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1 Executive Summary

To address DOT’s pressing need for safety and integrity maintenance of the existing pipeline
infrastructure in the U.S., the proposed project focuses on multi-modal NDE and probabilistic
performance evaluation of aging pipelines under interactive threats. This study will utilize
experimental testing and numerical analysis to generate more realistic defect shapes and colony
profiles, which will be used for characterization and validation of interactive defect NDE. In
addition, probabilistic models of failure pressure of a pipeline containing corrosion and cracking-
like defects will be developed, achieving predictions that are unbiased with reduced variability and
considering defect interaction.

The technical impact of the proposed research can be summarized in four aspects: (1) The
proposed multi-modal NDE framework enables the missing capability to assess interactive
anomalies with the integration of lab-, field- and simulation-environment validation. (2) Various
sources of uncertainties are quantified and appropriately propagated to risk assessment through
probabilistic characterizing defect profiles in NDE, probabilistically modeling time-evolution of
defect profile propagation, development of probabilistic capacity model considering interactive
anomalies, and reliability analysis. (3) The developed probabilistic capacity model remove bias
and improve the accuracy of the deterministic models, complement the deterministic models with
characteristics of defect profiles, and preserve the simplicity of the deterministic models so as to
enable the practical application of the proposed probabilistic models. (4) The corrosion defect
interaction impact are probabilistically assessed, which is suitable for risk assessment. Overall, the
results of reliable performance predictions generated from this research enable optimum
monitoring/inspection, maintenance scheduling/methods, repair strategies/methods, and financial
resource allocations and forecasting.

The proposed project result in (1) a better understanding of the characterization of
interactive anomalies in isolated and colony profiles using NDE and their impacts on the residual
strength of a pipeline; (2) industry ready probabilistic prediction models for failure pressure of
pipelines containing interactive anomalies, providing predictions that are unbiased with reduced
variability; and (3) better knowledge of the propagation and quantification of prevailing

uncertainties in prediction models for the quantitative risk management of pipelines.
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2 Introduction/Background and Objectives

Oil and gas pipelines are a critical part of the infrastructure of modern society. The U.S. has about
3 million miles of gas and liquid pipelines (including more than 400,000 miles of transmission
pipelines), subjected to various potential threats during their service lives. In the past three decades,
qualitative risk management has been widely used in industry practice for supporting cost-effective
decisions to achieve specific acceptable levels of safety. Figure 1 shows a general process of the
quantitative risk management for a pipeline, consisting of exposure, risk quantification, and
decision-making. Once the potential threats are identified, the risk associated with those threats
need to be assessed so that appropriate actions (such as mitigation, prioritizing of maintenance,
repair and replacement) can be taken. Risk is typically defined as the product of the probability of

failure and the consequence of failure.

Exposure
= v,
Harsh environment (e.g.., humidity, Natural hazard Stress and/or |
temperature, soil condition) loading

: : .

Risk . Threat identification (e.g.. corrosion, ;
gquantification SCC, external force, weather)
¥
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Figure 1. Quantitative risk management for pipeline.

Based on the degree of impact for a consequence, a pressurized pipeline can fail in two
distinctive failure modes: a small leak or a burst. In particular, a burst occurs when internal pressure
exceeds the pressure resistance of the pipeline, and it usually leads to significant safety and
environmental consequences. The capacity to resist internal pressure (or failure pressure) is reduced
by the damage defects resulting from accidental impacts or material degradation such as metal
corrosion and cracks. When damage defects are considered as a threat, nondestructive evaluation

(NDE) technologies are able to detect the location and geometry of a damage defect with a high
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degree of accuracy, such as magnetic flux leakage (MFL), eddy current (EC) including single
frequency, multiple frequency and pulsed excitations, ultrasonic testing (UT). In recent years,
technologies like electro-magnetic acoustical transducer (EMAT) in-line inspection (ILI) were
developed that can capture many crack-like features and address undiggable challenges through
research projects sponsored by PHMSA, however, the reliability and accuracy of using NDE
and/or ILI for crack detection still need to be continuously improving. One key reason is that state-
of-the-art technologies are limited in identifying and characterizing interactive anomalies.

Recent PHMSA studies have also confirmed that many pipe failures are not resulted from
a single type of threat but threat interactions, including interactions of resident conditions with
changing operations or environment. There is a major technical gap regarding characterization
of the interactive anomalies and reliability assessment of pipeline under such anomalies.
Therefore, to obtain accurate risk assessment, one needs a thorough understanding of the time-
dependent physical characteristics of interacting damage from advancements in NDE
methodologies, the level of operation loading demand, the probabilistic capacity assessment
considering time-evolution of anomalies, and quantification of all relevant uncertainties.
2.1 Objectives
The goal of this proposed study is to develop a probabilistic pipeline performance evaluation
framework based on multi-modal NDE assisted by physical and mechanical modeling under
interactive anomalies. This study utilizes experimental testing and numerical analysis to generate
more realistic defect shapes and colony profiles, which will be used for characterization of
interactive defects and validation of NDE. Meanwhile, the identified defect profile are used for the
probabilistic defect time-evolution model development, which is crucial for reliability evaluation
of pipeline performance under interactive defects. In addition, probabilistic models of failure
pressure of a pipeline containing corrosion and cracking-like defects are developed, achieving
predictions that are unbiased with reduced variability and considering defect interaction.

Specific technical objectives are as follows:

e Objective 1: Generate realistic corrosion and cracking defect profiles through laboratory
testing and electrochemical simulation;
e Objective 2: Establish an expanded NDE framework for interactive anomalies by
probabilistic characterization of defect profiles;

e Objective 3: Develop probabilistic failure pressure prediction models incorporating defect
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interaction;

e Objective 4: Investigate the impact of various physical quantities and uncertainty sources
on pipeline reliability.

2.2 Justification of Scope Adjustment

For the experimental testing, the budget and time restrained us to explore the possibility to generate
crack corrosion which is found to be much harder than general corrosion under lab conditions.
Consequently, simulation of crack corrosion was not able to be conducted as no lab results are
available for calibration. Here are the specific challenges that we encountered in the lab testing:

¢ In the initial experimental testing, generating a general corrosion profile took almost 1.5
years using flat samples under B117 and G85 environment. However, we found that the
corrosion defect results cannot be used directly for probabilistic analysis because there are
significant sample variations, and the corrosion depth profile unfortunately did not present
a clear trend. The flat sample testing took around 1.5 years, and the samples were lost in
the shipping transportation to MSU for NDE characterization.

e Then, we conducted another corrosion environmental test under B117 exposure by using
pre-damaged samples where a designed defect was introduced through grooving the
samples. The B117 data are reasonable and can be used for probabilistic analysis and NDE
testing. However, the pre-damaged samples testing took another 1.5 years.

e (Generating general corrosion defects alone took about 3 years, which exhausted all the
budget that was budgeted for the 1.5-year Task 1; we completed the experimental part for
corrosion depths data within the project time frame with the supplement of internal
funding.

For the NDE tasks, the NDE framework was not able to be tested in a field environment
due to the difficulty of obtaining such data. However, MSU has focused their efforts on developing
methodologies to characterize interacted corrosion defects. In addition, MSU also has tested the
developed methodologies on the samples with general corrosion sent by UAkron. The step of using
NDE data for reliability analysis was not complete due to time and budget constraints but it will
be completed using other internal funding with the continued collaboration of the three
universities.

For probabilistic capacity model and reliability analysis, Marquette Research team has

conducted a comprehensive work for pipeline with three scenarios: isolated corrosion defect,
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colony of corrosion defects, and isolated crack defect. We encountered research challenges
regarding the other two scenarios (i.e., colony of crack defect and colony of corrosion and crack-
like defects), which cannot be addressed during the project period. First of all, there is very limited
existing data in the literature for colony crack-like defect or colony of corrosion and crack-like
defects. It is worth mentioning that one study related to colony of crack-like defect has been
experimentally conducted by a PRCI project that was completed in 2020
(https://www.prci.org/192422.aspx); however, it contains only four burst tests. In addition to the
lack of existing data, the plastic properties (or J-R curves) for the pipeline that are needed for
numerical modeling are not reported in the literature, which makes the modeling validation
impossible for these two scenarios. In summary, it needs one or two separate research projects to

systematically investigate the last two scenarios as the experimental data is extremely limited.

3 Objective 1: Lab Testing of Generating Realistic Corrosion Defect

3.1 Experimental Program

This objective is to generate realistic corrosion profiles through environmental exposure testing.
The defect shapes and colony profiles will be used for NDE and for the probabilistic defect time-
evolution model development.

The testing metal is a ground low-carbon steel with a similar composition to the API series
pipeline metals. One type of metal sample was the flat sheet with the size of 3” x 3” x 3/32”. The
second type of metal sample was the same flat sheet that was punched to generate a pre-damaged
area on the surface. The punched scratch on the surface was around 0.63” long, 0.06” wide, and
0.010” deep. The exact depth of the scratch was measured by infinite microscopy (IFM)
measurement before and after exposure testing.

One testing condition was the continuous salt spray of 5 wt.% NaCl fog following ASTM
B117 salt spray testing protocol. The second testing environment is according to the ASTM G85
standard where the samples were in exposure to a mixed solution consisting of 0.35 wt.%
aluminum sulfate and 0.05 wt.% NaCl.

After certain periods of time, the testing samples were removed from the environmental
chamber for IFM characterization. The surface photos of the testing samples after exposure testing
were included in Appendix A.

3.2 Results and Discussion
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3.2.1 Flat sample results

The infinite microscopy images for the testing flat samples from initial immersion to 8-week
exposure in B117 environment are shown in Figure 2. The surface area of the metal under the
exposure is 3” x 3” (demonstrated as the blue square in the 1% row of the figure), while the surface
area for the infinite microscopy scanning is 3mm x 3mm (demonstrated as the red square in the 1%
row of the figure). Five different locations on the testing metal were chosen for the infinite
microscopy scanning, which is center, left top, left bottom, right top, and right bottom of the
surface. Based on the change in the topography of the surface, the evolution of a corrosion profile
can be observed. For example, some small corrosion spots can be detected on the right bottom of
the surface after 8-week exposure.

Besides topography, two quantities can be obtained from the infinite microscopy scanning:
the average depth (davg) and the maximum depth (dmax) of the scanning area. To evaluate the depth
of the whole surface area, the sample mean and sample standard deviation of davg and dmax from
the five scanning locations were calculated and shown in Figure 3. The average depth and the
maximum depth for duplicated samples are also included in Figure 3. In general, the means of davg
and dmax increased with time during the 24-week exposure time in the B117 condition. The increase
of dmax demonstrates the generation of corrosion depth under the corrosive environment.

The same flat samples were also exposed in the environmental chamber following the
ASTM G8S5 testing protocol and investigated by infinite microscopy characterization for the
average depth and the maximum depth. Figure 4 shows the sample mean and sample standard
deviation of davg and dmax from the five scanning locations of all the exposed samples during the
24 weeks of G85 exposure. The average depth and the maximum depth for duplicated samples are
also included in Figure 4. As expected, the samples showed a higher corrosion depth under G85
immersion, which was a harsher environment than the B117 exposure.

The fluctuations of the depth values are due to the sample variations because different
samples were removed from the environmental chamber and tested at each testing period. After
the pre-analysis of the IFM results of the flat samples, the big fluctuation brings large errors in
probabilistic analysis, which cannot be further used for the analysis.

In addition, all the flat testing samples were shipped to the Co-PI Dr. Deng at Michigan
State University for NDE characterization at the end of March 2021, but all these samples were

lost in transportation by USPS. Therefore, a second testing sample with the pre-damaged surface
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was designed for exposure testing.
3.2.2 Pre-damaged sample results
The infinite microscopy characterizes the depth of the pre-damaged surface area of the testing
sample. The details of IFM testing are described in Appendix A. One sample was continuously
placed in the chamber, which means this sample was put back to the exposure after IFM
characterization periodically, and its depth is shown in Figure 5. The other set of samples was
initially put in the exposure and removed at a certain time, and their depths are shown in Figure 6.
The depth change is defined below:
Depth change = depth (time of testing) — depth (initial) (3.1)

Figure 7 shows the mean and standard deviations of the depth changes of all the samples.
As shown in Figure 7, the change of depth presents a significant increase in the B117 exposure
environment during the 36 weeks of exposure. The duplicated samples show small variations.

Similarly, for G85 exposure testing, the depth of the continuously exposed sample is shown
in Figure 8 and the other set of the testing samples is shown in Figure 9. The depth change of all
the testing samples under the G85 exposure is shown in Figure 10. The depth change is less
significant during the 36 weeks of exposure under the G85 environment, and the sample variations
are large.

The results of pre-damaged samples in B117 exposure demonstrate a good depth change
and the sample variations are small. These samples after testing were sent to the Co-PI Dr. Deng

at Michigan State University for NDE characterization in the fall of 2022.
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Figure 2. Infinite microscopy images of the flat testing samples during B117 exposure testing
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Figure 4. The sample mean and sample standard deviation of the average depth and the
maximum depth of the scanning area of all the flat samples during G85 exposure testing.
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4 Objective 2: NDE Framework
4.1 Eddy Current Array Methods for Interactive Corrosion Detection and
Characterization
Interactive defects detection and characterization in metallic pipes is one of the major challenges
identified for pipeline integrity assessment. The group here previously has developed/is
developing novel NDE and data processing methods for pipeline applications, including internal
corrosion inspection using optical structured light 3D reconstruction and rendering techniques that
significantly improves the damage detectability, and stress cracking corrosion (SCC) detection
using multi-frequency electromagnetic techniques, remote field eddy current (RFEC) techniques,
etc. assisted by machine learning (ML). While there are tremendous successes in these techniques,
which work well for exposed pipes or “in-the-ditch NDE”, only Shear Horizontal (SH) guided
wave testing has been proven to work in NDE of buried pipelines that poses a big challenge in
field-testing to understand realistic interacting threats environment. In this task, the MSU NDE
team develops a multi-modal electromagnetic and ultrasonic framework including Eddy Current
Array (ECA), EMAT for generation of SH waves (low frequency-50kHz to 500 kHz), localized
Rayleigh wave measurement using EMATSs and air coupled transducers, and contact ultrasonic
measurement for validation of guided wave results for better characterizing the identified
interactive anomalies, as well as leveraging other techniques being developed by the group through
the other successful programs sponsored by PHMSA. Defect localization and material
characterization have always been a challenge for guided waves inspection in this community; and
it is worth noted since SH waves have very little out-of-plane leakage, their energy is confined
within the pipe walls and they can propagate for long distances. Therefore, any local changes to
thickness or material degradation (loss in stiffness and density) can be detected using SH waves,
which makes it a perfect candidate for the proposed corrosion/SCC/fatigue defects interaction
study. Expanding from the ongoing PHMSA project, introduction of SH waves modality and
dedicated signal processing algorithms for analyzing the interactive-damage-feature-encoded data
is crucial for the success of the proposed work.
4.1.1 ECA theory and parameter selection
Eddy current testing (ECT) is a low-cost and robust method for nondestructive evaluation for
various inspection purposes and matches well for corrosion detection which contains small defect

depths. Rugged ECT sensors may be designed at high frequencies required from sub-mm damages.
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As the coils will be small to meet high frequencies, they may also be duplicated as an ECA for
faster scan times. This report demonstrates the concepts for designing or selecting an eddy current
probe, and the procedure for scanning with a gantry system.

The input to an ECT coil is a signal from a function generator with an input voltage v;,
and frequency f. The output will be response voltage v,,,; affected by complex impedance and
induced current density on the sample under test. Vital information for how to conduct ECT
depends on the size of defect and material used. This is relevant to skin penetration, which

determines the depth of the response, which is defined by:
1

o (4.1)

With § being the skin penetration depth, f being the frequency, o being electrical conductivity in

o=

S/m, and pu being magnetic permeability in H/m, with u = u, * u, where w, is realative
permeability (unitless) and u, being the permeability of free space with uy = 0.4 * 107°H /m.
By defining the thickness for skin depth § for materials determining ¢ and u, a frequency f may
be selected based on coil properties. From depth measurements using infinite focus microscope
(IFM) measurements, the range of damage is between about 100um and 900um. For steel,
conductivity has been measured to be 4.68 X 10°S/m on steel and 0.75 X 10°S/m within the
corroded region, while relative permeability was measured around 60 for steel and 4 for the
corroded region [1]. Because of the differences between the electromagnetic properties of steel
and rust, the response of the eddy current density will also change, which change may be measured
through v,,,;. To match the depth of corrosion at 900um, a frequency around 104kHz is desired.
Keep in mind there are several variables that keep this selection from being perfect. For example,
how steels are processed will vary its electromagnetic properties. Another factor is lift-off between
a coil in air versus the sample, which conductivity is suggested to be approximately zero S/m and
relative permeability of 1 [2]. If the lift-off is too high, this will decrease the response of the signal
which is not wanted.

There are other important prospects to ECT scanning, including the usage of a gantry for
scanning and array probes for faster scanning. A gantry may hold onto ECT probe provides
accurate positional information via encoders with respect to throughput ECT data. Gantries may
also read in commands for program mable scanning. Raster movement patterns are used, which

will provide a 2D image of the scan. Since coils used for ECT testing may have small diameters
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for high frequency testing, required for detection of corrosion with small damages, they can be
replicated in an array pattern to decrease scan times. For example, a single coil running a raster
scan of X = 30mm and Y = 30mm at a desired 1mm resolution along the shifting axis X, with
scanning axis Y being dependent on the data acquisition frequency and gantry velocity. A single
probe requires 30 shifts along X to match the required resolution. If two coils ¢; and ¢, are
implemented, strategically placed 1mm away from each other, then ¢; may skip ¢, for every shift
to avoid redundancy, requiring 15 shifts which effectively decreases scan time by half. The
downside to array probes is that each coil requires calibration in terms of gains to ensure each coil
outputs similar output voltages.

4.1.2 Procedure and results

Ten steel samples containing weekly ASTM b117 standard corrosion were scanning, shown in
Figure 11. Sample 1 starts at 1 week’s worth of corrosion, which the consecutive samples are
corroded for 4 weeks afterwards until week 36. Each sample initially contained a defect about
15 X 5mm in area and approximately 0.1mm in depth. An I-Flex ECA probe with an operating
frequency range between 100 — 800kHz and 32 channels was used alongside an Ectane 2 testing
instrument and Magnifi eddy current data acquisition and processing software. MATLAB was
used for further post processing. Each channel is connected to a coil, with each coil being 2Zmm in
diameter. The array contains 2 columns of 16 rows probes along the X axis with a shift of I1mm
between each column. This effectively gives the coverage at 34mm with a resolution of 1mm
from one swipe. However, because of lift off variation between the two columns, combining both
results give unwanted results due to lift-off variation. It was decided to split the data between the
two columns to obtain two different images, shown in Figure 12 and Figure 13, with a 1mm shift
along the Y axis between the two sets. This mitigates any tilt along the Y axis between columns

during calibration and scanning, leaving only tilt along each individual column only the X axis.
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Figure 12. 2D post-processed data from real voltage component on corroded samples using the
left column of coils.
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Figure 13. 2D post-processed data from real voltage component on corroded samples using the
right column of coils.

The frequency used on the samples was selected at 100kHz as it was the resonance
frequency of the probe to give the deepest readings under rust at around 920um. An input voltage
at v;;,, = 10V and pre-amp gain at 55dB was also used. Signals deeper than this range are expected
to saturate, meaning more evaluation may take place from the surface to the end of the current
density range. To calibrate gain per coil, the probe was placed 1mm away from the far-side, or
with the sample flipped up-side-down, of week 1’°s sample. Magnifi’s calibration tool was used to
obtain gain settings, which only one calibration was used for all samples. A Shapeoko CNC gantry
was used for scanning the sample, repurposed for raster scanning with sub-mm positional accuracy
of the probe. Magnetic encoders were installed on the gantry to give high positional accuracy of
the sensor array to the Ectane and Magnifi, which synchronizes both data position and values. The
z-axis consists of a leadscrew to maintain a constant lift-off between of 1mm away from the
surface. The sample was placed in a measured location on the gantry to enable consecutive

scanning with minimal rotation of the sample or shifting. The setup is shown in Figure 14.
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Figure 14. Eddy Current Array (ECA) NDE gantry setup.

Factors such as probe or sample tilt or overall sample thickness will vary lift-off. These
effects may be cancelled out in post processing. A zig-zag raster scan was conducted creating an
image with a resolution of 0.1 X 0.1mm. The scanning area is 36 X 25mm to cover the sample.
To obtain a 0.1 resolution along the shifting axis X, the gantry moves the probe in 0.1mm segments
for 19 movements, between 0 and 2 — 0.1 = 1.9mm, as the difference between 2 consequitive
coils on a column is 2mm. If both columns were used for one image, then only 9 movements
would be needed between 0 and 1 — 0.1 = 0.9mm. For the scanning direction on axis Y,
resolution is dependent on aquisition speed and gantry velocity. To prevent null data, the gantry
moved approximately 15mm/s to provide consistent data, though higher speeds have been tested
with minor data loss. Each scan took around 33 seconds to finish to obtain raw data, including
buffer times to prevent exeptions between reading and writing the gantry, and excluding time
placing the samples in and out of the scanning system.

Post processing operations are important for obtaining a clear image of the defects. The
initial processing comes inside of Magnifi, which interpolates the raw eddy current data into a 2D
voltage mapped image including real and imaginary components. In Matlab, the real data is
detrended by creating a surface fit with polynomial order 5 along both axes and subtracting the
results. The mean value of each 1D line is then subtracted, each along Y. After, a 10 X 2 median
filter is used to remove speckle noise mostly in the scanning direction. The processing due to
detrending placed the voltage into arbitrary units. For the 1D data, the results of the 16th coil, near
the middle of the probe, was processed by averaging each shifting axis result. The middle of the
probe gave the best indication of where the original defects occur. The data is detrended by

subtracting the mean of the 1D result against itself. Finally, the data is zeroed by using the "no
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defect" region on the right edge as a reference, and the results are shown in Figure 15.
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Figure 15. 1D post-processed data from real voltage component on corroded samples using coil
16.

From the 2D and 1D results, damage can be clearly seen. A pattern develops between week
1 and 36, showing the growth of corrosion with time. The original defect, which is seen clearly in
week 1, deforms increasingly with time. Darker patterns on the 2D images indicate deeper damage,
while brighter patterns imply corrosion defects above the surface of the sample. This effect has
been discussed in other eddy current corrosion detecting literature [3]. Some saturation occurs in
the later week samples due to the extent of corrosion, seen at the bottom of the 2D images between
week 20 and 36. Some of this saturation may be due to differences in expected skin penetration,
or even due to lift-off variation in calibration and scanning. The 1D results show drastic changes
of depth pattern as corrosion increases with time. What is interesting is that depth does not
consistently decrease with each passing week, only the increased deformations. There is also an
increase in the defect’s length along the Y axis.

There are some improvements that can be made in terms of the scanning procedure and
post processing. This includes unbiasing each coil from the 2D results. There are "bars" seen in
the 2D data sets, which represent the data collected from each coil. Differential mode scanning,
where neighboring coils are subtracted, may help remove bias between coils. Precision tilt
mechanisms may be placed on the sensor holder to calibrate tilt for these samples. An analysis can
be done using gyroscopes and comparing rotational information between the sample and sensor

may be useful in this regard. This would help the raw data from coil from being biased due to lift-
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off variation. Later works will examine how to convert this voltage into depth, which is a well-
known problem [4]. This would help give quantifiable information on how much damage is
occurring rather than a more abstract "arbitrary voltage reading". Overall, the data collected shows
exciting potential even with improvements for future works.

