

PHMSA CAAP: Innovative Sensor Network for Subsurface Emissions - InSENSE (DOT-PHMSA #693JK32050005CAAP)

August 16th, 2023

Kate Smits, PhD, P.E.

Solomon Professor for Global Development Chair, Civil & Environmental Engineering Southern Methodist University

Collaborative Effort:

- UTA Co-I Suyun Ham
- UTA Post Doc Younki Cho
- CSU UG Students (partial support)
 - Chandler Horst
 - Luke Addana
- UTA UG Students (UTA funded)
 - Nate Steadman
 - Ashley Nguyenminh

- Industry partners
 - SoCal Gas
 - Con Edison
 - Dominion
 - PG&E
 - XCEL
- PHMSA CAAP PM & Research Managers
 - Zhongquan Zhou (ZZ)
 - Nusnin Akter

Statement of Problem/Challenge

Limitations of Existing Approaches

- Applicable to aboveground infrastructure, large emitters
- Current solutions mainly focus on sensor technology
- Available point source sensors mostly for indoor threshold detection (not quantification)
- Outdoor point source sensors traditionally implemented for outdoor air quality monitoring
- No previous study to integrate knowledge of gas migration and sensor networking specifically to address pipeline leakage incidents

Project Objective

- To date, there is no standardized protocol available for considering these factors and how to account for such variables in data analysis.
 - Develop a near real-time methane detector network to connect the methane monitoring system and a modified gas migration model to quantify the underground non-steady natural gas leakage from the pipeline by surface measurements and environmental conditions.
 - Establish a **recommended practice** that incorporates understanding of belowground gas behavior, specifically addressing how to improve the efficiency of understanding change in leak behavior.
 - Advance the decision-making tool and the science of leak detection and measurement methods for underground gas leakage from pipelines.

Schedule & Funding

Sept 1, 2020

TOTALS:

	Year 1	Year 2	Year 3	Total
Request	\$96,313	\$91,317	\$62,370	\$250,000
Cost-Share		\$30,788	\$31,712	\$62,500
GRAND	\$96,113	\$125,105	\$94,082	\$312,500
TOTAL				

Aug 31, 2023*

^{*}AO granted 3 yr performance periods for all CAAP FY 2020 awards

Task Summary

- ➤ **Task 1** Establish a collaborative study structure with InSeNSE advisors ✓
- Met with 4-5 industry advisers quarterly
- Integration into task 4- 5 field testing and practice

- Task 2 Methods/Protocol Development
 - ➤ Task 2.1 Methane detector network development ✓
 - ➤ Task 2.2 Algorithm/approach to understanding nonsteady state gas leakage using near real time data ✓
- Developed network & tested approach ✓

3 sets of 5 day experiments at METEC✓

New algorithm based on resistance-based approach√

Varied leak rate (2-7 SCFH), weather, soil conditions

(moisture, competing utilities), surface conditions

Verification study ✓

(grass, surface cap) ✓

- ➤ **Task 3** METEC testing of detector network & algorithm ✓
- ➤ Task 4 Field testing of the approach with industry partners ✓ . Tested@ 7 leak locations ✓
- th
 - Simple way to estimate possible gas migration/emissions ✓
 - Scenarios of deployment ✓
 - Surface concentration measurements ✓
 - Scientific understanding ✓

➤ Task 5 - Recommended practices

Project Outputs

- 2 peer reviewed papers (1 published, 1 in review)
- Published data set
- 3 'in the news' articles
- 13 conference presentations

Publications

- 1. Cho, Y., Smits, K. M., Riddick, S. N., & Zimmerle, D. J. (2022). Calibration and field deployment of low-cost sensor network to monitor underground pipeline leakage. Sensors and Actuators B: Chemical, 355, 131276., https://doi.org/10.1016/j.snb.2021.131276
- 2. J. Lo*, K.M. Smits, Y. Cho, J. Duggan, S. Riddick, Quantifying Non-steady State Natural Gas Leakage from the Pipelines Using An Innovative Sensor Network and Model for Subsurface missions InSENSE (Submitted to Journal of Environmental Pollutions Under review)

Data

Jui-Hsiang Lo; Kathleen M Smits; Younki Cho; Gerald P. Duggan; Stuart Riddick, 2023, "Replication Data for: Quantifying Non-steady State Natural Gas Leakage from the Pipelines Using an Innovative Sensor Network and Model for Subsurface Emissions - InSENSE", https://doi.org/10.18738/T8/SPE8QJ, Texas Data Repository

