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Executive Summary 

This project attempts to enhance pipeline safety by enabling a routine and maintenance inspection 

of pipelines using remote sensing with signal processing and data analytics. In this study, the stress 

condition of ground surface vegetations was considered indicative of the effect of methane gas 

leakage along underground pipelines, although other surface features of above-ground pipelines, 

such as mechanical damage and coating deterioration (e.g., pinholes and color changes), would be 

equally effective indicators. Vegetation data were collected, processed, and applied towards 

condition and risk assessments for pipeline operators. A manual or fully-automated unmanned 

aerial system (UAS) equipped with a RGB camera, an infrared camera, a hyperspectral camera, 

and a LiDAR scanner was designed and integrated to support this project for data collection tasks. 

The collected data such as spectra were processed to derive parameters (e.g., reflectance 

derivatives with respect to wavelength) that are sensitive to stress variants, and compressed by 

principal component analysis to improve computational efficiency and facilitate data analytics 

(e.g., linear/quadratic discriminant analysis) for vegetation stress discrimination and thus gas 

leakage detection. The stress condition was further classified using a deep learning approach, 

which can easily process a large set of imagery. 

Laboratory tests on three plants (Grass. Shrub Gem, and Shrub South) under natural stressors 

(drought exposure, heavy metal contamination, and salinity impact), gas treatment, and no 

treatment were conducted to characterize the effects of different stressors on various vegetations 

and develop an effective method for gas detection using hyperspectral reflectance as it contains 

variance of the vegetations derived from exposure to the stress. It was found that the linear 

discriminant analysis can effectively identify gas treated vegetations with 79% - 91% accuracy 

from two-class detection (ideal scenario with no noise) and the quadratic discriminant analysis 

identified gas treated vegetations at a reduced accuracy (69% - 76%) from five-class detection due 

to the distraction of three natural stressors (extreme scenario with multiple types of noise). When 

distracted by one natural stressor (practical scenario with one type of noise), the quadratic 

discriminant analysis can differentiate gas treatment from the distracted natural stressor and the 

unstressed reference with 78% - 91% accuracy from three-class detection. The first derivative of 

visible and near infrared-ranged spectra (400-1000 nm) led to the highest accuracy in nearly all 

detection cases. The first derivative can significantly reduce the number of principal components 
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required for successful classification. Gas stress development in different plants was also found to 

vary greatly. Grass was more tolerant than the shrubs to the impact of gas treatment. To achieve a 

75% or higher probability gas stress on the plants, 32, 37 and 56 days are required for shrub Gem, 

shrub South and Grass, respectively. 

Open field tests with PVC pipelines buried three feet deep in four trenches were conducted to 

develop and validate a data-driven approach for the detection of gas-induced vegetation stress. 

Two pipelines were untreated as references and two were treated with methane gas on a regular 

basis. It was found that hyperspectral mapping facilitated a rapid identification of the differences 

between different trenches through one-pass flight of the drone with integrated cameras. 

Particularly, for each trench with the underground pipeline releasing methane gas, the boundary 

of gas affected areas along the test trench can be clearly identified and quantified. Given the depth 

of gas source from the underground pipeline, determining the 3D volume estimate of the gas 

affected space is readily achievable. In real-world applications, the thermal images can assist in 

the determination of gas leakage source (depth) by comparing thermal images over time (after 

taking out the effect of seasonal temperature changes). But the spatial resolution of thermal-based 

technique is low. Different hyperspectral stress indicators exhibited a various degree of 

effectiveness in detecting the stress occurrence on tested grasses. The chlorophyll characterized 

indicator (MCARI) was the most sensitive index for stress detection though the ‘red edge’ related 

indicators (RER, NVDI, and mND705) also saw changes from different gas treatments. All of 

them fluctuated significantly from one trench to another. It is thus recommended that the gas-

treated trenches be compared with their surrounding grasses (also more practical in applications) 

to demonstrate the induced stress on grasses in a qualitative measure.  

The extensive imagery collected was also used to train a multilayered perceptron neural network 

and classify the plants with or without methane gas treatment. Based on the classification example, 

the proposed deep neural network can successfully classify the plant with an overall accuracy of 

96.2%. The ‘red edge’ chlorophyll-featured bands were the most informative in terms of 

classification. In comparison with the control group with no gas treatment, the methane stressed 

plant displayed a lower intensity in 500-600 nm and a higher intensity in 600-720 nm (chlorophyll 

absorption band). This indication is also proven by the bio-chemical measurement of the plant 

pigments and therefore can be a reliable criterion for the identification of methane gas affected 
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plants in practicable applications. The deep learning approach is applicable to detect any surface 

features noticeable to human eyes, such as mechanical damage and/or coating deterioration of 

above-ground pipelines. However, the dataset needed to train the deep learning algorithm may be 

difficult to obtain since the case of above-ground pipelines with gas leakage is rare and, more 

importantly, may not be accessible due to liability concerns from pipeline operators’ perspectives. 
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Acronyms and abbreviations 

AGL   Above Ground Level 

ASD   Analytical Spectral Devices  

ATP   Adenosine Triphosphate  

CFD   Computational Fluid Dynamics 

Chl    Chlorophyll  

CRI    Carotenoid Reflectance Index  

DE    Drought Exposure 

DNN   Deep Learning Networks 

DNs    Digital Numbers 

ECe    Electrical Conductivity  

EKF  Extended Karman Filter  

EPA   Environmental Protection Agency  

FN    False Negative  

FOD   First-order Derivative  

FOV   Field of View  

FP    False Positive  

HMC   Heavy Metal Contamination  

HSI    Hyperspectral Stress Indicator 

HVL   Highly Volatile Liquid  

IMU   Inertial Measurement Unit  

LDA   Linear Discriminant Analysis  

LIDAR  Light Detection And Ranging  

MLP   Multilayer Perceptron  

mND705 Modified Normalized Difference 705  

NDVI   Normalized Difference Vegetation Index  

NIR    Near Infrared  

PCA   Principal Component Analysis 

PHMSA Pipeline and Hazardous Materials Safety Administration 

PRI    Photochemical Reflectance Index  

PVC   Polyvinyl Chloride 
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QDA   Quadratic Discriminant Analysis 

REG   Red Edge 

ReLU   Rectified Linear Unit 

RER   Red Edge Ratio  

ROI    Region of Interest  

ROS   Reactive Oxygen Species  

ROS   Robotics Operating System  

SHAP   Shapley Additive Explanations  

SI    Salinity Impact  

SNR   Signal-to-Noise Ratio  

SNV   Standard Normal Variate  

SOD   Second-order Derivative  

STD   Standard Deviation  

SWIR   Short-wave Infrared  

TN    True Negative  

TP    True Positive  

UART   Universal Asynchronous Receiver-Transmitter  

UAV     Unmanned Aerial Vehicle  

VIS    Visible 

VNIR   Visible and Near-infrared  

WBI   Water Band Index 
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I. Introduction 

Pipelines in society function like blood vessels in human body, bringing humanity with life-

sustained necessities, such as water or natural gas, and discharging human wastes such as sewage. 

They are the most favorable mode of transportation for gas and liquid in large quantity. Due to 

their capital investment, pipelines must be free from the risk of degradation that could result in 

environmental hazards and potential threats to life. 

According to the 2021 PHMSA statistical data, the U.S. has approximately 2.9 million miles of 

pipelines for gas distribution, gas gathering, gas transmission and hazardous liquid transport, 

including plastic pipelines primarily in the gas distribution system. Less than 10% of the total 

mileages or 229,949 miles is for the distribution of liquid and highly volatile liquid (HVL) such as 

biofuel, CO2, crude oil, HVL flammable toxic, and refined products (PHMSA, 2021). Between 

2003 and 2022, over 12,781 pipeline incidents occurred, resulting in $10,816,193,735 property 

loss, 274 fatalities and 1120 injuries (PHMSA, 2022). These incidents were caused by natural 

forces (earth movement, wind gusts, heavy rains/floods, lightening), excavations from third parties 

or operators, operation negligence, material defects, and corrosion (Lu et al., 2020). For instance, 

traffic and surface loads can make buried pipes and joints overstressed, leading to pipeline leakages 

and bursts (Khulief et al., 2012). Destructive causes, pitting corrosion and water hammers can also 

lead to pipeline leakages (Sun, 2011; Lazhar et al., 2013).  

The most important impact by pipeline leakage is on safety and environment which is PHMSA's 

mission to protect people and environment. In addition, when not detected and repaired in time, a 

leakage in pipeline would cause a sudden decrease in pressure (Silva et al., 1996), increase 

delivering time, reduce the flow rate of fluids, and thus result in product loss and other serious 

damage (Sandberg et al., 1988). 

Despite rapid technology advances in recent years, the most widely used inspection technique in 

pipeline industry is still ground patrol, which relies heavily on inspectors' observation and 

experience. Each patrol covers facility inspections, nearby construction activity monitoring, and 

pipelines’ rights-of-way maintenances. It takes place more frequently in heavily congested areas 

than other areas with periodic maintenances, including leak surveys and safety device inspections 

in order to minimize the risk of high-pressure pipelines. Such a patrol, however, is often difficult 
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or even dangerous due to field conditions, potential risks, and natural hazards. Therefore, advanced 

software and hardware systems have recently been developed to analyze pipeline risks and 

maintenance needs in a data-driven approach. 

Research and application efforts are under way to develop cost-effective approaches to enhance 

pipeline integrity, inspection, monitoring, and risk management. To this endeavor, several 

hardware-based methods were applied to ensure pipeline safety. First, an acoustic emission method 

can record the pipeline noise generated in the process of liquid or gas leakage. This method can be 

integrated into an intelligent pig that travels inside a pipeline during inspection (Furness and van 

Reet, 1998). Acoustic sensors have also been installed outside a pipeline for continuous monitoring 

(Brodetsky and Savic, 1993). Second, both active and passive optical methods have been applied 

in pipelines. Active methods include Light Detection And Ranging (LIDAR) systems, millimeter 

wave radar systems, and optical fibers. For example, an optical fiber can be used to detect leak 

location, leaked gas concentration, and third-party activities along the pipeline's rights of way 

(Frings and Walk, 2011). Passive methods include thermal imaging (Kroll et al., 2009), multi-

spectral (or hyperspectral) imaging (Gittins and Marinelli, 1998; Noomen et al., 2003), and gas 

filter correlation radiometry (Banica et al., 2008), which does not require any external energy 

source. Third, electric cables are also used for pipeline monitoring, which give more sensitive 

responses but are unable to quantify leakages (USEPA, 2004). Fourth, soil monitoring involves 

inoculating a gas pipeline with tracer compounds (Lowry et al., 2002). This expensive and high-

sensitivity approach has a very low false alarm rate but is not applicable for aboveground pipelines. 

Fifth and lastly, a vapor monitoring system can be used for leak detection by sampling hydrocarbon 

vapor in the vicinity of pipelines (Sperl, 1991; Ren and Pearton, 2016). 

Software-based approaches are also used to extract critical information of a pipeline and its 

surrounding conditions from collected data. In this category, the most straightforward approach is 

the mass or volume balance leak detection based on the principle of mass conservation. An 

imbalance between the input and output gas mass or volume is an indication of a leak (Liou, 1996; 

Parry et al., 1992). Following the similar concept, a real-time transient model with a sensor array 

is developed (Verde, 2001; Verde and Visairo, 2001). Statistical approach is also used to analyze 

data (Postaire et al, 1993), although it is less effective to estimate the volume of leakage. Lastly, 
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signal processing techniques are used to analyze acquired data, which typically includes four steps 

of pre-processing, processing, feature extraction and classification (Jadin and Ghazali, 2014). 

II. Objectives and Scope of Work 

The overarching goal of this study is to enhance pipeline safety by enabling a routine and 

maintenance inspection of pipelines for critical data collection, processing, and application 

towards condition and risk assessments for pipeline operators. This goal will be achieved by 

developing an integrated Unmanned Aerial System (UAS) of infrared and hyperspectral cameras 

with signal processing and data analytics. This study aims to: 

1. Develop and integrate a robust and stable, semi- or fully automated UAS with multiple 

sensors for multi-purpose pipeline safety data collection, 

2. Explore and develop novel signal and image processing techniques for data analytics and 

condition classification, and 

3. Evaluate and validate field performance of the integrated UAS for pipeline safety 

inspection. 

These objectives will be achieved through analytical, numerical, and experimental investigations 

in three tasks: 

1. Design and prototype the UAS for the collection of cohesive types of images from visible 

light, infrared, and hyperspectral cameras. 

2. Develop and validate imagery and spectral processing techniques for two-dimensional (2D) 

image classification of stress conditions and three-dimensional (3D) object establishment 

for volume estimates.  

3. Develop a deep learning neural network for the assessment of pipeline and ground surface 

conditions. 

Note that the overall goal, objectives, and scope of this project are the same as described in the 

original proposal. Upon approval by the PHMSA personnel, however, some methods were 

modified to better achieve the goal and objectives of this project during the COVID-19 pandemic. 

For example, ¼-scale soil tests were originally proposed to be carried out in laboratory and the 

technology developed would be validated at one pipeline site with a company. Unfortunately, the 
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period of this project was right in the middle of COVID-19. It would be impractical for the research 

team to contact the company and travel to the pipeline site to conduct research. Rather than 

delaying tasks and waiting till the COVID-19 was over, semi-controllable field tests were 

conducted in Rolla, Missouri, instead of fully controllable laboratory tests and uncontrollable field 

tests at a pipeline site. In doing so, both laboratory work and field work were addressed in a semi- 

controllable test setting. It turned out that this change in method proved effective. With full access 

to the open field and full control on test parameters, the research team accomplished and learned 

a lot more than they would have from an existing pipeline site since the research team access would 

otherwise be restrained due to security, safety, and liability. 
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III. Task 1-Design and prototype the UAS for the collection of cohesive types of 

images from visible light, infrared, and hyperspectral cameras 

1.Preliminary design of the UAS  

1.1 Requirement analysis and selection of airframe and sensors 

A Duo Pro R640 camera (FLIR), as shown in Figure 1.1(a), and a Nano-HyperspecVNIR 

hyperspectral camera (Headwall), as shown in Figure 1.1(b), will be potentially integrated into an 

UAS that is installed on a custom-designed hexacopter, as illustrated in Figure 1.1(c). The Duo 

Pro R640 camera integrates a visible lens and an infrared lens arranged in parallel. The infrared 

lens can be used to take a thermographic image based on thermal radiation, and the visible lens is 

for a photographic image based on visible light reflection. The infrared camera has a measurement 

accuracy of ±5 °C or 5% of readings between -25°C and +135°C, and a thermal sensor resolution 

of 640 × 512 in space. The hyperspectral camera equips conventional spectroscopy with the 

capability of spatial/spectral information acquisition based on light reflection from a surface, 

greatly enhancing abnormality detection abilities and extending application scopes. The 

hyperspectral camera has 640 spatial pixels along a rectangular slit, perpendicular to the scanning 

direction during flight, and 270 spectral bands in 400 nm – 1000 nm. Unlike remote sensing via 

satellites, rapid improvements in camera resolution and stabilizer can further enhance video clarity 

and details particularly from close views obtained via a UAS.  