4.2 Ultrasonic NDE methods for interactive corrosion detection and characterization

The overall objective for Section 4.2 is to establish an expanded NDE framework for interactive
anomalies by probabilistic characterization of defect profiles. The objective of using ultrasonic
NDE methods is to develop numerical models and techniques for simulating guided waves (GWs)
in pipeline geometries that include the plate wave equation to determine dispersion of GWs. Multi-
scale and multi-physics modeling, we primarily look into present techniques for simulating guided
waves in pipelines that include the plate wave equation to determine dispersion of guided waves.
Meanwhile, modeling defect accurately is crucial in the simulation studies, since the NDE
responses based on the modeled defects will be used to optimize the sensor frequency. We have
used finite element modeling (FEM) to accurately model and mesh defect geometry to study the
resulting ultrasonic NDE response. Using FEM will help not only optimize sensor parameters (e.g.,
frequency), but also study the physics behind the interaction of guided waves with complex
interacting defects, and the generation and reception of guided waves in pipelines.

SHM and NDE of pipelines using ultrasonics requires a good understanding of defect
signal vs. no-defect signal. While experiments can be carried out to understand this response, one
should use a large set of data to effectively understand the differences. It would be efficient to
develop an array of numerical models, which can simulate different materials and structural
conditions to obtain their corresponding ultrasonic response for the complex anomaly scenario.
This can further be used to develop the NDE and SHM protocols. In the sections to follow, we
show the successful propagation of Ultrasonic Guided Waves (UGW) in a pipeline using a 2-D
FEM based model, and also model corrosion pits and look at its respective ultrasonic NDE
response. The idea behind this is to come up with a model and find the optimum parameters like
frequency, excitation etc., that can be then utilized directly in models with realistic defect profiles
that is to be developed/generated by the research group at UAkron. It also gives a clear idea
between a defect and a no defect response that is desired before experimental studies are carried
out.

In order to build the numerical model, the COMSOL ® Multiphysics 5.4 software has been
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used. Even though the final goal is to build a 3-D model, it is important to first understand the
underlying physics behind the propagation of UGW in a pipeline. The 3-D models become
computationally very costly for this purpose. Also, debugging and validating the results in a 3-D
model are also much harder. Therefore, a 2-D axisymmetric model can be used where the
symmetric nature of a cylindrical pipeline can be exploited. This approximates the wave
propagating in the axial direction, which is sensitive to the circumferentially oriented defects. For
axially oriented defects we employ wave propagating in circumferential direction. For our
preliminary studies using axial and circumferential guided waves, we have considered Steel AISI
4340, whose properties are enlisted in Table 1.

Whenever an ultrasonic guided wave is propagated through a medium, multiple wave
modes are generated. For large pipes we can safely assume the wave characteristics to be same for
axial and circumferential waves. This is because the wave is dispersive in nature, and the number
of different types of wave modes depends on the frequency and the thickness of the sample. The
two primary modes though are the symmetric mode (SO) and the antisymmetric mode (A0). These
two modes are generated at relatively lower frequencies. At higher frequencies, there are multiple
wave modes, which makes detection and isolation of particular wave modes very difficult, and
thereby also making detection of defect signatures harder as they might get buried in the signatures
of various different wave modes. Basically, dispersion of the wave causes multiple wave modes
that can make data interpretation incredibly hard. Therefore, only the A0 and SO wave modes are
generated, and these signatures are observed in samples with and without defects. It is therefore
very important we have information about the different wave modes and the frequency they are
generated at for a particular material and thickness. This information can be deduced by looking

at the dispersion curves for Steel. Figure 16 shows the dispersion curve for Steel AISI 4340.

Table 1. Properties of Steel AISI 4340
Density 7850 kg/m3

Young’s Modulus | 205 GPa

Poisson’s ratio 0.28
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Figure 16. Dispersion curve for Steel AISI 4340

We have chosen 25 KHz as the operating frequency for a pipe with a wall thickness of 20
mm for which the modes generated are indicated in Figure 16. As desired, at this frequency and
thickness, we will be able to generate only the A0 and SO modes.

The first step is to understand the ultrasonic NDE response from a pipeline without any
defects, as it is important to establish a reliable baseline where there are no defects. Figure 17
shows the sample geometry that is being considered. Since the goal of using ultrasonic guided
waves is to perform long range ultrasonic testing, a 2 m long pipe was considered with a 20 mm

wall thickness as mentioned before.

32



1.87)
1.67)
1.47]

1.2]

0.87]
0.6
0.47]

0.2]

Figure 17. Sample geometry for 2-D axisymmetric model to simulate axial waves in pipes.

Figure 18 below shows the time domain representation of the excitation pulse used in this study.
It is a typical ultrasonic tone burst signal modulated at 25 KHz with 10 cycles where it consists of
a simple cosine signal modulated by a Hanning window. While Figure 19 shows the frequency
domain representation of the burst signal, it is clearly observed that the peak lies at 25 kHz, which
confirms the velocity of our excitation signal. Mathematically, it is represented by the equation
below:

B cos(wt)) 42)

excitation = Sin(wt) * (1
n
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Figure 19. Frequency domain representation of the burst signal

The incident displacement is applied as shown in Figure 20 below. This way, the disturbance is
applied across the whole circumference of the pipe. The quadrilateral (QUAD) elements available
in COMSOL ® are used to mesh the whole domain. Also, a very fine mesh is used here where the
minimum element size is 42 um. A time dependent analysis using the direct linear solver MUMPS
available in COMSOL ® is used to simulate the ultrasonic guided wave in the pipeline. The total

time span for the simulation is 2000 us while the time step is 2 us. The degree of freedom in these
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simulations is 2026.

The burst excitation is
applied at this boundary

Figure 20. Zoomed simulation model showing the excitation by the application of the burst type
signal on transducer boundary.

Now, looking at the velocity profiles of the ultrasonic guided wave, we can clearly
distinguish and isolate the A0 and SO modes. A point to note is that the transmitting and receiving
points are the same, i.e., a pulse echo system was considered. Shown below in Figure 21 is the

velocity profile or the A-scan where at the same point the disturbance was applied.
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Figure 21. Velocity profile at (0,0) of the sample

From Figure 16, SO mode has a higher velocity, therefore the first arriving reflected wave
packet would be the SO mode. The next arriving wave packet would be the A0 which is not shown.
The difference in time in the arrivals of the incident SO+AO0 and the reflected SO mode is 1290 us.
Figure 22 below, shows the resulting A-scan at a location 0.5 m from the starting of the pipe. In
this case, the difference in arrivals is much lesser at 975 us. It is also clearly visible that the AO
mode arrives later i.e lower velocity and the SO mode arrives faster i.e. higher velocity. This can

easily be explained by looking at the dispersion curve in Figure 16.

36



1 @

1078 i ' ' ]
x 12} — Velocity, R component (m/s), Point: (0.21, 0) ||
10l Incident SO+A0 — Velocity, R component (m/s), Point: (0.2, 0.5) | |
8r Reflected SO
6_
a4t
2_
0 nvf\U
2k
-4t
-6} - 4
8l Incident SO+A0 Rwl ted A0 |
-10r H
ii Reflected SO
0 0.0005 0.001 0.0015

Time (s)

Figure 22. Velocity profile at (0,0) and (0,0.5) of the sample

A 3-D representation of the pipe in terms of the stress propagation is shown below in Figure
23. Since it is an axisymmetric simulation, the phi component is constant and the below figure

shows the stress propagation at the end of the simulation i.e. 2000 us.
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Figure 23. Von Misses Stress at time t=0.002 seconds

An ultrasonic guided wave has been successfully launched through the sample. The A0

and SO wave modes are isolated easily and all the simulation parameters like the frequency,
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excitation signal, mesh type and size, the type of solver have all been optimized. This model will
serve as our baseline model for further analysis. The next step is to look at the ultrasonic NDE
response in the presence of defects caused by corrosion, both internal and external. An
understanding of the interaction of the propagated guided wave with defects is very essential for
effective practical implementation. Pitting corrosion is one of the most dangerous forms of
corrosion. Pitting corrosion is generally caused by environmental and material factors. For
example, an abundance of chloride in the environment causes rapid pitting corrosion while
inclusions in the material also aid in the process. Although there are many types of corrosion, only
the modelling of pitting corrosion is undertaken this quarter. There are two main reasons for this,
(1) the simplified damage models are easily generated for this type of corrosion and (2) it is the
most common and dangerous type of corrosion occurring in metallic pipelines. Pitting is a
localized phenomenon confined to a point or small area that takes the form of cavities. The
combined effects of mechanical stress and pits severely affect the structural integrity of a pipeline.
Pits can also very well act as sites for crack initiation. Generally, it is very difficult to accurately
characterize the smaller sizes of corrosion pits.

Previous work has shown that corrosion pits can be easily modelled as hemispherical
cavities on the surface of the pipelines. A similar approach has been followed in this work, where
a hemispherical cavity is modelled on the surface of the pipeline. In the initial case, a single pit or
cavity has been modelled at a distance 0.5 m from the origin. The length of the pit is 10 mm and
its depth 1 mm. Figure 24 below shows the modelled pit on COMSOL ®.

Figure 25 gives the R velocity profile at the origin (0,0) and a 3-D representation in terms
of the Von Misses stress. From Figure 25(a), we can clearly see some very small reflections arising
in between the incident SO+AO0 packet and reflected SO mode packet. This is elaborated in the
following Figure 26 and Figure 27, where a clear defect signature can be obtained by taking the
difference between the ultrasonic NDE response when there is a pit and the response when there

1s no defect.

38



Velocity, R component (m/s), Point: (0.21, 0

x1078 [

0.53]
0.525]
0.52]
0.515]
0.51]
0.505]
0.5]
0.495]
0.49]
0.485]|
0.48]
0.475]
0.47]

018 0.2 022 024

Figure 24. Cross section of the pipeline with a small pit
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Figure 25. (a) A-scan at (0,0) and (b) Von Misses stress at time ¢ = 0.002s
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Figure 26. Comparison of A-scans with baseline

Clearly from Figure 26, it is observed the incident mode being free from reflection overlaps, while
the reflected SO mode shows clear difference in signature when there is a defect. The amplitude of
the reflected SO wave packet is clearly smaller when compared to the baseline model (i.e., no
defect). This is attributed to the loss in the energy associated with reflected SO mode from
corrosion. Also, clear reflection though small pit is picked up in between the incident packet and
the reflected SO mode. Taking the difference between these two signals gives the defect signature
arising directly from the defect. We have neglected the mesh noise to simplify the analysis. Figure
27 gives the defect signature.

The mechanics of corrosion and how it affects surfaces is a complex process. Hence,
predicting the growth of pits requires extensive field and experimental study. The relationship for
pit depth and time for a metal is loosely given as

dpir = kT1/3 (4.3)
where dpir 1s the pit depth, 7 the exposure time and £ is a constant based on the water and alloy
composition. For this quarter, the objective was to conduct a preliminary study, and hence we
manually simulated different models with different pit depths. Figure 28 shows the simulation

results for a pit with length 10 mm and depth 3 mm.
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Figure 27. Defect Signature for pit with 1 mm depth
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Figure 28. A-scans and defect signature for pit with 3 mm depth

As the pit depth increases, we see a clear increase in the amplitude of the reflections
arriving between the two packets. The reflected SO mode is also significantly smaller in amplitude
as pit depth increases, thereby increasing the amplitude of the defect signature also shown in Figure
28. Figure 29 shows the signature for a pit depth of 5 mm with the length still being 10 mm. A

similar trend is also noticed when the pit depth is 5 mm.
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Figure 29. A-scans and defect signature for pit with 5 mm depth

In order to further quantify the different ultrasonic NDE responses obtained for different
pit depths, Figure 30 below shows the defect signatures for pit depths 3 mm and 5 mm. The

difference in signatures in terms of amplitude is very clear and could act as a viable feature during

classification purposes.
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Figure 30. Defect signatures for pits with 3mm and 5 mm depths

Since the scope of this project is to look at novel NDE methods to understand interacting
anomalies and the corresponding response, the next step was to look at multiple pits around the
same area. To simplify this and completely understand the physics, two pits were modelled

adjacent to each other. The model geometry is shown below in Figure 31. Both the pits are 10mm
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in length and 3mm in depth.
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Figure 31. 2 pits modelled adjacent to each other on the surface

The A-scans and the defect signature is shown in Figure 32. In order to see a significant
difference, the simulated A-scans here needs to be compared to the model with a single 3mm pit.
Figure 33 compares the defect signatures for the two cases discussed. As expected, as the number
of pits increases the amplitude of the defect signatures clearly increases, while the sheer shape of

the wave itself is slightly different.
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Figure 32. A-scans and defect Signature for two pits with 3 mm depth
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Figure 33. Defect signatures for single and double pit models.

We modelled a 2D asymmetrical model in COMSOL ® 5 Multiphysics software, where
we modelled corrosion as hemispherical pits or cavities of certain depths and lengths. Figure 18
shows the burst excitation that is applied on the transducer boundary in our 2D asymmetrical
model. The response for such corroded samples and clean samples were captured, and their simple
difference gave rise to the pure defect signature arising from purely the corrosion pits. Also, since
these pits/cracks normally exist in interactive colonies, the effect of number of pits has been

studied. The material used was the normal Steel AISI 4340 usually found in many pipelines.
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Figure 34. (a) A-scan at (0,0) and (b) von misses stress at time ¢ = 0.002s

Figure 34 shows the velocity response of a pipe with an axial defect of 10mm in length and
1 mm in depth, while Figure 34(b) shows the propagation of Von Misses stress inside the 3D pipe.

Figure 35 below gives the comparison of NDE responses between a healthy signal and a defect
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signal. Clear difference in signals was observed for the pipe with a defect. Taking the difference
between these two signals in Figure 35 gives the defect signature arising directly from the defect.

We have neglected the mesh noise to simplify the analysis. Figure 36 shows the defect signature.
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Figure 35. Comparison of A-scans with baseline
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Figure 36. Defect Signature for pit with 1 mm depth

The mechanics of corrosion and how it affects surfaces is a complex process. Hence,
predicting the growth of pits requires extensive field and experimental study. The relationship for
pit depth and time for a metal is loosely given as,

dpir = kT3 (4.4)

where dpir is the pit depth, T the exposure time and £ some constant based on the water and alloy
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composition. Figure 37 below shows the effect of pit depth on the defect signature. A clear increase
in the amplitude of the defect signature was seen. This was expected, because as the pit depth
increases, the reflections from the pits are much stronger, and since we used a pulse echo setup,
the reflections are much stronger. A similar argument can be made if the number of pits increase,

and this is clearly reflected in the defect signatures seen in Figure 38.
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Figure 37. Defect signatures for pits with 3mm and 5 mm depths
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Figure 38. Defect signatures for single and double pit models.
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4.2.1 Circumferential Guided Waves

Circumferential guided waves have the advantage of limited area to be covered depending on the
circumference. Thereby, dispersiveness of the waves do not hold any limitation for the
interrogation giving the operator freedom to choose any frequency. Circumferential guided waves
are lamb waves that are launched using specific arrangement of transducers like the axially
arranged phased array elements. Such waves are different than the one-dimensional waves in tubes.
Commercial handheld scanners are available that utilize such linear array to scan the pipe length
with its axial movement. We consider such a transducer as a point source in the study to study the
circumferential guided wave interaction with corrosion. Consider a case of wave propagation along
the circumferential direction at a frequency of 50 kHz in a 6 mm thick steel pipe with a diameter
of 200 mm. The geometry and defect types are shown in Figure 39. The location of a piezoelectric
wafer type transducer at 0° along the circumference and defect location is shown in Figure 39(a).
Figure 39(b) shows the pit formed by the Boolean subtraction of three circles from the surface of
the pipe. Figure 39(c) shows three pits with a central spacing of 6 mm. Figure 39(d) shows a
simulated interactive defect formed by combination of corrosion pit and a crack. Colony of 3 pits
with the location of crack in the central pit has been considered. The length of the crack is 2 mm
deep. Detection of single and two pit colony has also been considered which has not been shown
in the figure. The crack length in Figure 39(d) is changed to 1 and 3 mm to simulate the effect of

crack depth on guided wave propagation.
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Figure 39. (a) Corrosion type defects located circumferentially around the pipe, (b) zoomed
image showing dimensions of a single pit, (c) colony of three pits, and (d) interacting defects
consisting of a colony of three pits with 2 mm deep crack in the central pit.

Excitation applied across the wafer type transducer produces SO and A0 guided waves in
the pipe that propagate around the circumference as shown in Figure 40. The pipe being defect
free has a wave propagating in both directions from the wafer exciter. With a higher velocity the
SO wave propagates towards another end leaving behind the slower moving A0 wave mode. The
top and bottom section of the pipe has similar wave propagation pattern due to symmetric geometry
and transducer arrangement. The von Mises distribution is captured at 0.14 ms, which is enough
to see the separation of the SO and A0 wave modes. The wave modes would travel all the way
around the circumference and reach the exciter when there are no defects or other structural
features obstructing them. The signal received by the same wafer exciter in case of a healthy pipe
is shown in Figure 41. The first packet is the incident packet appearing when the wave is launched
by the exciter itself. Following packets are the SO and A0 wave modes respectively returning to
the exciter after propagating through the circumference. The signals obtained in the presence of
corrosion pits have been superimposed. Clearly the signals vary due to the reflections of SO wave
mode from the corrosion. The reflected packet from the A0 wave mode is mixed with the returned
SO and A0 wave response and requires further processing to obtain it. The single pit produces
enough change in the signal to be detected in the presence of a real environment with ambient
noise. The reflected wave packet amplitude changes with its spread as the pits increase. This serves

as a good indicator of damage severity which can be estimated by a cumulative damage index.
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Figure 40. Circumferential guided wave around the pipe seen from the von Mises stress profile
across the cross section.
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Figure 41. Axial displacement response at the piezoelectric wafer transducer location with
healthy, one pit, two pit colony and three pit colony conditions.

Assuming that the three-pit colony is enough to introduce stress corrosion cracking, a crack
is introduced at the middle pit with depth of 1 mm. The crack depth is further increased in steps of
1 mm to obtain another two cases of severity. Such interactive damage produces signals shown in
Figure 42. The reflected SO wave mode packet significantly increases in amplitude. The reason is

attributed to the reduced cross section causing proportionate reflection of SO wave energy. The
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change in amplitude and waveform with frequency content can be further studied for damage

classification including interactive features.

— 3 Pits with 1 mm Crack| |
3 Pits with 2 mm Crack
3 Pits with 3 mm Crack| |

L UHE

Axial displacement (y m)

g Reflected SO from
E interactive corrosion and crack ~ Returned A0

PPMEIRIILIEENI I s T A ras

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time (s)

Figure 42. Axial displacement response at the piezoelectric wafer transducer location with three
pit colony, interactive 3 pit colony with 1 mm crack, interactive 3 pit colony with 2 mm crack
and interactive 3 pit colony with 3 mm crack conditions.

4.2.2 Automated Signal Classification

Simultaneously, the next step was to automate this process of feature selection and have a
classification algorithm that can effectively predict the defect characteristics given a waveform.
The advent of Machine Learning in signal processing, and especially in Nondestructive Evaluation
has greatly helped this purpose. Neural Networks in brief are known as universal function
approximators. But, for a complicated mapping, an exponential number of hidden units are
required but such a large neural network may fail to train. Telgarsky investigated the importance
of depth in neural networks. Deep neural networks encode a general belief that every function can
be represented in terms of simpler functions and their combination can approximate the existing
function. The underlying features can be extracted from the signal which has reduced a hectic and
a time-taking feature engineering process. Each deep learning algorithm has its own pros and cons
for wave response as features and is investigated by Rautela and Gopalakrishnan. Hence, choosing
the right framework, architecture and the hyper parameters is a challenging task in itself. Deep
learning techniques work by feed-forward propagation of input information to hidden layers to get

some output. This output is not necessarily a true output (in a supervised learning setting). A back-
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propagation algorithm flows information backward (which is generally a loss value described by
a cost function) while using a gradient descent-based optimization algorithm. During the procedure
of continuous forward and backward passes, the learning parameters (weights, W and biases, b)
are tuned to a value that minimizes the cost function.

Current literature is bent towards the abovementioned optimization schemes but here, we
have focused on using the Adam optimization. Adam is an adaptive learning rate optimization
algorithm that’s been designed specifically to train deep neural networks. Adam is a combination
of RMSprop and Stochastic Gradient Descent (SGD) with momentum. It utilizes the squared
gradients to adaptively scale the learning rate like RMSprop as well as the moving average of the
gradient (instead of the gradient itself) like SGD with momentum. A neural network-based
learning algorithm maps feature space to target space by minimizing the loss function using an
optimization scheme (Adam optimizer here) over a virtual surface created by the dataset in n-
dimensional vector space. A typical loss function is the mean-squared loss function (MSE). The

formulation is presented in the equation below,

1 m
JW B =— > LO,9) (45)
m=1

A very important aspect while building such automated classification schemes is to collect a good
‘distinguishable’ dataset. By “distinguishable’, the dataset should contain signals that have features
which vary for different conditions. Any neural network at the end of the day is a function
approximator, and if there is no function to approximate i.e., when similar data is present, the
networks fail. An important precursor to building accurate classification algorithms is to check the
data for different features, and clean it if necessary. The features can range from simple features
like temporal energy, peak amplitude, and time of flights to relatively more complicated features
derived from Wavelet Transforms, Fourier Transforms and more.

4.2.3 Dataset Analysis

For this work, we only focus on the axial defect models for the dataset generation. We collected
about 150 samples, which each collected individually were using the COMSOL models. The split
up of the 150 samples is as shown below in Figure 43. Data collecting was a time-consuming
process as each simulation took about 10 minutes, and 150 simulations adds up to about 25 hours
of simulations. Hence our dataset is limited when it comes to the actual size. The simulation

parameters are the same as reported in Section 4.2.1. The faulty signals were collected for range
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of pit depths and lengths. Also, responses with different number of pits were collected.

Sample Count

100

Healthy et
Figure 43. Split of the 150 samples collected for Classification

At first, we look at the simple statistical nature of the data. Simple features like the mean
and variance of a vector is computed for all the 150 samples. Figure 44 shows the same. It is clearly

seen that there is clear difference in statistics of the NDE responses of the healthy and defect

signals.
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Figure 44. (a) Mean of each sample for the classification dataset and (b) variance of each sample
in the dataset (150 samples)

Any NDE response is a time dependent data and also multiple frequencies at different
times. Hence it is always important to analyze the temporal and spectral characteristics of such

datasets. A simple way would be to look at the spectral and temporal energies of each signal. The
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formulation for temporal energy is given below.

1 n
E = E’Z_lxk(t)z (4.6)

While the spectral energy formulation is as given below,

1 n
= E;X"(ﬂz (47)

where Xk(f) is the Fourier transform of x«(t) and is defined as,

n

Xe(f) = z X (e T 48)

k=1

Figure 45 shows the temporal and spectral energy spread for each of the sample. Once
again, considerable difference is seen for healthy and defect responses. Kindly note that all 57
responses of a healthy sample are expected to and has similar characteristics, both temporally and

spectrally.
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Figure 45. (a) Spectral Energy spread for the classification dataset and (b) Temporal Energy
Spread in the dataset (150 samples)

The above analysis has given us a clear picture of the different features that can be
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potentially used in the classification algorithm. The classification algorithm can be designed in
two main ways. One method would be to feed in the raw A-scan itself, while the other would be
to feed in the features as separate inputs post processing. The inputs can include the one’s discussed
above, or go beyond in terms of Wavelet coefficients, Wigner distributions. Feeding in only the
features reduces the dimensionality of the problem, and henceforth makes sit computationally
more efficient, while at the same time there is a risk if the features chosen don’t really most
accurately define the characteristics of a healthy or defect sample. This problem is avoided while
feeding in the raw A-scan, but it makes it computationally more laborious. In our study, we have
fed in the whole A-scan itself as the input, as it is not very clear from the study which feature
influences the outcome most, and without that information, it would be very hard to choose the
right set of features to train our network.

The first step is to be able to design a network, to simply classify healthy and defect signals
in separate classes accurately. We have used a simple Multi-Layer Perceptron Network, whose
architecture is described below in Figure 46. The network is trained on 145 samples of the dataset,
and is tested 5 randomly chosen samples from the dataset. It consists of 4 dense fully connected
layers, with dropout layers to avoid overfitting. By using dropout layers, we ensure the network
works well not only to seen data, but also to unseen data. The network predicts a final value to be

close to 0 or 1. It is considered a defect if it’s close to 1, and healthy if it is close to 0.

