1
	Surface photos of flat samples after exposure testing
	Pre-damaged samples exposure testing and IFM analysis
	Exposure testing
	Surface cleaning
	IFM characterization

	Surface photos of pre-damaged samples

	Appendix B: Existing models of burst failure prediction for pipeline with single corrosion defect
	G1-1 - ASME B31G Original [3]
	G1-2 - Modified B31G (RSTRENG 0.85dL) [3]
	G1-3 - SHELL92 [4]
	G1-4 - RPA (Rectangular Parabolic Area) [5]
	G1-5 - RSTRENG Effective Area [3]
	G1-6 - CSA Z662 [14]
	G1-7 - DNV RP-F101 Method for single defects (Part B) [6]
	G1-8 - Fitnet FFS [18]
	G1-9: Phan et al. - Modified NG-18 [19]
	G2-10: Netto et al. [7]
	G2-11: Mustaffa & van Gelder [8]
	G2-12: Netto et al. [20]
	G2-13: Wang & Zarghamee [9]
	G2-14: Phan et al. - Modified Netto et al. [19]
	G3-15: PCORRC (Pipe Corrosion Criterion) [15]
	G3-16: Modified PCORRC [73]
	G4-17: Original RAM Pipe Requal [22]
	G4-18: Modified Ram Pipe Requal [22]
	G5-19: Zhu & Leis [10]
	G5-20: Zhu - X65 [23]
	G6-21: Choi et al. [24]
	G6-22: Chen et al. [25]
	G6-23: CUP [26]
	G6-24: Phan et al. - Modified Gajdoš et al. [19]


