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Knowledge Transfer

• Epistemic and Aleatoric Uncertainty Quantification for Defect Detection using an RGB-D Fusion Network (In Preparation)
• B-BACN : Bayesian Boundary-Aware Convolutional Network for Defect Segmentation (In Preparation)
• Semi-Supervised Surface Defect Segmentation using Activation Map Interpolation (In Preparation)

Journal Papers

• Integrated ILI Prototype : ymlasu/AI-Enabled-ILI-System-Integration
• B-BACN : Bayesian Boundary-Aware Convolutional Network for Defect Segmentation: ymlasu/Bayesian-Boundary-Aware-

Convolutional-Network (github.com)
• Semi-Supervised Surface Defect Segmentation using Activation Map Interpolation: ymlasu/Semi-Supervised-Semantic-

Segmentation-Activation-Map-Interpolation (github.com)

Source Code

• Threat Detection using Active Stereo for In-Line Inspection in Gas Pipelines, PRCI Fall Technical Meeting 2022

Poster presentations

• AI-Enabled Interacting Threat Detection using a Multi-Camera Stereo-Vision System, PHM Society Conference, 2020

Doctoral Symposium
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Technical Objectives

Develop software for depth extraction and pipe surface mapping using stereo-visionDevelop

Develop a hardware prototype for a vision-based inspection tool using off-the-shelf sensorsDevelop

Propose accurate and efficient anomaly detection techniquesPropose

Propose physics-based models for interactive threats using FEAPropose

Integrate the prototype with the developed software to perform a demonstration on a pipe sample in the lab.Integrate
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Educational Objectives

Training

Guide and train 
graduate students at 
Arizona State 
University for the 
pipe integrity 
assessment and risk 
mitigation

Exposure

Integrate with 
existing mechanisms 
for undergraduate 
research at Arizona 
State University for 
early exposure of 
pipe industry 
research to potential 
engineers

Teaching

Improve the current 
curriculum teaching at 
Arizona State University 
(MAE 598 Probabilistic 
methods for Engineering 
Analysis and Design) and 
using the achievement 
from the proposed 
research

Internships

Encourage the 
involved students to 
apply internships at 
USDOT and industry 
to gain practical 
experiences for the 
potential technology 
transfer of the 
developed 
methodologies
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Executive Summary – TASK 1
Tasks Proposed Delivered

Task 1.1 Reports and codes for stereo vision algorithm
developed for generating a depth map of pipeline
surface

1. RealSense SDK is used for the baseline results in depth map
generation.

2. Extremum-seeking control algorithm codes are delivered to
improve depth map quality automatically.

Task 1.2 Reports and drawings for optimal design criteria
and calibration procedures of the prototype device

1. Hardware calibration was performed, and design criteria
were outlined for in-line inspection with a single rotating
camera system.

Task 1.3 Reports and specifications for the hardware
requirements for desired performance and future
commercialization plans

1. Sensitivity analysis and experiments for depth camera
performed and results documented.

2. Analytical analysis of depth camera to determine depth and
area resolution documented and contextualized in the
framework of ILI

Task 1.4 Full-scale prototype device and reports on
preliminary testing in laboratory experiments

1. Proposed hardware components have been specified for the
robotic platform with codes delivered. The prototype is built
as a single unit and evaluated in the pipeline environment.
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Executive Summary – TASK 2
Task Proposed Delivered

Task 2.1/Task
2.2

Reports and codes for the trained deep learning model
and detection performance for pipeline anomaly detection

1. Dataset collection for ILI defect detection model.

2. Proposed a fully supervised RGB-D fusion network for semantic
segmentation with MC Dropout uncertainty.

3. Proposed a point-cloud derived data stream for the CNN to leverage
the geometrical features of the pipe – called the DNC representation.

4. Empirical comparison between various encoder backbones for
semantic segmentation.

5. Defect quantification using semantic segmentation results for crack
and corrosion defects.

6. Proposed a semi-supervised learning algorithm for defect detection
based on interpolation consistency training.

Task 2.3 Reports and tools for the physics-based models developed
for assessing interactive threats and damage prognostics

1. Utilized the ASME B31G and NG-18 models to estimate remaining
useful life.

2. Application of a Kriging-based surrogate model trained on FEM data to
estimate remaining useful life for crack and corrosion defects.