Layer (type) Output Shape Param #
e s e e, e
batch normalization 81 (Batc (None, 1039) 4156
dense 106 (Dense) (None, 512) 532480
batch normalization 82 (Batc (None, 512) 2048
dropout 53 (Dropout) (None, 512) 0
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dense 107 (Dense) (None, 128) 65664

batch normalization 83 (Batc (None, 128) 512
dropout 54 (Dropout) (None, 128) 0
dense 108 (Dense) (None, 1) 129

Total params: 1,685,549
Trainable params: 1,682,191

Non-trainable params: 3,358

Figure 46. Architecture of the Multi-Layer Perceptron Network used.

The loss function used is the MSE function as described previously, while we have used
an Adam optimizer. The activation function is Relu. Relu is typically used in neural networks to
introduce nonlinearity in terms of the interaction of the inputs which is highly desired in practical
problems. It is computed over 100 epochs, with a learning rate of 0.00001. Tuning the hyper
parameters is a big aspect of building successful networks, and while there is no such right or
wrong techniques to do so, it generally depends on the dataset and the architecture. We evaluate
the performance of the network by the Mean Absolute Error (MAE) and the accuracy metric. One
of the main takeaways during this was the significance of batch size while training. The batch size
greatly influenced the performance of the network. The batch size is a hyper-parameter of gradient
descent that controls the number of training samples to work through before the model's internal
parameters are updated. Since our datasets was small, the chances the networks learn the same
type of samples is a possibility. This will lead to over generalization of the problem, and the
network won’t predict well on unseen samples. Hence with a batch size of four, we were able to
achieve very good performance as described below. The training loss curve and the training MAE

plot are shown in Figure 47 and Figure 48, respectively.
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Loss curve for 1D-CNN
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Figure 48. Training MAE for the MLP Network

The loss function converged pretty well during the training, while mean absolute error also
converged well. The performance is obviously limited by the fact that our dataset is very small,
and it is boosted by the depth of our network. We then used the network to predict the nature of
the response on unseen examples, and it predicts with almost 96% accuracy. The accuracy across
the training procedure is shown in Figure 49. The jagged nature of the plots in the previous figures

(loss, MAE and accuracy) might be probably due to the size of the small dataset. Neural Networks
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generally need a lot of data to learn and predict very well on seen and unseen examples, and in

fields like NDE and SHM, generating or collecting big datasets is a challenge.
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Figure 49. Training Accuracy for the MLP Network

The prediction results for the 5 samples are shown in Figure 50. The network correctly
predicts four of the five samples to have defects in them, while it predicts correctly the only healthy
sample. Please note that predicting a value close to 0 indicates a healthy sample, while something

close to 1 indicates a faulty pipe.
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Figure 50. Prediction Results for the MLP Network

4.2.4 Conclusions & Discussion
We have been able to simulate circumferential ultrasonic guided waves inside a pipe with and
without defects in order to optimize the necessary parameters. The interaction of circumferential
guided waves in pipes with pits caused due to pitting corrosion has been captured. A comparison
of signals with clear defect and a no-defect signal show capability to extract damage feature. The
change in defect signatures with respect to pitting depth and number of pits is studied. Also, we
were able to come up with an effective classification scheme to classify healthy and defect NDE
responses with accuracy. Given any A-scan, the network can easily predict the health of the pipe.
This opens up the prospect of using sensory data (either A-scans or images) to characterize
corrosion pits completely. The next question is to develop an algorithm that can predict the
characteristics of the defect in terms of its effective area, depth and location. For this, a much larger
dataset needs to be collected and more rigorous signal processing schemes in terms of using
Wavelet transforms among others.

The results obtained by simulating circumferential guided waves hold possibility of
determining the damage parameters using a large dataset generated for different pit depths, pit
lengths and number of pits, and for different transducer parameters like operation frequency and

feature extraction techniques. The simulation results provide results to design a circumferential

58



transducer for experimental validation of these results are shown in Section 4.3. In terms of
furthering a complete classification algorithm, the next step is to develop or improve the existing
algorithm to predict defect characteristics like pit depths, length and location. Convolutional
Neural Networks seem to work well with time dependent data and regression-based problems. The
final classification scheme can characterize both axial and circumferential corrosion in terms of
the depth, length, area, location and the number of pits. Looking at the bigger picture, other NDE
methods like Electromagnetic NDE, Electromagnetic Acoustic Transducers are to be developed to
not only characterize corrosion, but any pipeline related defects in general, and have a model that
fuses data from different NDE modalities to predict most types of defects in a pipeline and

characterize the defect in terms of its most basic characteristics.
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4.3 Dataset Preparation for Machine Learning based Data Analysis

As discussed in Section 4.2, the dataset consists of 57 healthy responses and 93 defect responses.
All the responses are collected from the axial guided wave model for corrosion pits. For simplicity,
three different configurations have been considered. The first configuration is the healthy pipe,
which is defect-free. The second configuration has one corrosion pit in the pipe, while the third
configuration has a colony of two pits in the pipe. The length of the corrosion pits varies from 1
mm to 5 mm, while the depth of the pits varies from 5 mm to 20 mm. The operating frequency of
the model is 25 KHz. In the last section, some basic features of the dataset were examined, which
is shown in Figure 44 and Figure 45. The four features could be potentially used as feature vectors
in various characterization algorithms. In this section, more complex features are added using some
signal processing tools.

4.3.1 Cross Entropy Analysis

The Cross Sampling Entropy Method (CSamp-En) is mainly used to evaluate the degrees of
asynchrony and dissimilarity of two time series in the same system. Please note that the responses
collected in the dataset are velocity time histories. The CSamp-En method is based on the sampling
Entropy method (SampEn) with a concept called Approximate Entropy that is basically a measure
of the degree of irregularity or disorder in a measurement time series. When SampEn is lower, the
sequence is more regular; the larger SampEn, the more irregular and complex the sequence
becomes. SampEn is independent of the length of the data record and the algorithm uses the
following parameters: threshold (7), sample length (m), and signal length (V). The length of the
time series has no effect on the analysis results, and the results remain relatively consistent.

The analysis step of a CSamp-En algorithm is similar to that in the SampEn analysis
method. The difference is that the object of SampEn analysis is mainly a single time series signal
system, whereas the CSamp-En method analyzes two different time series signals to establish a
template space for each of the two signals. This method basically gives a measure of how similar
two time series signals are in terms of a similarity number. In the scope of our work, the similarity
of different defect responses with respect to the healthy signal can be computed, which can be used
to define a related Damage Index (DI). The procedure of CSamp-En is similar to that of SampEn
and can be summarized as follows.

Let us define two time series signals: {X;} = {x1, x5, ... X;, ... Xy} and {Yj}z

{y1,¥2, - Yj, --..yn}. Both the time series signals are of the same length N. The two signals are
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then divided into templates of size m:
Um (D) = {x;, Xig1, - Xigme1) 1<iSN-m+1 (4.9)
vn(j) = {yj,yj+1, ....yj+m_1} 1<jSN-m+1 (4.10)

A similarity number between um(i) and vm(j) is defined as n/"(r), and can be expressed as:

N-m

m) = ) dltm @, v ()] (4.11)
=1
where, the maximum distance d[u,, (i), v, (j)] between the two template spaces um(i) and vm(j) is
defined as:
dluy, (D), v, (D] =max{|x(@+k)—y(G+k)|} 0<k<m-1 (4.12)
dlup (D), v(D]<r 1<j<N-m (4.13)

When the distance between the two samples is smaller than the threshold, 7, the two
samples are considered similar; conversely, when the distance between the two samples exceeds
r, the two samples are considered dissimilar. The threshold » can be chosen manually by the user.
Through the use of different templates for similarity comparison and the calculation of the number
of templates that exhibit the conditions of similarity, the number of similar samples in the i
template to those in the entire template space can be obtained. The similarity probability of the i

template can be calculated as:

n;" (r)
m _ 13
U )il = s (4.14)
The average probability of similarity for template m can then be obtained as:
1 N-m
m - m
Ul = Z UM () (vl 1w) (4.15)

The degree of dissimilarity resulting from the division of the two time-series by m points
represents the degree of synchronization between the two template spaces. Finally, the sample
space is composed of the sample of length m + 1, and the average similarity probability is

calculated. The formula for calculating CSamp-En is expressed as:

Um“(T)(VIIu)}

4.1
U i) (4.16)

CSg(m,7,N) = —In {

In this investigation, the changes of both final CSamp-En and the similarity number n:"'(r)
are studied for different corrosion configurations and different corrosion pit depth. The parameters

used in this study are listed in Table 2.
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Table 2. Parameters for CSamp-En
Signal length, N 1038

Template length, m 4

Threshold (based on healthy response), r (0

A DI based on the mean of the similarity numbers for different configurations is defined.
The variation in the DI for different configurations is plotted in Figure 51, while the DI for different
defect depths is plotted in Figure 52. From Figure 51, it is observed that there is a direct relationship
between the number of pits and DI. As the number of pits increases in the colony, the absolute DI
value increases, as shown in Figure 52. For defect depth, the DI value does increase for a defect
depth of Smm and 10 mm, but the DI values for defect depths of 15mm and 20mm are similar to
that of 10mm. The increasing DI values basically indicate that the responses of a particular group
are more dissimilar to the healthy response. This can be directly related to a conclusion that the
samples corresponding to the particular group are relatively more damaged. For example, the
samples with 5 mm defect depths have a smaller DI value compared to samples with 10 mm defect
depths. This basically suggests that samples with 10 mm defect depths are more damaged, which

is truth. A similar study is also conducted for changing the defect length (i.e., corrosion pit length).
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Figure 51. Normalized similarity number ni"(r) vs number of pits

62



Healthy Signal

=]

- ————— B

%] w £ w

Similariy Number Mean (DI)

Hes:ithy 5mm 10mm 15mm 20mm
Defect Depth

Figure 52. Normalized similarity number ni"(r) vs defect depth

When using the CSamp-En analysis, we were able to extract a DI that shows a direct
relationship to the number of pits. However, the results are not as promising for different defect
depths. Nevertheless, overall the algorithm presented above provides a valuable feature
engineering tool.

4.3.2 Hilbert Transform Analysis

Hilbert Transform (HT) is one of the most commonly used signal processing tools to study time
signals. Implementing a HT enables us to create an analytic signal based on some original real-
valued signal. HT gives the instantaneous amplitude of a signal, and it can be used to find the
envelope of harmonic signals, which exactly is the nature of the response in our dataset. HT is

mathematically described below for a signal u(?):

® 4

He@) =2 [ X

(4.17)

Similar to how MSCE is studied as a potential DI, HTs of three different configurations
(i.e., healthy, single pit and colony of pits) are computed. The results are shown in Figure 53. The
two peaks (i.e., Peak I and Peak II) shown in Figure 53(a) are basically due to the two reflections
seen in the raw signal. The two reflections are the SO wavemode, and a combination of A0 and
reflected SO wavemodes. As shown in Figure 53, one can observe that though the SO peak (i.e.,
Peak I) has little difference for different configurations, the second peak (i.e., Peak II) shifts
slightly to the right with increasing number of pits in the colony. The increase is in the order of

0.1-0.2 ms (as shown in Figure 53 (b)), which is significant considering the scale which we work
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with.

HTs of the signals from different defect depths are also computed and the results are shown

in Figure 54. Similar to Figure 53, there is no distinct difference among the HT responses at Peak

I, but the second peak certainly shows a difference between the responses from a damaged pipeline

and a healthy response. Therefore, Hilbert Transform is another valuable tool to compute a feature

that distinguishes different configurations and defect depths. A DI based on the HT can be easily

defined to quantify the corrosion defects, which is part of the work planned for the future.
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Figure 53. (a) HT responses for increasing number of pits and (b) a zoomed-in version of Peak II
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Figure 54. (a) HT responses for increasing defect depth and (b) a zoomed-in version of Peak II

4.3.3 Multi-Layer Perception (MLP) Classifier Network

In this section, we also tried to improve the robustness of the MLP based classifier network
presented in the last section. For a quick recap, Figure 55 shows the architecture of the network
that was used. Figure 56 shows the results when the trained model was used to predict on the
unseen responses. For the dataset we defined above with well-labeled responses, the classification
accuracy is defined as the fraction of correct predictions over the total number of predictions. The
accuracy of this particular network was about 95%, which means that the MLP network performs

really well.
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o< 1: Defective

Figure 55. Multi-Layer Perceptron network for defect response classification

(z19) 49Ae7 asuaq
asuaq

)
)
3
v
1]
—
Q
~<
)
=
—
=
o
w
=

In order to simulate a real-world experiment environment, additive white Gaussian noise
(AWGN) of different Signal to Noise Ratio (SNR) levels are added to the training dataset. The
model is then trained, and predicted on the unseen examples. For this analysis, three different SNR
levels of 5, 10 and 20 are considered. The signal with a SNR level of 5 has the highest noise
content, while the signal with a SNR level of 20 has the least noise content. Figure 57 shows a
signal without noise, and a signal with an artificially added noise of SNR 5. As shown in Figure
57 a signal with SNR 5 is highly distorted with noise, and training on such data is tricky and
challenging. However, training with such high-level noises can make a model more robust and
more generic in nature. As expected, the performance of the MLP drops as noise is added. Figure
58 shows the performance of the model when it is trained on a dataset with a SNR level of 20.

Though the accuracy drops to 93%, the model still correctly classifies healthy and defective
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responses according to its true ground class as is visible from the confusion chart.
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Figure 56. (a) Prediction results for the MLP network and (b) confusion plot for the predicted
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Figure 57. (a) Pure raw signal and (b) signal with additive white Gaussian noise (AWGN) added
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Figure 58. (a) Prediction results for the MLP network trained with a dataset with SNR 20 (b)
confusion plot for the predicted results

Similarly, when the noise level is increased by maintaining a SNR level of 10, the
performance further drops to 91% accuracy. Though it classifies the responses accurately, the
absolute values the MLP is predicting for a defect are further away from 1, as is visible Figure 59.
For a SNR level of 5, the accuracy further drops to 89%, and the network now falsely classifies a
healthy response as a defective response as seen in Figure 60. But despite this error, the MLP
network correctly classifies all defective responses correctly. Though this is not the best scenario,
it is acceptable as when it comes to nondestructive evaluation, it is sometime acceptable to falsely
classify healthy signals as long as defective signals are classified correctly. Thus, we are able to
attain very good performance at SNR levels of 10 and 20, and acceptable performance at a SNR
level of 5.
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Figure 59. (a) Prediction results for the MLP network trained with a dataset with SNR 10 (b)
confusion plot for the predicted results
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Figure 60. (a) Prediction results for the MLP network trained with a dataset with SNR 5 (b)
confusion plot for the predicted results

4.3.4 1D-Convolutional Neural Network

The classifier network has been optimized by training it with signals added with different noise
levels, thereby making the network robust and reliable. The next step is to develop 1D
Convolutional Neural Network (1D-CNN) to help characterize the corrosion defects. ID-CNN is

known to extract inherent features from long time series data. Extensive research has gone into
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using CNNs for defect localization and characterization in composites in the last few years. In the
1D-CNN network proposed in this study, the input will be the velocity time histories obtained, and
the output will be the defect parameters such as defect depth, defect length, and number of
corrosion defects in the pipe. One of the reasons for adopting 1D-CNN is that it trains faster than
recurrent neural networks.

Sparse connections and parameter sharing are two important ideas in CNN, whereas, in a
fully connected network (FCN), every neuron interacts with every other neuron. CNN helps to
reduce the number of learnable parameters, which eventually saves memory and decreases the
training time. CNNs are also very robust to external influences, and generally have been shown to
perform well even when there is low level noise in the data. 1D-CNN works similar to a traditional
CNN/2D-CNN, the only difference is that the inputs, kernels and feature maps are all in one
dimension. Figure 61 shows the framework of the proposed 1D-CNN model. Please note the CNNs
are data hungry, and with a current dataset of size 150 samples, it is incredibly hard to attain
acceptable performance. Therefore, the current model shown is being fine-tuned using the small
dataset, while simultaneously more data is being created using data augmentation techniques along

with FEM simulations to populate the dataset.

Forward Propagation >
1
:l Layer-3 || Layer-4

[
[
I [
[
[

=
—
:::::::
 m—
=
 —]
 —
=
=
=
=
=
zZm—A-A4®»rm
ojojeojoje

| Series™
| inputs

Ve _.
< Backward Propagation |

Figure 61. Architecture of the proposed 1D-CNN

=
3.
P

L]

’i\lConvqution-l | Pooling-1 | E: | Convolution-2 | | Pooling-2 |
: [ =1

4.3.5 Conclusions

In this Section, different defect features were established to be used in an overall learning paradigm
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that leverages the best of Machine Learning based feature engineering algorithms, and Deep
Learning based Convolutional Neural Networks (CNNs). A Multi Cross Entropy Analysis
(MCEA) was conducted, and a Damage Index (DI) based on the similarity number was established
to quantify the defect depths, and the number of corrosion defects. Also, Hilbert Transform (HT)
analysis was conducted to establish another feature of interest. The multi-layer perception (MLP)
classifier was further improved by training based on the data with different noise levels. It was
seen that even at very high noise levels (such as SNR of 5), the performance of the networks was
acceptable. Furthermore, a 1D-CNN network was proposed for characterization of corrosion
defects, which currently is being fine-tuned.

4.4 Ultrasonic Imaging Methods

For the same corrosion samples for ECA imaging and data analysis, MSU team also acquired the
immersive UT imaging data, which are shown in the figures below, compared with the IFM data

obtained by Akron team.

Sample 11: TOF Map
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Figure 62. Sample 11 UT results: (a) 2D imaging/TOF map, (b) Estimated corrosion profile with
uncertainties using UT, and (¢) IFM estimated corrosion profile as ground truth.
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Figure 63. Sample 12 UT results: (a) 2D imaging/TOF map, (b) Estimated corrosion profile with
uncertainties using UT, and (c¢) I[FM estimated corrosion profile as ground truth.
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Figure 64. Sample 13 UT results: (a) 2D imaging/TOF map, (b) Estimated corrosion profile with
uncertainties using UT, and (c¢) [FM estimated corrosion profile as ground truth.
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Sample 14: Surface Loss between Y=[13: 20]
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Figure 65. Sample 14 UT results: (a) 2D imaging/TOF map, (b) Estimated corrosion profile with
uncertainties using UT, and (c) IFM estimated corrosion profile as ground truth.
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Figure 66. Sample 15 UT results: (a) 2D imaging/TOF map, (b) Estimated corrosion profile with
uncertainties using UT, and (c¢) IFM estimated corrosion profile as ground truth.
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Sample 16: TOF Map Sample 16: Surface Loss between Y=[14: 21]
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Figure 67. Sample 16 UT results: (a) 2D imaging/TOF map, (b) Estimated corrosion profile with
uncertainties using UT, and (¢) IFM estimated corrosion profile as ground truth.
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Figure 68. Sample 17 UT results: (a) 2D imaging/TOF map, (b) Estimated corrosion profile with
uncertainties using UT, and (¢) IFM estimated corrosion profile as ground truth.
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Figure 69. Sample 18 UT results: (a) 2D imaging/TOF map, (b) Estimated corrosion profile with

uncertainties using UT, and (c¢) [FM estimated corrosion profile as ground truth.
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Figure 70. Sample 19 UT results: (a) 2D imaging/TOF map, (b) Estimated corrosion profile with

uncertainties using UT, and (c¢) [FM estimated corrosion profile as ground truth.
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Sample 20: Surface Loss between Y=[18: 30]

Sample 20: TOF Map
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Figure 71. Sample 20 UT results: (a) 2D imaging/TOF map, (b) Estimated corrosion profile with
uncertainties using UT, and (c¢) [FM estimated corrosion profile as ground truth.

It can be seen from both ECA and UT results that NDE results correlate with the [FM line
data (corrosion “ground truth” profile) well. Futher research will be conducted in multi-modal data
fusion that combines ECA, UT and IFM data at both measured data-level and feature-level. The
time-dependent corrosion process and damage characterization will be performed with
uncertainties quantification, and passed to the probabilistic modeling for failure pressure

prediction.
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S Objective 3: Probabilistic models of failure pressure prediction

5.1 Models for Pipeline with Single Corrosion Defect

5.1.1 Background

In practice, the remaining strength of pipelines with single corrosion defects has been popularly
assessed using the ASME B31G [5], Modified ASME B31G [5], or RSTRENG [5] methods. These
methods were developed based on the NG-18 equation proposed by the Battle Memorial Institute.
More models based on the NG 18 equations were also developed later such as SHELL92 [6],
RPA[7], and DNV RP-F101 [8]. On the other hand, other researchers (such as Netto et al [9];
Mustaffa and Van Gelder [10]; Wang and Zarghamee [11]) proposed failure prediction models
based on Buckingham’s © theorem, which is a mathematical approach that allows the formation of
dimensionless parameters consisting of various possible influencing parameters and then uses the
dimensionless parameters to predict a quantity of interest [10]. Zhu and Leis [12] proposed a
prediction model using the strain-hardening behavior of pipe materials. A comprehensive review
of the existing prediction models has been reviewed in [13]. Note that all existing prediction
models mentioned here were developed for pipelines under normal range temperatures. Separate
prediction models need to be developed for pipelines under extremely low temperatures, which
significantly change material properties (such as toughness) and thus pipeline capacity. For
instance, Chen et al. [14] have developed a burst pressure model for corroded hydrogen storage
pipeline at extremely low temperature.

To appropriately incorporate the underlying uncertainties in the pipeline risk management,
the model error of the remaining strength prediction model needs to be assessed. The model error
reflects the bias and extent of variability in the prediction model; thus, it can be used to measure
the performance of a prediction model. Several studies were conducted to compare the
performance of some existing prediction models based on model error. For example, Zhou and
Huang [15] performed model error comparison for 8 models (i.e., ASME B31G [5], Modified
B31G [5], CPS [14] , CSA [15], DNV RP-F101for single defect (Part B) [8], PCORRC [16],
RSTRENG [5] and SHELL92 [6]) based on 150 full-scale burst test results for pipelines with
isolated real corrosion defects. They found that RSTRENG had the best performance overall, and
all the models became more conservative for long corrosion defects. A similar model performance
comparison was also done by Amaya-Gomez et al [13] but based on three categories of material

toughness. The results showed that the performance of the models varied for different levels of
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material toughness, implying that some models have applicability limits for specific material
toughness. This is not surprising, as many of the prediction models were developed specifically
for certain types of grade. Other studies compared prediction models based on the probability of
failure but without incorporating model errors in the analysis. For instance, Hasan et al. [17] and
Amaya-Gomez et al. [13] compared the failure probability results from different prediction models
by only considering uncertainties in the operating conditions and the pipeline material and
geometry properties. Based on the comparison study by Amaya-Gomez et al. [13], most of the
existing prediction models are shown to be conservative with different levels of conservatism.
Conservative methods may be good for design in terms of safety; but when they are applied in the
risk management, it leads to unnecessary costs associated with inspection, repairs, and
maintenance. Therefore, an accurate prediction model with less bias and variability is needed for
decision-makings in a cost-effective risk management.

5.1.2 Existing prediction models

The assessment methods of the remaining strength of corroded pipelines can be classified into
three levels based on the available level of information and the degree of precision required [17].
A Level-1 assessment method uses the maximum depth and projected axial length of a defect to
evaluate the remaining strength. It does not consider the shape of the defect and defect interactions
due to a cluster of corrosion defects; and is generally conservative. A Level-2 assessment method
evaluates the remaining strength considering the possibility of interaction between defects or the
impact of the defect shape. A Level 3 assessment refers to nonlinear finite element (FE) analysis
method, which requires the maximum information of material properties and defect configuration;
and this level assessment usually can provide accurate failure predictions with an error of around
5%.