Media

- 1. Agor, J., 2020. "Monitoring gas leaks UTA civil engineering working to develop data network to monitor, quantify gas leaks." https://www.uta.edu/news/news-releases/2020/10/05/smits-gas-leaks Published on 5 October, 2020.
- 2. Agor, J., 2021, "UTA civil engineering professor earns grants to study, develop methods to assess and respond to large gas leaks," Jan 2021, https://www.uta.edu/news/news-releases/2021.
- 3. Rumende, Thevnin. "Civil engineering professor receives two grants to study natural gas leak detection methods," The Shorthorn, Published on February 11, 2021, https://www.theshorthorn.com/news/civil-engineering-professor-receives-two-grants-to-study-natural-gas-leak-detection-methods/article_9d943c92-6cd2-11eb-96be-832c69a5f352.html

Deliverables 6 – Project Output

Conference Presentations and Proceedings

- 1. Cho, Y.*, J. H. Lee, J. Lo, J. Duggan, K. M. Smits, and D. Zimmerle. "Natural gas fugitive leak detection and quantification using a continuous methane emission monitoring system and a simplified model" AGU 2022 Fall meeting (Poster)
- 2. Cho, Y., K.M. Smits, S. Riddick, D. Zimmerle, Methane detector network calibration and deployment for monitoring natural gas leaks from buried pipelines, American Geophysical Union Fall Meeting, Dec 2021 (Poster)
- 3. Cho, Y.*, J. H. Lee, J. Lo, J. Duggan, K. M. Smits, and D. Zimmerle. "Natural gas fugitive leak detection and quantification using a continuous methane emission monitoring system and a simplified model" American Geophysical Union (AGU) Fall Meeting, 12 16 December 2022, Chicago, Illinois. (Poster)
- 4. K. M. Smits, Cho, Y., J. Duggan, and J. Lo. Improving pipeline safety during gas leakage events using near real-time data networks and decision-making tools" PRCI Pipeline Research Council International REX 2023 conference Submitted (Presentation)
- 5. Lo, J*, K.M. Smits, Y. Cho, J. Duggan, S. Riddick, Utilizing the Near Real-Time Methane Detector Network to Study and Quantify Underground Natural Gas Leakage from the Pipeline, CH4 Connections conference, Oct 20-21, 2022 (Poster)
- 6. Lo, J*, K.M. Smits, Y. Cho, J. Duggan, S. Riddick, Utilizing the Near Real-Time Methane Detector Network to Study and Quantify Underground Natural Gas Leakage from the Pipeline, American Geophysical Union Fall Meeting, Dec 2022 (Poster)
- 7. Lo, J, K.M. Smits, Cho, Y., J. Duggan, C. Horst, L. Aldana, Development and Application of Remote, Near Real-Time Methane Detector Network for Belowground Pipeline Leaks, Energy Institute Publications
- 8. Lo, J.*, K.M. Smits, Cho, Y., J. Duggan, S. Riddick, Utilizing the Near Real-Time Methane Detector Network to Study and Quantify Underground Natural Gas Leakage from the Pipeline, GTI/CSU CH4 Connections conference, Oct 20-21, 2022 (Poster)
- 9. Lo, J., K.M. Smits, Cho, Y., J. Duggan, C. Horst, L. Aldana, Development and Application of Remote, Near Real-Time Methane Detector Network for Belowground Pipeline Leaks, Energy Institute Student Research Poster Session at Powerhouse, Colorado State University, May 10, 2022 (Poster).
- 10. Smits, K.M. Quantification of anthropogenic methane source's through measurement studies: Finding targets for mitigation, SMU Earth Science Seminar Series, Jan 27, 2023 (Invited Presentation).
- 11. Smits, K.M. Unraveling the Influence of Environmental Conditions on Natural Gas Pipeline Leak Behavior, Center for Energy and Environmental Resources (CEER), The University of Texas at Austin, March 7, 2022 (Invited Presentation).
- 12. Smits, K.M., D. Zimmerle, Y. Cho, S. Riddick, B. Gao and S. Tian, Unraveling the influence of environmental parameters on methane behavior from belowground leaks, American Geophysical Union Fall Meeting, Dec 2021 (Presentation).
- 13. Smits, K.M., Tools for Predicting Underground Natural Gas Migration and Mitigating its Occurrence/Consequence, School of Global Environmental Sustainability, Colorado State University, Dec 6, 2021 (Invited Presentation).

