Al-enabled Interactive Threats Detection using a Multi-camera Stereo Vision System

CONTRACT : 693JK31950002CAAP

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Project Details

CAAP Contract ID: 693JK31950002CAAP

PI : Dr Yongming Liu (<u>yongming.liu@asu.edu</u>)

Co-PI : Dr Yang Yu

AOR : Dr Zhongquan Zhou (<u>Zhongquan.zhou@dot.gov</u>) **Funding** : \$250,000.00 **Start/End Date** : 09/30/2019 – 09/29/2022

Research Award Recipient :

Arizona State University

660 S. Mill Ave. Tempe, AZ 85281

Knowledge Transfer

Journal Papers

- Epistemic and Aleatoric Uncertainty Quantification for Defect Detection using an RGB-D Fusion Network (In Preparation)
- B-BACN : Bayesian Boundary-Aware Convolutional Network for Defect Segmentation (In Preparation)
- Semi-Supervised Surface Defect Segmentation using Activation Map Interpolation (In Preparation)

Source Code

- Integrated ILI Prototype : <u>ymlasu/AI-Enabled-ILI-System-Integration</u>
- B-BACN : Bayesian Boundary-Aware Convolutional Network for Defect Segmentation: <u>ymlasu/Bayesian-Boundary-Aware-</u> Convolutional-Network (github.com)
- Semi-Supervised Surface Defect Segmentation using Activation Map Interpolation: <u>ymlasu/Semi-Supervised-Semantic-</u> Segmentation-Activation-Map-Interpolation (github.com)

Poster presentations

• Threat Detection using Active Stereo for In-Line Inspection in Gas Pipelines, PRCI Fall Technical Meeting 2022

Doctoral Symposium

• AI-Enabled Interacting Threat Detection using a Multi-Camera Stereo-Vision System, PHM Society Conference, 2020

Project Team Acknowledgement

PI:

Dr Yongming Liu (Professor, Department of Mechanical & Aerospace Engineering, Arizona State University)

Co-PI:

Dr Yang Yu

PhD student:

Rahul Rathnakumar

Master students:

Ms. Sampriti Neog

Mr. Gowtham Dakshamoorthy

Mr. Rohith Kalyan Kavadappu

Mr. Rakesh Balamurugan

Mr. Abhishek Srinivas Loganathan

Mr. Karthikeya Vemullapalli

Mr. Chinmay Dixit

Mrs. Kailing Liu

Mr. Utkarsh Pujar

Undergraduate students:

Mr. Omar Serag

Project Management Team:

Dr. Zhouquan Zhou (PHMSA) Mr. Robert Smith (PHMSA)

Technical Advisory and Assistance:

Ernest Lever (GTI) Tony Lindsay (GTI) Zoe Shall (PRCI) Many others...

Technical Objectives

Develop	Develop software for depth extraction and pipe surface mapping using stereo-vision
Develop	Develop a hardware prototype for a vision-based inspection tool using off-the-shelf sensors
Propose	Propose accurate and efficient anomaly detection techniques
Propose	Propose physics-based models for interactive threats using FEA
Integrate	Integrate the prototype with the developed software to perform a demonstration on a pipe sample in the lab.

Educational Objectives

Training	Exposure	Teaching	Internships
Guide and train graduate students at Arizona State University for the pipe integrity assessment and risk mitigation	Integrate with existing mechanisms for undergraduate research at Arizona State University for early exposure of pipe industry research to potential engineers	Improve the current curriculum teaching at Arizona State University (MAE 598 Probabilistic methods for Engineering Analysis and Design) and using the achievement from the proposed research	Encourage the involved students to apply internships at USDOT and industry to gain practical experiences for the potential technology transfer of the developed methodologies

Executive Summary – TASK 1

Tasks	Proposed		Delivered
Task 1.1	Reports and codes for stereo vision algorithm developed for generating a depth map of pipeline surface	1. 2.	RealSense SDK is used for the baseline results in depth map generation. Extremum-seeking control algorithm codes are delivered to improve depth map quality automatically.
Task 1.2	Reports and drawings for optimal design criteria and calibration procedures of the prototype device	1.	Hardware calibration was performed, and design criteria were outlined for in-line inspection with a single rotating camera system.
Task 1.3	Reports and specifications for the hardware requirements for desired performance and future commercialization plans	1. 2.	Sensitivity analysis and experiments for depth camera performed and results documented. Analytical analysis of depth camera to determine depth and area resolution documented and contextualized in the framework of ILI
Task 1.4	Full-scale prototype device and reports on preliminary testing in laboratory experiments	1.	Proposed hardware components have been specified for the robotic platform with codes delivered. The prototype is built as a single unit and evaluated in the pipeline environment.