In the literature, most of the prediction models for the remaining strength of a corroded
pipeline are Level-1 assessment, which only considers maximum length and depth of the corrosion
defect. Those models are applicable for isolated defects when defect interactions can be ignored,
which is the focus of this study. In this section, the existing prediction models are reviewed first.
The formulations of 24 existing prediction models are summarized in Appendix B. Table 3 is
modified based on Amaya-Goémez et al. [11] and provides a comparison of these existing models
in terms of application restrictions (i.e., yield strength level, pipeline grade, and defect geometry)

and prediction performance based on the analysis conducted in this study. Note that the application
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restrictions of most models are suggested during the model development. In this study, the 24
existing models are grouped into six groups based on how the model is developed, and each model
is given a short name based on its group number (as shown in Table 3). The first group of models
(G1) is developed based on the NG-18 equation [27]; the second group (G2) is based on
Buckingham’n theorem; the third group (G3) is constituted of models based on FE models with a
plastic collapse failure criterion called PCCOR; the fourth group (G4) has the models that use a
stress concentration factor in the model formulation and neglect the defect length; the fifth group
(G5) is formed by models that use the strain-hardening behavior of pipelines; and the last group
(G6) consists of models that are developed using other approaches. Also, Table 3 gives the defect

length limit beyond which a defect is classified as a long defect in some models.
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Table 3. Comparison of 24 existing pressure failure prediction models

- Long . s a
Group Model Grade Other restrictions defect limit Performance comparison within the group
G1-1: ASME B31G Original [3] Below X56 0.1 <dt<038 /Dt > 20
G1-2: Modified B31G [3] Below X65 0.1<drt<0.8 /Dt > 50
G1-3: SHELL92 [4] - d/t <0.85 -
G1-4: RPA [5] Below X65 0.1<drt<0.8 /Dt > 20
G1: Models ) . 2 All the models have similar performance and
based on NG-18 G1-5: RSTRENG Effective Area [3] - 0.1<dk<0.8 F*/Dt > 50 G1-7 has the best performance overall
G1-6: CSA Z662 [15] Below X65 - /Dt > 50
G1-7: DNV RP-F101 [6] Except X80 - -
G1-8: Fitnet FFS [19] - - /Dt > 20
G1-9: Phan et al Modified NG-18 [20] - - -
. 0.1 <drt<08 I/D<1.5,
G2-10: Netto et al [7] X52 -X77 w/D >0.0785 -
G;Slzlcfgils G2-11: Mustaffa & van Gelder [8] - d/t<03,1/D <0.2, w/r>0.5 - G2-11 overestimates the burst pressure and
; Shallow, moderately deep, has the worst performance overall but can be
’ G2-12: Netto et al [21 - - P
Bucfﬁg%?:;ln ST [21] and deep-narrow defects suitable for shallow defects.
G2-13: Wang & Zarghamee [9] - - -
G2-14: Phan et al. Modified - Netto et al. [20] - - -
. G3-15: PCORRC [16 - - -
G3: PCORRC - L16] G3-15 has the best performance overall
models G3-16: Modified PCORRC [22] X65 — X70 - -
G4: RAM PIPE G4-17: Original Ram Pipe Requal [23] - - - G4 models do not. pe.r.form well in general
Requal models G4-18: Modified Ram Pioe R 1123 and have large variability, but G4-17 can be
-18: Modified Ram Pipe Requal [23] - - - suitable for shallow defects.
. . Grade B and
G5: Models G5-19: Zhu & Leis [10] X80 Onl - - Both models have good performance,
using strain- = articularly G5-19
hardening G5-20: Zhu - X65 [24] X65 — X80 - - p Y
G6-21: Choi et al. [25] X65 - P/Dt> 18
G6: Other G6-22: Chen et al. [26] X80 — X90 - F/pi>25 | (6-22and G6-23 perform the best overall;
approaches : particularly G6-23 is good for thin pipe
PP G6-23: CUP [27] X46 — X60 - - thickness and medium and long defects
G6-24: Phan et al. - Modified Gajdos et al. [20] - - -

2 The performance is based on three levels of oy, D/t, d/t, and /Dt
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5.1.3 Data Collection

To evaluate the performance of the existing prediction models and to develop a robust and accurate
model later, comprehensive failure pressure data are needed. The database established in this study
consists of the data directly collected from literature and additional numerical data obtained from
FE analysis conducted in this study.

Data collected from literature

A total of 401 different burst test results are collected from literature, out of which 83 are laboratory
experimental burst tests and 318 are FE simulations. In all these experimental tests or simulations,
single defects are introduced to the external surface of the pipeline. Table 4 summarizes the overall
ranges of six important quantities in the whole dataset (i.e., collected data and numerical data
generated in this study): yield strength (oy), ratio of pipe diameter to pipe thickness (D/f), ratio of
defect depth to pipe thickness (d/f), ratio of defect length squared to the multiplication of pipe
diameter and thickness (/>/D¥), ratio of defect width to defect length (w//), and ratio of defect width
to pipe diameter (w/D). These six quantities are listed out here because of their potential impact
on failure pressure prediction, and they have been used in the failure pressure prediction as shown
in Appendix B. Except oy and D/t, the other four quantities are related to defect geometry. Note
that typically the information of w is not recorded. In the data collected from literature, 264 cases
(more than a half of the total cases) do not contain w values. The overall ranges of w// and w/D in

Table 4 are based on the cases that have w values.

Table 4. Data range of six important quantities

. Level 1 Range Level 2 Range Level 3 Range
Quantity Overall Range (number of data) (number of data) (number of data)
262 433 433 508 508 802
o, (MPa) [262 802] [ (38) ] ( (139) ] ( (206) ]
10 40 40 60 60 250
D/t [15.34 240.63] [ (59) ] ((235)] ( (139) ]
[0 0.33] (0.33 0.67] (0.67 1]
drnt [0.10 0.87] (131) (232) (70)
P/Dt [0.018 8967.97] [0.018 18] (18 50] (50 8967.97]
-4.00 2.890 2.89 3912 391 9.10
log (*/Dt) [-4.00 9.10] [ (287) ] ( 70 ] ( (75) ]
w/l [0.02 10.92] - - -
w/D [0.05 0.48] - - -

To provide a better idea of how these six important quantities scatter over the database




collected from literature, Figure 72 shows the scatter plots of measured failure pressure (P») vs.
the six quantities. In these plots, the circle and cross markers refer to the data obtained from
experimental and numerical burst tests, respectively. Figure 72(a) displays the scatter plot of o
over P». As expected, the result indicates that in general higher yield strength leads to higher burst
pressure, except a few cases circled by the dotted lines. It turns out these outline cases are the ones
with low D/t values (referring to very thick-wall pipes), corresponding to the ones circled by the
dotted lines in the scatter plot of D/t over P» in Figure 72(b). Figure 72(b), (c) and (d) show the
scatter plots of D/t, d/t, log (I°/Dr) over Py, respectively. A negative correlation is all observed for
each of these three plots, indicating that the pipe diameter to pipe thickness ratio, the defect depth,
and the defect length have negative effect on the failure pressure, as expected. However, no clear
trend is observed in both Figure 72 (e) and (f), indicating that the impact of defect width w may be
insignificant on the burst pressure. Note that Figure 72(e) and (f) are plotted using only the data

that have w information.
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Figure 72. Scatter plots of burst pressure (P») vs. selected quantities
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Additional numerical data

To complement the data collected from literature, FE analysis is conducted to generate additional
cases. Software ANSYS or ABAQUS has been widely used in research to obtain failure pressure
of pipelines with defects. In this study, FE models are developed in ABAQUS. For computational
efficiency, the corrosion defect is modeled as a rectangular shape. In addition, thanks to symmetry,
only a quarter of the pipe with appropriate boundary conditions is modeled, as shown in Figure 73
to further reduce the computational cost. ABAQUS Statics-General procedure is used for the
analysis, and the burst pressure is determined when the von Mises stress at any point of the defect

area reaches the ultimate tensile strength of pipe steel [25].

Figure 73. A quarter of a corroded pipe modeled in ABAQUS

Before the FE analysis is used to generate new cases, a few experimental burst test results
from the literature are selected for the model validation. Table 5 shows the pipe material and
geometry properties and defect geometry of the selected cases, and it also compares the failure
pressure data reported in the literature (Prtest) and the failure pressure obtained from the FE
analysis (P»re) conducted in this study. The cases are selected with the intention to cover a wide

range of pipe grade: from AISI1020 Mild (low grade) to X100 (high grade). Please note that for
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the selected cases where the information of w is missing, w is assumed, since the effect of w on
the burst pressure is found to be insignificant. In this study, w is assumed to be 0.05zD based on
an assumption used in Choi et al. [24]. As shown in Table 5, the error percentages, (Pb.test — Ps,FE)/
Py, are all within 10% except only one case (whose error is about 16%). This result validates the
FE analysis.

With the validated FE models, a total of 32 new additional cases are generated for the burst
numerical analysis and the results are added to the database. The new cases are designed to cover
the regions where the data collected from literature are scarce.

Figure 74 shows the new FEM cases (marked as stars) and the cases collected from
literature (marked as circles for experimental cases and crosses for FE cases) in terms of the four
important quantities (o3, D/t, d/t, and log (°/Dt)). The pipeline properties and defect geometries

and FE results (Pprr) of these 32 new cases are provided in Table 6.
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Table 5. Experimental testing cases selected from literature for validating the FE models

Reference Grade Diameter | Thickness oy O d J(mm) | w (mm) Phest PyrE Error
D (mm) ¢t (mm) (MPa) | (MPa) | (mm) (MPa) (MPa) (%)
[7] AIST1020 Mild 42 2.73 264 392 1.58 | 42.00 13.00 37.02 36.66 0.97
[7] AISI1020 Mild 42 2.73 264 392 2.24 | 21.00 13.00 34.55 33.42 3.28
[29] X42 274 4.93 351 454 1.60 | 4572 | 43.02a 14.99 16.24 8.33
[29] X42 274 4.57 351 454 2.74 | 66.04 | 43.11a 12.67 13.03 -2.86
[29] X46 323 8.64 356 469 2.16 | 63.50 | 50.79a 24.37 26.71 -9.59
[29] X46 864 9.47 400 508 3.00 | 185.42 | 135.65a 10.56 11.18 -5.89
[29] X52 273 5.26 389 502 1.73 | 139.70 | 42.89a 18.06 17.76 1.67
[29] X52 612 6.40 433 535 2.57 | 1371.60 | 96.05a 9.81 8.20 16.44
[29] X55 508 5.64 462 587 246 | 170.18 79.8a 11.51 11.59 -0.75
[29] X55 507 5.74 462 587 3.02 | 132.08 | 79.60a 10.73 11.63 -8.44
[30] X60 324 9.74 452 542 7.14 528 95.3 11.3 10.71 5.20
[30] X60 508 14.8 414 600 9.7 500 95.3 15.8 16.24 -2.77
[31] X65 762 17.5 465 564 8.75 300 50 19.8 20.08 -1.43
[31] X65 762 17.5 465 564 8.75 100 50 243 25.85 -6.38
[22] X70 762 15.9 532 627 7.95 300 50 21.5 20.62 4.08
[32] X80 459 8.1 534 661 5.39 39.6 31.9 22.68 22.25 1.92
[33] X80 459 8.00 589 731 3.75 | 40.00 32 24.20 25.85 -6.82
[34] X100 1321 22.81 782 803 11.31 | 608.05 | 207.47a 18.10 18.64 -2.99
[34] X100 1321 22.81 782 803 11.41 | 1108.13 | 207.47a 15.40 16.92 -9.93

*w is assumed to be 0.057zD based on an assumption from [25]
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Table 6. New FE models cases

Grade %a(r;:;%r Tltu(cr:]ln(rrf)ss (fo)a) (h/ff’a) d (mm) | [ (mm) | w(mm) (5&52)
AISI 1020 Mild 508 6.6 264 392 0.66 7.84 79.80 10.60
AISI 1020 Mild 274 5 264 392 1.00 8.26 43.04 14.94
AISI 1020 Mild 762 17.5 264 392 5.25 42.48 119.69 18.64
AISI 1020 Mild 324 8.64 264 392 3.45 390.86 50.89 15.84
AISI 1020 Mild 324 10.3 264 392 6.70 1160.31 | 50.89 10.67

X52 324 5.08 389 502 0.51 9.05 50.89 17.13
X52 762 17.5 389 502 3.50 70.04 119.69 24.97
X52 508 14.8 389 502 8.14 640.70 79.80 17.42
X60 459 8 414 600 0.80 8.20 72.10 22.88
X60 762 17.5 414 600 3.50 42.48 119.69 29.36
X60 324 10.3 414 600 6.18 57.77 50.89 34.50
X60 459 8 452 542 0.80 8.20 72.10 21.25
X60 762 15.9 452 542 4.77 40.49 119.69 24.23
X55 508 6.6 462 587 0.99 12.92 79.80 16.74
X55 324 8.64 462 587 3.02 32.08 50.89 32.34
X80 508 5.74 534 661 0.57 7.31 79.80 16.43
X80 324 5.08 534 661 0.76 9.05 50.89 22.81
X80 762 17.5 534 661 7.88 42.48 119.69 32.34
X80 324 8.64 534 661 4.75 644.01 50.89 19.19
X80 324 10.3 534 661 8.24 1160.31 | 50.89 10.19
X80 508 5.74 589 731 0.57 7.31 79.80 18.15
X80 324 5.08 589 731 1.02 14.92 50.89 24.96
X80 273 5.26 589 731 1.58 37.89 42.88 29.09
X80 762 17.5 589 731 7.00 313.90 | 119.69 28.01
X80 324 8.64 589 731 5.18 390.61 50.89 19.74
X80 324 10.3 589 731 8.24 1160.31 | 50.89 11.24

X100 508 5.74 782 803 0.57 7.31 79.80 20.51

X100 324 5.08 782 803 1.02 14.92 50.89 28.71

X100 273 5.26 782 803 1.58 22.98 42 .88 34.57

X100 762 17.5 782 803 7.00 11548 | 119.69 38.22

X100 324 8.64 782 803 5.18 644.01 50.89 20.61

X100 324 10.3 782 803 8.24 1160.31 | 50.89 12.34
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Performance comparison of existing models

As shown in Table 3, some of the prediction models are developed for certain type of grade or
defect geometry. Thus, it is more appropriate to compare the prediction models at different levels
of grade and defect geometry. As indicated in Figure 72, the changes in four quantities (i.e., oy,
D/t, d/t, and I°/Dr) have shown tendency to change the failure pressure; thus, the performance of
the existing models can be compared at different levels of these four quantities. In particular, oy
reflects material strength, D/t describes the level of the relative pipe wall thickness, and d/f and
PP/Dt suggest the extent of corrosion. For simplicity, each quantity is classified into three
predefined levels, as shown in Table 4. The three levels of oy correspond to low strength (level 1),
moderate strength (level 2), and high strength (level 3). The three levels of /2/Dt are based on the
long defect limit suggested in the literature, where /?/Dt = 18 suggested by Choi et al. [24] and
/Dt = 50 suggested in [3]. The three levels of d/t correspond to shallow depth, moderate depth,
and deep depth, respectively. The three levels of D/t correspond to thick wall, moderate thick wall,
and thin wall, respectively.

The performance of a prediction model can be quantified using mean (ues), standard
deviation (ores), and mean squared error (MSE) of residuals (where residual refers to difference
between the actual and the prediction values). In particular, MSE measures the combination of the
prediction bias and variance. Figure 75 shows the performance comparison of the 24 models for
three levels of gy, where the crosses refer to zses, the horizontal lines refer to fues + Ores, and solid
dots are the MSE values. Note that the results for models G2-11, G2-12, G6-22, and G6-23 are
calculated only using the cases that have the information of w, since these models require the w
value.

As shown in Figure 75, regardless the levels of o, all prediction models (except G2-11 and
G4-17) have positive tres (shown as cross markers above the horizontal line of zero residual,
indicating they averagely underestimate the burst capacity. Figure 75 also indicates that most
prediction models have smaller variability in the residuals for Level 2 (i.e., moderate strength) than
for Levels 1 and 3 of o, and the prediction variance is bigger for Level 1 of gy in general, shown
in Figure 75(a). With MSE shown in Figure 75(d), one could also observe that most of models
perform best in Level 2 and worst in Level 1. All these results indicate that the performance of

each model changes from level to level.
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Residuals (MPa)

Residuals (MPa)

Residuals (MPa)

(d) 6,—MSE — All Levels

® Level 1 (low strength) O Level 2 (moderate strength)
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Furthermore, different from all other models, G2-11 and G4-17 overestimate the burst
capacity for all levels. Lastly, among G1 models, G1-7 has the best performance. Among G2
models, G2-11 model has the worst performance. Among the two G3 models, G3-15 is better and
comparable with the best ones of all levels. While the two G4 models do not perform well at all,
the two G5 models are the top models overall. Among the four G6 models, G6-22 and G6-23
perform best. The performance comparison of the existing models within their own groups is also
summarized in Table 3.

Figure 76(a)-(c) show the comparisons of MSE of the 24 models for three levels of the
other three quantities: D/t, d/t, and I*/Dt, respectively. First, Figure 76(a) shows that most models
have best performance for Level 3 of D/t (i.e., thin pipe thickness) and worst for Level 1 of D/t
(i.e., thick pipe thickness). However, each model performs similarly among the three levels of d/t
and [/>/Dt except a few cases, as shown in Figure 76(b) and Figure 76(c). For example, models G2-
11 and G4-17 perform very differently for the three levels of d/f; models G2-12, G4-18, and G6-
23 perform much worse for Level 1 of I°/Dt (i.e., short defects); model G6-23 has much better
predictions for Levels 2 and 3 of /Dt (i.e., medium and long defects). In addition, Zhou and Huang
[12] found that the models considered in their study are more conservative for long defects, which
is not observed in this study. The performance comparison of the existing models within their own
groups based on levels of D/t, d/t, and I°/Dt are also summarized in Table 3.

Furthermore, models are compared within their groups based on Figure 75 and Figure 76.
The G1 models that are based on the NG-18 equations have similar prediction performance, and
generally are pretty good models. Group G2 models based on Buckingham’s © theorem have
significantly different performance. The G4 models (that are developed by using the stress
concentration factor in the model formulation and neglecting the defect length) have the worst
performance overall, indicating that the impact of the defect length cannot be neglected. The G5

models based on the strain-hardening behavior of pipelines perform the best overall.
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5.1.4 Proposed prediction models
As shown in Figure 75, the performance of the existing models changes with different levels of
mechanical strength of the pipe material. This suggests that different failure pressure prediction
models should be developed for different levels of mechanical strength. Figure 77(a) and Figure
77(b) display the scatter plots of oy vs. the grade, and ou vs. the grade in the dataset, respectively.
Figure 77 shows that the correlations between oy or ou and the grade are similar: strongly positive
correlated. This suggests that it is appropriate to develop the failure pressure prediction models
based on the levels of either oy or ou, as both could be used to reflect the grade level. In this study,
two sets of models are developed: one set of models is based on three levels of o5 and another set
based on three levels of ou. Then these two sets of models are compared to determine the final set.
For each level of oy or ou, the probabilistic failure pressure model follows the same
multivariate linear regression formulation by adopting the existing prediction models as the

independent variables:

Y=06,+ fnlei)?i + o¢ (5.1)
i=

where Y = predicted failure pressure or a suitable transformation; #; = model parameters; y; =
deterministic prediction from the 24 existing prediction models described in Appendix B; and o¢
= model error in which ¢ is the standard deviation of the model error (assumed to be constant) and
¢ 1s the standard normal random variable (i.e., normality assumption). When considering all the
existing prediction models in Eq. (5.1), the model is a full model. Since not all the terms contribute
to the model prediction, a model selection procedure is adopted to eliminate the ones that do not
contribute statistically significantly to the prediction.

Model development

With Eq. (5.1), the full model for each level of gy or ou is assessed based on the data within the
corresponding level. In particular, randomly selected 80% of the data (or called training data) in
each level is used for the model development, while the rest 20% of the data (or called test data)
in each level is used for validation. With the full model, an all-possible subset model selection
procedure is used to reduce the model size to determine the final formulation [34]. Since the defect
width w is missing for 61% of the cases (i.e., 264 cases) in the database, the four existing models
that use w are not considered in the model development. Hence, the full model has a model size of

20 (i.e., m = 20 in Eq. (5.1)), and the size of the reduced model varies from 1 to 19. In the all-
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possible subset model selection, all possible combinations of predictors are evaluated for each
model size (or subset) and the best model from that subset is identified. Then those best models

from all the subsets are compared to determine the final model.
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Figure 77. Scatter plots of (a) oy vs. grade and (b) ou vs. grade

To compare the model performance for each subset, this study uses three statistics
measures: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and
standard deviation of model error (o). Both AIC and BIC measure how well the model fits the data
through log likelihood, log(L), with the consideration of the number of predictors used in the
model, trading off the complexity of the model formulation with its accuracy. These two measures
are calculated as below:

AIC = 2k — 21og(L) (5.2)
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BIC = 2log(n)k — 2log(L) (5.3)
where k = number of estimated parameters in the model, and » = number of data points. The less
value of AIC or BIC is, the better performance the model has. The standard deviation of model error,
o, measures the dispersity in the model prediction; and the lower o is, the better the model is.

For each subset (i.e., the possible models with the same model size), all the statistics
measures advocate the same model as the best model. However, when comparing all the best
models from all the subsets, these three statistics measures may suggest different models to be the
most desirable one. Note that since the predictors, ¥;, in Eq. (5.1) are actually existing deterministic
models that also have different extents of complexity in their formulations; thus, using just the
number of predictors in the model as the measure of the model complexity in AIC and BIC may
oversimplify the complexity measurement in this study. Consequently, the final model is
determined by using engineering judgement for the complexity of the formula, o for the accuracy
in this study, and AIC and BIC as selection criteria references.

Probabilistic models

Instead of pre-defining the three levels of oy or ou, the ranges that define the levels are optimized
by minimizing the total residuals of the three models of the set. For all the models, it is found that
when the model size goes up to 3 or more, the change in o is insignificant. This indicates that it is
not beneficial to choose a model with a size larger than 2. Table 7 shows the model selection results
for the two sets of developed models: one set based on three levels of oy, and the other set based
on three levels of ou. For each level, Table 7 also shows the existing models selected resulted from

the model selection and standard deviation of the model error, o, for model sizes 1 and 2.

Table 7. Comparison of the best models of subsets

Level 1 Level 2 Level 3
Level based on o 262 < 5, < 430 MPa 430 < 5, < 530 MPa 530 < o, < 802 MPa
Model Size 1 2 1 2 1 2
Existing model selected G6-24 G1-9, G3-15 G3-16 G1-7, G4-18 G3-16 G1-3,G1-4
o (MPa) 2.0139 1.8781 1.7722 1.6195 1.2625 1.1025
Level based on o Level 1 Level 2 Level 3
" 392 < g, < 600 MPa 600 < g, <700 MPa 700 < g, < 891 MPa
Model Size 1 2 1 2 1 2
Existing model selected G6-24 G4-18, G6-24 Gl1-5 G1-2, G4-18 G1-3 G1-3, G4-18
o (MPa) 1.8442 1.8018 1.2253 1.0682 1.5616 1.3559

Table 7 shows that overall, the models developed based on the levels of ou have lower
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model errors compared to the ones based on the levels of oy, except the models for Level 3 of ou.
For model size 2 on Level 3, such difference is not too significant. Therefore, the models based on
the three levels of ou are preferred. For each level, as expected, the model with model size 2 has a
smaller o value (i.e., more accurate) than the one with model size 1; however, when such decrease
becomes marginal, the model with a smaller model size (i.e., less complexity in model formula) is
preferred. Accordingly, the final selected models are highlighted with grey shown in Table 7. Table
8 shows the model formula and model parameter statistics of the final selected three models for
the three levels of ou.