Project Deliverables/ Tech Transfer (con't)

- METEC experimental data sets (3) publicly available
- Gas detector network (Cho et al., 2022, Sensors and Actuators)
- Method to estimate gas emissions from underground pipelines (Lo et al., in review, J. Env. Pollution)
- 8 industry advisory meetings
- Presentations of results to industry, AGU, PRCI, CH4 Connections Conference
- Final report
- Undergraduate/ graduate student/ workforce training
- Follow-on efforts

Task 1: Project Management and Planning

Objective: Establish collaborative study structure

- 5 Industry Partners
- Collaborative structure
- Quarterly meetings

Task 2 – Methods/Protocol Development

- Task 2.1 Methane detector network development
 - Objective: Develop a low-cost near real-time CH4 detector network that linked multiple sensors to a simulation model.
- Task 2.2 Algorithm/approach to understanding non-steady state gas leakage using near real time data
 - Objective: Develop the algorithm based on resistance-based approach to estimate non-steady state underground gas leakage using near real-time measurements

Low-cost, Near-real-time, Wireless CH₄ Detector Network

- Collect near-real-time data
 - Surface and belowground near-surface (BNS) CH₄
 concentrations
 - Meteorological conditions
 - Soil moisture and temperature
- Process data to provide required inputs for the modified gas migration model.
- Estimate non-steady underground NG leak rates

Low-cost Near-real-time CH₄ Detector

- The low-cost near-real-time CH4 detector was modified based on low-cost CH4 sensor (Cho et al., 2022).
- Detector consists of
 - Two metal oxide semiconductor (MOS) sensors (TGS2611-E00, Figaro USA Inc.),
 - An environmental condition sensor (BME280, Bosch Sensortec Inc.)
 - A 16-bit analog-to-digital converter (ADS-1115)
- Two tubes at the bottom of detector
 - Allow the surface and belowground near-surface CH4 to meet MOS sensors
 - Can be changed to measure at different depths as needed.

Calibration of Low-cost Near-real-time CH4 Detector

- Calibration of detectors was conducted in a laboratory by comparing gas concentrations measured from a cavity ring-down spectrometry analyzer (G4302 GasScouter, Picarro, Inc.)
- Correlation coefficient (R^2) was generally greater than 0.7 $(R^2 > 0.7)$.

The inversion algorithm for quantifying underground gas leakage using near real-time data (Modified ESCAPE model)

• Modifying the ESCAPE model [Riddick et al., 2021] using <u>surface</u> and <u>below-ground near-surface</u> CH₄ measurements, aboveground weather conditions, and belowground soil properties to <u>quantify</u> the non-steady NG leak rates from the pipeline without the impermeable surface covers.

Input

- Wind speed and solar radiation
- Surface and subsurface CH₄
 concentrations
- Soil moisture and temperature
- Known leak location and depth

Output

Estimated non-steady underground
 NG leak rates (a single point source)

Algorithm for Quantifying Underground Non-steady Gas leakage – Modified ESCAPE Model

Modifying the ESCAPE model [Riddick et al., 2021] using <u>surface</u> and <u>below-ground near-surface</u>
 CH₄ measurements, aboveground weather conditions, and belowground soil properties to <u>quantify</u>
 <u>the non-steady NG leak rates</u> from the pipeline <u>without the impermeable surface covers</u>.

Non-steady Steady-state NG Transient
NG leak rates leak rate change

 $Q_L(t) = \overline{Q_L} + Q_{LT}(x, C_S, C_{Sub}, \mathbf{R}_S, \mathbf{R}_{at}, t)$

where,

 $Q_L(t)$ is the non-steady changes in underground NG leak rates (cfh)

 $\overline{Q_L}$ is steady belowground NG leak rate estimated by the original ESCAPE model (cfh)

Q_{LT} is the transient change in the NG leak rate(cfh)

x is the distance from the leak point to measured location (ft)

 C_s is the surface CH_4 concentrations (ppm)

 C_{sub} is the subsurface CH_4 concentrations (ppm)

R_s is the soil resistance (s/ft) [van de Griend and Owe, 1994]

R_{at} is the atmospheric resistance (s/ft) [Riddick et al., 2021]

Task 3 – METEC Testing of Detector Network & Algorithm

Objective: Conduct multiple controlled NG testing at METEC in various scenarios to evaluate performances of the low-cost near-real-time CH₄ detector network and the inversion algorithm on detection and quantification of underground NG leakage.