Executive Summary – TASK 2

Task	Proposed	Delivered
Task 2.1/Task 2.2	Reports and codes for the trained deep learning model and detection performance for pipeline anomaly detection	 Dataset collection for ILI defect detection model. Proposed a fully supervised RGB-D fusion network for semantic segmentation with MC Dropout uncertainty. Proposed a point-cloud derived data stream for the CNN to leverage the geometrical features of the pipe – called the DNC representation. Empirical comparison between various encoder backbones for semantic segmentation. Defect quantification using semantic segmentation results for crack and corrosion defects. Proposed a semi-supervised learning algorithm for defect detection based on interpolation consistency training.
Task 2.3	Reports and tools for the physics-based models developed for assessing interactive threats and damage prognostics	 Utilized the ASME B31G and NG-18 models to estimate remaining useful life. Application of a Kriging-based surrogate model trained on FEM data to estimate remaining useful life for crack and corrosion defects. Interacting threat assessment for corrosion pits using FEM and comparison with ASME B31G.
Task 2.4	Reports on demonstration study of the hardware-software integrated prototype device	 Reporting, demonstration, and code for the integrated functioning of the prototype. 8

Flow chart for defect detection and prognostics

Raw depth data is acquired using "active" stere vision: Binocular stereo + IR Dot Projection for "fake textures"

ILI system that captures pipe wall features with 1280x720 px @ 30fps.

RGB-D data and Segmentation from a pipe sample

Intel Realsense ™ D435i camera system

Measuring the inherent noise level in the sensor:

$$RMSE = \sqrt{z_i^2} - z_p^2$$

The subpixel RMS error is given in the form of disparity in pixels and is a function of the plane-fit projected depth z_p and the actual depth z_i

What is the minimum change in depth the sensor can detect?

Spatial Resolution : We use a pinhole camera model to convert image coordinate measurements into the corresponding world coordinate measurement, for a given resolution X_{res} and Y_{res} .

Given the image resolution, focal length, depth and object length in the pixel space, you can compute the corresponding length in the world coordinate system.

For our case,

The D435i has a pixel size of $3\mu mx3\mu m$. This gives us ~ 0.621 mm per pixel for an object that is 200mm away.

SUMMARY of the empirical sensitivity analysis across key parameters for thickness and shape measurement using the D435i

Parameter	Min	Max	Summary of a	nalysis findings]	
				, 0	Symbol	Meaning
			Thickness Error	Thickness Error Area Error		Best values found in a
Exposure $\left(\frac{W}{m^2}s\right)$	0	70e5	BAND	BAND		errors grow.
Gain (dB)			FINE-TUNE	FINE-TUNE	FINE TUNE	Fine-tune along with or after exposure
Laser Power (W)	0	250	FINE-TUNE	FINE-TUNE		tuning.
					♠ ♠ / ♠ ♣	Relation between
Second Peak Threshold (Px)	0	1000				parameter (blue) and error (red) variation.
Neighbor Threshold (Px)	0	500	1 ➡			
Disparity Shift (Px)	0	175	BAND	BAND		

Depth Map Post Processing Techniques

Hole Filling by Colorization

Classical Image Processing-based inpainting technique, originally used for colorizing monochrome images. Encodes an implicit notion of continuity, weighted by RBF, to the depth map by minimizing the following function:

$$J(U) = \sum_{r} (I(r) - \sum_{s \in N} w_{rs} I(s))^{2} \qquad \qquad w_{rs} = e^{-\frac{(I(r) - I(s))^{2}}{2\sigma_{r}^{2}}}$$

RGB

Unprocessed depth map Processed depth map

AT THENT OF TRANKS

STATES OF A

NOILATS

AMERICA

Depth Map Post-Processing Techniques

Extremum Seeking Controller

Camera parameter fine-tuning using an Extremum Seeking Controller (ESC) to dynamically tune the map according to the following objective function:

The plots show the evolution of the cost function and the parameters respectively. The final solution for the depth map is shown in the figure.