5.1.5 Model performance evaluation

Figure 78 provides the scatter plots of the point prediction of the proposed model, Y for each level
of ou vs. the observed data, Yes, that is the training data used for the model development. If the
prediction is perfect, the dots should line up on the 1:1 line, shown as the solid line. The dashed
lines are the mean + 1 standard deviation of the model error. In these plots, the circle and cross
markers refer to the data obtained from experimental and numerical burst tests, respectively. Figure
78 shows that the dots are evenly scatter around the 1:1 line for both the experimental and
numerical data, indicating that the developed models provide unbiased predictions. The scatter
degree of the dots reflects the accuracy of the model. For example, Figure 78(a) shows a slightly
larger scatter compared to Figure 78(b) and Figure 78(c), indicating that the Level 1 model is less
accurate than the Levels 2 and 3 models, consistent with the model errors shown in Table 8. Figure
78 also shows that most of experimental data is in Level 1, while only a few experimental data in
Levels 2 and 3. Figure 78(a) indicates that the proposed model for Level 1 performs similarly for
the experimental and numerical burst test data. However, as the experimental test data are very
limited for Levels 2 and 3, one cannot conclusively evaluate the performance of the proposed
models for the experimental cases for these two levels.

Figure 79 shows the performance of the proposed models compared with the existing
models at the three levels of ou. A shown in Figure 79, regardless the levels, the proposed models
(labeled as PM in Figure 79) are unbiased and have the lowest MSE. Note that Figure 79 indicates
that the performances of the existing models at the optimized three levels of ou are similar to the
ones at the three predefined levels of oy shown in Figure 75. The same model, G5-19, that was

identified as the best existing model based on the levels of oy shown in Figure 75 is also the best
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existing model based on the levels of o shown in Figure 79. Interestingly, G5-19 is not selected

in the proposed models through the model selection.
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Figure 78. Scatter plots of the failure pressure predicted by the proposed models vs. the observed
pressure

Table 8. Final selected model formula and model parameter statistics

Model Parameters
Level based on o, Formula 6o 6 6>
c
Mean Std Mean Std Mean Std
Level 1 .
392 < g, < 600 MPa Oo+ 01V, 1.8469 | 0.3180 | 1.0281 | 0.0209 - - 1.8442
Level 2 O+ 019, + 6, 2.3322 | 0.3774 | 1.0751 | 0.0271 | 0.2978 | 0.0273 | 1.0682
600 < G, <700 MPa | 0" /Y2 %218 | -2 : : : : : .
Level 3 R .
700 < o, < 891 MPa O+ 61J5+ 09,15 | 3.4948 | 0.6490 | 0.9381 | 0.0501 | 0.2420 | 0.0518 | 1.3559
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To further evaluate the proposed models’ performance, Figure 80 shows the scatter plots
of the point prediction of the proposed model or the besting existing model, G5-19, identified in
Figure 79 vs. the observed data, Yes using the validation data (i.e., the 20% of the data that is not
used in the model development). Figure 80 displays that for each level the proposed model (marked
as solid dots) has the unbiased predictions; and most of the solid dots are within the mean + 1
standard deviation of the model error, which validate the proposed model. On the other hand, the
scatter of the predictions from the best existing model (marked as crosses) shows only unbiased
for Level 1, slightly overestimation for Level 2, and underestimation for Level 3. Furthermore,
based on the scatter size, the prediction from G5-19 is very similar to the proposed model for Level
1, but the proposed model shows better accuracy for Level 2 and particularly Level 3. This
indicates that the proposed models improve the accuracy from the existing models.
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5.1.6 Sensitivity analysis

Aforementioned, Figure 72 suggests that oy, D/t, d/t, I°/Dt have effects on the failure pressure;
therefore, a sensitivity analysis is performed to evaluate the impact of these quantities on the
proposed model predictions. Since the proposed models are developed based on the levels of o,
only three quantities (i.e., D/t, d/t, I’/Dt) are considered. For a comparison purpose, the sensitivities
of these three quantities to the best existing model (i.e., G5-19) are also obtained.

Figure 81 shows the changes in the pressure prediction of a pipeline with ou = 458 MPa
(belonging to Level 1), D = 324 mm, and d = 2 mm, when varying d/t, D/t, and I’/Dt. For d/t and
D/t (shown in Figure 81(a) and Figure 81(b) respectively), two cases are considered: one with a
shorter defect length (I = 100 mm or /Dt = 5) and the other one with a longer defect length (I =
350 mm or /°/Dt = 63). For I?/Dt (shown in Figure 81(c)), two cases are also considered: one with
a shallow depth (d = 2mm or d/t = 33%) and the other with a deep defect depth (d = Smm or d/t =
83%).

First, as expected, the predictions of both models decrease with the increase of the three
quantities d/z, D/t, and [°/Dt. This indicates that both the proposed and the best existing models are
sensitive to the pipe thickness and the depth and length of the corrosion defect. The rates of burst
pressure decrease for both models are overall very similar for all the cases except the sensitvity to
I?/Dt for the deep defect depth, where G5-19 has much greater rate of decrease than the proposed
model when /?/D¢ < 10. For d/t and D/t, the sensitivity results are similar for both shorter and longer
length defects. For />/Dt, the sensitivity depends on the depth of the defects: more sensitive for the
deeper defect. In addition, for /°/Dt > 30, the change rates in both model predictions become flatter,
which means that the models become less sensitive for long defect lengths. Note that the sensitivity
analsysis for pipelines with o, in Levels 2 and 3 are found to be similar to the finding shown in

Figure 81.
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5.2 Probabilistic Models of Defect Interaction Identification and Failure Pressure for
Pipelines with Interacted Corrosion Defects
5.2.1 Background
Many interaction rules have been developed in the past to identify defect interaction of adjacent
defects, such as Kiefner and Vieth (KV) [26], POF [27], DNV RP F101 [8], API RP 579 [28], BS
7910 [29], 6WT [30] and 3WT [5]. Recently, Li et al. [31] proposed an interaction rule expressed
in terms of pipe diameter and/or thickness based on finite element (FE) analysis of models with
short and long corrosion defects. Their interaction rule provides different formulations for different
ranges of corrosion defect length; but the FE models only contain the adjacent defects with the
same length, meaning the developed formula may not be suitable when the adjacent defects have
different lengths. Mondal and Dhar [32] proposed an interaction rule for longitudinal spacing;
however, the rule is developed using the adjacent defects with the same depth, meaning the rule
may not be appropriate when the adjacent defects have different depths. In addition, Zhang and
Tian [33] developed an interaction rule for longitudinal spacing considering defect depth and steel
grade, but their interaction rule has the same limitation as the one proposed by Mondal and Dhar
[32].

To evaluate the performance of the existing rules, several studies have been conducted. For
instance, Benjamin et al. [34] compared the performance of KV [26], POF [27], and DNV RP
F101 [8] based on 26 finite element models of short corrosion defects. They found that the DNV
interaction rule had the best performance. Similarly, Li et al. [31] compared their proposed
interaction rule with 5 interactions rules (i.e., KV [26], POF [27], DNV RP F101 [8], API RP 579
[28], and BS 7910 [29]), and the results show that their proposed interaction rules performed the
best. In summary, although many interaction rules have been developed to identify defect
interaction, the existing interaction rules are not consistent; and in addition, all of them are
typically deterministic, which are not able to capture the inherent uncertainty in the defect
interaction. Therefore, a probabilistic model that considers all the influencing factors (e.g., the
defect depth, length and width, and pipeline strength, thickness, and diameter) is needed.

Regarding failure pressure prediction, many models have been developed for pipelines
with single corrosion defect, and only a few models were developed considering interacting
defects. Nevertheless, the models developed for single corrosion defect such as the ASME B31G
method [5], the RSTRENG 085dL method [5], and the DNV RP-F101 method for single defects
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(Part B) [8] have been adopted to calculate the failure pressure of pipelines with interacting defects
by using the maximum depth and overall length of the colony in those models. Moreover, model
such as the RSTRENG Effective Area [5] developed for isolated complex-shaped defect can be
used to calculate the failure pressure of colony of defects by incorporating the length of full wall-
thickness pipe that separates the adjacent defects as a part of the depth profile of the complex-
shaped defect [35]. Det Norske Veritas (DNV) with the cooperation of the BG Technology
developed a method called DNV RP-F101 for interacting defects (Part B) [8]. In this method, the
failure pressure of the colony corrosion defects is determined by the minimum value of all
pressures based on each single defect within the colony and each possible combination of the
adjacent defects. Note that the DNV approach cannot be implemented to the cases where individual
profiles overlap when projected onto the longitudinal plane [36]. Benjamin et al. [35] proposed the
Mixed-Type Interaction (MTI) method based on the DNV RP-F101 method for interacting defects
(Part B) by considering the length of full wall-thickness pipe that exists between each pair of
defects within a colony of random configuration; and it also considers the interacting defects
whose individual profiles overlap when projected onto the longitudinal plane. In addition, Chen et
al. [37] developed a method to predict the failure pressure for high strength pipeline with multiple
corrosion defects, which follows the same procedure described above for the DNV RP-F101
method for interacting defects (Part B) but with a different formulation to calculate the failure
pressure for single defect and effective depth of the combined defects.

The performance of some of the existing prediction models has also been compared by
researchers in the literature. For example, Benjamin et al. [35] used laboratory tests to compare
five assessment methods, the ASME B31G method [5], the DNV RP-F101 method for single
defects (Part B) [8], the RSTRENG Effective Area method [5], the DNV RP-F101 method for
interacting defects (Part B) [8], and the MTI method [35]; and the MTI method provides the most
accurate predictions. In general, most of the models are found to be conservative, indicating when
they are used in the pipeline risk management, they will lead to unnecessary repairs and
maintenance.

5.2.2 Existing model formulations
EXxisting interaction models
An interaction rule is a rule used to define if two adjacent defects interact and is generally

expressed in terms of the spacing between the two individual defects (either longitudinal spacing
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or circumferential spacing). Figure 82 shows a configuration of two defects (Defect 1 and Defect
2) with the relevant geometric quantities. Most of the existing interaction rules can be written as
[38]:

Sy < (S)Lim and S¢ < (S¢)Lim (54)
where S. = longitudinal spacing, Sc = circumferential spacing, (Sr)Lim and (Sc)Lim = longitudinal
spacing limit and circumferential spacing limit defined by the interaction rule, respectively. If there
are more than two defects in the colony, the interaction rule is then applied for all possible pairs
of adjacent defects [36]. Table 9 provides the formulations for calculating (Sz)zim and (Sc)Lim by
various existing interaction rules in the literature. As shown in Table 9, some use the defect depth,
length, or width in the spacing limits (e.g., POF [27]), while others use just pipeline thickness
and/or diameter (e.g., KV [26]). The variation in the existing formulations shown in Table 9
indicates that a consistent rule is still needed, and all the influencing factors (including the defect
geometries and pipeline properties) should also be examined holistically. In addition, the existing
interaction rules are deterministic, which are not able to capture the inherent uncertainty in the
defect interaction.

Defect 1
j1 il
i

[ 7

s, /Dcfect 2

!

h

Figure 82. Configuration of two defects

Existing capacity pressure prediction models

The failure pressure of a pipe with a colony of corrosion defects is typically evaluated using an
interaction rule and a Level-1 assessment method [35]. A Level-1 assessment method uses the
maximum depth and projected axial length of a defect to evaluate the remaining strength (i.e., burst
pressure capacity, P») [39]. When there is no defect interaction, the pressure capacity is determined

by the smallest value of all pressures based on each single defect within the colony. In the
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literature, the most commonly used Level-1 assessment methods are the ASME B31G method [5],

the RSTRENG 085dL method [5] , and the DNV RP-F101 method for single defects (Part B) [8];

the formulations of these three prediction models are summarized in Table 10, labeled as L1-1,

L1-2, and L1-3, respectively.

Table 9. Existing interaction rules

Interaction rules (SL)Lim (So)Lim
KV [26] 25.4 mm 6t
POF [27] min(6t,[,1,) min(6t, wy, w,)
DNV RP F101 [8] 27/Dt VDt
API RP 579 [28] (h+b)/2" (wy+wy,) /2"
BS 7910[6] 2+/Dt" 3VDt"
6WT [30] 6t 6t
3WT [5] 3t 3t
Mondal and Dhar (15.91 - 7.69d/t)t
[32] of -
(3 — 1.46d /t)VDt
4875 — 144 - 0.994%t)¢ for X
Zhang and Tian (3954.875 — 3956 “ 0.994%/%)t for X65
33 i
53] (27.831 — 33.22- 0.132%¢)¢ for X80
. <
N I
Lietal.[31] VDt, V20 < 1/v/Dt < V50 ' ’ < V50
t, 1/\/Dt > /50 =

t, 1/\/Dt > V50

defects

t = thickness of pipeline
D = outside diameter of pipeline
d = identical defect depth for the two

[ = identical defect length for the two defects
[1, > = defect lengths for the two defects, respectively
wi, w2 = defect widths for the two defects, respectively

“This formulation is an interpretation from the original reference by reference [31].
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Table 10. Existing capacity pressure prediction models

Method Formulation

2t 1—-(2/3)(d/?t)
p, = p 1oy l1 —(2/3)(d/O)M|’ /Dt < 20 55
2t '
ASME B31G et _ 2
L1-1) 5 (1.10,)[1 - (d/1)] . 12/Dt>20
lZ
M= [1+08 (E) (5.5a)
2t 1-0.85(d/t
P, = E(ay + 69[MPa]) [1 — 0.85(d(/t§M)_1 (5.6)
RSTRENG 085dL 12 12\?
(L1-2) . J1 +0.6275 (D—t> — 0.003375 (D—t> ,  12/Dt <50 o
12 '
3.3 +0.032 <E> ,  12/Dt>50
2ta, (1 - (d/1))
DNV RP-F101 for " - t)( _M) (5.7)
single defects (Part B) M
(L1-3) 2
= o () e

oy = yield strength of pipe material, o, = ultimate strength of pipe material, d: maximum depth of the

corrosion defect, M = folias or bulging factor
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Table 11. Summarized procedure for DNV RP-F101 for interacting defects (Part B) and MTI

method
2to, (1 —(d;/t
P, = u( (di/ )) i:1...N defects
(D _ t) 1— (dl/t) (58)
Calculate the failure pressure of M;
each single defect within the
colony of defects, P; ll.2
M; = [1+0.31 Dt (5.8a)
i=k—-1
Calculate the cgmbined 1§ngth L = L + Z (li + SLi) jk=1..N (5.9)
of all combinations of adjacent i
defects, J L . .
> where S, ; = longitudinal spacing between adjacent defects
DNV RP-F101 for interacting defects (Part B)
Zl k d l
ik = 5.10
j ljk (5.10)
MTI method
Vik
dje =1 (5.11)
Calculate the effective depth of kT
all combinations of adjacent i=k
defects, dj Vie= Y diliw; jk=1..N (5.11a)
i=j
i=k—-1
e = Wi Z (Wi+5:) jk=1..N (5.11b)
i=j
where S¢; = circumferential spacing between adjacent
defects
2tay, (1 - (d-k/t))
Fiie = (/D) k/t) (5.12)
Calculate the failure pressure of (D-1t)|1
all combinations of adjacent
defects, Py l~k2
My = [1+031(L=
jk < Dt > (5.12a)
Determine burst pressure, Py P, = min(v P,V ij) (5.13)

Alternatively, Level-2 assessment methods can be used for the failure pressure prediction

for the pipe with interacting corrosion defects. A Level-2 assessment method evaluates the

remaining strength by considering the possibility of interaction effect among defects and/or the

impact of the defect shape [39]. Some of the Level-2 assessment methods are the RSTRENG
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Effective Area method [5] (labeled as L2-4), the DNV RP-F101 method for interacting defects
(Part B) (labeled as L2-5) [8], and the MTI method [35] (labeled as L2-6). The RSTRENG
Effective Area method [5] developed by the ASME involves numerous measurements of the depth
of the corrosion all over the corroded area, requiring therefore a longitudinal profile of the corroded

area [5]; and the pressure prediction is calculated by:

P —Zt( + 69[MPa)) 1—A/4
( 12 12\
1+ 0.6275 (—) —0.003375 (—) . 12/Dt <50
B Dt Dt
M = . (5.14a)
3.3 + 0.032 (E) . 12/Dt>50

where A4: longitudinal area of metal loss and Ao: original uncorroded area of length / and thickness
t. The failure pressure is obtained by evaluating all possible combinations of local metal loss with
respect to original material using iteration and the lowest calculated failure pressure is retained as
the failure pressure of the colony corrosion defects [5].

Compared to the RSTRENG Effective Area method, the other two existing methods
involve several steps, which are summarized in Table 11, where the failure pressure is determined
by the minimum value of all pressures based on each single defect within the colony and all
possible combinations of the adjacent defects. Figure 83 adapted from DNV [8] shows a combined
Defect jk defined by single Defect j to single Defect k£ with the defect depth profiles projected on
the longitudinal plane. The only difference between these two methods is how the effective depth
djk 1s calculated, where the DNV RP-F101 method for interacting defects (Part B) uses the surface
area and the MTI uses the volume of the metal loss of individual defect within the combined
defects. Lastly, using the minimum value of all calculated pressures also implies that these two
existing models suggest the existence of the defect interaction when one of Py is the lowest

calculated failure pressure.
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Figure 83. Combining interacting defects

5.2.3 Data Collection
A comprehensive failure pressure data is established in this study, which is then used to evaluate
the performance of the existing interaction rules and prediction models, and also to develop
accurate interaction rule and failure pressure assessment method for pipeline with a colony of
corrosion defects. The database established consists of the data directly collected from literature
and additional numerical data obtained from FE analysis conducted in this study.
Data collection from literature
A total of 202 different burst test results are collected from past studies, out of which 25 are from
laboratory experimental burst test and 117 are from FEM simulations. Table 12 provides a
summary of the data collected, where dciuster, lciuster, and weuster are the depth (maximum), length,
and width of a cluster of defects, respectively. Since the failure pressure of a pipe with a colony of
defects depends on the pipe material and geometry properties, defect geometry, and defect spacing,
it is worthy to examine the correlation of the following quantities with the failure pressure (P»)
through scatter plots shown in Figure 84 using the data collected: yield strength (o), ratio of pipe
diameter to pipe thickness (D/?), ratio of maximum defect depth within a cluster of defects to pipe
thickness (dmax/t), ratio of cluster defect depth to pipe thickness (dvoi/t) where dyor is calculated from
the volume of metal loss of the cluster (i.e., dvot = Veius/(Wetusleius)), ratio of cluster length squared
to the multiplication of pipe diameter and thickness (lens’/Dt), product of cluster width and cluster
length (Weus: leius), and ratio of cluster width to pipe diameter (Weius/D).

In Figure 84, the circle and cross markers refer to the data obtained from experimental and
numerical burst tests, respectively. Figure 84(a), the scatter plot of o vs. Pp, shows that an overall

increase of oy leads to a higher burst pressure, except a few cases circled by the dotted lines. These
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cases may be explained by their low values of D/t (referring to very thick-wall pipes) as shown in

the dotted circle in Figure 84(b). Figure 84(b) on the other hand indicates that a low D/f ratio

(referring to very thick-wall pipes) leads to a high burst pressure, as expected. Figure 84(c), (d),

(f) and (g) show the scatter plots of dmax/t, dvoilt, Welusleius, and wews/D over Pp, respectively; no

distinct trends between P» and these quantities are found. However, Figure 84(e) indicates a

negative correlation between Py and log(leus’/Dt).

Table 12. Summary of the database collected from literature

Grade D/t oy (MPa) o. (MPa) detusterlt Letuster (M) Weluster (M) Counts
X60 [30.00 - 57.08] | [435-452] | [542-560] | [0.25-0.80] [35.00 - 475.60] | [35.00 - 418.39] 81
X70 [57.25-58.05] | [580-662] | [728-773] | [0.58-0.63] | [110.00—430.00] | [60.00—170.00] 16
X80 | [56.64—57.43] | [534-589] | [661-731] | [0.30-0.69] | [39.60-1072.20] | [31.90 - 383.90] 105
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Additional numerical data

As shown in Table 12, the existing data are only for three grades (i.e., X60, X70, and X80) and
not for low grades (e.g., X42, X46, X52, or X55). To complement the existing data collected in
the literature, FEMs are used to generate additional cases. In this study, the FEMs are developed
in ABAQUS. For computational efficiency, the corrosion defect is modeled as a rectangular shape
as shown in Figure 85. ABAQUS Statics-General procedure is used for the analysis, and the burst
pressure is determined when the von Mises stress at any point of the defect area reaches the

ultimate tensile strength of pipe steel [22].

Figure 85. A corroded pipe modeled in ABAQUS

A few laboratory test results from the literature are selected for the FEM validation. Table
13 shows the summary of selected test cases and the burst pressure comparison of the test results
and the FEM simulation results. Table 13 shows the defects spacing configuration of the selected
test cases, and also compares the failure pressure data reported in the literature (Pp.test) and the
failure pressure obtained from the FE analysis (P»re) conducted in this study. In Table 13, all the
selected test cases are grade X80 from [40] and [41], in which the stress-strain curves required to

run the FEM analysis are provided.
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Table 13. Selected cases for FEM validation

Group of

) U (Pb.test) | (PoyE) | Error

Grade Specimen D (mm) defects ¢t (mm) % o o

configuration (MPa) | (MPa) | (MPa) | (MPa) | (%)

X80 | IDTS3[19] | 4588 | [ ][ ] 8.10 | 534.1 | 661.4 | 20.31 | 2048 | ' o)
X80 IDTS 4 [19] 458.8 |:| 8.10 534.1 | 661.4 | 21.14 | 22.61 6.9328
X80 | IDTS9[20] 4594 |:| 8.00 | 589.0 | 731.0 | 23.06 | 22.97 | 0.4076
X80 | IDTS 10 [20] 459.4 I:I 8.00 589.0 | 731.0 | 23.23 | 22.97 | 1.1365

As shown in Table 13, the error percentages between Pb.test and Py e for all cases are within
10%. Therefore, the FE models are validated and can be used to assess the failure pressure for
other defect scenarios. To cover a wide range of grade in the numerical cases, the stress-strain
curves provided in the collected database with isolated defects are used to generate the FE models
with colony defects, since the material stress-strain curves are independent of defects. With the
validated FE models, a total of 783 new numerical cases are generated. These added numerical
cases are designed to cover a wider range of yield strength (o3 ranging from 262 MPa to 782 MPa)
and four quantities: D/¢, dmax/t, leis’/Dt, and wews/D. Figure 86 shows the scatter plots of oy vs the
four quantities based on the experimental and FE burst test data collected from literature and the
new FEM data. As shown in Figure 86, the new cases are designed to cover the regions where the
data collected from literature is scarce. It is worth stating that most of the total number of generated
numerical cases (783) is originally generated in this study to understand the impact of various
quantities (e.g., spacing, defect sizes, material properties) on the defect interaction. Table 14
provides a summary of the numerical data generated in this study and the ranges covered in terms
of D/t, oy, ou, and depth (maximum), length, and width of the cluster of defects.