- 3 sets of 5-day controlled gas release experiments at METEC
 - Experiments #1 and #2 : 5 days, rural scenario (open surface), and steady-state gas leak rates (1) 1.22 ± 0.3 (cfh) and (2) 4.54 ± 0.5 (cfh)
 - Experiments #3:5 days, rural scenario (open surface), and non-steady gas leak rates
 - 1) Level 1: 1.99 \pm 0.26 (cfh) for 2 days.
 - 2) Level 2: 4.77 ± 0.36 (cfh) for 1.5 days.
 - 3) Level 3: 6.50 ± 0.24 (cfh) for 1.5 days.
- Estimation of underground non-steady NG leak rates using near-real-time measurements of environmental conditions and gas concentrations

Controlled NG Release Experiments at METEC - Exp. #1 **&** #2

Controlled gas leak rates

Open surface scenario

 4.54 ± 0.5 (cfh) extended approximately 1.25 times farther than that of the surface CH₄ at the average leak rate of 1.22 ± 0.3 (cfh).

Controlled NG Release Experiments at METEC – Exp. #3

The detector network

- 18 NG detectors (Blue point) to detect surface & belowground near-surface (BNS) (depth is 1.2 cm/0.47 in) CH₄ concentration
- 3 soil moisture/temperature (Black point)
- Portable MET sensor (Green diamond) above ground surface

Controlled gas leak rates

- Depth of leak point/pipeline was 3 ft / 0.91 m directly below Detector 10.
- 1) Level 1: 2.0 ± 0.26 (cfh) for 2 days.
- 2) Level 2: 5.0 \pm 0.36 (cfh) for 1.5 days.
- 3) Level 3: 6.5 ± 0.24 (cfh) for 1.5 days.

Belowground concentrations higher long before surface concentrations

- As the leak rate increased from 2 to 5 scfh (37 to 84 g/h), an increased in the BNS CH₄ concentration increase was observed within 3 hours.
- However, the increase in surface concentrations was not observed in this period.
- Changes in surface CH₄
 concentration alone do not
 reflect changes in a belowground
 leak rate (2 to 6.5 scfh tested)
 (understood by industry but not
 previously quantified)

Average belowground concentrations significantly higher than surface concentrations

- On average, belowground (1.2 cm below the surface) CH₄ concentrations between 20 - 500% higher than the average surface concentrations
- Variation a function of distance from the leak point

Belowground plume extends farther and faster than observable surface plume during non-steady state conditions

- Plume area belowground ~ two times farther than surface plume as the gas leak rate increased from 2.0 to 6.5 (scfh) (37 to 84 g/h).
- Belowground (right under the surface) concentration is an important factor in leak rate estimates as the surface expression does not necessarily define the belowground plume extent

Estimated Underground Non-steady NG Leak Rates (Exp. 3)

- Model used the meteorological data, soil moisture/temperature, and surface/BNS CH₄ concentrations to estimate the nonsteady NG leak rate
- Estimates agree well with experiments (m=0.99 and R²=0.77)
- Demonstrates importance of including select soil characteristics and belowground data in estimates of non-steady NG leak rates for both low and moderate NG leak rate scenarios (leaks from 2 to 5 scfh (37 to 84 g/h)

NG Release Rate Le	evel	Experimental (cfh)	Modeled (cfh)	Standard deviation (cfh)	Difference (%)
	Lv. l	1.99	1.76	0.01	-11.87
Modified ESCAPE	Lv. 2	4.77	5.28	0.07	10.65
(Surface + BNS CH_4)	Lv. 3	6.50	6.13	0.07	-5.71
	Lv. 4	10.24	10.63	8.97	3.80

Task 4 – Field Testing experiments with Industry

Objective: Evaluate the capability of the low-cost near-real-time CH₄ detector network and the modified ESCAPE model for a wide range of field applications.

- Seven field experiments
- Leak rates determined by the modified ESCAPE model & compared with measurements from HI-FLOW and an industry-standard method (i.e., flux chamber approach).

Implementation of Field Experiments

- Conducted field experiments at <u>7 sites</u>.
- At each test site,
 - 1. Located the potential leak point with the highest surface methane concentrations by **DP-IR** +.
 - 2. Deployed sensors and detectors to collect data over 2 hours
 - NG detectors to detect surface and subsurface (depth is 1.2 cm) methane emissions every 5s.
 - Three soil moisture/temperature sensors to monitor the soil moisture/temperature every 30s.
 - A portable weather sensor to record the local weather condition every 30s above the ground surface 20 inches (50 cm).
 - 3. <u>Hi-Flow</u> Measured leak rates and methane concentrations in 2 to 3 surface scenarios.
- Process data and simulate the leak rates by the modified gas migration model

Site Number	Duration	Surface Condition	
#1	3.5 hours	Soil, grass, and partial sidewalk	
#2	3.5 hours	Soil, grass, and partial sidewalk	
#3	2.5 hours	Soil, grass, and partial sidewalk	
#4	2.5 hours	Soil, grass, and partial underground construction	
#5	2 hours	Soil, grass, tree, and partial sidewalk	
#6	2 hours	Soil, grass, tree, and partial sidewalk	
#7	3 hours	Soil, grass, and partial road surfacel	