Hardware Prototyping

INITIAL DESIGN

MODIFIED DESIGN

- Co-axiality of the stereo-camera with the pipe
- Orthogonality of the camera with the pipe surface
- 3D printable parts alongside standard mounts for motors.

Pipeline Surface Mapping and Odometry

Pipe mapping demonstration (top) for a corroded metallic pipe. Pitch angle over time (bottom)

- RGB-D SLAM
 - Stitching and odometry during the scanning process.
 - Defect localization using IMU-Visual Odometry fusion.
 - SLAM works for arbitrary pipe shapes.

Pipeline Surface Mapping and Odometry

 Using additional sensing elements (stepper motor data) to inform camera angle

SLAM-based stitching with a low inlier ratio for features.

Uncertainty Modeling

- Motivations:
 - How would predictions be impacted if there's not enough data?
 - How would predictions be impacted if the test data is different from what we trained on?
 - Classifiers vs Regression models
 - Epistemic vs Aleatoric uncertainty
 - Most types of uncertainty are "reducible".
 - Sources of uncertainty assumed "irreducible":
 - Sensor noise
 - Occlusion, reflections and other image artifacts

Background – MC Dropout

Bayesian Inference:

Prior : p(f) where f is a sample from the distribution of functions that could have generated the data $y = f(x), x \in X, y \in Y$.

Likelihood : p(Y|f, X).

Posterior : $p(f|Y,X) \alpha p(Y|f,X)p(f)$

Posterior predictive for a new sample:

$$p(y^*|x^*, X, Y) = \int p(y^*|x^*, w) p(w|x^*, X, Y) dw$$

- MC-Dropout FCN:
 - A form of model averaging by changing model complexity randomly over multiple sampling iterations.
 - Key Idea: Modify the deep neural net by adding in a dropout layer and use the dropout layer during inference to randomly remove model parameters to get an averaged output from multiple models.

Illustration of dropout in neural nets* (source: <u>https://proceedings.mlr.press/v48/gal16.html</u>)

Uncertainty Modeling for Classification using MC-Dropout

Classification

Assume binary training data generated from Bernoulli

 $y_i | x_i \sim Bern(\phi(w^T x_i))$

 ϕ – softmax

 $w = argmax_w p(y_i | x_i, w)$

This formulation leads to a stochastic negative log likelihood loss by first setting up a Gaussian distribution using the predicted mean and variances:

$$y_i | W \sim N(f(x)_i^w, \sigma^{w_i^2})$$
$$p_i = \phi(y_i)$$
$$y_{i,t} = f(x_i)^W + \epsilon_t \epsilon_t \sim N(0, \sigma^{w_i^2})$$
$$L_x = NLL(y_{i,t}, y)$$

This is implemented by first transforming the $y_{i,t}$ using the log sum exp trick and passing it onto the NLL loss function.

Verification - Classification

Uncertainty Breakdown vs Training samples

(a) Decision boundary for the two-moons classifier (b) Epistemic and aleatoric uncertainty across training samples