3. Interacting threat assessment for corrosion pits using FEM and
comparison with ASME B31G.

Task 2.4 Reports on demonstration study of the hardware-software
integrated prototype device

1. Reporting, demonstration, and code for the integrated functioning of
the prototype.
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Flow chart for defect detection and 
prognostics

Raw data 
acquisition

Feature 
extraction

Prediction

Analytics

Prognostics

Machine Learning & Image Processing Techniques Uncertainty Quantification & risk assessment
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Depth Map Generation using D435i

ILI system that captures pipe wall features 
with 1280x720 px @ 30fps.

Intel Realsense ™ D435i camera system

Raw depth data is acquired using "active" stereo 
vision: Binocular stereo + IR Dot Projection for 
"fake textures"

RGB-D data and Segmentation  from a pipe sample

Stereo block matching
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Depth Map Generation using D435i
Measuring the inherent noise level in the sensor: 

R𝑀𝑆𝐸 = 𝑧!"– 𝑧#"

The subpixel RMS error is given in the form of disparity in 
pixels and is a function of the plane-fit projected depth 𝑧# and 
the actual depth 𝑧!
What is the minimum change in depth the sensor can detect? 

𝑧 =
𝑓𝑏
𝑑

𝑑𝑧 = −
𝑧"

𝑓𝑏
𝑑𝑑 +

𝑧
𝑏
𝑑𝑏 +

𝑧
𝑓
𝑑𝑓

11



Depth Map Generation using D435i

Spatial Resolution : We use a pinhole camera model to convert image coordinate measurements into the corresponding 
world coordinate measurement, for a given resolution 𝑋$%& and 𝑌$%&.

𝑙!
𝑓"
=
𝑙#
𝑧

𝑓" =
1
2𝑋$%&

tan 𝜃'
2

𝑙! =
1
2𝑋$%&

tan 𝜃'
2

𝑙(
𝑧

Given the image resolution, focal length, depth and 
object length in the pixel space, you can compute 
the corresponding length in the world coordinate 
system. 
For our case, 
The D435i has a pixel size of 3𝜇𝑚x3𝜇𝑚. This gives 
us ~ 0.621 mm per pixel for an object that is 
200mm away. 
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Depth Map Generation using D435i
SUMMARY of the empirical sensitivity analysis across key parameters for thickness and shape 
measurement using the D435i

Parameter Min Max Summary of analysis findings

Thickness Error Area Error

Exposure ( !
"! 𝑠) 0 70e5 BAND BAND

Gain (dB) FINE-TUNE FINE-TUNE

Laser Power (W) 0 250 FINE-TUNE FINE-TUNE

Second Peak Threshold (Px) 0 1000

Neighbor Threshold (Px) 0 500

Disparity Shift (Px) 0 175 BAND BAND

Symbol Meaning

BAND Best values found in a 
band, beyond which 
errors grow.

FINE TUNE Fine-tune along with 
or after exposure 
tuning.

/ Relation between 
parameter (blue) and 
error (red) variation.
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Depth Map Post Processing Techniques
Hole Filling by Colorization

Classical Image Processing-based inpainting technique, originally used for colorizing monochrome images.
Encodes an implicit notion of continuity, weighted by RBF, to the depth map by minimizing the following function:

𝐽 𝑈 = 3
$

(𝐼 𝑟 − 3
& 23

𝑤$&𝐼(𝑠))
"

𝑤!" = 𝑒
#
$ ! #$ " !

%&"!

RGB                              Unprocessed depth map         Processed depth map
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Depth Map Post-Processing Techniques
Extremum Seeking Controller

Camera parameter fine-tuning using an Extremum Seeking Controller (ESC) to dynamically tune the map according to the 
following objective function:

𝐽 𝑥 = − log
𝑛4
𝑊𝑥𝐻

𝑛# − pixels with valid depth values
𝑊,𝐻 − Depth map dimensions

The plots show the evolution of the cost function and the parameters respectively. 
The final solution for the depth map is shown in the figure.