   

Figure 1.1 Key components in the proposed UAS for pipeline inspection: (a) dual-sensor visible 

light and infrared camera, (b) Nano-Hyperspec hyperspectral camera, and (c) hexacopter 

equipped with a hyperspectral camera 

(b) 
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1.2 Aerodynamics and flight dynamics study 

In an anticipation to integrate the sensors in a drone, a finite element model of the hexacopter 

started to be established. One of the four blades in the hexacopter was scanned using a 3D laser 

scanner (NextEngine 3D Scanner Ultra HD), as presented in Figure 1.2(a). Blades can exert a 

profound impact in the aerodynamics when in use. Point clouds were pulled into the Solidworks 

software and cleansed for visualization as illustrated in Figure 1.2(b). A mock test of hexacopter 

flying was also simulated to examine the stability. 

In order to analyze the relationship between flight behavior and the system properties, the scanned 

propeller model was imported into Solidworks for CFD (Computational Fluid Dynamics) analysis. 

However, the computing time and the error increased dramatically when the UAV model and the 

environment model gets more and more complex. A more feasible model for flight analysis is a 

simplified aerodynamic model specifically for quadrotor aircrafts. Thesis (Bouabdallah, 2007) 

gave a summary on the flight dynamic of quadrotor from mathematical equations to experiments 

with a small UAV. A more practical way to a parametric study with the quadrotor would be using 

a flight simulator such as jMAVSim with PX4 as shown in Figure 1.2(d). 

  

 

(a) 
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Figure 1.2 Modeling of a blade of the hexacopter: (a) raw data taken from the 3D scanner, (b) 

clean model, (c) blade prototype, and (d) UAV parameter study with jMAVSim and PX4 

1.3 Non-GPS navigation based on visual odometry 

A design of the integrated UAS with non-GPS navigation is proposed and tested in lab. Figure 1.3 

shows the test quadcopter. A Jetson TX2 onboard computer in the black case is mounted on top of 

the drone. The Jetson TX2 is a powerful embedded computer with GPU inside. It has several 

interfaces that can connect with different types of sensors. A ZED 2 depth camera is mounted on 

the front of the drone to work as a visual odometry and data collector. The visual odometry is 

working as a supplement when the drone goes to some places such as buildings or tunnels where 

GPS signals are weak. The ZED 2 camera can detect objects such as humans and cars and keep a 

safe distance from other objects. The two antennas on the Jetson case are for Wi-Fi and Bluetooth 

communications. Wi-Fi is used to connect the Jetson TX2 to a ground control station. The black 

3D printed frame around each motor is going to be used to mount safety carbon fibers to protect 

the propellers from hitting other objects. 

(d) 

(b) (c) 
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Figure 1.3 Test quadcopter with an onboard computer 

Figure 1.4 presents a signal flow diagram of the UAS. The ZED 2 camera is connected to the 

Jetson TX2 via a USB 3.0 cable. This high-speed connection can transfer real time image data up 

to 720 p at 60 Hz. This high updating rate helps compensate position drifts caused by disturbances 

such as wind. The ZED SDK does intensive computations with an algorithm, making use of both 

GPU and CPU to track the drone’s position. This positional tracking information is imported to a 

Robotics Operating System (ROS). The ROS takes care of format and coordinate conversion based 

on the position where the ZED 2 camera is mounted. Eventually, a Universal Asynchronous 

Receiver-Transmitter (UART) communication cable is used to transmit the local position 

estimation information and confidence level to the autopilot, which is called ArduCopter. An 

Extended Karman Filter (EKF) data fusion algorithm is used to fuse the local positional visual 

information with data from the Inertial Measurement Unit (IMU) on ArduCopter. This whole 

process solves the non-GPS navigation problem. 
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Figure 1.4 Signal flow diagram of the UAS system 

2. Testing of the designed drone platform 

2.1 Small drone net construction  

To perform the necessary drone test in the laboratory before doing a field test, a test platform was 

set up in laboratory, as shown in Figure 1.5. PVC pipes (2” in diameter) were used to build a 4.3 

m × 3.1 m × 2.2 m frame. Bungee balls were used to hang the drone net to the frame. Colorful 

foam blocks were used to add more visual features and protect the drone from damage when 

landing. 

 

Figure 1.5 Indoor drone cage 
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2.2 Flight stability analysis for indoor and outdoor environment 

Drone flight stability is critical to data quality. It is noted that the test quadrotor performs better 

outside than inside the drone net. To investigate the drone flying history in the view of stability, 

stability log data in each degree of freedom is displayed in Figure 1.6. The stability of the drone at 

each degree of freedom is illustrated in Figure 1.7. As the comparison results demonstrate, indoor 

flying test yields more fluctuations in the degrees of X, roll and pitch, which is approximately 

doubled in all three scenarios. For Z axis, the indoor fluctuations are about 25% of those outdoor. 

It is also observed that the stability in Y axis is comparable with indoor and outdoor environments. 

Part of the main reason for some modes of drone operation inside the drone net was the crowd 

space. The stability of the drone was affected by the reflection wind from the walls surrounding 

the net.    

To improve the flight stability of indoor tests, a larger drone net measuring 11 m × 7.65 m × 6.12 

m was built up in the HyPoint facility of Missouri University of Science and Technology (Missouri 

S&T) to reduce the air flow influence produced by adjacent walls. Figure 1.8 shows the large drone 

net for further drone flying tests.  

 

Figure 1.6 Position fluctuations (in meter) of the drone when flying indoor and outdoor  
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Figure 1.7 Indoor vs. outdoor flight stability using the fluctuation of drone positions in each 

degree of freedom 

 

Figure 1.8 A large drone net in Missouri S&T’s HyPoint facility 

2.3 Platform based on the DJI M600 Pro 

This platform as shown in Figure 1.9 was developed based on the DJI M600 Pro, which is a heavy, 

large size drone with 6 batteries. It measures 1,668 mm × 1,518 mm × 759 mm when propellers, 

frame arms, and GPS mount are in operation setting. Its total weight including six TB47S batteries 

is 9.5 kg. According to DJI, the flight time of the drone is 40 min with no payload and 18 min with 

5.5 kg payload. The flight control system employs a DJI’s own A3 flight controller.  
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Figure 1.9 DJI M600 Pro UAV with LiDAR, thermal camera and hyperspectral camera 

Figure 1.10 shows the three payload sensors that are mounted on the DJI M600 Pro UAV. From 

left to right are a LiDAR scanner, a hyperspectral camera, and an infrared camera. The 16-channel 

Velodyne Puck LITE was selected to provide a 30° vertical field of view to deliver accurate real-

time 3D data. Those data can be used for pipeline detection and 3D reconstruction. LiDAR Tools 

can collect high resolution LiDAR data and post-process point clouds output. The Nano-Hyperspec 

VNIR (400-1000 nm) was selected to have 270 spectral bands with a spectral resolution of 2.22 

nm. In the direction of line scanning, there are 640 pixels in space. This DJI M600 Pro UAV is 

also equipped with a FLIR Duo Pro R camera whose resolution is 640 × 512. The field of view of 

this infrared camera is 45°, which enables a data collection frequency of 9 Hz.  

 

Figure 1.10 Three payload sensors on the DJI M600 Pro UAS 
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2.3.1 Field of View calculation 

The LiDAR scanner and the infrared camera have a field of view (FOV) of 30° and 45°, 

respectively. The hyperspectral camera has an initial slit image. Its FOV can be identified from 

characterization tests. During the characterization tests, the ground surface can be marked with a 

measurement tape that is deployed perpendicular to the flight direction. For example, with a lens 

focal length of 12 mm in our hyperspectral camera, each flight at an above ground level (AGL) of 

15 m covers a ground area of 5.92 m in swath width, corresponding to a pixel size of 5920/640 = 

9.25 mm. Considering 40 % overlapping in the covered ground area, the line spacing between two 

flight passes is 0.4×5.92 = 3.55 m. Figure 1.11 illustrates the relation between the camera position 

and the ground coverage. Point A represents the location of an unmanned aerial vehicle (UAV), 

and Line BC is what the hyperspectral camera can capture at one frame. In this example 

characterization test, AD = 15 m and BC = 5.92 m. Thus, FOV = 2α = 2×arctan(0.5×BC/AD) ≈ 

2×arctan (0.5×5.92/15) ≈ 22.33°. 

 

Figure 1.11 Field-of-view calculation 

With 9 ms in exposure time, the required speed of the UAV can be determined from PixelSize = 

Exposure Time × AircraftSpeed, giving 9.25/9 = 1.03 m/s. Thus, FOV can also be determined 

from AircraftSpeed = AGL×FOV×FrameRate/SpatialBand, which is equal to 

1.03×640/15/111×180/π ≈ 22.68°. The difference in FOV likely represents the effect of optical 

aberration, which is the bending of spectral lines across the spatial axis due to the change of 

dispersion angle at a field position. In other words, the theoretical value in covered ground area in 

Figure 1.11 may be estimated by 5.92 × tan(22.68/2)/tan(22.33/2) = 6.02 m. Table 1.1 summaries 
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the optimal setting of the camera and its FOV identification from the calculator provided by 

Headwall Photonics, Inc. 

Table 1.1 Camera setting and field-of-view calculator from Headwall Photonics, Inc. 

 

2.3.2 UAV calibration and flight test without payload sensors 

After the GPS and compass were properly set up, the compass was calibrated according to the 

instructions from the APP as the drone was rotated 360° in a horizontal plane as illustrated in 

Figure 1.12. After the compass calibration, the overall status of the drone became normal according 

to the APP. To test cameras and train remote pilots, we removed the LiDAR scanner, infrared 

camera, and hyperspectral camera and conducted flight tests without the payload sensors to prevent 

potential damage of the sensors, as shown in Figure 1.13. 

  

Figure 1.12 DJI M600 Pro UAV compass calibration 
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Figure 1.13 DJI M600 Pro UAV ready for flight test and training without payload sensors 

2.3.3 Flight route planning using UGCS software 

Figure 1.14 shows a flight route (green color) designed in the UgCS software 

(https://www.ugcs.com/). UgCS allows one to set up the parameters for drone flying, such as route 

design, flight height, and flying velocity. It also works as a platform to connect the drone and 

automatically control the aerial behavior. The green-bluish color in Figure 1.14 defines the 

perimeter to trigger the Nanospec hyperspectral sensor. The first few turns of the drone before 

entering the area of interest are designed for filter-tuning, which is beneficial to improve the 

drone’s GPS. Figure 1.15 shows the drone that flies according to the designed flight path. The 

drone is directed as designed unless a manual operation is needed in presence of some unexpected 

scenarios like the disconnection of the drone control panel. We practiced how to operate the drone 

manually when the drone encounters any obstacle along the automated flight path. If the manual 

intervention can reconcile the issue in a short period of time, the drone can return to the automatic 

control mode and complete the planed path mission eventually. Otherwise, the drone may go 

beyond the control domain and can no longer connect to the ground control center. Figure 1.16 

shows an image captured by the drone looking straight down to the test site with tarps and markers 

for calibration purposes. 
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Figure 1.14 Drone flight plan in the UGCS software 

 

Figure 1.15 Automated flight of the DJI M600 Pro UAV 
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IV. Task 2 Develop and validate imagery and spectral processing techniques for two-

dimensional (2D) image classification of stress conditions 

1. Experimental Program 

1.1 Greenhouse test setup 

Greenhouse tests were conducted in the Hypoint Laboratory (37.955376 N, 91.771681W) at Missouri 

University of Science and Technology. As shown in Figure 2.1, one grass (karl foerster grass abbreviated as 

‘Grass’) and two shrubs (southern sunshine ‘Ligustrum sinense’ abbreviated as ‘South’ and gem box 

‘inkberry holly’ abbreviated as ‘Gem’) were selected to emulate gas leakage effects across plant species. All 

plants were fully grown to ensure that their heights do not change appreciably in the study period, having 

minimal influence on subsequent hyperspectral scanning. The plants selected were perennial to overcome 

aging deterioration. The plants were treated with natural gas and three other stressors: salinity impact (SI), 

heavy metal contamination (HMC), and drought exposure (DE). The other stressors served as distraction sets 

for gas leakage detection (Lichtenthaler, 1996; Smirnoff, 1998; Ahanger et al., 2017). For comparison, plants 

cultivated under optimal conditions were used as a control reference, which is referred to as non-stressed 

scenario. For each stress treatment condition including the non-stressed scenario, three tests were repeated. A 

total of 45 pots of plants (3 replicas×5 treatments×3 species) were prepared for the greenhouse tests.  

 

Figure 2.1 Test setup of hyperspectral imaging 
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Before any treatment, all plants were placed in the greenhouse for an acclimation period of 15 days to ensure 

they are adapted to the greenhouse environment. For gas treatments, plants were transplanted to 25-liter 

standard cylinder pots for easy distribution of methane gas. A percolated gas distributor in cross shape was 

installed at the bottom of each pot for methane application. The four ends of the cross were alternated 

clockwise to ensure that methane uniformly diffuses into the soil. Ultra-high purity grade methane from 

Airgas (Airgas Inc, Pennsylvania, USA) was used as a stress medium to stimulate the plants. The flow rate of 

the methane was regulated to 5 liters/hour over 10 hours a day. The gas was delivered through a transparent 

vinyl (D = 0.1875 cm). For Saline treatments, the soil was remodeled with ���� and �����in 2:1 mol ratio 

to realize a moderate salinity for each species of plants (Provin and Pitt, 2001). Here, sodium and calcium 

chloride salts were used because of their abundance in nature. The moderate salinity was quantified by the 

soil saturated paste electrical conductivity (ECe) (Lara et al., 2016). In reference to saline resistances of 

different species, ECe was finally set to 6 dS/m, 8 dS/m, and 8 dS/m for Grass, South, and Gem, respectively 

(Karberg et al., 2015; Joseph et al., 2016). Before salinization, the original ECe of soil in each pot of plant was 

measured and the amount of salt needed was estimated. For HMC treatments, the composition of heavy metal 

elements and their concentration in soil were referred to the U.S. Department of Agriculture (USDA) 

regulatory limits as given in Table 2.1. In this study, the five most common heavy metal elements are 

considered: chromium, copper, zinc, nickel, and arsenic. As the metal salts are highly soluble in water, heavy 

metal salts are diluted into irrigation water and sprayed on the soil of potted plants in three batches to prevent 

overflowing (Lassalle et al., 2018). For DE treatments, irrigation water was reduced to half of the water intake 

as instructed on plant tags (Bellante et al., 2014; Wang et al., 2018). After each treatment, plants were 

transferred back to the greenhouse to mark the start of a stress cycle. For the reference group, plants were 

watered as instructed without any additional treatment on the soil to create a stress-free environment. 