Depth-Normal-Curvature Representation

RGB-DNC representation

Uncertainty Quantification using MC-Dropout

Analysis on the ASU Pipe RGB-D Dataset

		MeanF1	$Class0_F1$	$Class1_F1$	$Class2_F1$			MeanEpi	Class0_Epi	Class1_Epi	Class2_Epi			MeanAle	Class0_Ale	$Class1_Ale$	Class2_Ale
TrainSamples	DataFmt					TrainSamples	DataFmt					TrainSamples	DataFmt				
	rgb	0.406	0.916	0.214	0.088		rgb	0.0059	0.0079	0.0048	0.0049		rgb	1.000	1.000	1.000	1.000
4	rgbd	0.427	0.939	0.249	0.092	4	rgbd	0.0053	0.0074	0.0044	0.0041	4	rgbd	0.999	1.002	1.006	0.990
4	rgbdc	0.435	0.956	0.250	0.098	4	rgbdc	0.0047	0.0067	0.0030	0.0044	4	rgbdc	1.004	0.994	1.014	1.003
	rgbdnc	0.433	0.959	0.239	0.102		rgbdnc	0.0041	0.0057	0.0030	0.0035		rgbdnc	1.013	0.996	1.009	1.033
	rgb	0.420	0.941	0.209	0.109		rgb	0.0051	0.0071	0.0038	0.0044		rgb	1.000	0.999	0.999	1.001
0	rgbd	0.434	0.942	0.271	0.088	0	rgbd	0.0050	0.0071	0.0035	0.0044	9	rgbd	1.000	1.002	1.006	0.990
9	rgbdc	0.438	0.941	0.234	0.139	9	rgbdc	0.0044	0.0062	0.0036	0.0034		rgbdc	1.003	0.993	1.014	1.003
	rgbdnc	0.389	0.911	0.155	0.102		rgbdnc	0.0056	0.0073	0.0048	0.0046		rgbdnc	1.014	0.996	1.010	1.035
	rgb	0.437	0.949	0.224	0.138		rgb	0.0040	0.0057	0.0030	0.0032	14	rgb	0.999	0.997	0.999	1.000
14	rgbd	0.465	0.955	0.312	0.128	14	rgbd	0.0043	0.0061	0.0031	0.0036		rgbd	1.000	1.006	1.008	0.986
14	rgbdc	0.497	0.962	0.346	0.182	14	rgbdc	0.0036	0.0051	0.0032	0.0024		rgbdc	1.005	0.991	1.014	1.010
	rgbdnc	0.470	0.962	0.313	0.136		rgbdnc	0.0034	0.0049	0.0026	0.0027		rgbdnc	1.018	0.994	1.015	1.044
	rgb	0.386	0.912	0.137	0.108		rgb	0.0065	0.0089	0.0045	0.0062		rgb	0.999	0.997	0.999	1.000
10	rgbd	0.415	0.923	0.238	0.083	10	rgbd	0.0060	0.0080	0.0048	0.0051	$\frac{51}{7}$ 19	rgbd	1.001	1.005	1.009	0.989
19	rgbdc	0.479	0.923	0.370	0.144	19	rgbdc	0.0056	0.0076	0.0045	0.0047		rgbdc	1.007	0.991	1.014	1.016
	rgbdnc	0.459	0.950	0.317	0.110		rgbdnc	0.0059	0.0084	0.0039	0.0055		rgbdnc	1.020	0.993	1.019	1.049

RGB

RGB-D RGB-DC

RGB-DNC

0.9

0.8

0.7

Most of the uncertainty is in the boundary of the defect

Uncertainty Quantification using MC-Dropout

Analysis on the ASU RGB-D Pipe Dataset – Calibration of the detections

Uncertainty Quantification using MC-Dropout

Fusion-Method	DataFMT	mF1	Background F1	Corrosion F1	Crack F1
Element-wise Add	DNC	0.444	0.962	0.247	0.120
Recalibration Filter*	DNC	0.452	0.946	0.255	0.138
Ours	DNC	0.459	0.950	0.317	0.110

*Chen, Xiaokang, et al. "Bi-directional cross-modality feature propagation with separation-and-aggregation gate for RGB-D semantic segmentation." *European Conference on Computer Vision*. Springer, Cham, 2020.

Learning with Limited Data: Semi-Supervised Defect Localization using Activation Map Interpolation UNLABELED UNLABELED ACTIVATION ENCODER OUTPUTS

Key idea: Perturb inputs using augmentation to generate samples in the neighborhood of the original sample. Then, constrain the prediction of the neural network for both samples.

 $x_{mix} = a.T_1(x_1 + \epsilon_1) + (1 - a).T_2(x_2 + \epsilon_2)$ $y_{mix} \approx a. T_1(y_1 + \epsilon_1) + (1 - a). T_2(y_2 + \epsilon_2)$

 T_i are image transformations and ϵ_i is a noise function.