Cost function vs Iterations

Normalized parameter values vs Iterations

Final depth map
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Hardware Prototyping

MODIFIED DESIGN
§ Co-axiality of the stereo-camera with 

the pipe
§ Orthogonality of the camera with the 

pipe surface
§ 3D printable parts alongside 

standard mounts for motors.

INITIAL DESIGN
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Pipeline Surface Mapping and Odometry

• RGB-D SLAM
• Stitching and odometry during the scanning process.
• Defect localization using IMU-Visual Odometry fusion.
• SLAM works for arbitrary pipe shapes.

Pipe mapping demonstration (top) for a corroded 
metallic pipe. Pitch angle over time (bottom)
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Pipeline Surface Mapping and Odometry

• Challenges:
• Featureless surfaces can cause high uncertainty in 

robot position
• Jerky odometry worsens reconstruction

• Potential solutions:
• Using additional sensing elements (stepper motor 

data) to inform camera angle

SLAM-based stitching with a low inlier ratio for features.

Feature match ratio peaks at ~ 0.4

Intermittent loss of matches leading to errors in image stitching
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Uncertainty Modeling

• Motivations:
• How would predictions be impacted if there’s not 

enough data?
• How would predictions be impacted if the test 

data is different from what we trained on?
• Classifiers vs Regression models
• Epistemic vs Aleatoric uncertainty

• Most types of uncertainty are “reducible”.
• Sources of uncertainty assumed “irreducible”:

• Sensor noise
• Occlusion, reflections and other image artifacts

Uncertainty in regression
DOI:10.1109/AITEST52744.2021.00027

Uncertainty in classification 
DOI: https://doi.org/10.1007/s10994-021-05946-3

Epistemic

Aleatoric
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Background – MC Dropout
Bayesian Inference:
Prior : 𝑝(𝑓) where 𝑓 is a sample from the distribution of
functions that could have generated the data

𝑦 = 𝑓(𝑥), 𝑥 𝜖 𝑋, 𝑦 𝜖 𝑌.

Likelihood : 𝑝 𝑌 𝑓, 𝑋 .

Posterior : 𝑝 𝑓 𝑌, 𝑋 𝛼 𝑝 𝑌 𝑓, 𝑋 𝑝(𝑓)

Posterior predictive for a new sample:

𝑝 𝑦∗ 𝑥∗, 𝑋, 𝑌 = F𝑝 𝑦∗ 𝑥∗, 𝑤 𝑝 𝑤 𝑥∗, 𝑋, 𝑌 𝑑𝑤

• MC-Dropout FCN:
• A form of model averaging by changing model complexity 

randomly over multiple sampling iterations. 
• Key Idea: Modify the deep neural net by adding in a 

dropout layer and  use the dropout layer during inference 
to randomly remove model parameters to get an averaged 
output from multiple models.

Illustration of dropout in neural nets*
(source: https://proceedings.mlr.press/v48/gal16.html)
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Uncertainty Modeling for Classification using 
MC-Dropout
Classification

Assume	binary	training	data	generated	from	Bernoulli
𝑦!|𝑥!~𝐵𝑒𝑟𝑛(𝜙 𝑤6𝑥! )

𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥7𝑝(𝑦!|𝑥! , 𝑤)
This formulation leads to a stochastic negative log likelihood loss by first setting up a Gaussian distribution using the 
predicted mean and variances:

𝑦!|𝑊 ~ 𝑁(𝑓(𝑥) !7 , 𝜎7!
")

𝑝! = 𝜙 𝑦!

𝑦!,9 = 𝑓 𝑥! : + 𝜖9 𝜖9~𝑁(0, , 𝜎7!
")

𝐿; = 𝑁𝐿𝐿(𝑦!,9 , 𝑦)
This is implemented by first transforming the 𝑦!,9 using the log sum exp trick and passing it onto the NLL loss 
function. 