Table 2.1 USDA regulatory limits of heavy metal applied to soil developed by the U.S. 

Environmental Protection Agency (EPA) 

Heavy metal salt As Cd Cr Cu Pb Hg Ni Se Zn 

Maximum (ppm) 75 85 3000 4300 420 840 75 100 7500 

 

Between August 16 and December 18, 2020, all the plants were cultivated in the greenhouse with a 

temperature of around 25 ºC and a relative humidity of 70%. TA series of LED lights with a constant 378 

µmol·m2/s photosynthetically active light intensity were uniformly distributed on the roof of the greenhouse 
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to create a homogeneous radiation on each plant as it was in a normal transpiration system. A photoperiod of 

14 hours of light and 10 hours of darkness was maintained throughout the greenhouse tests. In addition, the 

ventilation rate of the greenhouse was set to 50 liters/min to achieve a good air circulation for the plants in the 

greenhouse and maintain a constant temperature. 

1.2 Hyperspectral image collection  

The stress effects on the treated plants were characterized by hyperspectral reflectance, also known as spectral 

signature or spectral curve. A ‘push broom’ hyperspectral imaging platform built for this test was composed 

of four parts: imager, spectrometer, illumination source, and movement control, as shown in Figure 2.1. The 

Headwall dual-lens imager (Headwall Photonics, Inc., Bolton, MA, USA) that covers a full spectral range 

from 400 nm to 2500 nm was used to collect hyperspectral images. The full spectral range can be divided into 

two regions: VNIR (400-1000 nm) and SWIR (900-2500 nm). The VNIR range has 271 bands with 2.22 nm 

spectral resolution while the SWIR range has 267 bands at a 6 nm wavelength interval. Therefore, the full 

spectrum (400-2400 nm) used in this project has approximately 489 sampling bands. The external 

illumination was provided by two 300 W full-spectrum tungsten halogen lamps (Ushio Lighting Inc., Cypress, 

CA) that was arranged in parallel with the plant pots to produce a homogeneous radiation on the canopy of 

plants. Under the constant light exposure, the exposure time of the hyperspectral camera was set to 40 ms at 

a framing rate of 45 ms. The field of view of the camera on the side of two lens was 22°. In the plane of the 

dual lens, the hyperspectral camera can rotate 15° to cover the area to be scanned during tests. The speed of 

the hyperspectral camera was adjusted to fit the imaging setup to ensure no pixel distortion so that the object 

in the pixel was neither compressed nor extended in the movement direction. The camera parameter setup 

and speed control were finished in the software Hyperspec III (Headwall Photonics, Inc., Bolton, MA, USA). 

To collect hyperspectral images, the plant canopy was set to be 1.2 m down below the imager. For each 

scanning, a screening line contains 640 pixels within the FOV of the imager and the obtained image has 

640×1208 pixels. The spatial resolution of the pixel is 0.78 mm. Before the plant canopy was scanned, a gray 

mat was placed underneath each pot within the view of the camera to reduce the reflection from the 

background, lowering the risk of shadowing in the hyperspectral image. All the plants were scanned every 

five days at completion of the acclimation period.  

1.3 Radiometric calibration  

Hyperspectral reflectance extracted from the plant leave reflects physical, morphological, and biochemical 
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status of the leaf surface (Lowe et al., 2017). The quality of image data is related to the imager detector 

properties such as lens, sensor, grating and filter. Raw images are subjected to radiometric calibration to reduce 

the influence of variability from the sensor (Thorp et al., 2017, Paulus and Mahlein, 2020). Raw digital 

numbers (DNs) captured by the detector are mapped to radiance through a calibration coefficient for each 

wavelength. Thus, the spectral power flux on the projected area can be plotted as a function of wavelength, 

creating a radiance fingerprint. When exposed to a constant source, the radiance from plant canopies can be 

converted to the hyperspectral reflectance to facilitate the identification and comparison between different 

scans. The radiance-to-reflectance conversion is done by collecting dark and white references (Kale et al., 

2017; Wang et al., 2018; Asaari et al., 2018; Elvanidi et al., 2018; Moghimi et al., 2018). Prior to each scan, 

the camera when capped captures an internal dark current as the dark reference. The white reference is 

acquired by a standard 25.4 cm square Labsphere Spectralon ® (Labsphere, Inc., North Sutton, NH, USA) 

made of barium sulfate, which can reflect 99.7% light.  

All pixels on the image are subjected to radiometric calibration by subtracting the dark reference and 

normalized by the white reference before any feature extraction from hyperspectral reflectance curves. All the 

conversion and correction are done in SpectraView software (Headwall Photonics, Inc., Bolton, MA, USA). 

The raw reflectance is normalized as shown in Eq. 2.1 to range from 0 to 1. This transformation makes the 

spectral signatures between scans comparable (Mahesh et al., 2008; Paulus and Mahlein, 2020).    

 �� =
���

���
     (2.1) 

where R and �� are the raw and normalized reflectance intensities from a target pixel; D and W are its 

corresponding dark current and white reference, respectively.  

1.4 Analysis Methods for Stressor Classification   

1.4.1 Optimization of raw reflectance  

The spectral curves retrieved from plants are typically not smooth especially from a single pixel (Foody, 2002). 

The Savitzky-Golay smoothing technique provides a moving average of n adjacent bands and fits the 

averaged points with a m-degree polynomial function. Another smoothing strategy to increase the signal-to-

noise ratio (SNR) is to put l neighbor bands into one bin though reducing the spectral resolution (Sankaran et 

al., 2011; Paulus and Mahlein, 2020). Furthermore, a spectral curve of a spot is extracted from binning pixels 

in the region of interest (ROI) instead of picking an independent pixel. Figure 2.2 compares the two ways of 

data extraction: single pixel and spatial binning. It can be seen from Figure 2.2 that the noise is suppressed 
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along the spectrum especially in the VNIR and the SNR is almost doubled by the spatial binning. The above 

raw hyperspectral reflectance curve extraction is achieved in the classification module of SpectraView 

software.  

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
0

20

40

60

80

ROI:  54 pixels 

SWIRVNIR

(a)

SNR=6.66

F
it

ti
ng

 e
rr

o
r

R
ef

le
ct

an
ce

(%
)

Wavelength (nm)

 raw data (spatial binning)
 fitting error

-4

-2

0

2

4

6

 

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
0

20

40

60

80

SWIRVNIR

(b)

SNR = 3.54
F

it
ti

n
g 

er
ro

r

R
ef

le
ct

an
ce

 (
%

)

Wavelength (nm)

 raw data (single pixel)
 fitting error

-4

-2

0

2

4

6

 

Figure 2.2 SNR of hyperspectral reflectance extracted from two strategies: (a) spatial binning of 

multiple pixels, and (b) spectral averaging at a single pixel 
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In addition, the canopy leaf inclination and thus distance to the imager detector affect the intensity of 

reflectance (Behmann et al., 2018; Asaari et al., 2018). Such variations can lead to locally higher reflection in 

some pixels and thus neutralize an artefact unintentionally (Thorp et al., 2017). To compensate for the above 

multiplicative factors, the standard normal variate (SNV) is introduced to normalize the spectra by removing 

their mean and dividing their standard deviation as indicated in Eq. 2.2 (Lara et al., 2016; Lassalle et al., 2018; 

Asaari et al., 2018).  

 ���� =
������(�)

�����(�)
  (2.2) 

where R and C denote the spectral curve before and after SNV processing; Mean and STD are the mean value 

and standard deviation of a spectral curve.  

Mathematically, SNV can be viewed to rescale the variables such as leaf inclination and light scattering into 

a standard form. This transformation retains every minor feature of the original spectral signature, thus making 

the reflectance curves from pixels in the ROI comparable. After the SNV, the raw hyperspectral reflectance 

was differentiated with respect to wavelength to further reduce the effect of multiplicative variations 

(Sankaran et al., 2011). More importantly, derivative analysis augments absorption features that are masked 

by the noise (Tsai and Philpot, 1998; Wang et al., 2010; Roy, 2015; Thorp et al., 2017). In this study, both the 

first order derivative (FOD) and the second order derivative (SOD) of each hyperspectral reflectance spectrum 

are calculated by Savitzky-Golay filtering with a window of 9 bands and a polynomial order of 2. The 

Savitzky-Golay filtering can simultaneously smooth and differentiate the spectra following a least square 

optimization (Tsai and Philpot, 1998; Roy, 2015). All data transformations are done by using the Unscrambler 

X software.   

1.4.2 Spectrum range for effective stress discrimination  

Hyperspectral imaging collects spectral information across wavelengths continuously from 400 nm to 2400 

nm; it can be divided into VIS, NIR and SWIR ranges (Manley et al., 2019). A spectral signature contains 

features, macro patterns, and subtle variations that are yielded by biochemical components within a circular 

area of a leaf during measurement. A certain portion of the electromagnetic spectrum, VIS, NIR or SWIR, is 

strongly correlated with the foliar biochemistry (Blackburn et al., 2007; Tarnavsky et al., 2008; Yu et al., 2013; 

Behmann et al., 2014). In the VIS range, photosynthesis pigments, especially chlorophyll, is characterized by 

the light absorption at wavelength 680 nm (Thenkabail et al., 2013). Carotenoid as an accessory 

photosynthesis pigment plays a dual role in both photosynthesis and photoprotection processes, which 
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harvests photos within a green range of 530 nm (Thenkabail et al., 2013; Havaux, 2014). It signals stress 

occurrence and reacts with the stress induced reactive oxygen species (ROS), leading to a mitigation of stress 

conditions (Shah et al., 2017). In the NIR range, the high reflectance is dominated by the cellular light 

scattering through mesophyll. In the SWIR range, the dry biomass, lignin and cellulose, protein, and moisture 

are characterized (Behmann et al., 2014).  

The gas leakage and natural stressors affect ground vegetations in different ways. Gas leakage replaces the 

oxygen in vegetation roots with methane, obtruding the oxygen assimilation and thus increasing chlorophyll 

(Smith et al., 2004; Noomen et al., 2008). In contrast, HMC stresses plants by making the chlorophyll 

malfunctional as the HMC cations displace centered magnesium (Mg2+) (Slonecker, 2018; Mirzaei et al., 

2019). Water deficit as a result of DE causes an early leaf senescence that terminates the development of leaf 

by decomposing pigments (mainly chlorophyll) and relocating the nutrient mass (Behmann et al., 2014; 

Asaari et al., 2018). The alternation of pigmentations featured by VIS spectroscopy can regulate the cell wall 

activities featured by NIR spectroscopy. However, it is unclear whether biomass and protein featured by 

SWIR spectroscopy are related to the presence of early stress though their effect on long-term stress exposure 

is evidenced. As such, three ranges of spectra, full, VNIR (VIS+NIR), and SWIR, are tested and compared 

to determine the most effective spectral range in presence of stress.  

1.4.3 Multivariate analysis  

Each hyperspectral reflectance spectrum contains 489 sampling wavelengths. The features manifested within 

a close range of wavelengths are sometimes interrelated since the chemical stretches interact with photons 

that have nearly tantamount energy. The reflectance curve also exhibits variations in the VNIR and SWIR 

range in terms of the importance of various stressors, which camouflages the distinction of each treatment and 

complicates the stress discrimination. To account for the above factors, multivariate analysis proved effective 

to successfully distinguish stress treatments (Mahesh et al., 2008; Sankaran et al., 2011; Song et al., 2011; 

Lowe et al., 2017; Lassalle et al., 2018). 

1.4.3.1 Principal component analysis (PCA)  

A single spectral curve can be expressed into a function of wavelength as displayed in Eq. 2.3, 

����, ��, ⋯ ��� = ������, ��, ⋯ ��� + ������, ��, ⋯ ��� + ⋯ + ������, ��, ⋯ ��� (2.3) 

where wi represents the wavelength w at the ith band out of a total number of samplings p in the spectral range 
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of interest (e.g., 489 samplings of the full spectra); H denotes the spectral curve function; ���is the integration 

of contributions from p number of wavelengths centered at the ith wavelength (i = 1, 2, ..., p). Multicollinearity 

at adjacent wavelengths often influences the interpretation of spectral curve features due to high 

dimensionality and entangled correlation. For the construction of a discrimination model, all features of the 

hyperspectral reflectance curve from each stress treatment can be expressed into �� = [��, ��, ⋯ , ����], 

where s is the number of observations. H0 is a collection of the p terms in Eq. (2.3) and written in vector form. 

To reduce the dimensionality of hyperspectral data, PCA is used to analyze the original and transformed 

spectral curves. PCA projects the p-dimensional data points to different orthogonal axes by maximizing the 

variance in each direction. The PCA process makes the information along principal component (PC) axes 

independent. The projection space is defined by the eigenvectors that are derived from matrix Xs. The 

eigenvalues of the directions associated with the eigenvectors can be computed from Eq. 2.4 (Uddin, 2015). 

The top eigenvalues are the indicators of the explanatory variance of the original data in the corresponding 

PC directions.  

 ����� = �  (2.4) 

where C denotes the covariance matrix of the X; E is a matrix that represents a collection of the computed 

eigenvectors; and � is a matrix including the eigenvalues in diagonal direction. The eigenvalues are displayed 

in a descending order and a higher eigenvalue means more contribution of that PC to representing the original 

data. The number of PCs, n, to use for further model construction is determined by the 95% accumulative 

explained variance of the raw reflectance data by the first n PCs. While increasing n unproportionally can 

cover more radiance, an excessive number of PCs is likely to cause a dimensionality havoc or Hughes 

phenomenon (Alonso et al., 2011). After the PCA, the features of the Xs can be remodeled as F with the n 

eigenvectors. 