There are three situations in the database: (1) cases with interacted defects, (2) cases

without interacted defects, and (3) cases in which defect interaction cannot be determined. In this

112




study, adjacent defects are considered to be interacted when the ratio of the actual burst pressure,
Pa, to the burst pressure due to isolated defects, P;, is less than 0.99 [31]. Table 15 summaries the
numbers of the data points for each case in the total database (including the data collected from
literature and the numerical data generated from this study). As shown in Table 15, most of the

data are the cases with interacted defects; and also the colonies with two defects are the majority.
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Figure 86. Scatter plots of selected quantities vs. yield stress (o)
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Table 14. Summary of the database generated from FE

Grade Dit o, (MPa) o. (MPa) detuster/t Letuster (M) Weluster (M) Counts
AISI 1020 Mild | [12.00 - 94.00] 264 392 [0.10-0.94] | [42.48-489.13] | [61.00 - 320.01] 29
X42 [32.87 - 96.98] 351 454 [0.10-0.80] | [40.00-517.37] | [30.00 -426.05] | 115
X46 [24.65-97.95] | [356-400] | [469-508] | [0.10-0.79] | [40.00-501.90] | [30.00-497.67] | 227
X52 [22.23-98.97] | [389-433] | [502-535] | [0.10-0.80] | [40.48 -462.10] | [76.20 - 359.03] 34
X55 [13.76 — 97.57] 462 587 [0.29-0.73] | [82.66-468.59] | [74.37 - 488.58] 10
X60 [16.97 —98.00] | [414-452] | [542-600] | [0.10-0.95] | [40.00-439.09] | [30.00-421.38] | 171
X65 [28.98 — 91.45] 465 564 [0.10-0.80] | [42.48 -425.67] | [76.20 - 441.23] 19
X70 [13.23-96.77] | [508 - 532] | [627-667] | [0.20-0.79] | [107.13 - 585.86] | [95.52 - 422.29] 23
X80 [17.60 —99.31] | [534-589] | [661-731] | [0.10-0.78] | [40.00-493.24] | [30.00 - 399.31 129
X100 [14.00 — 100.00] 782 803 [0.10-0.96] | [42.00 -474.44] | [47.00 - 481.78] 26

Table 15. Number of data points

Number of defects in the colony . Wlth. . W1thogt In.determ%nate
interaction interaction interaction
2 defects 453 353 20
3 defects 111 0 4
4 defects 16 1 2
More than 4 defects 10 0 15

5.2.4 Performance comparison of existing models

The established database of pipelines is used to evaluate the performance of the existing

interactions rules and failure pressure prediction models for colony of corrosion defects. Only the

data with two defects are used to compare the performance of existing interaction rules, while all

the data are used to compare the performance of existing failure pressure models.

Existing interaction models

The performance of an interaction rule can be quantified using a hit or miss approach. In the hit or

miss approach, there are four possible outcomes: true positive (TP) - identifying no interaction

when there is no interaction, true negative (TN) - identifying interaction when there is interaction,
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false positive (FP) - identifying no interaction when there is an interaction, and false negative (FN)
- identifying interaction when there is no interaction. Then the probability of correct detection,

Pcp, is used as model prediction accuracy and is calculated as:
Pop=——— (5.15)

where nrp = number of TP tests, n7v = number of TN tests, and n:ww = total number of tests.
Apparently, a good model should have a high value of Pcp.

Figure 87 displays the performance of seven existing interaction rules: KV [26], POF [27]
, DNV RP F101 [8], API RP 579 [31], BS 7910 [31], 6WT [30], and 3WT [5]. Note that not all
the existing interaction rules listed in Table 9 are compared in Figure 87 due to their inapplicability
to most of the data used in this study. For example, the interaction rules purposed by Mondal and
Dhar [32], and Zhang and Tian [33] are only suitable to the cases where the adjacent defects have
the same depth. As shown on Figure 87, POF, API RP 579, and 6WT interaction rules have better
performance compared to the rest of the interaction rules. Both model POF and API RP 579 are
based on defects length and width, while the interaction rule 6WT is based on only pipe thickness,
t. Even though these three interaction rules have similar performance, there is a lack of consistency

in the formulations of the spacing limits.

80
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65
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KV POF DNV API BS O6WT 3WT

Figure 87. Comparison of the existing interaction rules using Pcp

Existing prediction models

The performance comparison of the existing failure prediction models for pipeline with colony of
defects is conducted using the mean, standard deviation of the ratio of the predicted to the actual
burst failure pressures, P»/P.. With the interaction rule 6WT, three Level-1 assessment methods
(i.e., the ASME B31G method [5], the RSTRENG 085dL method [5] , and the DNV RP-F101
method for single defects (Part B) [8]), labeled as L1-1, L1-2, and L1-3, respectively are compared
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with three Level-2 assessment methods (i.e., the DNV RP-F101 method for interacting defects
(Part B) [8], the RSTRENG Effective Area method [5], and the MTI method [35]), labeled as L2-
4, 1.2-5, and L2-6, respectively. Since the DNV RP-F101 method is only applicable to the cases in

which the individual defect profiles do not overlap projecting onto the longitudinal plane, the

model performance comparison is done using two data sets: the 1% set refers to the subset of 698

data where the individual defect profiles do not overlap projecting onto the longitudinal plane and

the 2" data set refers to all the data (i.e., 985 data). The comparison results are shown in Figure

88, where the crosses refer to mean of P»/P. and the horizontal bars refer to mean + 1 standard

deviation.
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Figure 88. Comparison of existing failure pressure models

As shown in Figure 88(a), all the 6 models except L2-6 underestimate the failure pressure,

resulting in mean of P»/P. lower than 1. Also, Figure 88(a) clearly indicates that the Level-2

assessment methods perform better than the Level-1 assessment methods. This shows that
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assessment methods that use defect depth profile and consider all combinations of adjacent defects
give better failure prediction than using interaction rules. In addition, the MTI method (L2-6)
performs the best for the 1% data set. When using all the data, Figure 88(b) compares the
performance of 5 models and the DNV RP-F101 method (L2-5) is not included in the comparison.
Similar to the results shown in Figure 88(a), all the models except L2-6 underestimate the failure
pressure; the Level-2 assessment methods have better performance; and the MTI method (L2-6)
performs the best.

5.2.5 Model development

Proposed defect interaction rule

As aforementioned, the existing rules are not consistent and are deterministic. Therefore, a
probabilistic model that holistically considers all the influencing factors including defects
configuration and pipe material and geometric properties is developed.

Since the interaction identification response is categorical (i.e., interaction or no
interaction), a classification algorithm is suitable to develop the model. In particular, a logistic
classification algorithm is adopted, where the binary response is denoted as Y (setting ¥ = 0 for
indicating interaction and Y = 1 for indicating no interaction), and independent variables are

denoted as X1 = {xi}. Thus, the probability of no interaction is expressed as follow:
1
1+ exp[—(Bo + X2y Bixi)]

where f; = coefficients for the logistic classification and x; = pipe properties and adjacent defects

P(Y=1)=

(5.16)

characteristics variables. Five normalized variables and their 2" order interaction among these five

variables are used here to construct X1, as shown below:

D o, d; Sc
X =\ =—1N
1 {t gy d; S¢ T w +w, L

(5.17)

= L , 2nd order interaction variables
L+

where d1, 1, w1 = depth, length, and width of Defect 1, respectively; d2, /2, w2 = depth, length, and
width of Defect 2, respectively; and Ng. and N5, = normalized spacing in circumferential and
longitudinal direction, respectively. The basic five variables used in X; are constructed to reflect
all the influencing factors such as defect geometry, colony configurations, and pipe geometrical

and material properties. Considering all the 2" order interaction among the five basic variables, a
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total of 20 variables are resulted in Xj.

When considering all the 20 variables in Eq. (5.16), the model is a full model. A model
selection procedure, all possible subset model selection, is adopted to eliminate the ones that do
not contribute statistically significantly to the prediction. The models that have any model
parameters with p-values greater than 5% are excluded in the model selection. In addition, a
maximum model size of five (i.e., five variables in a model) is considered to avoid complex model
formulations, and the model performance for each model size is compared using two statistical
measures: adjusted R-squared (R?.4) and mean absolute error (MAE) that is defined as follow:

Yicalyi =yl
n

MAE = (5.18)

where y; = true value, ¥, = prediction, and » is the number of data points. The model with the
highest R%.j and lowest MAE is the most desirable model for the subset with the same model size
(i.e., the same number of variables in the model). Note that when comparing all the best models
from all the subsets, these two statistical measures may suggest different models to be the best one.
Randomly selected 80% of the data with two defects (called training data) is used for the model
selection, while the rest 20% of the data (called test data) is used for the model validation.

After conducting the model selection, it was found that the most desirable model with
model size 5 is also the best model overall compared with other model sizes. Table 16 shows the
five variable terms selected in this best model and the statistics of the corresponding model
parameters in the final model. Note that the proposed interaction rule captures the influencing
factors such as the defect depth, length and width, and pipeline strength, thickness and diameter.
Also, Ng. or Ng, is involved in every variable term, indicating normalizing spacing plays a critical
role in the interaction prediction, as expected. Using the test data, the proposed model gives a MAE
value of 0.3303 that is close to the MAE value of 0.2892 when the training data is used, indicating
that the proposed model is valid.

Table 16. Variables and model parameter statistics for the final interaction prediction model

MOdel ,80 ﬁl ﬁz 33 B4 BS MOdel
Parameters | (Intercept) | (Ng¢ - Ng) | (Nsc - D/t) | (Ns¢ - 0,/ O'y) (Ns¢ - di/dy) | (NZ) | Error
Mean -2.0064 -3.7185 -0.1509 7.6713 -1.7564 3.0116 0
Standard 0.1730 0.5868 0.0255 0.9760 0.5131 0.3082 | 0.3733

deviation
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To further evaluate the performance of the proposed model, Figure 89 compares the
proposed model (based on MAE and Pcp using all the collected data with two defects) with three
existing interaction rules, POF [27], APIRP 579 [31], and 6WT [30] interaction rules, which found
to have better performance than other existing rules shown in Figure 87. Figure 89 shows that the
proposed model has the highest Pcp and the lowest MAE, indicating that the proposed model has
the best performance. This best performance of the proposed model also shows that it is important

to holistically include all the influencing factors in the model development.
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Figure 89. Comparison of the proposed rule (PR) with three best existing interaction rules

Proposed failure pressure prediction model

As shown in Section 4.3.2, the MTI method performs the best compared to the rest of the existing
models for failure pressure prediction of pipelines with colony of corrosion defects. However, it
is found that in many cases when there is a defect interaction, the pressure predicted by the MTI
method is actually the pressure based on a single defect not interacted defects. This means the
failure pressure for interacted defects calculated in the MTI method was not able to capture the
impact of defect interaction well for those cases. Therefore, a new failure pressure prediction

model for interacted defects is proposed by adding a correction factor to the MTI prediction, and
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the proposed model is expressed as follow:

Py = aPy yry (5.19)

m
a=6y+ Z 0,x; + o¢ (5.19a)

j=1

where Py ymrr = minimum of the failure pressures of all combinations of adjacent defects by the
MTI method; and o = correction factor, which is modeled using a multivariate linear regression
formulation in which 6; = model parameters; Xz = {x;}= independent variables; and ge = residual
model error in which ¢ is the standard deviation of the model error (assumed to be constant) and &
is the standard normal random variable (i.e., normality assumption). Five normalized variables and

their 2" order interaction among these five variables are used to construct X, as shown below:

D Oy dclus Welus
X = D] ) = ) N
2 ( t o—y t Weclus /Dt letus
(5.20)

= ldﬁ ,2nd order interaction Variables)

VDt
where dcis = maximum depth of the combination of adjacent defects with the low failure pressure;
les and weis = overall length and width of the combination of adjacent defects with the low failure
pressure, respectively. Note that both normalized quantities N;, _and N, ,  reflect the defects
spacing in longitudinal and circumferential direction, respectively. Considering all the 2" order
interaction among the five basic variables, a total of 20 variables are resulted in Xa.

The model selection used in Section 5.1 is also applied here to eliminate the variables that
do not contribute statistically significantly to the prediction. The maximum model size is chosen
to be five and the model performance for each model size is compared using the standard deviation
of the model error, o, which measures the prediction accuracy in the model prediction. The model
with the lowest o is the most desirable model.

The model development is conducted using the data with colony of defects that are
identified to have interaction. Table 17 shows the three variable terms selected in the best model
and the model parameter statistics in the correction factor, a. As shown in Table 17, all three

variable terms include either quantities N;, _or N,

Wclus?

indicating the colony spacings play an
important role in the pressure prediction to account for the defect interaction, as expected.

The performance of the proposed model (PM) for the failure pressure is compared with the
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MTI method and Level-1 assessment methods such as the model developed by Kere and Huang
(KH) [42] and the DNV RP-F101 method for single defects (Part B) (L1-3) [8]. Using the data
with interacted defects, Figure 90 shows the results of the model performance comparison where
the cross refers to mean of P»/Ps and the horizontal lines refer to mean + 1 standard deviation.
Figure 90 indicates that the models L1-3 and KH underestimate the burst pressure, and the MTI
method overestimates the burst pressure, while the proposed model provides unbiased prediction.
Also, the proposed model has slightly smaller variability in P»/P. compared to the MTI method.
Therefore, one can conclude that the correction factor proposed improves the MTI method for

calculating the failure pressure prediction of a pipe with interacted defects.

Table 17. Variables and model parameter statistics for the correction factor

8o 0, 0> 03 Model

Model parameters
(Intercept) (NWclus ) dCluS/t) (Nlclus ) dClUS/t) (NV%’clus) EI‘I‘OI‘, o¢

Mean 1.1087 -0.1885 -0.0369 0.0112 0
Standard 0.0085 0.0091 0.0038 0.0009 | 0.0918
deviation

0.6 1 1 1 1
L1-3 KH MTI PM

Figure 90. Comparison of the proposed model (PM) with the MTI method and two Level-1
assessment methods
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5.3 Models for Pipeline with Single Crack-like Defect
5.3.1 Background
For pipelines with crack-like defects, the burst failure pressure has been assessed using the
“pipeline specific” methods and “generic” methods [43]. The “pipeline specific” methods are
developed for the pipeline industry and include models like the original Ln-Sec [44], modified Ln-
Sec [45], and CorLAS™ [46]. The “generic” methods are standards such as API 579 [28] and BS
7910 [29] using failure assessment diagram (FAD). In fact, different formulas are used to assess
the failure pressure of pipelines with crack-like defects depending on the thickness of the pipeline
(i.e., thin-walled or thick-walled pipeline), the extend of the defect (i.e., through-wall or part-wall
defect), and the location (i.e., internal or external surface) and orientation (i.e., inclined,
longitudinal or circumferential) of the crack. For example, the Battle Memorial Institute developed
the equations called “NG-18 equations” for pipelines subjected to only internal pressure with
longitudinally oriented through-wall and part-wall defects [44]. Staat [47] proposed prediction
equations for thick-walled pipes containing axial cracks. Also, model like PRCI MAT-8 [48] were
developed to assess the failure pressure for pipelines with longitudinal seam weld cracks. The API
579 [28] and BS 7910 [29] provide formulations for different levels of assessment accuracy for
thin-walled and thick-walled pipelines that contains through-wall and part-wall crack-like defects
oriented longitudinally or circumferentially on the internal or external surface of the pipeline.

To evaluate the performance of the existing models, several studies have been conducted.
For instance, Tandon et al. [49] compared three models (i.e., modified Ln-Sec, CorLAS™, and
API 579-version 2007) using the ratios of the actual to the predicted burst failure pressures based
on 15 full scale burst test data. The results showed that the modified Ln-Sec and CorLAS models
both have an average error of about 7% and the API 579 about 22%. Also, Hosseini [50] compared
the performance of four models (i.e., original Ln-Sec, CorLAS, BS 7910-version 2005, API 579-
version 2007) using the percent error of predictions based on 4 full scale burst test data. The
CorLAS model was found to be the best model and the BS 7910 model was the most conservative.
In addition, Yan et al. [51] performed model error comparison of five models (i.e., original Ln-
Sec, CorLAS, BS 7910-version 2005, API 579-version 2007 and R6-Rev4 Amendment 10 [52])
using the ratios of the actual to the predicted burst failure pressures based on 112 full scale burst
test data. Their results showed that the CorLAS model has the best performance, and the original

Ln-Sec, BS 7910, and API 579 are in general conservative, which is not suitable to be used in the
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risk assessment of pipelines.

In this Section 5, firstly, a comprehensive database (consists of experimental and numerical
data, a total of 160 data sets) is established, which consists of the data collected from the literature
and the numerical data obtained from validated finite element models conducted in this study using
the extended finite element method (XFEM). Then, a performance comparison of five existing
prediction models (i.e., original Ln-Sec, modified Ln-Sec, CorLAS, API 579 and BS 7910) is
conducted. Next, the proposed failure pressure model is developed by adding a correction factor
to an existing model (i.e., the modified Ln-Sec model that is identified to be the best existing model
in terms of prediction accuracy); and the correction factor is constructed using a multivariate linear
regression fitted by the database established. Lastly, a life cycle cost analysis of a pipeline with a
single crack like defect is conducted to evaluate the impact of failure prediction models on the
expected total life cycle cost of pipelines.

5.3.2 Existing prediction models

In the literature, the most models used to predict the failure pressure model of pipelines with single
crack-like defects are the original Ln-Sec [44], modified Ln-Sec model [45], CorLAS [46], and
failure assessment diagram (FAD) methods such as API 579 [28] and BS 7910 [29]. These models
are described in this section.

Ln-Sec Model

Ln-Sec (log-secant) model also known as NG-18 equation is a semi-empirical model developed
by the Battle Memorial Institute in the late 1960s to predict the burst pressure of pipes containing
longitudinally oriented surface cracks subjected to only internal pressure [44]. The burst pressure,
P» is computed using the minimum of the values using two criteria, the flow stress and fracture

toughness dependent criteria, and can be expressed as,

KZ
2te; 1-—a/d 4d,,0 1—a/d —mal
P, = min L. /d — wr. [ — arcos| e 8ceq0} (5.21)
D 1-(a/d,)M; mD  1- (a/d,)M;
2 4 2
2c 2c 2c
(j1 + 0.6275% —~0.003375 ngquz, (DZQ) <50
My = v w v (5.21a)
(Zce ) (ZCe )
3.3 4 0.032—1L , —2L > 50
Dd,, Dd,,
or = 0y, + 68.95 MPa (5.21b)
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2e0q = A/a (5.21¢)

where D = outside diameter of the pipe, dw = wall thickness of the pipe, 2ceq = equivalent length
of crack, a: depth of crack, 4 = actual area of the surface crack along its length, or= flow stress of
the pipe material, oy = yield strength of the pipe material, Mr = folias or bulging factor of pipe,
and Kma = fracture toughness of the pipe material. If actual value of Kwuar is not available, it can be

approximated using the following empirical expression:
) C,E

mat = A

(5.21d)

c

where Cv = upper shelf energy determined from tests of Charpy V-notch impact specimens, Ac =
cross-sectional area of the Charpy specimen used, and £ = Young’s modulus of the pipe material.
Modified Ln-Sec Model

As the original Ln-Sec model underestimates the failure pressure for long and shallows defects, it
was then modified by Kiefner [45] in 2008 by adding a correction factor. The modified Ln-Sec

model formulation is given by:

2
_TKmat

2
arcos| e 8¢ea’f

C2ta;  1-A/A
PTD  1—(4/Ag)M7! B (5.22)

st

arcos| e

where Ao = reference area = 2¢-dw in which 2¢ =/ = crack length
CorLAS™

CorLAS™ is a software-based model developed to assess axially oriented crack-like surface flaws
subjected to only internal pressure using elastic-plastic fracture mechanics [46]. This model applies
two failure criteria to evaluate the burst pressure: one criterion is based on flow strength and the
other one is based on the fracture toughness of the pipe material. The burst pressure is assessed
by:

2t 1-4 /Ao

D 1-(A/A)Mz’

P, = min(o7,0;) - (5.23)

Where M7 can be calculated using Eqgs. (5.21a), o1 = local stress at the tip of the crack when failure

occurs. The flow stress, a7, can be evaluated by either Eq. (5.21b) or the following equation that is
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generally recommended:

gy + oy (5.23a)
2

where o, = ultimate strength of the pipe material. The local stress, oy, is calculated iteratively by

O'f:

setting applied integral J equal to the fracture toughness of the pipe material, Jc, and J depends on
o1 and the corresponding function is given as:

ofm

7T f3 (n)epazl (5.23b)

] = QsFsra l

where Or= elliptical flaw shape factor, Fy= free-surface factor, f3(n) = function of strain-hardening
exponent, n = strain-hardening exponent, and ¢, = plastic strain. The formulation to calculate Jc
can be found in [46].

FAD models

FAD models are developed based on fracture mechanics and can be used to assess failure pressure
of pipeline with crack-like defects with two key parameters: the load ratio, L, and the toughness

ratio, Kr, which are calculated using the following expressions [28]:

0.
L, = :f (5.24)
y
K, = 1 (5.25)
" Kmat .

where arer= reference stress and K;= stress intensity factor [7].

Figure 91 is modified based on [28] and illustrates the concept of the FAD models. The
failure pressure is determined by finding the pressure that causes the assessment point (L, Kr) to
fall on the assessment or cut-off line [51]. In this study, the models based on this FAD principle
are the API RP 579 (version 2016) [28] and the BS 7910 (version 2013) [29], which define the
assessment line differently.

API RP 579

The API RP 579 model includes three assessment levels to evaluate the failure pressure depending
on the available information on material and geometry properties of the pipeline and operating
conditions [28]. Specifically, Level 1 assessment uses limited information on pipe properties, crack
geometry, and operations conditions such as the length and depth of crack, operating temperature,

and loads. Level 2 assessment requires further detailed information on material properties, loading
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conditions, and the state of stress at the location of the flaw. Level 3 assessment requires the
maximum information on material properties and crack geometry such as stress-strain curve,
geometry and material dependent FAD, and crack growth; thus, Level 3 assessment usually can
provide most accurate failure predictions. However, considering the information available for the
data collected in this study, Level 2 assessment is considered for the model prediction evaluation.

The assessment line function for Level 2 is defined as:

K, = (1 —0.1412)[0.3 + 0.7exp (=0.65L8)]  for L, < Ly(max) (5.26)
_ Oy + oy
Lr(max) - T (5263)

where Ly(max) defines the cut-off line. Then the assessment point is calculated using Eqgs (5.24) and

(5.25) with values of ore, K1, and Kmar which can be estimated through [28].
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Figure 91. Illustration of the FAD

BS 7910
The BS 7910 have three options to evaluate the failure pressure based on the application and
materials data available [29]. Option 1 is a conservative procedure that does not require the stress-

strain curve. Option 2 uses a material-specific stress-strain curve. Option 3 generates a FAD using
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numerical analysis and is not limited to materials showing ductile tearing. In this study, BS 7910
Option 1 is used since the stress-strain curve is not always available. The followings equations are

used to describe the assessment line function:

1 -1/2
(<1 + EL%) [0.3 +0.7exp (—uL8)], L, <1
K, = _ 5.27
" Kr,l ) LE'N 1)/(2N)' 1< Lr < Lr(max) ( )
0, Lr 2 Lr(max)
_ E
Y = min (0.001 g O.6> (5.27a)
y
Ty
N = 0.3( —0—) (5.27b)
u
o, + o
Lr(max) = y20' - (5.27¢)
y

where K1 refers to K by setting L- = 1. Then the assessment point is calculated using Eqgs. (5.24)
and (5.25) with values of arer, K1, and Kmar which can be estimated through [29].
5.3.3 Data Collection
A comprehensive failure pressure data with longitudinally oriented single crack-like defect is
established in this study, which is used to evaluate the performance of the existing prediction
models, and also to develop failure pressure assessment method. The database established consists
of the data directly collected from literature and additional numerical data obtained from FE
analysis conducted in this study.
Data collected from literature
A total of 122 different laboratory experimental burst test results of thin-walled pipes (i.e., D/dw >
20) with external longitudinal oriented single crack are collected from literature. Table 18 provides
a summary of the data collected. Since the failure pressure of a pipe with crack-like defect depends
on the pipe material and geometry properties, and defect geometry, it is worthy to examine the
correlation of the following quantities with the failure pressure (P») through scatter plots shown in
Figure 92 using the data collected: yield strength (oy), Charpy shelf energy (Cy), ratio of pipe
diameter to pipe thickness (D/dvw), ratio of defect depth to pipe thickness (a/dw), and ratio of defect
half-length to pipe thickness (c/dw).

Figure 92(a), the scatter plot of oy vs. P», shows that an overall increase of oy leads to a

higher burst pressure as expected. Figure 92(b) on the other hand indicates that a low D/d ratio

127



(referring to very thick-wall pipes) leads to a high burst pressure, except for a few cases circled by

the dotted lines. These cases may be explained by their values of crack depth close to half of pipe

thickness as shown in the dotted circle in Figure 92(c). Figure 92(c)indicates a negative correlation

between P»and a/dw, while Figure 92(d) shows a positive correlation between P» and a/c. Figure

92(e) shows the scatter plot of Cy over Pp, and no distinct trend is shown.