𝜙 − 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
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Verification - Classification
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(a) Decision boundary for the two-moons classifier (b) Epistemic and aleatoric uncertainty across training samples

(a) (b)
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Depth-Normal-Curvature Representation
RGB-DNC representation
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Uncertainty Quantification using MC-Dropout
Analysis on the ASU Pipe RGB-D Dataset

Most of the uncertainty is in the boundary of the defect
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Uncertainty Quantification using MC-Dropout
Analysis on the ASU RGB-D Pipe Dataset – Calibration of the detections

Small dataset

Larger, Augmented dataset
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Uncertainty Quantification using MC-Dropout
Fusion-Method DataFMT mF1 Background F1 Corrosion F1 Crack F1

Element-wise Add DNC 0.444 0.962 0.247 0.120

Recalibration 
Filter*

DNC 0.452 0.946 0.255 0.138

Ours DNC 0.459 0.950 0.317 0.110

*Chen, Xiaokang, et al. "Bi-directional cross-modality feature propagation with separation-and-aggregation gate for RGB-D semantic segmentation." European Conference on 
Computer Vision. Springer, Cham, 2020.
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Learning with Limited Data: Semi-Supervised 
Defect Localization using Activation Map 
Interpolation
• Key idea: Perturb inputs using augmentation to 

generate samples in the neighborhood of the 
original sample. Then, constrain the prediction of 
the neural network for both samples.
𝑥<!; = 𝑎. 𝑇= 𝑥= + 𝜖= + 1 − 𝑎 . 𝑇"(𝑥" + 𝜖")
𝑦<!; ≈ 𝑎. 𝑇= 𝑦= + 𝜖= + 1 − 𝑎 . 𝑇"(𝑦" + 𝜖")

• 𝑇! are image transformations and 𝜖! is a noise 
function.

Semi-supervised learning using ICT: Latent information 
from unlabeled data can be leveraged using supervision 
from a limited training set. Overall approach for 
segmentation inspired from ICT
Image source: https://doi.org/10.24963/ijcai.2019/50427

https://doi.org/10.24963/ijcai.2019/504


Semi-Supervised Defect Localization using 
Activation Map Interpolation

§ The cluster assumption is a key concept that we use to justify why we 
perform interpolation in the latent space.

§ Consistency regularization constrains the predictions in the 
neighborhood of a sample to produce the same prediction as the 
unperturbed sample and is based on the validity of the cluster 
assumption. 

Input DM: Input Block 1 Block 5

Cluster assumption demonstration by computing 
the patch wise Euclidean distance between a patch 
and its neighbors

Dataset Training Validation

NEU 600 300

CrackForest 135 16
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Demonstrative Results – NEU Surface Defects 
Dataset

Image      GT More training data FULL SUPERVISION

NEU Dataset:
3 defect types, 600 training images in total.
Performance metric:
mIU- mean (over # of classes) Intersection 
over Union
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Demonstrative Results – Crack Defects 
Dataset

Method Type Labeled Tolerance (px) mIU F-1

Canny Image

Processing

- 5 - 0.1576

CrackForest Image-level

labels + Hand

engineered

features

- 5 - 0.8571

U-Net Fully

Supervised

100% 0 0.55 0.7015

Res U-Net +

ASPP

Fully

Supervised

100% 0 0.56 0.7121

Ours Fully

Supervised

100% 0 0.7312 0.8443

Ours Semi

Supervised

5% 0 0.6944 0.8194

Ours Semi

Supervised

10% 0 0.6881 0.8151

Ours Semi

Supervised

20% 0 0.7109 0.8310

Ours Semi

Supervised

50% 0 0.6733 0.8047

Demonstrative detections on the CrackForest validation set: (Left to Right) Image, Ground

Truth, 5% Labeled, 10% Labeled, 20% Labeled, 50% Labeled, Fully Labeled

More training dataImage            GT
FULL SUPERVISION
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Post-Processing and Defect Characterization

Defect 
measurement after 
segmentation using 

point-cloud data

ASME B31G to 
estimate failure 

pressure using the 
measurements

FEM to estimate 
failure pressure 

using point-cloud 
data
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Post Processing – Defect Measurement

32



ASME B31G for modeling isolated defects
Conventional technique of using ASME B31G standard has been used to model failure pressure

𝑃) =
1.1𝑆*2𝑡
𝐷

1 − 0.85 𝑑
𝑡

1 −
0.85 𝑑

𝑡
𝑀1

𝑀1 = 1 + 0.6275𝑧 − 0.003375𝑧+ , 𝑧 =
𝐿+

𝐷𝑡
≤ 50

𝑀1 = 0.032𝑧 + 3.3, 𝑧 =
𝐿+

𝐷𝑡 > 50

We demonstrate failure pressure prediction based on an assumed rate of defect growth, for a single corrosion 
pit