 � = Xs�� (2.5) 

1.4.3.2 Linear/quadratic discriminant analysis (LDA/QDA)  

The optimized and transformed raw reflectance data with reduced dimensions will be used to identify or 

distinguish various treatments among three species of plants. LDA/QDA groups different stressors by 

modelling the difference among samples through the feature vectors F from PCA analysis. It is performed by 

projecting features to hyperplanes that maximizes the distances between categories and minimizes the 

variation within each category. QDA classifies samples by maximizing the ratio between �� (within-group 
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covariance) and  ��  (between-group covariance) (Uddin, 2015). Once the maximum ratio is located, the 

optimal differentiation space SQDA is expressed into 

 ���� = arg  ������
�������

�������
 (2.6) 

where ���� represents the direction in which the groups are sectioned optimally in feature data space F. LDA 

is a simplified form (special case) of QDA in terms of discrimination strategy. LDA groups two stresses with 

a linear boundary while QDA can section more stressors with multiple quadratic boundaries. A lower-class 

discrimination with QDA risks with overfitting. A higher-class LDA likely fail in classification (Sankaran et 

al., 2011; Song et al., 2011; Mahesh et al., 2008; Lowe et al., 2017; Lassalle et al., 2018).  

Five treatments (gas leakage, SI, HMC, DE, and a control group) were discriminated with the QDA. The 

differentiation of stressors was carried out on any individual group of plant species. To do so, 343, 386, 376 

hyperspectral reflectance samplings were collected from Grass, South, and Gem, respectively. The spectral 

signatures were extracted from the ROI of the plants that exhibited notable stress symptoms. Reflectance data 

on each species of stressed plants were pooled and randomly split into 70% for model training and 30% for 

testing. The random selection of reflectance dataset is done by MATLAB and LDA/QDA model 

establishment, and classification is accomplished with the Unscrambler X software. The flow chart of the 

hyperspectral reflectance collection, processing and classification is presented in Figure 2.3. The entire 

process is divided into two steps: data acquisition and data transformation and model construction. 

   

Figure 2.3 Flow chart of reflectance collection, processing, and stress discrimination  
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2. Results and discussion 

2.1 Gas leakage identification  

2.1.1 Raw hyperspectral reflectance extraction and stress symptoms 

The hyperspectral responses under non-optimal ambient stress conditions were observed to be different from 

those under optimal/normal conditions due to the foliage composition and morphology changes of plants 

(Cotrozzi and Couture, 2020). Each spectral signature was retrieved from the plants that displayed obvious 

physical symptoms and were assigned corresponding stressor labels for dimensionality deduction and stress 

identification and classification. Every pot of a plant was securitized to locate the symptom spots in the HSI 

and RGB images.  

2.1.2 Spectral correlation and dimensionality reduction with PCA 

Hyperspectral redundancy indicative of the similarity between bands was quantified by the spectral 

correlation (Adjorlolo et al., 2013). Figure 2.4 shows the coefficient of correlation between two bands in 

VNIR and SWIR of the plant. The correlation map demonstrates the redundancy of spectral information. In 

the VNIR range, the most informative wavelengths are 540 nm in green, 680 nm near red, and 720-1000 nm. 

In the SWIR range, wavelengths between 1950 nm and 2400 nm are less interrelated as observed by Song et 

al. (2011). 

 

(a) 
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Figure 2.4 Coefficient of correlation of wavelengths of leaf hyperspectral data:  

(a) VNIR, and (b) SWIR 

Based on the understanding of electromagnetic radiation and the interrelation of information at various 

wavelengths, the original hyperspectral data were compressed for efficient and effective stress detection. 

Without knowing individual wavelength contributions to the spectral information of interest, PCA was 

performed to project high-dimension spectra into several principal components (PCs), e.g., PC1-PC7. The 

eigenvalue of each PC indicated its contribution to the spectral information of interest. In the case of gas 

treatment, the accumulative explained variance by various PCs is presented in Table 2.2. The spectra loadings 

for the first three PCs are presented in Figure 2.5 to demonstrate the significance of a wavelength �� in each 

PC. As shown in Table 2.2, the first three PCs account for more than 96% of the variance and seven PCs can 

almost represent the whole spectra information (> 99%). In the direction of PC1, the REG region and 720 

nm-1000 nm in the VNIR range account for the most and second most variabilities while 1950 nm-2400 nm 

in the SWIR range corresponds to higher loadings. Due to their overlapped spectral loading ranges, the 

directions of PC2 and PC3 are considered together. The green absorption (540 nm) and the REG in the VNIR 

range are two major dominating spectral regions that explain 6% of the original variance. In the SWIR range, 

1400 nm and 1930 nm related to water feature contribute to the variance more significantly.  

 

(b) 
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Table 2.2 The accumulated explained variance of full spectra from PCA  
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Figure 2.5 Spectral loadings for the first three PCs: (a) VNIR, and (b) SWIR 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 

Calibration (%) 88.3 93.7 96.2 97.9 98.4 98.9 99.2 

Validation (%) 87.8 93.1 95.5 97.3 97.6 98.2 98.3 
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2.1.3 Gas treatment identification with LDA  

The VNIR, SWIR, and full spectrum were considered in the LDA model for gas stress identification. Only 

the hyperspectral reflectance curves acquired from the gas-stressed and untreated control sets of plants were 

pooled in this case. Figure 2.6 presents the gas stress identification results with LDA for different plant 

species. In Figure 2.6, training and test accuracies are indicated by blue and orange columns, respectively, 

while the PCA-reduced features in LDA is represented by the number of PCs.  The LDA model training 

accuracy ranges from 67.3% to 93.3% for a complete combination of four spectral transformations and three 

spectral ranges. Among the three spectral ranges, VNIR yields higher accuracy in LDA model training than 

SWIR and the full spectrum. As for the influence of data transformation on LDA modelling, FOD gives rise 

to the highest accuracy regardless of the spectral ranges used and SOD is the most uncertain in accuracy. The 

best identification (> 90% in accuracy) for gas stress is achieved with a combination of VNIR range and FOD 

transformation consistently for all three species of plants. Except for the Grass and South Gem in the SWIR 

range, SNV improves the accuracy in gas stress identification. It is noted that the number of PCs used in the 

stress identification varies from 3 to 5 among various data transformations. Gas stress identification with the 

original data requires the same number or more of PCs to represent a minimum of 95% variance of the data 

in feature space. 

As shown in Figure 2.6, the accuracy in LDA model test is consistent with that in LDA model training. The 

best detection for gas stress is also achieved with a combination of VNIR range and FOD transformation. 

However, the stress detection accuracies on Shrub South and Shrub Gem are 90.5% and 88.5%, which is 

substantially higher than 78.6% on Grass.  
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Figure 2.6 LDA-based gas stress identification from different plants: (a) Grass, (b) Shrub Gem, 

and (c) Shrub South 

2.1.4 Gas stress discrimination from three other treatments with QDA in multi-class 

classification 

SI, HMC, and DE were considered as distraction parameters for the detection of gas leakage in multi-class 

discrimination. Considering different covariances between classes, QDA was used to find optimal boundaries 
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of the classes with a nonlinear function (Sankaran et al., 2011; Mahesh et al., 2008; Lowe et al., 2017). The 

hyperspectral curves collected from three species of plant under five treatment conditions were pooled for 

QDA classification.  

Figure 2.7 presents the gas stress classification accuracy for each species with different hyperspectral curves 

in spectral range and data transformation. As it classifies stressors with a flexible boundary, QDA generally 

yields high accuracy in terms of model training (Lowe et al., 2017). The average training accuracy of all cases 

included in Figure 2.7 for different spectral ranges and data transformations surpasses 80% in gas stress 

discrimination model. The test accuracy of the model, however, differs from the training accuracy by at least 

15.8%; the test accuracy could be as low as 50% of the modeling accuracy. Overall, VNIR shows the highest 

accuracy, and the full spectrum gives the second highest accuracy, which are consistent with the results 

obtained from one-class gas identification in Section 2.1.3. Most of the discrimination accuracies during 

model testing achieved from the hyperspectral reflectance in the SWIR range are below 60%. For model 

testing, FOD remains the most effective transformation in the gas stress discrimination, which is also 

consistent with the findings from one-class gas identification in Section 2.1.3. A combination of VNIR and 

FOD can most effectively separate gas stress from the other stressors with 76.3%, 70.4% and 68.8% accuracy 

for Grass, Shrub South, and Shrub Gem, respectively. 
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Figure 2.7 QDA-based gas stress discrimination from three other stressors on different plants: (a) Grass, (b) 

Shrub Gem, and (c) Shrub South 

As observed in Figure 2.7, most combinations of spectral range and data transformation require 5 PCs to 

represent 95% of their key information in the original space. This is because an effective classification of 

multiple (four) stressors in a pool with an unstressed reference requires the use of more features in comparison 

with a single gas stressor in Section 2.1.3. Nevertheless, the number of PCs required for gas stress separation 
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from the VNIR-FOD data remains 3 for all plants except Shrub South. The exception demands a minimum 

of 5 PCs for an accurate discrimination of gas treatments applied on the Shrub South. 

2.1.5 Gas stress discrimination from another treatment with QDA in two-class classification  

Section 2.1.3 and Section 2.1.4 discussed two extreme scenarios for gas stress detection with no and three 

disturbances, respectively. In applications, gas leakage in an environment with one disturbance stressor is 

more practical since natural stressors (SI, HMC, and DE) are seldom present at one location. Section 2.1.3 

and Section 2.1.4 also indicated that the hyperspectral reflectance in the VNIR range can yield the most 

accurate detection results. Thus, only spectra in the VNIR range are included in the following analysis. Figure 

2.8 shows the gas stress detection results with QDA when the gas stressor is pooled with no stress reference 

and one other predefined stressor on three species of plants. In Figure 2.8, ‘Ref-Gas-DE’ denotes a 

hyperspectral reflectance pool of three treatment conditions: no stress reference, gas treatment, and drought 

exposure.  
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Figure 2.8 QDA of VNIR-ranged spectra for gas stress discrimination from one distraction 

stressor on different plants: (a) Grass, (b) Shrub Gem, and (c) Shrub South 

Like Figure 2.6 and 2.7, Figure 2.8 indicates that FOD and SNV both yield more accurate classifications 

of stressors than that from the original data without any transformation. The most successful FOD 

transformation (85% accuracy) is approximately 5% more accurate than the SNV transformation. The third 

data transformation, SOD, is least effective to separate the natural stressor from gas leakage on each species 

of plants. The presence of drought exposure (DE) is most favorable to the gas stress detection with an accuracy 
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of over 83.8% in which the lowest accuracy is associated with the Shrub South. The presence of salinity 

impact (SI) makes the gas detection most difficult, giving results that are generally 5% lower in accuracy than 

the HMC case and 8% lower than the DE case. The gas detection results appear consistent among all three 

species of plants, making the proposed method robust in practical applications. 

2.1.6 Discussion  

The use of a broadband spectrum in gas stress discrimination provides redundant information due to 

multicollinearity between wavelength bands. The information redundancy has been revealed by the inter-

band correlogram that REG, 720-1000 nm in the VNIR range and 1930-2400 nm in the SWIR range, are 

almost independent as indicated in Figure 2.4.  Some local regions around 550 nm and 680 nm in the VNIR 

range and spectra around 1400 nm in the SWIR range are also less correlated. Song (2011) observed similar 

spectral independency in the context of wavelength selection of hyperspectral reflectance for the 

discrimination of the spectral variations of paddy rice under different cultivation conditions. The PCA analysis 

in this study also demonstrated the significance of these spectra in the range of VNIR and SWIR, as shown 

in Figure 2.5. Therefore, it is believed that the spectra in these regions and locals should be considered in 

priority when the changes on the plant leaves are investigated.  

Although spectra can be qualitatively related to stressors in plant identification and classification, their 

response to the plant stressors is yet to be quantified with better understanding on underlying mechanisms. 

After the PCA analysis, the spectral contribution can be described by the spectral loadings and the 

corresponding significance is denoted by the descending order of eigenvalue of PCs, where PC1 explains the 

most variability of the original data. The spectral loading of PC1 as shown in Figure 2.5 reveals that the REG 

spectral regions, 720-1000 nm and 1930-2400 nm, account for 88.3% of the original data as indicated by its 

corresponding PCA results in Table 2.2. The spectral loadings of PC2 and PC3 demonstrate that the local 

spectral bands around 550 nm, 680 nm and 1400 nm are the secondary variance source that illustrates 5.9% 

of the original data. The scattering of light from plants in the range of 720-1000 nm is dominated by the cellar 

components such as epidermis, cellulose, and soluble protein changes (Paul et al., 2019). Likewise, the 

spectral bands in 1930-2400 nm are related to the structural components of the plant cell such as lignin 

(Behmann et al., 2014). According to the spectroscopic analysis of plant pigments, the REG and 550 nm are 

a reflection of chlorophyll (chlorophyll a and chlorophyll b) and carotenoid while 1400 nm and 1930 nm are 

dominated by the presence of water (Thenkabail et al., 2013; Havaux, 2014). With the given importance of 

the spectral bands, it is suggested that chlorophyll, cell wall component and leaf physical structure featured 
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bands can be primary consideration while the accessory leave pigment and water featured wavelengths are 

secondary information in the context of plant stress detection.  

The influence of spectral ranges (VNIR, SWIR or full spectra) on the accuracy of gas stress detection is 

notable. The VNIR range of spectra yield higher accuracy than the full spectrum in both the discrimination 

model construction and gas leakage identification as discussed in Section 2.1.3 and Section 2.1.4. In contrast, 

the SWIR range accounts for the least detection scenario with lower accuracy. To investigate why their 

accuracies differ greatly, it is important to note that the discriminant technique, both LDA and QDA, was 

applied to the hyperspectral reflectance acquired when the plants have already exhibited obvious stress 

symptoms. Therefore, the uncertainty of the stress status labeling can be eliminated and the likelihood for 

misclassification of the plant stressors is reduced. As LDA and QDA classify different plant stressors using 

the variations in certain spectral ranges, the notable difference in gas leakage identification accuracy between 

the VNIR and SWIR ranges implies that the cellar components of the plants are more sensitive to the 

difference in various stressors (gas leakage, SI, HMC and DE) than the structural components (Hennessy et.al., 

2020). For example, gas stress increases the reflectance on crops at 550 nm and decreases at NIR but induces 

no apparent change in the SWIR range (Smith et al., 2004). Song et al. (2011) confirmed that spectra in the 

VNIR range are more responsive to stress. The full spectra including less-responsive information in the SWIR 

range smears the more-responsive information in the VNIR range, thus resulting in a lower accuracy of gas 

detection than the use of the VNIR range. Another potential reason for the low accuracy in gas detection from 

the SWIR range spectra is attributed to the developmental stages of stress on plants. The tests in this study 

lasted 109 days excluding the acclimation period. This duration appeared too short to exhibit the change to 

stressors to its full extent in the SWIR range. 