Table 18. Summary of the database collected from literature

Grade Dld,, oy (MPa) o, (MPa) G (J) ald,, alc Counts
X52 [48.70 — 94.9] [341 —456] [487 — 627] [21.69—-42.03] | [0.24-0.92] | [0.02-0.34] 19
X60 [32.15-103.96] [379 —510] [536 —634] | [27.12-135.00] | [0.19-0.77] [0.02—0.24] 22
X65 [66.80 — 100.48] [363 —514] [525-656] | [10.85—-132.87] | [0.25-0.87] | [0.0032—0.14] 12
X100 [55.76 — 73.89] [739 — 795] [171-261] | [10.85-132.87] | [0.19-0.55] | [0.02-0.12] 4

15Mo3 22.23 246 570 84 [0.78 —0.95] | [0.07—0.38] 11

34CrMo4 | [26.08 —32.29] [703 — 878] [874 —990] [59 —81] [0.51-0.99] | [0.08—0.48] 16

4134V [30.46 —34.05] | [1048 —1096] | [1138 —1179] | [21.69—27.12] | [0.62—-0.96] | [0.13—0.51] 19
St 35 22.23 336 486 76 [0.25-0.90] | [0.02—-0.24] 13
St 70 [86.26 — 86.73] [529 — 543] [670 — 695] [50-115] [0.68 —0.95] | [0.05-0.09] 6
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Figure 92. Scatter plots of burst pressure (P») vs. selected quantities

Additional numerical data

To complement the existing data collected in the literature, FEMs are used to generate additional
data points. In this study, the FEMs are developed in ABAQUS. While modeling cracking growth
using the conventional FE methods is challenging due to the need of mesh conformity to the
geometry discontinuities and remeshing as crack grows, the extended finite element method
(XFEM) has been developed to addresses these challenges [53]. The XFEM was introduced by
Belytschko and Black [54] and it extends the conventional FEM through using the partition of
unity property of finite elements by adding enriching degrees of freedom with special displacement
functions to the finite element approximation.

In Abaqus/Standard, XFEM uses a traction-separation model for crack propagation
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consisting of a crack initiation criterion and a damage propagation law. The crack initiation criteria
available in Abaqus/Standard [53] are the maximum principal stress (Maxps), the maximum
principal strain (Maxpe), the maximum nominal stress (Maxs), the maximum nominal stress
(Maxe), the quadratic nominal stress (Quads), and the quadratic nominal strain (Quade). The
available damage propagation criteria are fracture energy (Gc) and displacement of crack tip at
failure. In the literature, the Maxps or Maxpe and G criteria are the most used criteria to model
crack propagation in XFEM. For example, Lin et al. [55] used the Maxps and G. criteria to simulate
crack propagation in pressurized steel pipes; and Okodi et al. [56] used the Maxpe and G. criteria
to predict the burst pressure of longitudinally cracked pipelines. In fact, the Maxpe criterion can
be represented as follows [53]:

f= {—(S’j“">} (5.28)

gmax
where /= maximum strain ratio, &,,,,= maximum principal strain, £9,,,= maximum allowable
principal strain, and the Macaulay brackets indicates that a purely compressive strain does not
cause damage initiation. When freaches a value of one, damage is assumed to initiate. The fracture
energy G is the energy required to create a unit of crack area. Since Maxpe and G. are material
properties, which can be obtained by calibration using the burst test results obtained from
literature. With the obtained Maxpe and G, this material is then used to generate additional XFEM
models of pipelines with longitudinally oriented single crack-like defect to determine the failure
pressure.

For computational efficiency, only half of the pipe (i.e., mid length of pipe) with
appropriate boundary conditions is modeled due to the symmetry condition, as shown in Figure
93. Also, the crack is modeled to have semi elliptical shape. The model is meshed using 8-node
fully integrated linear brick elements (C3D8) for the solid part and linear quadrilateral elements
(S4R) for the shell part; and elasto-plastic materials are used. Furthermore, Statics-General
procedure is used for the analysis and an internal pressure is gradually applied until the pipe fails.
Failure is determined when the crack propagation reaches the last elements of the wall thickness
of the pipe. Figure 94 illustrates the crack propagation in one of the selected cases: the crack

propagates until the last element of the wall thickness of the pipe, which causes the pipe to fail.
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Crack at the last elements of
the pipe interior wall

Figure 93. Crack propagation in a pipe modeled in Abaqus

To calibrate the parameters Maxpe and G, the J integral of the material, Jmat, is calculated

first using the J integral for linear elastic material under mode loading I expressed as follows [57]:

2
Kmat

Jmat = “ET (5.29)

where E’= E for plane stress condition and E' = E/(1 —v?) for plane strain condition in which v =
Poisson’s ratio of the material. Using the calculated Jmar (a measure of the fracture toughness of
the material) as a starting value for G. (referring to fracture energy), Maxpe and G. are calibrated
by trial and error using a few experimental testing data collected from the literature. Table 19
summarizes the pipe material properties and defect geometries of the experimental testing [58].
As shown in Table 19, there are four different materials, expect X52 the other three materials have
four different cases. For each material, Maxpe and G are calibrated so that the difference between
the failure pressure obtained from the FE analysis (P».re) conducted in this study and the failure
pressure data reported in the literature (Pb.test) is small as much as possible. Table 19 shows that
with the calibrated Maxpe and G¢, the error percentages, (Pstest — Pp,FE)/ Pb, are all within 10% for
all cases. Thus, Maxpe and G are obtained for the selected materials, and the FE models with these
four materials are validated. It is worth stating that the accuracy of the XFEM parameters depends
on the number of burst test data used for calibration. Okodi et al. [59] assert that there is inherent

error in calibrating damage parameters using few burst test results. However, because of the
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limitation of burst test data available in the literature, the damage parameters can only be obtained

based on the limited data available.

Table 19. Experimental testing cases selected for calibrating Maxpe and G and calibrated results

Grade D t oy Ou Imat a 2c Pviest | Pore | Error Maxpe Gc
(mm) | (mm) | (MPa) | (MPa) | (N/mm) | (mm) | (mm) | (MPa) | (MPa) | (%) P (N/mm)
X521[49] | 508 6.4 350 497 50.63 3.8 30 10.92 | 10.98 | -0.55 0.02 50
2.17 | 200.00 | 10.10 | 10.18 | -0.79
2.68 | 200.00 | 9.30 9.06 2.58
X60[50] 508 5.70 433 618 43.5 574 120000 | 9.60 2.00 799 0.084 50
291 | 200.00 | 8.83 8.65 2.04
237 7.0 434 | 201.00 | 60.42 | 66.01 | -9.25
4134V 236 7.4 544 | 2540 | 65.89 | 68.43 | -3.85
[58] 237 7.6 1096 179 62.16 572 | 50.80 | 51.88 | 52.64 | -1.46 0.07 >0
237 7.4 6.27 | 69.85 | 33.32 | 3440 | -3.24
236 7.4 5.64 | 50.80 | 48.10 | 48.29 | -0.40
4134V 236 7.3 6.25 50.80 | 39.70 | 41.72 | -5.09
[58] 237 7.2 1048 1138 38.70 577 | 51.80 | 38.50 | 3595 | 6.62 0.07 40
237 73 6.30 | 69.85 | 32.50 | 32.53 | -0.09

With the damage parameters of these four materials, 38 new numerical cases are generated.

These added numerical cases are designed to cover a wider range of three quantities: D/t, a/dw, and

alc. Figure 94 shows the scatter plots of oy vs the three quantities based on the experimental and

FE burst test data collected from literature and the new generated numerical cases. As shown in

Figure 94, the new cases are designed to cover the regions where the data collected from literature

is scarce. The pipeline properties and defect geometries and FE results (P»re) of these 38 new

cases are provided in Table 20.
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Table 20. New FE models cases

Grade D t oy Ou CVN d 2c Py re
(mm) | (mm) | (MPa) | (MPa) J) (mm) | (mm) (MPa)

X52 250.00 | 8.33 350 497 23.05 | 0.83 10.18 38.41

X52 400.00 | 8.00 350 497 23.05 | 1.60 26.72 21.54

X52 315.00 | 7.88 350 497 23.05 | 2.36 | 472.54 | 20.90

X52 450.00 | 7.50 350 497 23.05 | 3.53 | 429.27 | 10.78

X52 508.00 | 7.26 350 497 23.05 | 1.09 | 100.11 15.07

X52 300.00 | 8.57 350 497 23.05 | 2.14 14.53 30.97

X52 215.00 | 8.60 350 497 23.05 | 7.31 | 863.68 6.85

X52 425.00 | 7.73 350 497 23.05 | 7.34 | 896.43 1.83

X52 762 7.62 350 497 23.05 | 6.86 | 207.13 2.09

X52 600 6.67 350 497 23.05 | 5.33 49.26 6.99

X52 510 6.00 350 497 23.05 | 2.40 | 247091 8.93

X60 250.00 | 8.33 433 618 43.50 | 0.83 10.18 44.67

X60 400.00 | 8.00 433 618 43.50 | 1.60 26.72 25.24

X60 315.00 | 7.88 433 618 4350 | 2.36 | 472.54 | 24.50

X60 450.00 | 7.50 433 618 4350 | 4.28 | 429.27 | 1042

X60 508.00 | 7.26 433 618 43.50 | 1.09 13.55 19.02

X60 300.00 | 8.57 433 618 4350 | 2.14 14.53 36.34

X60 215.00 | 8.60 433 618 4350 | 7.31 | 863.68 9.22

X60 425.00 | 7.73 433 618 43.50 | 7.34 | 698.14 2.41

4134V 508 5.64 | 1048 1138 21.69 | 0.56 11.95 29.01
4134V 615 8.79 | 1048 1138 21.69 | 1.76 44.58 34.33
4134V 315 3.94 | 1048 1138 21.69 | 1.18 12.96 30.56
4134V 250 5.56 | 1048 1138 21.69 | 2.22 37.27 49.28
4134V 350 8.75 | 1048 1138 21.69 | 4.38 | 15043 | 38.55
4134V 300 6.00 | 1048 1138 21.69 | 3.60 12.16 47.96
4134V 215 8.60 | 1048 1138 21.69 | 8.17 | 317.73 11.22
4134V 400 6.67 | 1048 1138 21.69 | 1.00 | 231.43 | 40.66
4134V 275 5.00 | 1048 1138 21.69 | 1.25 | 744.79 | 38.27
4134V 425 425 | 1048 1138 21.69 | 298 | 517.76 9.15
4134V 762 9.53 | 1096 1179 27.12 | 0.95 19.01 33.64
4134V 350 7.78 | 1096 1179 27.12 | 2.33 19.19 58.05
4134V 215 8.60 | 1096 1179 27.12 | 3.44 43.00 96.21
4134V 335 5.58 | 1096 1179 27.12 | 1.12 | 117.56 | 39.23
4134V 450 5.00 | 1096 1179 27.12 | 0.75 13.59 29.38
4134V 475 8.64 | 1096 1179 27.12 | 2.16 | 473.26 | 37.96
4134V 515 5.15 | 1096 1179 27.12 | 2.32 | 230.81 16.45
4134V 220 3.14 | 1096 1179 27.12 | 1.10 | 528.15 | 24.97
4134V 236 3.93 | 1096 1179 27.12 | 2.16 | 371.17 | 22.02
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Performance comparison of existing models

The performance comparison of the existing failure prediction models considered in this study is
conducted using the mean, standard deviation of the ratio of the predicted to the actual burst failure
pressures, P»/Pa. Note that only the original Ln-Sec and modified Ln-Sec models are applicable to
all the data points (i.e., 160 data points). The CorLAS model is only applicable to data that meets
the application restriction listed in Table 21, which corresponds to 136 data points. For the API
RP 579 and BS 7910 models, the equations for calculating o and K7 in this study are only
applicable to data satisfying the application restriction listed in Table 21, resulting that only 93
data points are applicable for API 579 and 143 data points for BS 7910. Therefore, to be fair for
all the models, the comparison is performed using the common data points (i.e., 81 data points)
that are applicable to all the models. Also, it is worth stating that instead of using the software
CorLAS™, the method used by the software was directly used to calculate the failure pressure.
Figure 95 shows the performance comparison of the five existing models, where the crosses refer
to mean of P»/Pq and the horizontal bars refer to mean + 1 standard deviation. As shown in Figure
95, all prediction models (except Corlas) averagely underestimate the failure pressure (shown as
cross markers below the horizontal line of 1.0). Figure 95 also indicates that most prediction
models have big variability, particularly API RP579 model. One could also observe that the
modified Ln-Sec model has the best performance with the smallest bias and variation.
Furthermore, Figure 95 shows that the API RP579 and BS 7910 models are overly conservative,
and this can be understood by the fact that the models based on FAD are developed to avoid failure

rather than failure prediction [51].

Table 21. Conditions for using the CorLAS , API 579 and BS7910 models in this study

Models Application constrain Crack and geometry dimensional limits
Pipeline with
CorLAS 0,/E <0.005 ]
0<aldw<0.8

API 579 Cylinder subjected to internal 0.03125<a/c<2.0

pressure and containing 0<dw/(DI2—dw)<1.0

longitudinally oriented

surface cracks with semi- 0<a/dv=038

BS 7910 elliptical shape 0.05<a/c<1.0
0.1 <dw/(D/2 —dw)<0.25
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Figure 95. Comparison of existing failure pressure models

5.3.4 Proposed model development

As shown in the previous section, the modified Ln-Sec model performs the best compared to the
rest of the existing models for failure pressure prediction of pipelines with single like-crack
defects. Here, the proposed failure pressure, P», is modeled by adding a correction factor, a, to the
modified Ln-Sec model, Pumod Ln -sec, to improve the model prediction accuracy. The proposed
model can be expressed as follows:

Py = a* Pyod 1n-sec (5.30)

This correction factor, a, is modeled using a multivariate linear regression formulation in this study

as follows:
m
a=pL,+ Bix; + o€ (5.31)
i=1
where f; = model parameters; X = {x;} = independent variables; and oe = residual model error in
which o is the standard deviation of the model error (assumed to be constant) and ¢ is the standard
normal random variable (i.e., normality assumption). Four normalized variables and their 2™ order

interaction among these four variables are used here to construct X, as shown below:

D o0, a a c l .
= _I_F_I_I_I—I n i i
X-(dw g, dy’ ¢’ d, \/D_dw 2"% order 1nteractlon> (5.32)
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Considering all the 2" order interaction among the four basic variables, a total of 27 variables are
resulted in X. When considering all the 27 variables in Eq. (5.31), the model is a full model. An
all-possible-subset model selection is adopted to eliminate the ones that do not contribute
statistically significantly to the prediction [25]. In addition, a maximum model size of five (i.e.,
five variables in a model) is considered to avoid complex model formulations, and the model
performance for each model size is compared using the model error standard deviation, o. The
model with the lowest o is the most desirable model.

The model development is conducted using the database established in this study. After
model selection, it is found that the model with size 5 is the best model overall compared with
other sizes models. Table 22 shows the variables selected and the statistics of the corresponding
model parameters in the final model. It is worth noting that the data ranges used for the model
development are D/dw in [22 100], a/dw in [0.10  0.99], and a/c in [0.0032 0.5140]. The
prediction performance of the proposed model is then compared with the modified Ln-Sec model
through the mean, standard deviation of the ratio of the predicted to the actual burst failure
pressures, P»/Pa, using all the data (i.e., 160 data points) as shown in Figure 96, where the cross
refers to mean and the horizontal lines refer to mean + 1 standard deviation. Figure 96 indicates
that the modified Ln-Sec model and the proposed model provides unbiased prediction. However,
the proposed model shows smaller variability in P»/Pa. Therefore, one can conclude that the
correction factor proposed improves the modified Ln-Sec model accuracy.

Table 22. Variables and model parameter statistics for the correction factor

Model po pi p2 B3 P4 ps Model
Parameters | Intercept | a/dw D/dy - aldw | D/dw - cldw | ouloy - aldw | (ou/oy)* | Error

Mean 0.889 | 1205 | -1.841*107 | 5.665%10° | -1.280 0.256 0
Standard 0.111 | 0334 | 6377*10% | 6.443*10° |  0.263 0.0656 | 0.124
deviation
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5.3.5 Sensitivity analysis

To obtain a better understanding of how material and geometry properties and crack sizes impact
the failure pressure, a sensitivity analysis is performed to evaluate the impact of four selected
quantities (i.e., oy, D/dw, a/dw, and c/dw) on both the proposed model and the modified Ln-Sec
model, for a comparison purpose. Figure 97 shows the changes in the pressure prediction of a
pipeline (that has oy = 433 MPa, ou = 618 MPa, D = 508 mm, dw= 5.7 mm, a =2 mm, and ¢ = 50
mm) when varying D/dw, a/dw, and c/d.

Overall, as shown in the four plots Figure 97, the predicted burst pressure are sensitive to
all four quantities, showing the importance of these quantities in the model. Secondly, the trends
of the change in P» over the quantities are similar for both models, meaning that adding the
correction factor in the proposed model does not fundementally change the relationship between
those quantities to the predition.

As expected, the failure pressure predictions of both models increase with the increase of
oyas shown in Figure 97 (a); and the change rates are the same for both models. Meanwhile, Figure
97(b), Figure 97(c) and Figure 97(d) show that the predictions of both models decrease with the
increase of D/dw, a/dw, and c/dw; however, the change rate in the proposed model is higher
(particularly for a/dw), meaning the proposed model is more sensitive to the wall thickness ratio
and crack depth. In addition, the predicted pressure from the proposed model is higher than the

existing model expect when a/dw>0.5 as shown in Figure 97(c).
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6 Objective 4: Uncertainty Impact on Pipeline Reliability

6.1 Background

A pressurized pipeline generally fails in two distinctive modes: small leak (when a corrosion defect
penetrates the pipe wall thickness) or a burst (when the operating pressure of the pipe exceeds the
burst pressure of the pipe) [35]. To evaluate the impact of the proposed prediction models on the
pipeline structural performance, the probability of the burst failure of a pipeline with corrosion
defect using the proposed models is evaluated. The probability of failure, Py, is defined as the
conditional probability of attaining or exceeding prescribed limit states given a set of boundary
variables, and can be written as:

6.1
P; = ff(X)dX 6.1

g(X)=<o0

where f(X) is the joint probability density function of a vector of random variables, X; g(X) is
limit-state function; and g(X) < 0 refers to the failure domain. This probability is assessed by
conducting a reliability analysis such as Monte Carlo simulations and First/Seconds Order
Reliability Methods (FORM/SORM). The limit-state function for a burst failure is defined as
follow:

g(X) =P, - P, (6.2)
where P» is the pressure capacity of the pipe (that is usually estimated by the failure pressure
prediction model), and Pp is the demand (that is the operating pressure of the pipe). In practice,
reliability index is calculated to measure the pipe performance, and a generalized reliability index
is defined as [36]:

p=o7(1-F) 63)
where @' refers to the inverse of cumulative distribution function of standard normal distribution.
6.2 Case Study I
In this session, the reliability index is calculated based on the failure pressure prediction based on
either the proposed models (shown in Table 8) or the best existing model (i.e., G5-19) for pipelines
with single corrosion defect. The random variables, X, used in the reliability analysis and their
distribution information are listed in Table 23. The model errors of the best existing models are
calculated using the established database so that they could be accounted in the reliability analysis.

Comparing the model errors in Table 23 indicates that the best existing models are biased
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(especially for Level 3) and have larger standard deviations of model errors compared to the

proposed models, consistent with the observations in Figure 80.

Table 23. Distribution parameters of random variables used in Case Study |

Random variable Distribution C(jgo;/ Lelv el Le2v el Le3v el Lelv el Lezv el Le3v el
Outside diameter of pipe, D (mm) Normal 5 324 16.2
Nominal wall thickness, ¢ (mm) Normal 5 6 0.3
Defect depth, d (mm) Normal 5 - -
Defect length, / (mm) Normal 5 100 or 350 Sorl7.5
Yield strength, o, (MPa) Normal 3 357 534 589 | 10.71 | 16.02 | 17.67
Ultimate strength, o, (MPa) Normal 3 458 661 731 | 13.74 | 19.83 | 21.93
Operating Pressure, P, (MPa) Normal 5 7.61 | 11.39 | 12.57 | 0.38 0.57 0.63
Model error in the proposed model Normal ) 0 0 0 1.84 1.07 136
(MPa)
Model error in the best existing | ;) -] 039 | 053 | 090 | 223 | 139 | 245
model (MPa)

Figure 98 compares the reliability index of pipelines with the failure pressure capacities
calculated based on either the proposed models or the best existing models for three materials
(corresponding to three levels of au) under various levels of corrosion depths (d/t varying from 0%
to 90%) and two levels of defect lengths (means of / = 100 mm and 350 mm). As expected, the
reliability index decreases with the increase of the defect depth on the pipe for a given defect
length; the reliability index is smaller for longer defect length. Also, the defect length impact
becomes more significant when the corrosion depth increases. This indicates that both corrosion
depth and length are critical particularly when corrosion becomes worse.

When comparing the reliability curves resulted from the two pressure prediction models
(solid lines vs. dashed lines in Figure 98), one can notice that the reliability based on the proposed
models is higher than the one based on the best existing model, especially for smaller d/¢. Such
difference is bigger for the defect with / = 350mm and also bigger for material with Level 3 ou.
For example, Figure 98(c) shows that for a defect depth of 40% of wall thickness and a defect
length of 350 mm the reliability index based on the proposed model and best existing model are
about 3.9 (Pr=0.000048) and 2.3 (Pr= 0.0107), respectively, which is substantially different. In
this case, using the best existing model may lead to unnecessary costs associated with repairs and
maintenance prompted by the lower reliability index calculated. This result indicates that the

failure pressure prediction model plays an important role in the reliability evaluation of a pipeline;
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the difference resulted from the proposed models and the best existing models is not negligible.
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Figure 98. Defect depth-dependent reliability index based on the proposed models and best
existing models for pipelines with single corrosion defect

In addition, importance analysis [62] are used to identify important uncertainty sources that
contribute most to the variability of the pipeline performance. Figure 99 shows the absolute value
of importance measure, y, of each random variable that considered in the reliability analysis. For
all three scenarios, the top two most important variables are wall thickness () and model error in
the burst pressure model. This indicates the majority of uncertainties stem from wall thickness and
burst pressure prediction. In addition, the plots in Figure 99 also indicate the defect depth becomes
more important when corrosion becomes more severe, as expected. Lastly, the defect length and

width are among the least important variables.
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Figure 99. Absolute values of importance measures based on the proposed models for pipelines
with single corrosion defect assuming / = 100mm

To evaluate the impact of the model error (that reflects the model accuracy) in the
performance evaluation, Figure 100 compares the reliability curves with and without considering
the model errors for the same three pipe materials in Figure 98 under various levels of corrosion
depths (d/t varying from 0% to 90%) and one level of defect length (mean of / = 350 mm). Similar
to Figure 98, the reliability index difference between the solid line (obtained using the proposed
model) and the dashed line (obtained using the best existing model) is substantial particular for
material with Level 3 ou, as shown in Figure 100(c). For either the proposed or best existing
models, it is apparent that the model error has a great impact on the reliability index; and

considering model error has a much lower index value. For instance, the reliability index calculated
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based on the proposed model for the pipeline with Level 3 o, and a defect depth of 20% are about
8.4 and 6.4 without and with model error respectively. This shows that if the model error is not
considered, the overestimated reliability index can cause a delay of the pipeline maintenance and
repair, leading to unexpected pipeline failure with tremendous consequences (both economically
and environmentally). Therefore, it is important to include the model error in the reliability
evaluation of corroded pipelines. In summary, based on Figure 98 and Figure 100, one can
conclude that the performance of a failure pressure prediction model plays a critical role in

determining the structural performance of corroded pipelines.
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Figure 100. Defect depth-dependent reliability index calculated with and without the model error
for the proposed models and best existing models for pipelines with single corrosion defect

6.3 Case Study II

To evaluate the impact of defects interaction on the structural integrity of pipelines, the time-
dependent probability of the burst failure of a pipeline with two corrosion defects is evaluated. The
pressure capacity of the pipeline with the colony of defects is calculated based on an interaction
rule and failure pressure prediction models. When defect interaction is identified, the proposed
model for interacted defects is applied. When there is no defect interaction identified, the pressure
capacity is determined by the smallest value of all pressures based on each single defect within the
colony using the failure pressure equation in the MTI method, which is also the DNV RP-F101
method for single defects (Part B). Note that the interaction rules (that are based on defect
geometries) and the failure pressure prediction models are time-dependent, as they depend on
defect sizes. Thus, the probability of failure is time-dependent,

To predict the defect size time-evolution, the corrosion growth model developed by Caleyo
et al. [63] is considered here, and it is written as:

d,(t) = k(t —ty)Y (6.4)
where dn(f) = average value of the maximum pit depth at time ¢; 7o is the corrosion initiation time;
and k and y are the pitting proportionality and exponent factors, respectively. Considering a mixed
type of soil, the value of £ and y are estimated to be 0.164 mm/year and 0.780, respectively [63].
On the other hand, no defect length or width growth models are available; thus, the corrosion defect
length and width growths are simply calculated using a corrosion defect length to depth ratio and
a corrosion defect width to depth ratio, respectively.