𝛿𝑑 ~ 𝑁,- 𝜇,- = 0.1, 𝜎,- = 0.01

𝛿𝑙 ~ 𝑁,. 𝜇,. = 0.1, 𝜎,- = 0.01

𝑠 = 𝑃) − 𝑃/0 − 𝐿𝑖𝑚𝑖𝑡 𝑆𝑡𝑎𝑡𝑒

Extending to multiple corrosion pits requires additional models (FEA and FEA-based surrogates).

Prediction of failure pressure 
with depth to wall thickness 
ratio for a carbon steel pipe

Probability of failure over time
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ASME B31g VS  FEA for Interactive Threats

• The FEA analysis was performed for the pipeline with two
interactive threats and validated against the experimental
burst Pressure.

• The Parametric study was performed for the pipe with
two interactive threats having 100mm length, 50mm
width, and three different depths, i.e., 8, 10, and 13mm.

• The distance between two defects was varied, and FEA
was used to predict the burst pressure

• ASME B31G does not consider pit interaction effects, but
the FEM model does: This leads to a reduction in failure
pressure point as the pits get closer.

• The point cloud data was used to create the pipe model
with the actual surface and utilized FEA to evaluate the
burst pressure.
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Hardware-Software Integrated Prototype

RTAB-Map RGB-D SLAM Mapping Demonstration

Image, Prediction: Mean and Variance

Robot Operation Demonstrations
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Conclusions
• Evaluation of a commercially available stereo-sensor for ILI

• Millimeter scale depth and submillimeter scale spatial resolution can be achieved for corrosion defect detection. 
• Order of magnitude improvement in depth resolution is needed to make early failure prediction for defects such as 

narrow cracks.

• Fully supervised segmentation network with heteroscedastic uncertainty modeling
• Semantic segmentation models have been developed to perform fine-grained localization of defects.
• Uncertainty formulation can aid inspection protocols by providing indicators of distribution shift and lack of training 

data.
• We predict aleatoric uncertainty along with a sampling-based method for epistemic uncertainty. 
• Results indicate that using additional depth and point cloud-derived surface maps such as normals and curvatures 

reduces model uncertainty and improves F-1 score.

• Semi supervised segmentation using activation map interpolation
• Activation map interpolations are demonstrated to better obey the cluster assumption, enabling better 

representation clustering at the latent variable level, rather than at the input level.
• Proposed method achieves up to 76% of the performance of a fully supervised model, using only 5% of the labeled 

data, on a large defect segmentation dataset.
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Conclusions
• Models for defect post processing and risk assessment

• Defect measurements using point cloud and segmentation results are used in the ASME B31G model for remaining 
life prediction

• Improvements to the ASME B31G model using an FEM based model were proposed considering threat interactions 
• Based on the developed FEM model, our results indicate that using FEM-derived surrogates can account for 

interacting effects between multiple pitting defects, yielding more accurate failure estimates.

• Hardware-Software Integrated Prototype
• Prototype hardware development using off the shelf equipment was performed
• Developed ILI robot was deployed in pipe sample alongside the SLAM model and machine learning model to predict 

odometry and defect characteristics respectively.
• Based on our experiments, we conclude that RGB-D SLAM is able to map corroded pipe surfaces. However, mapping 

feature-sparse surfaces requires additional investigation.
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Next Steps

§ Improving depth resolution for better detection of narrow crack 
depths
§ High resolution optical sensing
§ Stereo sensors fused with other modalities such as polarization sensing

§ On-board odometry improvements in feature-sparse environments
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Thank you for your attention. Questions?
CONTACT INFORMATION
Dr. Yongming Liu
ENGRC 409
Engineering Research Center
Tempe, AZ 85287-6106
Mailcode: 6106
Phone 480-965-6883
Email yongming.liu@asu.edu
Google Scholar
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Project Details

Public page for more details on the project
Research & Development Program: AI-enabled Interactive Threats 
Detection using a Multi-camera Stereo Vision System (dot.gov)
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