The adoption of spectral signature transformation makes a significant difference in accuracy of gas leakage 

detection. The FOD achieved the highest accuracy among the original hyperspectral curve and its different 

transformations considered in this study. The minimum average accuracy of the FOD transformation is 78.6% 

both in gas stress identification as shown in Figure 2.6 and gas stress discrimination as shown in Figure 2.8 

during the predictive tests. The FOD emphasizes the reflectance variation with respect to wavelength or the 

slope of a hyperspectral curve; it can distinguish even the imperceptible features in hyperspectral curves by 

reducing the ambience effect. For example, the REG shift can be identifiable from the derivative analysis but 

not feasible in the dimension of hyperspectral reflectance. The FOD was also found the most accurate method 

in stress identification between oil seepage and heavy metal contamination (Lassalle et al., 2018). Although 
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it can neutralize the multiplicative effect of factors, making the spectral curves taken from different samples 

more comparable, the SNV transformation keeps the dimension of hyperspectral curve with multicollinearity 

between wavelengths. In most cases, the SOD leads to the lowest accuracy in detection of gas leakage. This 

is because the high-order derivative analysis is highly sensitive to noise dispersiveness. That is, the noise at a 

specific band diffuses forwards and backwards in the process of derivative analysis, thus contaminating useful 

information. Furthermore, the second-order derivative represents the curvature of the hyperspectral curve; it 

is positive when concaved upward and negative when concaved downward even though the local change in 

reflectance data is similar, resulting in low accuracy in detection of a shallow peak or valley on the 

hyperspectral curve. In addition, the number of PCs required to classify stressors successfully is 3 from the 

FOD but 4 or 5 from the SOD. These results suggest that the FOD operation requires less effort to locate the 

changes in hyperspectral features due to stress effects.  

By comparing Figure 2.7 with Figure 2.8, the QDA of VNIR-ranged spectra when five treatment cases are 

co-present is less accurate than when gas treatment is pooled with one other natural treatment only. As 

indicated in Figure 2.7, the FOD transformation can differentiate the gas stress from the other three natural 

stressors and the control reference with an accuracy range of 68.9% - 76.2%. As indicated in Figure 2.8, the 

FOD can distinguish the gas stress from the others with an accuracy range of 78.3% - 90.8%. Figure 2.8 

further indicated that it is the easiest task to separate the gas stress from the DE effect with a minimum 

accuracy of 83.8% (for South) and the most difficult from the SI with an averaged discrimination accuracy of 

79.8% (for Gem). There are two reasons for this accuracy contrast: number of discrimination classes and 

number of training samples. In Figure 2.7, five classes were considered. In general, the more the number of 

classes, the less accurate the discrimination of the classes. As the number of classes increases, three are more 

grey boundary areas to separate, making the discrimination of gas stress more difficult. At the same time, the 

total training samples associated with the three natural stressors in Figure 2.7 are approximately three times 

as large as the training samples associated with one natural stressor in Figure 2.8. The overwhelming training 

data from the three natural stressors may dominate the process of machine learning over the effect of the gas 

stress. As a result, this biased dataset generally reduces the detection accuracy of the gas stressor due to its 

small samples. 

2.1.7 Conclusions 

This chapter summarized the feasibility study on detecting gas stress on vegetations from hyperspectral 

reflectance as it contains variance of the vegetations derived from exposure to the stress. Due to plant generic 
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responses to electromagnetic radiation, the transformed hyperspectral data in different spectral ranges (VNIR, 

SWIR, and full spectra) were compared for the first time. The multivariate analysis technique (LDA or QDA) 

was used to statistically differentiate the gas stress from both the unstressed reference and three natural 

stressors (DE, HMC, and SI). Based on the extensive tests and analyses, the following conclusions can be 

drawn:  

1. The LDA can be applied to effectively identify the gas stress on vegetations from unstressed 

vegetations with an accuracy of 78.6% - 90.5% in the two-class detection process. 

2. With the distraction of three natural stressors, the QDA can be applied to discriminate the gas stress 

from the natural stressors with an accuracy of 68.8% - 76.3% in the five-class detection process.  

3. When distracted by one natural stressor (DE, HMC or SI), the QDA can differentiate the gas stress 

from the distracted natural stressor and the unstressed reference with an accuracy of 78.3% - 90.8% 

in the three-class detection process. This level of accuracy is comparable to that for gas stress 

identification from the unstressed vegetations. These results have practical implications in natural gas 

and oil pipeline industries. 

4. The FOD of the VNIR-ranged spectra (400-1000 nm) can always lead to the highest accuracy in 

almost all detection cases. The FOD can effectively simplify the feature space of raw data by reducing 

the number of PCs required for better classification. 

2.2 Gas stress development  

2.2.1 Gas stress development   

After the gas is delivered to the plant, the microbial environment will be altered due to the ingress 

of methane. In addition, oxygen is replaced or diluted, which potentially affects the respiration of 

the plants. Vegetations exposed to the adverse condition call for the internal system to suppress 

the reactive oxygen species (ROS) to prevent the breakdown of the plant functions like the 

decomposition of Adenosine Triphosphate (ATP) to supply energy. The changes are demonstrated 

as the sign of both physical and biochemical stress. Biochemical changes precede the physical 

changes. Hyperspectral camera can capture the biochemical changes by the variations in the 

hyperspectral reflectance to indicate the stress occurrence. In an aim of gas stress detection, it is 

also instructive to understand how much time is required to induce ‘visible’ biochemical changes 

on plants in terms of the spectral signature from a hyperspectral camera.  
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2.2.2 LDA models for stress development identification   

Hyperspectral data were arranged chronologically after the methane gas had been applied to test 

the development of stress. Likewise, LDA models were established by integrating the 

hyperspectral reflectance curves from plants under gas stress and control treatments after the 

presence of obvious physical changes. Figure 2.9 illustrates how the LDA stress identification 

model works for different plants. Each model integrates the spectral curves under control and gas 

stress treatments. As demonstrated in Section 2.1.4 and Section 2.1.5, FOD yields the highest 

accuracy. Thus, all the spectral curves are subjected to the FOD transformation prior to the model 

construction and stress identification. The number of the spectral curves used to train the stress 

identification model is 195, 296 and 209 for Gem, South and Grass, respectively. The LDA model 

groups the hyperspectral reflectance from different treatments based on the distance in the feature 

space. In each model, 70% of the samplings are used for training while the remaining 30% for 

testing. The 10-fold cross-validation results indicated that there is a 94.5%, 88.18% and 89% 

probability that the LDA can discriminate each of the stress treatments.  

 

(a) Gem 
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(b) South 

 

(c) Grass 

Figure 2.9 LDA discrimination models for gas stress identification from different plant species 
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2.2.3 Results and discussion 

The probability of the gas stress occurrence on different plants is presented in Figure 2.10. The 

probability of control and stress treatments are calculated respectively. The control condition is 

included as a reference in the discrimination test to demonstrate that the LDA model is not biased 

during the stress identification. As indicated in Figure 2.10, the plant under control conditions can 

be detected at an accuracy of 78.31%-93.58%, 78.86%-95.42%, and 81.25%-94.31% for plant 

Gem, South and Grass, respectively. As the nonstress status of the plants can be effectively 

detected, the high accuracy indicates that the LDA models are not biased between the samplings 

and can be a reliable model for the detection of the stressed vegetations. The stress probability 

increases over time in days. For Gem, the possibility of stress on the plant ascends from 1.64% at 

day 3 to 66.27% at day 20 and finally stabilizes around 76%. Plant south yields a similar stress 

development trend as that of Gem. The stress occurrence rate starts from 11.04% and reaches the 

critical 50% after 10 days. At day 32, there is a 75.88% possibility that shrub South get stressed. 

The identified stress probability on Grass fluctuates greatly; it goes beyond 50% at day 32 but 

drops to 42.20% at day 37. After 49 days of gas stress induction, the likelihood of detected gas 

stress remains below 60% though it finally reaches 96.06% at day 56. 
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Figure 2.10 Probability of the identified methane gas stress in time series on plants: (a) Gem, (b) 

South, (c) Grass 
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As the LDA model in this context performs a binary classification, 50% is a critical point for the 

stress status identification.  To ensure over a 50% probability of stress detection, it takes more than 

20 days of stressor application on shrubs (the Gem and South) and 32-49 days on the Grass. Due 

to their more developed roots in comparison with the Grass, the shrubs are likely to sense the 

environmental alteration in soils and manifest their stress conditions sooner. In addition, the leaf 

tissues of the shrubs are much thicker than that of the grass. The larger exposure of the tissue is 

more sensitive to the stress according to the negative feedback mechanism. That is, the defense 

mechanism is activated to prevent the malfunction of leaves before breakdown. As the stress 

develops, it is noted that there is approximately 80% of probability that the shrubs get stressed due 

to the methane gas leakage after 35 days. In comparison, 50 to 59 days of stressing are required to 

induce more than 80% of the probability for stress existence on the Grass. Basically, the stress on 

the Grass develops slower than that on the shrubs. In addition, the stress identification results are 

not as stable as those of the shrubs, which even drops 16% at day 37 after it reaches 58.8% at day 

32. Overall, stress on the shrub Gem and South can be fully developed after 32 days of gas 

treatment while more than 50 days are required for the Grass. 

2.2.4 Conclusions 

Based on the experimental results and analysis, the following conclusion can be drawn: 

1. Gas stress development varies greatly between plants. Grass is more tolerant to the impact 

of gas treatment than the shrubs. To achieve a 75% or higher probability gas stress on the 

plants, 32, 37 and 56 days are required for shrub Gem, shrub South and Grass, respectively. 

2. The detected gas stress probability increases monotonically over time for shrubs (Gem and 

South) but fluctuates for the Grass before it reached the final 96.06% probability at day 56. 
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V. Task 3 Develop a deep learning neural network for the assessment of pipeline and 

ground surface conditions 

With the aim of detecting vegetation stresses as an indicator of methane gas leakage, many 

elements, biochemical and physiological, are involved in health/stress status indexing. Stress 

indicator can be a powerful tool in plant stress detection as it employs little spectral information 

in particularly sensitive wavelengths when characterizing the plant conditions. In view of the 

spectral signature, the characteristic pattern of light reflected from a surface is the product of 

different chemical compounds’ interaction with light absorbing, reflecting, or transmitting at 

different wavelengths. 

Although the reflectance spectra of plants can be quite complex, there are several common features 

whose magnitudes (peaks and valleys in a spectrum) have been correlated with the chemical 

properties of plants at various stages in their life cycles. Many of these spectral features have been 

characterized by "Spectral Indices", each index being a numerical value that largely depends on 

the relative reflectance values at a small number of wavelengths. The calculation of spectral indices 

is a method to reduce the complexity of spectral images, thus greatly simplifying the analysis of 

the data. Interested wavelengths are selected based on the unique plant response under stress. For 

example, chlorophyll on plant (e.g., alfalfa) leaves under heavy metal stress decreases as the 

centered magnesium is replaced by the heavy metal elements such as Cu2+
 . As chlorophyll is 

characterized by the reflectance at 670 nm and 540 nm, the photochemical reflectance index (PRI) 

that is a ratio of reflectance values at the two wavelengths decreases. Under stress conditions, the 

stressed plant demonstrates differences in term of the stress indicators, which facilitates the 

discrimination of stress origins such as gas leakage. Given the spectral indices, some changes of 

plants due to stress effects can be mapped to discern the stress. In addition, spectral indexing 

mapping makes it easier to identify the stress from a neural network as the dimension of the input 

data change reduces greatly.  

Just like light reflectance from a hyperspectral camera is responsive to the chemical change of 

plants due to gas impact, thermal radiation from an infrared camera is another feature for the 

detection of gas leakage spots. Methane gas in soil is known to strap heat, which makes the gas 

leakage area detectable in thermal images. Beside methane’s inherent heat-trapping property, the 

gas tress is reported to impact the stomal conductance of plant leaves, thus causing a temperature 
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rise. However, the temperature difference is still different to distinguish from a normal condition. 

Overall, thermal activities can be another dimension in the detection of gas leakage.  

1. Experimental Program 

1.1 Field test setup 

Field tests to simulate underground gas leakages were planned in an off-campus open field (37.957856, -

91.788070) as pinpointed in Figure 3.1. Four rectangular trenches are labelled with two control trenches 

(designated as T-control1 and T-control2) without any treatment and two trench configurations for gas 

treatments (designated as T-treat1 and T-treat2). Each trench is 60 ft long, 8 in wide, and 3 ft deep. Two 

parallel trenches are spaced 10 ft to eliminate their potential interference in gas diffusion. All trenches are 

refilled consistently with a few layers of materials before sods (patches of grass) are placed to ensure that the 

grass can grow under the same circumstance. The semi-circle area is enclosed by a fence to prevent 

trespassing and protect any trespassed people from injuring associated with the gas leakage. 

Figure 3.2 displays the vertical profile of each 3-ft deep trench. The trench is refilled in five layers. From top 

to bottom, the five layers are moss sods, backfill soil, overlay gravels, two side-by-side 4 in. perforated PVC 

pipes, and base gravels. The pipes are perforated along the lengths to ease the release of gas. The gravels on 

top of the pipes are placed to prevent the blockage of the holes on the pipes and also ease the gas diffusion.  

Figure 3.3 illustrates the entire process and steps from trench digging to sod placement, starting on August 

29, 2021. Before excavation, the ground surface was first labelled for the location of trenches. Then, the 

marked trench area was excavated and refilled with base gravels to make a flatbed of the trench before two 

parallel PVC tubes were placed side by side along the direction of the trench. Since fine soil particles of top 

backfills would potentially penetrate through the holes on the perforated PVC tubes, potentially making the 

gas diffusion path uncertain, the PVC tubes were overlayered with another 3 in. gravels. Next, the excavated 

soil was back filled into the open trench to 2 in. below the original ground surface. Finally, moss sods were 

customized to fit into the 2 in. deep space on the top of all four trenches.  

The perennial moss sods on the top of four trenches were cultivated under the same condition to 

eliminate the variation of aging effects during field tests. The control trench and one separate moss 

sod are shown in Figure 3.4. The fresh moss sod acclimates the local environment for at least one 

month to allow for a full development of the root system. Only when the grass reaches a stable 
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state can the field test start to prevent the unreal impact on the grass itself when compared with 

real-world applications in pipelines. 