The random variables, X, used in the reliability analysis and their distribution information
are listed in Table 24. Figure 101 compares the time-dependent reliability index of a pipeline with
the failure pressure capacities calculated based on various interaction rules: the proposed
interaction rule (PR) developed in this study and three existing interaction rules (i.e., KV [26],
DNV RP F101 [8],and 6WT [30]). For a comparison purpose, Figure 101 also shows the reliability
index curve of the pipeline when only one defect is considered: dashed line for considering Defect
1 only and black solid line for considering Defect 2 only.

As expected, the reliability index decreases with time since defects grow with time. The

reliability index curve based on the interaction rules KV or 6WT overlaps with the one that
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considers only Defect 2, which indicates that the interaction rules KV and 6WT do not recognize
any defect interaction during the 75-year time window. Meanwhile, the interaction rule DNV
identifies the defect interaction around year 40, and then the corresponding reliability index
dropped from a value of 6.0 (Pr=9.87x107'%) to a much lower level, 3.7 (Pr= 1.08x10%), due to
the identified interaction. On the other hand, the proposed rule (PR) identifies the defect interaction
much earlier, around year 4, where the reliability index curve drop occurs accordingly. Figure 101
clearly shows that the interaction effect plays a critical role in the time-dependent performance
evaluation of a pipeline with colony of corrosion defects. In this case study, using the existing
interaction rule KV, 6WT or DNV does not recognize the interaction at all or at a much later time,
which may cause a delay of the pipeline maintenance and repair leading to unexpected pipeline

failure usually with both adverse consequences economically and environmentally.

Table 24. Distribution parameters of random variables used in Case Study II

Random variable Distribution | COV (%) | Mean g;i?i?;i
Outside diameter of pipe, D (mm) Normal 5 324 16.2
Nominal wall thickness, # (mm) Normal 5 6 0.3
Yield strength, g, (MPa) Normal 3 534 16.02
Ultimate strength, o (MPa) Normal 3 661 19.83
Operating pressure, OP (MPa) Normal 5 14 0.7
Corrosion defect length to depth ratio - - 5 -
Corrosion defect width to depth ratio - - 2 -
Defect 1 corrosion initiation time, 70,4 (year) - - 3 -
Defect 2 corrosion initiation time, 70,42 (year) - - 2 -
Initial longitudinal spacing, Si i, between i i 100 i
defects (mm)
Initial circumferential spacing, Sc,inir, between ) ) 50 )

defects (mm)
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Figure 101. Reliability index versus operating time based on different interaction rules

6.4 Case Study III

In this section, a case study of a pipeline with a crack-like defect is considered to evaluate the
impact of failure prediction models on the life-cycle cost. The framework of expected life-cycle
cost developed by Kere and Huang [64] is used in this study. The framework is developed based
on a decision tree model with the use of analytical methods to evaluate events. The expected total
life cycle cost consists of cost of inspection, repair, and failure with the consideration of discount
rate and service life. Using the total probability concept, the expected total life cycle cost is
determined by adding each conditioned expected total cost on a given number of failures
occurrence during the service life multiplied by the probability of the corresponding failure

occurrences, and is written as:

n

n
E[Cy] = Z E[Cry] = Z Py ). - E[Cr |k failures] (6.5)
ic=0 k=0

where Crx = cost due to the scenario when £ failures occur during the service life, Prx= probability
of k number of failures occurrence during the service life, and E[Crlk failures] = expected total
cost given k£ number of failures occurrence. In particular, Psrand E[Crlk failures] are calculated
using the formulations given in [64], where the probabilities of different numbers of failure

occurrences are probabilistically assessed using probability distribution of failure time with the
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consideration of the impact of repair actions that are possibly taken after each planned inspection,
and the probability distribution of failure time is determined based on the time-dependent
probability of failure. The probability of failure is defined as in Eq. (6.2). Note that the failure
pressure prediction model is time-dependent, as it depends on defect size. Thus, the probability of
failure is time-dependent.

To predict the defect size time-evolution due to fatigue loading, the Paris law proposed by
Paris and Erdogan [65] is considered in this study, which is expressed as follows:

da
N C(AK) (6.6)

where a = crack size; N =number of cycles; C and m = material constants; and AK = stress intensity
range. The stress intensity range is given by [66]

AK =Y (a)AoVra (6.6a)
where Y = geometry factor depending on the geometry of the crack, a, and Ao = stress range. For
simplicity, Y is assumed to be constant. Using an iterative process with an initial crack size, ao, the
defect size time-evolution, a(?), can be predicted. For this case study, the parameters used in the
crack growth model are listed in Table 25.

Figure 102(a) shows the crack defect growth over time, ¢, for this case study, where the
solid line refers to the prediction with mean values of coefficient and the dotted line refers to the
mean prediction =+ 1 standard deviation. Figure 102(a) indicates that the variability in the defect
depth prediction is very small for lower value of ¢, but starts to become significant with increase
in ¢. Next, the burst pressure capacity is evaluated using the proposed failure pressure model (PM)
and the modified Ln-Sec model (Mod Ln-Sec) separately, and the predicted failure pressure, Px(?),
is shown in Figure 102(b). With the same material and geometry properties used by Hosseini et al
[50] as shown in Table 6 and an operating pressure assumed as a normal random variable with a
mean of 8 MPa and standard deviation of 0.4 MPa, the probability of burst failure, P((#), can be
assessed through Eq. (6.2) using reliability analysis. Figure 102(c) shows the resulted P«¢) using
PM or Mod Ln-Sec for the failure pressure prediction. For a better visualization of the impact of
the pressure prediction model on the probability of failure, P((¥) is also plotted in the logarithmic
scale as shown in Figure 102(d). As expected, Figure 102(b) shows that the failure pressure
prediction using either of the models decreases with the increase of #, while the probability of

failure increases with ¢ as shown in Figure 102(c) and Figure 102(d), since the defect depth
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increases with time. Moreover, Figure 102(b) shows that Mod Ln-Sec is not sensitive to the defect
gowth for # < 30 years in this case study; and the predicted pressure from PM is much higher than
the one from Mod Ln-Sec especially when ¢ > 48 years. Because of the difference in the failure
pressure prediction (that is the failure pressure prediction from PM is much higher than the one
from Mod Ln-Sec), Figure 102(d) shows that the probability of failure using PM is much smaller
compared to the one using Mod Ln-Sec model.

For the life cycle cost analysis, the unit costs for inspection (Ci), repair (Cr), and failure
(Cr) are assumed: C; = ain-Co, Cr = ar-Co, and Cr = ar-Co, where ain (= 0.0177), ar (= 0.243), and ar
(= 100) are multiplicative factors for inspection, repair, and failure, respectively. Those factor
values are chosen based on the ranges presented in Gomes and Beck [67]. Also, the discount rate
is assumed to be 2%, considering a service life of 50 years. For simplicity, we assume that the
inspection interval, Az, is fixed and set to be 10 years, and the defect repair threshold, dr, is the
variable. Specifically, d; is set to be within the range of [15 30%] of the wall thickness, dw. Using
Eq. (6.5) by setting n =2 (i.e., ignoring the consequence due to 3 or more failure occurrences), the
expected total cost, E[Cr], is calculated. Figure 103 displays E[Cr] and its three components
E[Cro], E[Cr1], and E[Cr2] for different values of d;/dw considering PM and Mod Ln-Sec in the
probabilities of failures evaluation. It found that the lowest E[Cr] value shown in red circle in
Figure 103(a) occurs at di/dw=0.23 and 0.20 using PM and Mod Ln-Sec, respectively. The optimal
defect repair threshold, dr, using Mod Ln-Sec is smaller since the probability of failure using Mod
Ln-Sec is bigger (as shown in Figure 102(d)), and lower d; is preferred for higher probability of
failure to increase the chance of performing maintenance actions, which can prevent event failure.
For both models PM and Mod Ln-Sec, Figure 103(b), shows that the expected total cost given no
failure occurrence, E[Cry], decreases with the increase of di/dw, since the number of possible
repairs decreases with the increase of dr/dw. E[Cro] using PM is higher because the probability of
no failure is higher for PM. The expected total cost given one failure, E[Cz,], shown in Figure
103(c) and the expected total cost given two failures, £[Cr.], shown in Figure 103(d) increase with
dr/dw, because the probability of failure using both models increase due to the lower number of
possible repair actions when setting a higher repair criterion. Figure 103(c) indicates that E[Cr,]
using PM can be neglected for di/dw< 0.23 and Figure 103(d) shows that although E[C7;] using
Mod Ln-Sec is higher compared to the one using PM, E[Cr;] is negligible for both models. The

results from Figure 103 clearly indicate that the failure pressure model considered in the life cycle
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cost analysis influences the decision making in the risk management.

Table 25. Distribution parameters of random variables used in Case Study III

Random variable Distribution Mean STD
Outside diameter of pipe, D (mm) Normal 508 [50] 25.4
Nominal wall thickness, dw (mm) Normal 5.7 [50] 0.285
Yield strength, g, (MPa) Normal 433 [50] 12.99
Ultimate strength, o, (MPa) Normal 618 [50] 18.54
Estimated fr:zlc\:/‘illl);ez ‘tr(r)ll)lghness, Knat Normal 335.49 16.77
Material parameter, C lognormal 2.?.618(;_12 6.9[.618(;_13
Material parameter, m Normal 3.0[68] 0.3 [68]
Geometry function, Y - 1 -
Stress range, Ac (MPa) Weibull 14 1.4
Number of load cycles per year, N - 10° -
Initial crack depth, ao (mm) Normal 0.3 0.03
Crack length, 2¢ (mm) - 100 -
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Figure 103. Expected total cost versus inspection interval considering Pr(¢) evaluated by the
proposed model (PM) and the modified Ln-Sec for pipelines with single crack-like defect
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7  Conclusions

To achieve the 1% objective, the ground low-carbon steel samples of flat sheet and pre-damaged
sheet were exposed to two different environments (ASTM B117 and G85) to generate realistic
corrosion profiles. The flat samples corroded during the exposure under two environments
demonstrated by increased corrosion depth through IFM characterization; however, the sample
variations were very big. The pre-damaged samples were sensitive to B117 environment that had
increased corrosion depth of the scratched area with small sample variations; however, the depth
change was less significant under the G85 environment, and the sample variations were large. The
pre-damaged samples in B117 exposure were for NDE characterization.

To achieve the 2™ objective, the MSU NDE team has been tackling the challenge of
interactive defects detection and characterization in metallic pipes, crucial for pipeline integrity
assessment. The team developed a multi-modal electromagnetic and ultrasonic framework that
leverages the benefits of various NDE and data processing methods such as machine learning. This
framework includes Shear Horizontal (SH) guided wave testing, which has proven effective for
NDE of buried pipelines, a task that typically presents significant field-testing challenges. In terms
of Eddy Current Array (ECA) work, the team developed the ECA sensing probe, robust post-
processing operations to convert raw eddy current data into clear 2D voltage mapped images of
the defects. Regarding ultrasonic NDE work, the team focused on establishing an expanded NDE
framework for interactive anomalies by probabilistically characterizing defect profiles. They used
finite element modeling (FEM) for accurate defect modeling and to study the resulting ultrasonic
NDE response. The team also developed numerical models that simulated different materials and
structural conditions, to obtain their corresponding ultrasonic response for the complex anomaly
scenario. MSU team also developed Machine Learning based feature engineering algorithms and
Deep Learning based Convolutional Neural Networks (CNNs) for better characterizing the
identified interactive anomalies. Despite high noise levels, the performance of the networks
remained acceptable.

To achieve the 3rd objective, three tasks are performed. The first task is to develop
probabilistic failure pressure models for pipelines with a single corrosion defect using a
comprehensive database established in this study. The database is established by collecting data
from literature and adding new numerical data generated from finite element models. With the

established database, the performance of existing failure pressure prediction models for pipelines
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with a single corrosion defect is compared. Then probabilistic failure pressure models are proposed
using multivariate linear regression with existing failure pressure prediction models as independent
variables. Also, a sensitive analysis is performed to evaluate the impact of influencing quantities
on the proposed models.

The second task to meet the 3™ objective is to develop a probabilistic interaction rule and
failure pressure prediction model for pipelines with interacting corrosion defects based on a
comprehensive database established in this study. The database is established by collecting data
from literature and adding new numerical data generated from finite element models. Using the
database, the performance comparison of existing interaction rule is conducted first. Then a
probabilistic interaction rule is proposed by using the logistic regression algorithm with pipe
properties and adjacent defects characteristics (e.g., defect, length, and width of defects and
spacing dimensions between defects) as independent variables. The proposed interaction rule is
also compared with the existing interaction rules. Next, existing failure prediction models are
compared using the established database. Then, the proposed failure pressure is developed by
adding a corrosion factor to the best existing model identified. The correction factor is formulated
using multivariate linear regression with pipe properties and adjacent defects characteristics as
independent variables.

The third task to meet the 3rd objective is to develop a probabilistic failure pressure model
is developed for pipelines with a single crack-like defect using a comprehensive database
established in this study. The database is established by collecting data from literature and adding
new numerical data generated from finite element models. In particular, extended finite element
method (XFEM) is utilized to overcome the challenge of modeling cracking growth with the
conventional finite element method, which is the need of mesh conformity to the geometry
discontinuities and remeshing as crack grows. With the established database, a performance
comparison of existing failure pressure prediction models for pipelines with a single crack-like
defect is conducted. Then, the proposed failure pressure model is developed by adding a correction
factor to the best existing model identified. The correction factor is modeled using a multivariate
linear regression with pipe properties and crack defect characteristics as independent variables.
Then, the proposed model is compared with the best existing model and a sensitive analysis is
performed to evaluate the impact of influencing quantities on the proposed model.

To meet the 4th objective, three case studies are conducted. In the Case Study I, a reliability
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analysis is performed to assess the impact of the failure pressure model of pipeline with a single
corrosion defect on the structural performance. In the Case Study II, the time-dependent
probability of the burst failure of a pipeline with two corrosion defects is evaluated, which is used
to understand the importance of the prediction model for defect interaction identification in the
pipeline integrity prediction. In Case Study I1I, a life-cycle cost analysis of a pipeline with a single
crack-like defect is performed to evaluate the influence of the predicted failure pressure of pipeline
with cracking on the expected total life cycle cost of pipelines.
Based on the results of this study, the following conclusions are drawn:

e The ground low-carbon steel can corrode under ASTM B117 and ASTM G85 exposure
conditions. Pre-damaged samples showed increased corrosion depth and small sample
variations during 36 weeks of exposure in B117. Large sample variations were found for
the pre-damaged samples under G85 exposure and for flat samples.

e IFM is a powerful tool to characterize corrosion depth on the metal surface.

e The SH waves, having little out-of-plane leakage and thus being able to propagate over
long distances within the pipe walls, are excellent for detecting local changes in thickness
or material degradation.

e The ECA results indicated that damage could be clearly seen and monitored over time,
showing the growth of corrosion and the deformation of the original defect. Despite some
limitations related to saturation in later samples and some bias in the data, future
improvements should include removing bias between coils and using precision tilt
mechanisms for calibration.

e Ultrasonic GWs successfully propagated in a pipeline using a 2-D FEM based model and
also corrosion pits and their ultrasonic NDE response are successfully modelled.

e Most existing burst failure pressure prediction models for pipelines with single corrosion
defects are conservative, but the models that use the strain-hardening behavior of pipelines
have good prediction performance. Particularly, model G5-19 developed by Zhu & Leis
[10], 1s found to be the best existing model.

e Among the existing interaction rules considered, the POF, API RP 579, and 6WT
interaction rules have better performance.

e Among the existing failure pressure prediction models for pipelines with interacted

corrosion defects, Level-2 assessment methods such as the RSTRENG Effective Area
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method, the DNV RP-F101 method for interacting defects (Part B), and the MTI method
have better performance than Level-1 assessment methods; and the MTI method performs
the best.

Among the existing failure pressure prediction models for pipelines with crack-like defects
(i.e., Ln-Sec, modified Ln-Sec, Corlas, API RP 579, and BS 7910), the modified Ln-Sec
performs the best.

FEM constructed in ABQUS is successfully used for burst testing simulation for pipelines
with single corrosion defect or interacted corrosion defects; XFEM constructed in
ABAQUS is successfully used for burst testing simulation for pipelines with crack-like
defects.

The sensitivity analysis reveals that the proposed models for pipelines with single corrosion
defects and model G5-19 are sensitive to the pipe thickness and the depth and length of the
corrosion defect. Also, both models are more sensitive to the defect length for deeper
defects but become less sensitive for long defects length.

The proposed interaction rule that is a function of colony configuration, defect geometries,
pipe material and geometrical properties is more accurate than all the existing interaction
rules used in this study.

The correction factor proposed improves the MTI method for the failure pressure
prediction of pipeline with interacted corrosion defects.

The correction factor proposed improves the modified Ln-Sec by reducing the variability
in the prediction, which could offer more accurate performance evaluation for risk
management.

The sensitivity study shows that the proposed pressure model for pipelines with crack-like
defects is sensitive to yielding strength, cracking geometries, and the pipe all thickness
ratio; in particular, the proposed model is more sensitive to the crack depth than the existing
model, the modified Ln-Sec model.

The reliability analysis in Case Study I shows that the depth and length of corrosion defect
are crucial in the reliability evaluation of corroded pipelines, especially when the corrosion
become worse; the performance of a failure pressure prediction model plays a critical role
in determining the structural performance of corroded pipelines; and one should not ignore

the uncertainty in the model error of the failure pressure prediction model.
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e The importance analysis in Case Study I shows that wall thickness and model error in the
burst pressure prediction model are the two most important random variables that
contribute to the variability of the pipeline performance. This result shows that reducing
the uncertainty in the wall thickness estimation is important and continuing improvement
burst pressure prediction model can make significant impact.
e The time-dependent reliability curves obtained in Case Study II show that defect
interaction significantly decreases the reliability of the pipeline, indicating capturing the
interaction effect is critical in the corrosion risk management of pipelines.
e The expected life cycle costs obtained in Case Study III show that the burst pressure
prediction model used to evaluate the probability of failure plays a role in the risk
management of pipelines.
7.1 Net Safety Impact
The results of this study address DOT’s pressing need to maintain safety and integrity of the
existing pipeline infrastructure in the U.S under interactive threats. An expanded and new multi-
modal NDE framework is developed enabling the missing capability to assess interactive
anomalies with integration of lab-, field- and simulation-environment validation. A crucial body
of knowledge of interactive anomalies and their properties has been established and facilitated for
future design of assessment models and standards. In addition, the propagation of the anomaly
profile (either isolated or colony defect) will be captured through probabilistic defect time-evaluation
models based on NDE data. The improved accuracy in the pressure failure prediction and the
appropriate consideration of defect interaction and prevailing uncertainties facilitate the
development and application of quantitative risk management for pipelines. The use of reliable
performance predictions (through the proposed NDE, defect time-evolution model, and failure
pressure model) enables optimum monitoring/inspection, maintenance scheduling/methods, repair
strategies/methods, and financial resource allocations and forecasting.
7.2 Future Work
The lab testing condition to generate cracking corrosion needs to be studied and understood in
the future. The corrosion profile of the cracking corrosion can also be investigated if it can be
easily generated in lab conditions.

Regarding NDE, research will focus on multi-modal data fusion that combines ECA, UT,

and IFM data at both the measured data-level and feature-level. Time-dependent corrosion process
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and damage characterization will be performed with uncertainties quantification and will be used
for failure pressure prediction.

Concerning pipelines with crack-like defects, the probabilistic model was developed for
thin-walled pipelines containing single crack-like defects. However, two other scenarios (i.e.,
colonies of crack-like defects or corrosion and crack-like defects) can occur on the surface of a
pipeline. Therefore, a review of existing methodologies for determining the failure pressure for
pipelines with interacting crack-like defects and existing rules for identifying cracking defect
interaction need to be conducted. Due to extremely limited testing data available for these two
scenarios, research is needed for conducting burst testing. With a reasonable database,
improvement on the burst pressure models and interaction rules can be made for more accurate

prediction.
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Appendix A: Exposure Testing Results of Task 1

Surface photos of flat samples after exposure testing

SAMPLE 1 SAMPLE 2

Figure Al. The flat testing samples after 24 weeks of exposure in B117.

SAMPLE 1 SAMPLE 2

Figure A2. The flat testing samples after 28 weeks of exposure in G85 testing.
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Pre-damaged samples exposure testing and IFM analysis

Exposure testing

The upper and lower sides around the scratch were covered by black tape to prevent corrosion,
which is the black region in Figure B3. Then, the metal samples were placed in a salt fog chamber
for exposure testing. The samples were continuously sprayed with 5 wt.% NaCl solution
circulating at 35° C (ASTM B117 standard condition). ASTM G85 standard where samples were

in exposure to a mixed solution consisting of 0.35 wt.% aluminum sulfate and 0.05 wt.% NaCl.

Tapes

Sample before corrosion

Figure A3. Schematic of a metal sample for exposure testing.

Surface cleaning
After salt fog exposure testing, the tapes were removed. The punched scratch region was washed
with a mixed solution of HCI, Sb203, and SnCl2 to remove corrosion products.
IFM characterization
The depth of the exposed metal samples was observed by IFM. The blue region in Figure B4 is
the IFM scanning area. It covered the scratch and the tape-protected region of the metal. The
protected region was used as a reference point for the measurement. The first scan of the blue area
gave a depth distribution, and it also presented the lowest point in the punched scratch region.
Then, a second measurement used a line profile that went through the lowest point and the
reference point to measure the depth. An example of the line profile is shown in Figure B5.

The depth before exposure testing was measured exactly the same approach by IFM. The
scanning area didn’t cover the left and right end of the punched scratch because these areas were

sloping surfaces of the corners which were not smooth.
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Scanning area

Sample after corrosion and washing

Figure A4. Schematic of IFM scanning area for a metal sample.

DEE] ERas

| (B [

Figure AS. Line profile of a metal sample (#11 after 1-week exposure).
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I Ll i i
1 sample before the exposure testing.

Figure A6. The pre-damaged stee

. - .. Bt Lt ; kTR e ' TR "
Figure A7. The pre-damaged testing samples after 24 weeks of exposure testing in B117: before

surface cleaning (top) and after surface cleaning (bottom).
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i

Figufe AS8. The pre-damaged testing samples after 24 weeks of exposure testing in G85.
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Appendix B: Existing models of burst failure prediction for pipeline with single corrosion

defect
Gl1-1- ASME B31G Original [3]
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G1-5 - RSTRENG Effective Area [3]
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G1-9: Phan et al. - Modified NG-18 [19]
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G3-16: Modified PCORRC [73]
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G6-21: Choi et al. [24]
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