Semi-supervised learning using ICT: Latent information from unlabeled data can be leveraged using supervision from a limited training set. Overall approach for segmentation inspired from ICT Image source: https://doi.org/10.24963/ijcai.2019/504

A THENT OF TRANSIO

UNITED

Semi-Supervised Defect Localization using Activation Map Interpolation

Cluster assumption demonstration by computing the patch wise Euclidean distance between a patch and its neighbors

- The cluster assumption is a key concept that we use to justify why we perform interpolation in the latent space.
- Consistency regularization constrains the predictions in the neighborhood of a sample to produce the same prediction as the unperturbed sample and is based on the validity of the cluster assumption.

Dataset	Training	Validation
NEU	600	300
CrackForest	135	16

Demonstrative Results – NEU Surface Defects Dataset

		1	0		0.01	TTT	L
	Labeled samp	bles	Supervisi	on	m	ilU	
	0%		Consistency Loss Only			.08	
	5%		Supervise	ed	0	.39	
			Semi-Superv	vised	0	.64	
	10%		Supervise	ed	0	.43]
			Semi-Superv	vised	0	.66	
	20%		Supervise	ed	0	.51	1
			Semi-Superv	vised	0	.64	
	50%		Supervised			0.68	
			Semi-Supervised			0.69	
	100%		Supervised			0.84	
			9				
	Method		Туре	Labele	d	m	IU
	SegNet [3]	Fu	lly Supervised	100%		0.5	65′
	PSPNet [29]	Fu	lly Supervised	100%		0.7	22
	PGA-Net [7]	Fu	Illy Supervised 10			0.8	21:
	Ours	Fu	Illy Supervised 10			0.8	309
	Ours	Se	mi-Supervised	5%		0.6	429
	Ours	Se	mi-Supervised	10%		0.6	674
	Ours	Se	mi-Supervised	20%		0.6	454
. 1	-			-			

Semi-Supervised

50%

0.6992

Ours

NEU Dataset:

3 defect types, 600 training images in total.

Performance metric:

mIU- mean (over # of classes) Intersection over Union

Demonstrative Results – Crack Defects Dataset

Method	Туре	Labeled	Tolerance (px)	mIU	F-1
Canny	Image	-	5	-	0.1576
	Processing				
CrackForest	Image-level	-	5	-	0.8571
	labels + Hand				
	engineered				
	features				
U-Net	Fully	100%	0	0.55	0.7015
	Supervised				
Res U-Net +	Fully	100%	0	0.56	0.7121
ASPP	Supervised				
Ours	Fully	100%	0	0.7312	0.8443
	Supervised				
Ours	Semi	5%	0	0.6944	0.8194
	Supervised				
Ours	Semi	10%	0	0.6881	0.8151
	Supervised				
Ours	Semi	20%	0	0.7109	0.8310
	Supervised				
Ours	Semi	50%	0	0.6733	0.8047
	Supervised				

Demonstrative detections on the CrackForest validation set: (Left to Right) Image, Ground Truth, 5% Labeled, 10% Labeled, 20% Labeled, 50% Labeled, Fully Labeled

Post-Processing and Defect Characterization

Defect measurement after segmentation using point-cloud data ASME B31G to estimate failure pressure using the measurements

FEM to estimate failure pressure using point-cloud data

Post Processing – Defect Measurement

ASME B31G for modeling isolated defects

Conventional technique of using ASME B31G standard has been used to model failure pressure

Probability of failure over time

Prediction of failure pressure with depth to wall thickness ratio for a carbon steel pipe

We demonstrate failure pressure prediction based on an assumed rate of defect growth, for a single corrosion pit

 $\delta d \sim N_{\delta d}(\mu_{\delta d} = 0.1, \sigma_{\delta d} = 0.01)$ $\delta l \sim N_{\delta l}(\mu_{\delta l} = 0.1, \sigma_{\delta d} = 0.01)$ $s = P_f - P_{op} - Limit State$

Extending to multiple corrosion pits requires additional models (FEA and FEA-based surrogates).

ASME B31g VS FEA for Interactive Threats

- The FEA analysis was performed for the pipeline with two interactive threats and validated against the experimental burst Pressure.
- The Parametric study was performed for the pipe with two interactive threats having 100mm length, 50mm width, and three different depths, i.e., 8, 10, and 13mm.
- The distance between two defects was varied, and FEA was used to predict the burst pressure
- ASME B31G does not consider pit interaction effects, but the FEM model does: This leads to a reduction in failure pressure point as the pits get closer.
- The point cloud data was used to create the pipe model with the actual surface and utilized FEA to evaluate the burst pressure.