  
Figure 3.1 Configuration of four pipeline trenches on the test site 
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(a) Side view               (b) Cross-sectional view 

Figure 3.2 Schematics of various layers in each trench 

 

Figure 3.3 Steps in the process of trench excavation, pipeline installation, and grass placement 

                                   

                             (a) The control trench                           (b) A patch of moss sods 

Figure 3.4 A view of moss sod placement 
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Figure 3.5 shows the field test setup. The grasses in all trenches were trimmed one month before 

methane gas was supplied to allow suffcient time for its growth and to ensure that all the grasses 

were approximately at the identicial condition. For the gas supply, cylinders of 99% chemical 

purity methane gas (CH4) were purchased from Airgas. The flow rate of the gas supply was 

controlled by the methane gas regulaor and the outlet presure was set to 10 psi in the current study. 

A transpaent vinyl tube was used to connect the gas cyliner with the underground pipe as shown 

in Figure 3.5 to deliver methane gas. Each underground pipe has three inlets from which gas was 

delivered alternately to ensure it was evenly distributed along each trench.  

 

Figure 3.5 Methane gas leakage simulation setup 



62 
 

The methane gas concentration on groud surfaces of the test trenches was measured using a thermal 

gas detector, which enables a detection of concentration from 50 ppm to 50,000 ppm. In addition, 

gas leakage concenration on the treated trenches was monitored by a MQ-5 methane gas sensor 

for 10 hours per day during the test period. The gas concentration was collected every 5 minutes. 

A gas concentration monitoring station was established on site to facilitate continuous 

measurements and then the integrated wireless data transferring system store the logged data into 

cloud for easy remote access.  

Once the ground setup was completed, the grass trenches within the test field was periodicallly 

monitored by the UAS including a hyperspectral camera to record the health condtion. The DJI 

M600 drone as illustrated in Figure 1.9 was used to monitor the field since the first day of the grass 

acclimation till the last day of the expected test so that the evolution of the grass conditions can be 

fully reflected. The drone was remotly connected with a control unit at the groud station. The 

periodical drone scanning is illuatred in Figure 3.6. The flying route was specifically designed for 

this test to ensure that all the test trences can be captured with a good imaging condition. The flying 

altitude was set to 24 m to avoid the any barricades whthin the scanning field. The parrallel 

overlapp between two parallel paths was set to 40% as suggested by the flying instruction by 

Headwall Photonics Inc. The flight speed was set to 1 m/s in accordance to the camera exposure 

configuration to avoide any imaging extension or compression in the flying direction. The route 

design as completed in a commercial software UgCS also enables a remote control of the drone. 

Before take-off of the drone, the integrated hyperspectral camera was calibrated by collecting the 

dark current reference. Moreover, a spectralon (white board) was used to determine the appropriate 

exposure time to avoid over exposure. As the field scaning was performed around noon to 

guarantee the quality of solar radiation, the exposure time was set to 4.5 ms and may be alterated 

accoding to the weather condition.  



63 
 

  

Figure 3.6 Periodical drone scanning of the test field  

Figures 3.7(a) and 3.7(b) display the designed and actual flight routes, respectively. It can be seen 

that there is a long way hovering before the drone enters into the polygon test area to initiate 

scanning. The hovering is included herein to allow some time for the drone to establish a smooth 

connection with the ground control units and also for the adaptation of the condition at the designed 

altitude. Abrupt entrance into the test area may introduce unnessary instability of the drone and 

then the distoration on hyperpectral imaing. The actual drone flight path deviated from the 

designed route as indicated in Figure 3.7(b) due to the effect of wind. In the longitude log plot, 

some apparant changes were identified in the timescale. The starting point of the Altitude changes 

is a few seconds ahead of Longitute changes though they are well corresponded to each other. This 

observation indicates that the Altitude change might be a precuresor of  the alteration of Latitude.  

The hyperpectral camera in this field test is different from the one used in Section IV though both 

are Headwall Photonic products. Micro-Hyperspec® VNIR E-Series sensor used in this section is 

specifically configured for manned/unmanned airborne applications. The camera enables 250 

bands from 400 nm  to 1000 nm with a spectral resolution of 3 nm. The pixel size in the focal plane 

of sCOMS is 6.5 microns. Based on the above drone test configurations, one pixel can cover the 

information in a 1 cm × 1 cm square domain as indicated by the UgCS software. The specfication 

of the hyperspectral camera is given in Headwall (2022). 
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(a) The designed flight route and corresponding configuration  

 

(b) The actual flight route of the scanning on August 5, 2022 

Figure 3.7 Drone flight plan in the UgCS software 
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Figure 3.8 The data log of different configuration parameters for the drone scanning on August 

5, 2022 
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1.2 Method  

After hyperspectral imaging, spectral signatures were used to evaluate the stress condition of test 

grasses. There are 250 bands within the VNIR range. It is not practical to include the information 

from every band because of the intercorrelation between bands within a small range. Some plant 

physiological effects are reported to be related and can be characterized by the spectra from 

particular bands. For instance, the change of chlorophyll in plant leaves has been well correlated 

with band 670 nm. Under stress conditions, plants stimulate their internal negative feedback 

system to suppress the stress symptoms and thus the changes of some pigments and structural 

components. To detect the gas leakage from plant stresses with minimal spectral bands, the 

hyperspectral stress indicators are introduced. Such spectral indices can be more direct to indicate 

the stress occurrence on vegetations. Some indicators are introduced to reflect the condition of the 

plant by its corresponding biochemical activities on the plant leaves. Following is a brief 

discription of seven indicators for the presence of gas stress. 

1. Red edge ratio (RER) 

The "Red Edge" refers to an abrupt increase in reflectivity in the near-infrared (NIR) region 

due to a drop-off in the absorption of Chlorophyll superimposed on a strong NIR 

reflectivity due to the internal structures of leaves. RER is a ratio of the reflectivity on the 

NIR side to that on the red side of a red edge. That is, 

��� =
����

����
 (3.1) 

where R is the reflectance at a specific wavelength and its subscript is the corresponding 

wavelength in nm. For example, Chlorophyll is a function of the red edge and 670 nm is 

its characteristic absorption wavelength.  As such, RER can serve as a quantitative measure 

of the total chlorophyll content in a leaf and therefore is a general measure of leaf health. 

2. Normalized difference vegetation index (NDVI) 

NDVI is a scaled measure of the Red Edge. It is a "normalized" difference between a red 

wavelength and a NIR wavelength on the short and NIR wavelength sides of a red edge, 

respectively. Chlorophyll absorbs light strongly and weakly on the short and NIR 
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wavelength sides, respectively. In the latter case, scattering by internal leaf structures 

dominates the reflectivity of light. 

The rationale of NDVI comes from the fact that photons in the visible region of the 

spectrum have energies sufficient to drive the photosynthesis process, and therefore plant 

chlorophyll absorbs strongly in the visible region. Otherwise, photons in the NIR region 

are unable to initiate the photosynthesis and therefore these wavelengths tend to be 

reflected by plant leaves. For better comparisons across various measurements and 

conditions, the difference in reflectance is "normalized" by dividing the absolute difference 

by the sum of the two reflectance values. That is, 

���� =
(���������)

(���������)
 (3.2) 

3. Modified normalized difference 705 index (mND705) 

Complementary to NDVI as a broad band index, mND705 is a narrow-band index 

developed for an accurate measurement of the red edge. 

���705 =
(���������)

(�����������×����)
  (3.3) 

In comparison with the NDVI, the mND705 index is also less sensitive to the difference in 

leaf surface across species. By subtracting the reflectance at 445 nm (where most leaf 

pigments absorb strongly) from the values on either side of the red edge, the index corrects 

the specular reflection from shiny leaf surfaces. 

4. Photochemical reflectance index (PRI) 

The photochemical/physiological reflectance index (PRI) can be used to measure the 

efficiency of photosynthesis or light use efficiency for a plant in real time. The PRI is 

inversely proportional to the instantaneous photosynthesis activity.  

Plants must expend energy and nutrients to generate the structures involved in 

photosynthesis. Thus, there will be a limit to the amount of light that a given plant can use 

in the photosynthesis process. Damage to the chlorophyll can occur if light is absorbed 

more quickly than the energy can be used. The energy from excessive absorbed light is 

dissipated through changes in the Xanthophyll pigments, which are associated with an 
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increase in reflectivity in the green around 531 nm. If the reflectivity in this region increases, 

the plant becomes less efficient in using the incoming light. PRI is calculated from the 

normalized difference between reflectance in the Green (531nm) and Yellow (570 nm). 

That is, 

��� =
(���������)

(���������)
 (3.4) 

5. Water band index (WBI) 

The water molecule has a strong absorption feature (band) in the NIR at 970 nm. The higher 

the water content in plant tissues, the stronger the absorption at this wavelength. By 

dividing the reflectance at this water band by the reflectance at a nearby wavelength (900 

nm) outside the water band, a quantitative measure of the water content is obtained. The 

band 970 nm is used because the reflectance in this range is hardly influenced by the status 

of plants. That is, 

��� =
����

����
 (3.5) 

6. Chlorophyll (Chl) 

Chlorophyll is the green pigment responsible for absorption of light that drives the process 

of photosynthesis. Chlorophyll absorbs strongly in the blue and red regions of the visible 

spectrum. But it reflects green light, which is why plants appear green. Chlorophyll does 

not absorb much in the NIR, leading to the "Red Edge" in the reflectance spectrum of plants. 

A Modified Chlorphyll Absorption in Reflectance Index (MCARI) is introduced as follows. 

����� = (���� − ����) − 0.23 × (���� − ����)
����

����
  (3.6) 

Most of the nitrogen in plant leaves is contained in chlorophyll molecules. Therefore, the 

nitrogen and chlorophyll content of a leaf are closely related. In conjunction with 

measurements from the other indices, the MCARI index can inform decisions about the 

amount of nitrogen fertilizer to be applied to plants. 

7. Carotenoid reflectance index (CRI) 
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Carotenoids are pigments in plants that produce bright yellow, red, and orange colors.  

They function in the process of light absorption and protect plants from the harmful effect 

of too much light. Weakening vegetation contains increasing concentrations of carotenoids 

relative to chlorophyll. Therefore, CRI is one measure of stressed vegetation.  

��� =
�

����
−

�

����
 (3.7) 

The value of this index often ranges from 0 to 15. The common range for green vegetation 

is 1 to 12. This index uses reflectance measurements in the visible spectrum to take 

advantage of the absorption signatures of stress-related pigments. 

2. Results and discussion  

The spectral signatures were retrieved from the control and test trenches to detect the change in 

spectral range due to gas leakage. Stress indicators were mapped over the test trenches to locate 

the overall stress distribution of the methane induced stress. A validation biochemical experiment 

was executed in lab to validate the stress indicators. Additionally, the thermal images were 

analyzed to support the detection and location of the gas leakage by identifying the thermal 

difference between the control trenches and the methane affected trenches.  

2.1 Spectral indicator mapping 

Figure 3.9 demonstrates the mapping of a hyperspectral stress indicator (HSI) used in this study. 

In the hyperspectral data cube in Figure 3.9, three example pixels are selected near a trench and 

labelled by squares in red, green, and blue colors, respectively. Their spectra are presented with 

two bands (670 nm and 700 nm) marked. The stackable layers corresponding to the two bands are 

sliced from the cube to give features in those two bands only. The RER index for each of three 

pixels can be calculated from Eq. (3.1). When all the pixels in the two stackable layers are 

considered, a RER map can be generated as illustrated in Figure 3.9.  

To demonstrate the presence and progression of grass stress in a treated trench with cumulative 

methane applied over 106 days, Day 0 and Day 50 screenings are compared in Figure 3.10. Figure 

3.10(a) shows seven indicator mappings of grasses before they are treated with methane gas. It can 

be seen that the treated trench can be easily identified by some of the indicators such as RER and 

NDVI. Due to the presence of various species of surrounding wild grasses, a clear boundary of the 
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trench can be determined from the HSIs. After 50 days of gas treatment, some changes can be 

readily observed from the HSI mappings in Figure 3.10(b), particularly RER. 

 

Figure 3.9 Demonstration of mapping a hyperspectral stress indicator (HSI) - RER 

Overall, the RER index shows a significant increase for the two gas-treated trenches (T-treat1 and 

T-treat2) in comparison with one control trench (T-control1). The increase is also observed in 

NDVI and mND705. However, the WBI displays a negligible difference between the control and 

gas-treated trenches. The WBI indicates that the water content on the grass may not change 

significantly due to the stress symptoms. Natural gas stress may not influence photosynthesis 

activities notably as PRI remains not discernable between T-control1 and T-treat1 (or T-treat2). 

As photosynthesis involves many biochemical components during the reaction process, the 

severity of the stress does not induce that much accumulated effect on the plants to decisively 

change the way of grass energy harvesting. Unlike the complex biochemical process, the pigments 

in the grass are quite susceptible to the external changes and then altered to counteract the stress 

effect. The chlorophyll-characterized MCARI shows a great escalation from Day 0 to Day 50. At 

Day 50, the difference among the three trenches (T-control1, T-treat1, and T-treat2) is not visually 
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obvious as all three have reached the maximum in the color scale of MCARI. In contrast, the CRI 

shows a decrease from Day 0 to Day 50. Carotenoids are the secondary pigments in grass and CRI 

demonstrates a sparser distribution on the test trenches. It is an indication that gas stress may 

influence the carotenoids on plants, though the overall effect is small.   
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(a) Day 0 
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(b) Day 50 

Figure 3.10 Mapping of spectral indices to demonstrate stress presence and progress over time 

HSI mapping provides a convenient method to locate the difference between control and stressed 

vegetations. However, this qualitative comparison does not give the degree of the difference; 

indices within the domain of each trench need to be extracted for quantitative evaluation. Figure 

3.11 displays the evolution of each HSI over the test period. Three ‘red edge’ related indicators 

(RER, NVDI, mND705) show a similar trend. During the acclimation period, some difference can 

be clearly observed though insignificant. Prior to the fully grown grasses, the three indicators show 

a moderate decrease before they finally reach a close range on June 8. After the gas treatment, 

these three indicators remain close for more than one month. The overall changes of the indicators 

are attributed to natural weathering exposure. Grasses change internally to accommodate the 

temperature and humidity in different seasons. A slight increase in RER is detected after 35 days 
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of gas treatment while both NDVI and mND705 seem to change little. The mND705 is a narrow 

band indicator of ‘red edge’ in comparison with the NDVI, though both do not show any difference 

in the process of gas treatment. After one more week, the changes can be identified from all three 

indicators. By then, the cumulative stress effect begins to show consistently the significant 

difference in RER, NDVI and mND705. After July 24, the three indicators for the test trenches 

with gas treatment show a dramatic increase and continue this trend to the end of the test on August 

23, 2022.  
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Figure 3.11 The evolution of seven HSIs over time: (a) RER, (b) NDVI, (c) mND705, (d) PRI, 

(e) WBI, (f) MCARI, (g) CRI. The gray dash line indicates the starting point of gas treatment. 