Estimating Underground Natural Gas Leak Rates through Field Experiments

- The field application of the modified ESCAPE model was properly assessed for the leak rates between 0.5 cfh and 5 cfh (low to medium gas leakage) in collaboration (difference $< \pm 10\%$).
- The very low leak rates (< 0.5 cfh) may not be able to be determined by the model, no ground truth of actual leak rate, not enough field sites to make conclusions follow on effort needed

Location #	Av. NG leak rates by HI-FLOW (cfh)	Av. NG leak rates by the modified ESCAPE model (cfh)	Difference of total gas leak rates (%)	Category of gas leakage
1	0.84	0.89	6.56	Low
2	0.06	0.07	14.33	Very Low
3	0.35	0.07	-79.69	Very Low
4	0.07	0.40	469.57	Very Low
5	0.48	0.40	-15.65	Very Low
6	0.98	0.91	-7.46	Low
7	4.69	4.69	-0.09	Medium

Task 5 - Recommended Practices

Objective: Use results from Tasks 2 to 4 to establish suggested practices

Number of Detectors (Exp. 3)

- Decrease error with an increase in detectors
- Minimum number of detectors: 3

Measured Time (Exp. 3)

- The time when the error decreased indicates the minimum time period of measurement by the detector network.
- The minimum time of measurement decreased as the underground NG leak rates increased.
- Precipitation increased the soil moisture and induced more lateral gas migration in the belowground near-surface. Thus, detector might need more measured time during or after precipitation (Lv. 4).

Underground NG Leak Rate	Time when NRMSE Decreased (Hours)
0 to 1.99 cfh (Lv.1)	6
1.99 cfh (Lv.1) to 4.77 cfh (Lv.2)	3
4.77 cfh (Lv. 2) to 6.50 cfh (Lv. 3)	1
6.50 cfh (Lv. 3) to 10.24 cfh (Lv. 4)	7

Recommended Scenarios of Deployment of CH4 Detectors

Surface Soil & Grass

Surface Impermeable Covers (e.g., Pavement)

Subsurface No

Underground Constructure

At least 3 detectors

- 1 methane detector at the leak point
- 1 methane detector at least on the boundary of plume
- I methane detector at least at proposed measure distance

At least 4 or 5 detectors

- I methane sensor at the leak point
- 1 methane detector at least on the boundary of plume
- 1 methane detector at least at proposed measure distance
- l methane detectors at least on boundary of pavement
- 1 methane detector on the cracks (if cracks occur)

Subsurface With Underground

Obstructions

At least 4 detectors

- I methane detector at the leak point
- 1 methane detector at least on the boundary of plume
- 1 methane detector at least at proposed measure distance
- 1 methane detector at least in close to any underground structures

At least 5 or 6 detectors

- 1 methane detector at the leak point
- l methane detectors at least on the boundary of plume
- 1 methane detector at least at proposed measure distance
 - l methane detectors at least on boundary of pavement
 - 1 methane detector at least should be placed close to the underground obstruction (if it is at the site)
- I methane sensor on the crack (if it is at the site)

Conclusions

- Surface CH₄ measurements do not accurately reflect a <u>change</u> in subsurface leak behavior
- Belowground near surface CH₄ measurements should be considered in underground NG leak rate quantification
- Soil characteristics linked with belowground CH₄ measurements can advance estimations of non-steady NG leak rates for both low and moderate NG leak rate scenarios (leaks from 37 to 121 g/h)

Future Work

- Conduct field experiments in various scenarios of deployments of detectors
 - Urban scenarios (e.g., at the urban testbed) with pavement
- Application to leak quantification
 - Alternatives for efficiently estimating emissions from belowground pipeline leaks
 - Develop an efficient procedure to measure leak rate of underground pipeline leaks using widely available operator equipment
 - Develop the software to implement the procedure with compatibility to a hand-held device

Final Report and Presentation

The final report and presentation – "Innovative Sensor Network for Subsurface Emissions - InSENSE (DOT-PHMSA #693JK32050005CAAP)" are posted and available at:

https://primis.phmsa.dot.gov/matrix/PrjHome.rdm?prj=897

Contact Information

- Kathleen Smits: ksmits@smu.edu
- Jerry Duggan: dugganj@colostate.edu
- Younki Cho: younki.k.cho@gmail.com
- Jui-Hsiang Lo (Rayson Lo): <u>Jui-Hsiang.Lo@colostate.edu</u>