Hardware-Software Integrated Prototype

Robot Operation Demonstrations

RTAB-Map RGB-D SLAM Mapping Demonstration

Image, Prediction: Mean and Variance

Conclusions

- Evaluation of a commercially available stereo-sensor for ILI
 - Millimeter scale depth and submillimeter scale spatial resolution can be achieved for corrosion defect detection.
 - Order of magnitude improvement in depth resolution is needed to make early failure prediction for defects such as narrow cracks.
- Fully supervised segmentation network with heteroscedastic uncertainty modeling
 - Semantic segmentation models have been developed to perform fine-grained localization of defects.
 - Uncertainty formulation can aid inspection protocols by providing indicators of distribution shift and lack of training data.
 - We predict aleatoric uncertainty along with a sampling-based method for epistemic uncertainty.
 - Results indicate that using additional depth and point cloud-derived surface maps such as normals and curvatures reduces model uncertainty and improves F-1 score.
- Semi supervised segmentation using activation map interpolation
 - Activation map interpolations are demonstrated to better obey the cluster assumption, enabling better representation clustering at the latent variable level, rather than at the input level.
 - Proposed method achieves up to 76% of the performance of a fully supervised model, using only 5% of the labeled data, on a large defect segmentation dataset.

Conclusions

- Models for defect post processing and risk assessment
 - Defect measurements using point cloud and segmentation results are used in the ASME B31G model for remaining life prediction
 - Improvements to the ASME B31G model using an FEM based model were proposed considering threat interactions
 - Based on the developed FEM model, our results indicate that using FEM-derived surrogates can account for interacting effects between multiple pitting defects, yielding more accurate failure estimates.
- Hardware-Software Integrated Prototype
 - Prototype hardware development using off the shelf equipment was performed
 - Developed ILI robot was deployed in pipe sample alongside the SLAM model and machine learning model to predict odometry and defect characteristics respectively.
 - Based on our experiments, we conclude that RGB-D SLAM is able to map corroded pipe surfaces. However, mapping feature-sparse surfaces requires additional investigation.

Next Steps

- Improving depth resolution for better detection of narrow crack depths
 - High resolution optical sensing
 - Stereo sensors fused with other modalities such as polarization sensing
- On-board odometry improvements in feature-sparse environments

Selected References

Gal, Yarin, and Zoubin Ghahramani. "Dropout as a bayesian approximation: Representing model uncertainty in deep learning." *international conference on machine learning*. PMLR, 2016.

Kendall, Alex, and Yarin Gal. "What uncertainties do we need in bayesian deep learning for computer vision?." *Advances in neural information processing systems* 30 (2017).

Ariyur, Kartik B., and Miroslav Krstic. Real-time optimization by extremum-seeking control. John Wiley & Sons, 2003.

Scheinker, Alexander, En-Chuan Huang, and Charles Taylor. "Extremum Seeking-Based Control System for Particle Accelerator Beam Loss Minimization." *IEEE Transactions on Control Systems Technology* 30.5 (2021): 2261-2268.

Verma, Vikas, et al. "Interpolation consistency training for semi-supervised learning." Neural Networks 145 (2022): 90-106.

French, Geoff, et al. "Semi-supervised semantic segmentation needs strong, varied perturbations." arXiv preprint arXiv:1906.01916 (2019).

Labbé, Mathieu, and François Michaud. "RTAB-Map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation." *Journal of Field Robotics* 36.2 (2019): 416-446.

Thank you for your attention. Questions?

CONTACT INFORMATION

Dr. Yongming Liu ENGRC 409 Engineering Research Center Tempe, AZ 85287-6106 Mailcode: 6106 Phone <u>480-965-6883</u> Email <u>yongming.liu@asu.edu</u> <u>Google Scholar</u>

Project Details

Public page for more details on the project <u>Research & Development Program: AI-enabled Interactive Threats</u> <u>Detection using a Multi-camera Stereo Vision System (dot.gov)</u>