Among other biochemical indicators, WBI does not exhibit too much difference among the three 

trenches (T-control1, T-treat1, and T-treat2), although grasses experience global changes over time 

as indicated by RER, NDVI, and mND705. This trend is generally applicable to PRI though the 

indicators for the two gas-treated trenches are slightly higher than the indicator for the control 

trench. This is because the complicated photosynthesis process involves many components that 

are affected with different degrees by the cumulative stress effects. Unlike systematic 

photosynthesis, plant pigments are very sensitive to the stress because they can annihilate the 

oxides and suppress the stress effect to prevent a plant from breakdown of its normal internal 

system. Chlorophyll indicator (MCARI) shows almost no difference among the three trenches 

before Jun 28. After 20 days of the gas treatment, the MCARI starts to display changes with a 

slowly increasing trend with the gas treatment. On July 24, however, a huge surge shows up in the 

MCARI value and the gap appears to broaden along with the progress of the field test. This trend 

lasts until August 2, 2022, though the gas-treated trenches remain higher at the end of the gas 

treatment. The drop of the increase trend results from the constant rainfall at that time. Rain allows 

the plant to recover from the stress status. Another pigment-featured indicator, CRI, as presented 

in Figure 3.11(g) show small differences between the test trenches in the acclimation period. After 
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nearly one month of gas treatment, a slight decline of CRI is noticed for the gas-treated trenches 

while fluctuating enormously. The decrease of CRI gradually grows as indicated by the gap 

between T-control1 and T-treat1 (or T-treat2). 

2.2 Conclusions  

To demonstrate the presence of gas stress in grasses on the test trenches, seven HSIs are mapped 

over hyperspectral imagery within the domain of the interest. The mapped HSIs can directly 

identify the difference between the control and gas-treated grasses. The differences are further 

quantified to illustrate the degree of gas leakage induced influence and the evolution of gas 

development through various HSIs. The specific findings are summarized as follows. 

1. Mapping of the HSI can facilitate a rapid identification of the changes between different 

trenches through one-time hyperspectral scanning. 

2. Different HSIs exhibit a various degree of effectiveness in detecting the stress occurrence 

on tested grasses. The chlorophyll characterized indicator (MCARI) is the most sensitive 

index for stress detection though the ‘red edge’ related indicators (RER, NVDI, and 

mND705) also see changes from different gas treatments. Overall, MCARI, RER, NVDI 

and mND705 all show an obvious increase with a cumulative gas treatment. In contrast, 

CRI shows a slight decrease over time.   

3. The above indicators for the test trenches fluctuate significantly during the field test. It is 

recommended that the gas-treated trenches be compared with surroundings to demonstrate 

the induced stress on grasses and the comparative results are used as qualitative measures. 

3. Biochemical test for indicator validation  

To validate the changes occurred with the previous indicators, a biochemical experiment was 

conducted to measure the concentrations of plant pigments. Only the chlorophyll and carotenoid 

were extracted and measured along with the field test. At the same time, grass leaves were 

measured using an ASD FieldSpec Pro spectroradiometer to obtain ground-truth spectral 

signatures for derivative analysis. 
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3.1 Material 

The pigments extraction protocol used in this study is referred to Lichtenthaler and Buschmann 

(2001). Fresh leaves were collected from the test trenches and divided into three replicas for 

pigments extraction. For every trench, three samples were prepared to understand and minimize 

random errors. For each measurement, 50 mg leave was cut from the collected leaves and then 

minced into small pieces in a mortar bowl. The leave tissues were ground with a pestle for 3 

minutes with 3 ml spectrophotometric acetone to allow the extraction of pigments. Since the plant 

tissues may release some acids during the extraction, 10 mg magnesium oxide was added into the 

mixture to prevent the degradation of chlorophyll prior to a final measurement. When exposed to 

acids, chlorophyll forms pheophytin that, once accumulated to a large quantity, may cause a shift 

of absorption peak from approximately 660 nm to nearby wavelengths. In addition, 100 mg fine 

grade pure quartz sand was used to increase the friction of contact with the mortar bowl during 

grinding. The extraction solution is the 99.5% spectrophotometric acetone from Thermo Fisher 

Scientific.  The extracted turbid pigments composing of all the previous mixtures are transferred 

into a 15 graduated glass centrifuge tube. The mortar bowl is then rinsed with 9 ml acetone solvent. 

In the extraction process, a total of 12 ml acetone was used for each sample. The extract is 

centrifuged with 400 g in 5 minutes to precipitate the turbid, in which the measurement would be 

deviated otherwise. Any turbidity and light scattering in the extract solution yields wrong pigment 

values with particularly too low Chl a/b ratios. This is because the Chl b content in turbid solutions 

is estimated to be much too high. The total carotenoid x+c levels are incorrect. After the clear 

extract solution is prepared, a 3 ml is then transferred into a quartz cuvette for a spectral radiometric 

analysis. The absorption spectroscopy is obtained within 350-800 nm by a Cary 50 UV-VIS 

spectrophotometer with a spectral resolution of 2 nm. The measurement of the extract is repeated 

by adding acetone into the clear solution until the absorbance reading around 645 nm falls in the 

range of 0.3 to 1.0.  A typical absorbance spectroscopy is presented in Figure 3.12. In addition, to 

protect the integrity of the chlorophyll, the whole process is executed in a dim environment as light 

decomposes pigments.  
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Figure 3.12 Absorption spectra of freshly isolated Chl a and Chl b in diethyl ether (pure solvent). 

The spectra were measured 40 minutes after extraction from leaves and 3 minutes after eluting 

the two Chls with diethyl ether from a TCL plate (Lichtenthaler and Buschmann, 2001). 

3.2 Method 

The pigments can be quantified through absorptance spectroscopy. For 100 % pure acetone, the 

amount of pigments can be determined from Eqs. (3-8), (3-9), and (3-10). If a precise wavelength 

like 661.6 nm is unattainable with a spectrophotometer, use a round-off wavelength 662 nm. This 

approximation is also applicable to other wavelengths. 

�ℎ�����ℎ��� �: �� = 12.25�_663.2 − 2.79�_648.8   (�� ��� ��� �� ��������)     (3-8) 

�ℎ�����ℎ��� �:  �� = −5.10����.� + 21.50����.�  (�� ��� ��� �� ��������)      (3-9) 

����� �����������:  ���� = (1000���� − 1.82�� − 85.02��)/198           (3-10) 

The pigments were determined on the leave scale to validate the HSI mappings. Section 2.1 

presents hyperspectral results at the plant scale from remote sensing. The hyperspectral reflectance 

of leaves was also collected between 350 nm and 2500 nm using an ASD Fieldspec Pro 

spectroradiometer (ASD, Boulder, USA) fitted with a fiber optic probe having a 10º FOV, as 

illustrated in Figure 3.13. The sampling interval in the 350–1050 nm range is 1.4 nm with a spectral 

resolution of 3 nm. In the 1050–2500 nm range, the sampling interval is about 2 nm, and the 

spectral resolution is 10-12 nm. The obtained hyperspectral curve is interpolated by the ASD 

software to produce readings at a 1 nm resolution. Measurements on the plant leaves were taken 

between 11:30 am to 12:30 pm to ensure a good solar radiation quality.  
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Figure 3.13 Grass leave measurement with an ASD FieldSpec Pro spectroradiometer 

For each test trench, 15 leaves were randomly selected, and 10 scans were taken on a single leave. 

Prior to the vegetation scanning, the spectra collection was optimized by a halon panel that can 

reflect more than 99% of the incident radiation. Therefore, the subsequent scanning will be 

normalized with the same object. Since the surrounding changes, the sensor calibration was 

repeated every 5 minutes and extra calibrations are required whenever the weather condition 

changes suddenly. The collected spectral signatures are subjected to both first order derivative 

(FOD) and second order derivative (SOD) to locate the ‘red edge’ as mentioned in a few HSIs. 

The red edge is defined as the infection point of a dramatic surge of original spectral curves in a 

range of 680 -750 nm. Red edge at 725 nm was found to shift to the shorter wavelength due to the 

influence of stress as the chlorophyll is altered to counteract the stress symptoms. 

3.3 Results and discussion  

Figure 3.14 presents the measured pigments along with the field test. There are two types of 

chlorophyll (Chl a and Chl b) with their corresponding concentrations displayed in Figure 3.14(a) 

and (b), respectively. They follow a similar trend over time. However, Chl a concentration is much 

higher than Chl b. The chlorophyll pigment increases with time though the control trench (T-

control1) only experiences a slow and small change over the entire test period. In contrast, the 

change in chlorophyll concentration in the gas-treated trenches varies greatly; a greater chlorophyll 

could occasionally exist even prior to the gas treatment. The higher chlorophyll on the gas-treated 
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trenches exacerbates with the field test but shows a dramatic drop as the field test continues in 

August 2022. A similar phenomenon was also observed in the HSIs as shown in Figure 3.11 and 

the continual rainfall at that time alleviates the stress effect as the plant root system is supplied 

with sufficient oxygen. Carotenoids generally follow a similar trend to that of chlorophyll for both 

the control and gas-treated trenches. Though all three pigments experience an increase over time, 

the relative pigment changes are utilized to denote the presence of stress on plants. This is because 

an absolute amount of pigment is susceptible to random sampling and measurement errors.  

Figure 3.14(d) and (e) show a ratio of ��/�� and (�� + ��)/����, respectively. Pigment ratios can 

directly show the change of plant pigments to reflect the potential effect of gas stress. Prior to the 

gas treatment on June 8, 2022, the difference in pigment ratio between the control and other 

trenches is negligible. The fact that both ratios show consistent values identified from all three 

trenches validates them in practical applications since all the three trenches are not yet treated with 

gas during that period. After 13 days of gas treatment, the ��/�� ratio shows a notable difference 

between the control and gas-treated trenches. The average ratio of the two gas-treated trenches 

exceeds the ratio for the control trench by a small growing increment over time. The change in 

pigment ratio precedes that in HSIs for almost one month. In contrast, (�� + ��)/���� for the gas 

treated trenches is significantly lower than that for the control trench even though the differences 

in ratio for both chlorophyll and carotenoids individually exhibit a large increase over time. (�� +

��)/���� for the control trench continues to increase gradually over time, while those for the gas-

treated trenches drop consistently and significantly after 13 days of gas treatment. The difference 

between the control and gas-stressed trenches slightly narrows down over time. 



84 
 

4/19 5/10 5/31 6/21 7/12 8/2 8/23

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

 T-control1
 T-treat1
 T-treat2

(a)

C
hl

 a

gas treatmentacclimation

 

  4/19 5/10 5/31 6/21 7/12 8/2 8/23
0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

 T-control1
 T-treat1
 T-treat2

(b)

C
hl

 b

gas treatmentacclimation

 



85 
 

4/19 5/10 5/31 6/21 7/12 8/2 8/23
0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

 T-control1
 T-treat1
 T-treat2

(c)

C
ar

gas treatmentacclimation

 

4/19 5/10 5/31 6/21 7/12 8/2 8/23
2.20

2.40

2.60

2.80

3.00

3.20

3.40

3.60
 T-control1
 T-treat1
 T-treat2

(d)

C
h

l 
a/

C
h

l 
b

gas treatmentacclimation

 

 



86 
 

4/19 5/10 5/31 6/21 7/12 8/2 8/23
2.00

2.50

3.00

3.50

4.00

4.50

5.00
(e)

(a
+

b)
/(

x+
c)

gas treatment
 T-control1
 T-treat1
 T-treat2

acclimation

 

Figure 3.14 The evolution of the plant pigments and the pigment ratios: (a) chlorophyll a (Chl a), 

(b) chlorophyll b (Chl b), (c) carotenoids (Car), (d) Chl a/Chl b, (e) (a+b)/(x+c). (x+c) denotes a 

total amount of carotenoids, including xanthophyll and carotenoids.  

The spectral signatures obtained by ASD are subjected to derivative analysis to locate the ‘red 

edge’ shift in the range of 680-740nm and the peak shift in the blue range. The red edge is 

determined by the inflection point in the red-light range. Thus, the SOD is performed to locate the 

position. Likewise, the absorptance peak around 540 nm is identified by the FOS analysis. Figure 

3.15(a) displays the four inflection points at approximately 701 nm, 718 nm, 721 nm, and 728 nm 

developed over time.  During the field test over time, the ‘red edges’ at 728 nm and 701 nm are 

slightly shifted to the shorter and longer wavelengths, respectively. A similar observation was also 

reported in a biochemical characterization of gas stress by Smith (2004). This shift is attributed to 

the change of chlorophyll due to gas treatment applied on the grasses. The wavelength shift around 

both 718 nm and 721 nm is not obvious. The difference in wavelength shift between the control 

and gas-treated trenches is difficult to discern. The wavelength featured by carotenoids is presented 

in Figure 3.15(b). Both global and local wavelength shifts of the absorptance peak around 552 nm 

are unclear.   
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(b) The carotenoid peak shift at 552 nm 

Figure 3.15 The spectral shifts based on the derivative analysis of ASD spectra 

4. Thermal analysis 

Unlike grass symptoms that take a long time to develop under gas treatment, temperature 

differences surrounding a gas treatment area can rapidly respond to the heat trapped in ground soil 
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as a result of gas leakage. As such, the change in ground temperature is a convenient indicator of 

heat transfer during gas leakage. In addition to the gas leakage, the test field experiences three 

forms of heat transfer under sunlight: conduction, convection, and radiation that are heat fluxes 

through soil materials, air through vertical PVC tubes, and electromagnetic waves, respectively.  

Two thermographic images captured around noon on June 8 and July 18, 2022, right after and 40 

days of gas treatment, are presented in Figure 3.16. During those test days, the atmospheric 

temperatures under sunlight were reported to be 68-73 °F and 70-82 °F, respectively. It can be 

observed from Figure 3.16 that the highest ground temperature recorded on June 8 is 

approximately 10 °F lower than that on July 18, which agrees well with the difference in 

atmospheric temperature on those two days. More importantly, the temperature contrast between 

the trench areas and their surroundings are also much higher on July 18 than that on June 8. This 

high temperature contrast makes the trench boundaries more identifiable. On July 18, the 

temperature within the domain of trenches is 10 °F or lower than that in surrounding areas mainly 

due to the 3-ft deep excavation and gravel placement in the trenches. This contrast remains 

significant even after the gas treatment may slightly heat underground in the trenches due to warm 

air flow through the vertical PVC pipes and then horizontal perforated pipes. As shown in Figure 

3.16(b), the thermal contrast between the control and gas-treated trenches is also notable mainly 

due to air circulation in soil through the vertical and horizontal pipes. The gas-treated trenches 

show a more even thermal emission, revealing a more identifiable trench boundary. On June 8, the 

thermal contrast between the control and gas-treated trenches is too low to reliably identify the 

trench boundaries from a first glimpse. The soil in excavated trench areas is consolidated in 

trenches after approximately nine months of waiting for field tests. In addition, since the vertical 

PVC pipes stay above the ground surface, grass in the domain of trenches may be longer than that 

in surrounding areas. This effect has not been quantified in this report.  
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(a)  Day 0                                               (b) Day 40 

Figure 3.16 Thermographic images of the test field on two different dates after gas treatment 

(Unit: ℃) 

To quantify the thermal contrast between the control and gas-treated trenches, the distributed 

temperature data within the domain of each trench are analyzed statistically. The (mean ± standard 

deviation) temperatures of each trench are presented in Figure 3.17. Prior to the gas treatment, the 

average temperature of the control trench is between those of the two gas-treated trenches. The gas 

treatment obviously yields a stronger thermal field as opposed to the control trenches. The average 

thermal difference is approximately 6 ℃ except 1.5 months into the field test program on July 22, 

2022. In the following three weeks till August 12, there seems no difference in thermal emission 

between the control and gas-treated trenches. This is likely caused by the heavy rainfalls (thunder 

storms) that were reported on July 17 and August 2, which were five and three days before their 

respective field measurements on July 22 and August 5, respectively. During that period, the 
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variation in ground temperature is substantially higher than other periods. Note that the field 

measurement on August 26, six days after the regular rain on August 20 was nearly unaffected. 

5/
12

5/
28

6/
08

6/
24

7/
05

7/
15

7/
22

8/
05

8/
12

8/
26

20

30

40

50

60

gas treatmentaccalimation

T
em

p
er

at
ur

e 
(°

C
)

 T-control1
 T-treat1
 T-treat1

 

Figure 3.17 The thermal difference between the control and the gas trenches 

5. Deep leaning networks for stress identification 

Hyperspectral images provide a wealth of information cutting across a wide range of spectral bands. 

Unfortunately, manually identifying the stress-sensitive features from such complex data cubes is 

computationally intractable due to the intricacies inherent in the problem. However, previous 

studies have indicated that state-of-the-art deep learning techniques can come in handy in such 

situations as they can detect useful features for autonomously classifying and localizing stress 

areas (Signoroni et., 2019; Chen, et., 2014; Li et., 2019; Audebert et., 2019; Paoletti et., 2019; 

Yang et., 2018). Many artificial intelligence (AI) techniques have been developed to solve the 

classification problem as for hyperspectral data. They are derived from the previous computer 

vison and pattern recognition problems. These methods can be categorized by different factors, 

from supervised learning (e.g., support vector machine, Naive bayes, and random forest) to 

unsupervised methods (e.g., K-means clustering and K-nearest neighbor), from statistical 
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classifiers (e.g., multinomial logistic regression, linear discriminate analysis) to the deterministic 

techniques (e.g., extreme learning machine), from spectral-based methodologies (spectral angle 

mapper to spatial or spectral-spatial ones (sparse coding). However, the supervised leaning faces 

changes due to the availability of the sufficient training samples as well as the high dimensionality 

of the hyperspectral data. In contrast, unsupervised techniques do not require the priori knowledge 

when performing classifications; they optimize the border parameters by the similarities between 

the input data. To compromise the limitations in supervised leaning, a multilayer perceptron 

(MLP)-based (Noriega, 2005; Ramchoun et., 2016) deep neural network (DNN) (Sze et., 2017; 

Miikkulainen et., 2019) is leveraged in this project to distinguish between stressed and non-

stressed pixels accurately. 

5.1 Material and methods 

5.1.1 Deep learning neutral network 

An MLP is the simplest form of a neural network consisting of interconnected neurons organized 

in the form of input, hidden, and output layers. Information flows from the input to the output layer 

in a feed-forward manner through the connections as shown in Figure 3.18. The input layer takes 

an input data which is subsequently processed by the intermediate hidden layers through a series 

of linear and nonlinear operations. Finally, the prediction of the neural network is displayed in the 

output layer. The input layer in the proposed MLP had 273 nodes representing approximate 

spectral bands used in this project. In other words, the reflectance values corresponding to each 

pixel as illustrated in Figure 3.19 are input to the DNN and classified as stressed or non-stressed. 

The DNN contains five hidden layers comprising 512, 1024, 2048, 1024, and 512 neurons. Each 

linear layer is followed by a Rectified Linear Unit (ReLU)-based activation (Agarap, 2018), except 

the last layer where a Sigmoid-based activation (Narayan, 1997) is used. The activation layers 

enable a DNN to deal with nonlinear relations. The connections between nodes are characterized 

by weights that are learned through a supervised back-propagation training algorithm (Hecht-

Nielsen, 1992; Erb, 1993; Wythoff, 1993; Li et., 2012; Hegazy et., 1994). A stochastic gradient 

descent-based optimization technique (Amari, 1993; Ketkar, 2017) is used to minimize a binary 

cross-entropy loss (Ho and Wookey, 2019) between the target and predicted labels. The learning 

rate is set to 0.001. The model is trained using an NVIDIA A100-SXM4-40GB GPU. 
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Figure 3.18 Layout of the proposed deep learning framework for identification of the stressed 

pixel points 

 

Figure 3.19 Demonstration of the spectral profile of a pixel 

5.1.2 Data Preparation 

To generate the training and test data sets, the hyperspectral data collected on 06/24/2022, 

07/15/2022, 07/22/2022, 08/02/2022, 08/12/2022, and 08/26/2022 are considered. A set of two 

thousand pixels were randomly selected from each of the four monitored trenches on each day of 

monitoring. The resulting data set contained 6 × 4 × 2000 = 48000 data points. Each data point 
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comprised a one-dimensional (1D) vector characterized by 273 elements. Fifty percents (50%) of 

the available data were randomly chosen for training, and the remaining 50% were used for 

evaluation. Each input feature was transformed individually and scaled to a range of [0,1] to 

ensure better convergence. 

5.2 Results and discussion 

5.2.1 The classification result by DNN 

The test data set in this study contains 11,628 positive (stressed) samples and 12,372 negative 

(non-stressed) samples. Several evaluation metrics are considered to assess the performance of the 

proposed deep learning-based stress identification technique. A true positive (TP) is an outcome 

where the model correctly predicts the positive class. Similarly, a true negative (TN) is an outcome 

where the model correctly predicts the negative class. On the other hand, a false positive (FP) is 

an outcome where the model incorrectly predicts the positive class. Furthermore, a false negative 

(FN) is an outcome where the model incorrectly predicts the negative class. Table 3.1 presents the 

results of deep learning-based stress detection. It is observed that the trained model produces high 

TP and TN values and low FP and FN values, which indicate an excellent predictive performance 

of the proposed DNN. Other evaluation metrics considered in this study are accuracy, precision, 

recall, and F1 score, which are defined as follows: 
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Accuracy measures what percentage of all the test samples are correctly classified. Precision 

implies what percentage of the positive predictions are true positives. Recall denotes the 

percentage of actual positive samples correctly identified. Last but not least, the F1 score is the 

harmonic mean of precision and recall. The trained DNN produces an accuracy, precision, recall, 

and F1 score of 96.2%, 97.4%, 94.9%, and 96.1%, respectively. These values indicate that the 
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proposed deep learning approach is bestowed with a very high degree of classification accuracy. 

A more detailed quantitative evaluation of stress levels is a scope for future work.  

Table 3.1 Results of deep learning-based stress detection 

Metric TP FP FN TN Accuracy Precision Recall F1 Score 

Score 11,324 304 610 11,762 0.962 0.974 0.949 0.961 

   

5.2.2 Identifying the most important bands  

Shapley Additive Explanations (SHAP) is a concept derived from the game theory and used to 

explain the output of machine learning models (Lundberg and Lee, 2017). SHAP values help 

interpret how much a given feature or input contributes, positively or negatively, to the target 

outcome or prediction. It connects optimal credit allocation with local explanations using the 

Shapley values from game theory and their related extensions, where a Shapley value is the average 

marginal contribution of an instance of a feature among all possible coalitions. The key idea of 

SHAP is to calculate the Shapley values for each feature of the sample to be interpreted, where 

each Shapley value represents the impact that the feature with which it is associated, generates in 

the prediction.  

In this project, each feature (band) was ranked according to the impact with respect to its associated 

Shapley values, and the top ten features are plotted in Fig. 3.20. It is observed that bands 163, 8, 

124, 9, 126, 122, 121, 119, 128, and 118 have the greatest impact on the model in the decreasing 

order. On the left side of the figure, each feature is ordered according to its importance. The color 

represents the values that each feature can take, red for high values and blue for low values. 

Therefore, if the feature values (e.g., for band 163) are high (red), the Shapley values are low and 

consequently pushed towards class 0 (or non-stressed). On the other hand, when the feature values 

are low (blue), the Shapley values are high and consequently pushed towards class 1 (stressed). 

Similar conclusions can likewise be drawn for other bands also. This affords a great deal of 

interpretability to the predictions of the deep learning model.  
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Figure 3.20 Summary of SHAP analysis 

In the SHAP plot, the dot in the negative region means the feature value corresponds to the 

prediction that the smaller of the element value at Feature163 is prone to yield the class ‘nonstress’ 

and vice versa, while the dots around the zero indicates that they do not make too much difference 

in terms of stress state discrimination. For instance, the red dots are basically located in the far left 

of the SHAP axis, which illustrates that the more negative of the element values produces more 

negative effect on the nonstress state. In other words, large values at Feature163 characterize the 

stress status of the plants. In contrast, large values at Feature8 and Feature9 help the discrimination 

of stress states. In the SHAP plot, Feature represents the band in the VNIR range. To understand 

the significance of each band, the significance of the first100 bands with a decreasing order in 

SHAP plot are converted into columns as shown in Fig. 3.21. According to the band distribution, 

the VNIR can be divided into four regions. The red box represents the range of 671-720 nm, which 

is the red edge as illustrated in Figure 3.9. Red edge is sensitive to the stress occurrence on 

vegetations, which has been practiced in many stress factors, such as heavy mental contamination 

and saline soils. It is noted that the bands within 620-670 nm show great significance as for stress 

status differentiation. This range corresponds to the absorption of the chlorophyll that is the major 
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plant pigment that works in both photosynthesis and photoprotection. When it comes to 

photoprotection, the stress factors basically generate some oxidative species in plant cells to 

prevent the metabolism and chlorophyll from counteracting the oxidative substances in order to 

maintain healthy status of the plant. Likewise, the secondary pigment in plants, carotenoid also 

displays huge significance as indicated by the bands in purple box around 530 nm. The last region 

is basically located in the NIR range that is reportedly dominated by the leaf mesophyll. Many 

bands are present in the NIR range, which demonstrates that plant cell structural components make 

a difference to identify the gas treatment stressed plants. 
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Figure 3.21 Significance of each band in VNIR to discriminate stressed plants 

Beyond the band significance, the SHAP plot offers a view of how to differentiate the non-stressed 

plant from the stressed ones by the relative magnitude of band (Feature) values. Figure 3.22 

presents the correlation of the magnitude of band values with the health stress. The plot is derived 

from a combination of band significance and the positive/negative effect on the determination of 

non-stressed status. If a higher value at the band is required, it is assigned as positive; otherwise, 

it is negative. As shown in Figure 3.22, the bands above zero mean that the non-stressed plant is 

associated with higher values in those bands. In this regard, the relative spectral intensity in VNIR 
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can be speculated between nonstress and stress states. As indicated in Figure 3.22, a non-stressed 

plant yields higher intensities in the range of 420-560 nm and 750-950 nm and lower values 

between 600-720 nm in comparison with the stressed plants. In general, the close bands should 

somewhat be correlated due to their close wavelengths. However, some close bands in NIR show 

a reverse effect, which may be attributed to the undiscovered mechanisms that regulate the 

intensity in those narrow band regions, such as 770-780 nm and 845-852 nm. As depicted in Figure 

3.22, the non-stressed plant should give a higher intensity between 400-600 nm and the NIR range 

as well as a smaller value in 600-730 nm than that of the stressed plants. This statement is 

consistent with the previous observations that natural gas leakage increases the hyperspectral 

reflectance red edge and chlorophyll-characterized absorption around 600 nm (Noomen et al., 

2008; Barnes et al., 1992). Smith et al. (2004) observed the decrease in NIR on the canopy of 

winter wheat and bean plants in the simulated methane gas leakage experiment.  
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Figure 3.22 The relative change of the bands in VNIR to demonstrate the non-stress state 

The spectral change in the visible range is associated with the generic response of the plant to the 

stress in pigment’s concentration change. The pigments were measured in lab by the ultraviolet 

spectrometer and the pigment concentration change along with the field test is presented in Figure 

3.14. It can be seen that both pigments increase after the methane gas treatment in comparison 
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with the control condition. The increase in the carotenoid explains the decrease in the reflectance 

in the range of 500-550 nm for the stressed plants while the increase of the chlorophyll-featured 

absorption in response of the methane stress can be compromised by the observation that the 

chlorophyll increase is relatively low as opposed to the carotenoid as indicated by the lower 

(a+b)/(x+c) in Fig. 3.14. This means that the control plants basically contain more chlorophyll and 

thus lower reflectance than the gas-treated plants. The implication agrees with the indication in 

Figure 3.22 that the control plants yield a lower reflectance intensity between 600 nm and 720 nm.  

5.3 Conclusion  

This study investigates the use of an MLP-based DNN to classify the plants with or without the 

methane gas treatment and provides the indication of the features for the stressed plant from the 

perspective of spectral profiles. Based on the classification example, the proposed DNN can 

successfully classify the plant with an overall accuracy of 96.2%. The DNN also provides an 

indication that the ‘red edge’ chlorophyll-featured bands are the most informative in terms of the 

classification. By considering the marginal contribution of each element, the distribution of the 

element values demonstrates that the methane stressed plant should display a lower intensity in the 

NIR and 500-600 nm as well as a higher intensity in the range of chlorophyll absorption between 

600 nm and 720 nm in comparison with the control group. This indication is also proven by the 

bio-chemical measurement of the plant pigments and therefore can be a reliable criterion for the 

identification of methane gas affected plants in the field practice.   

VI. Future Work 

The proposed HSI mapping will be tested in a real-world case to validate its feasibility and 

effectiveness. The thermal contrast technique will be fused with other data to enhance the 

applicability as so many heat sources may induce a false alert. More in-depth research will be 

conducted on the gas leakage detection on the more complex scenarios in the future.  
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