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1 EXECUTIVE SUMMARY 

1.1 Project Status – Proposed vs. Delivered 

Tasks Proposed Delivered 

Task 1.1 Reports and codes for stereo vision 

algorithm developed for generating a 

depth map of pipeline surface 

1. RealSense SDK is used for the baseline 

results in depth map generation. 

2. Extremum-seeking control algorithm codes 

are delivered to improve depth map quality 

automatically. 

Task 1.2 
Reports and drawings for optimal 

design criteria and calibration 

procedures of the prototype device  

 

1. Hardware calibration was performed, and 

design criteria were outlined for in-line 

inspection with a single rotating camera 

system. 

Task 1.3 
Reports and specifications for the 

hardware requirements for desired 

performance and future 

commercialization plans  

 

1. Sensitivity analysis and experiments for 

depth camera performed and results 

documented. 

2. Analytical analysis of depth camera to 

determine depth and area resolution 

documented and contextualized in the 

framework of ILI. 

 

Task 1.4 
Full-scale prototype device and 

reports on preliminary testing in 

laboratory experiments  

 

1. Proposed hardware components have been 

specified for the robotic platform with codes 

delivered. The prototype is built as a single 

unit and evaluated in the pipeline 

environment. 
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Task 

2.1/Task 

2.2 

Reports and codes for the trained 

deep learning model and detection 

performance for pipeline anomaly 

detection  

 

1. Dataset collection for ILI defect detection 

model. 

2. Proposed a fully supervised RGB-D fusion 

network for semantic segmentation with 

MC Dropout uncertainty. 

3. Proposed a point-cloud derived data stream 

for the CNN to leverage the geometrical 

features of the pipe – called the DNC 

representation.  

4. Empirical comparison between various 

encoder backbones for semantic 

segmentation.  

5. Defect quantification using semantic 

segmentation results for crack and corrosion 

defects. 

6. Proposed a semi-supervised learning 

algorithm for defect detection based on 

interpolation consistency training. 

Task 2.3 Reports and tools for the physics-

based models developed for 

assessing interactive threats and 

damage prognostics 

1. Utilized the ASME B31G and NG-18 

models to estimate remaining useful life.  

2. Application of a Kriging-based surrogate 

model trained on FEM data to estimate 

remaining useful life for crack and corrosion 

defects.  

3. Interacting threat assessment for corrosion 

pits using FEM and comparison with ASME 

B31G. 
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Task 2.4 
Reports on demonstration study of 

the hardware-software integrated 

prototype device for ILI of actual 

pipeline systems  

 

1. Reporting, demonstration, and code for the 

integrated functioning of the prototype. 

1.2 Summary of Accomplishments 

Journal Papers 

▪ Epistemic and Aleatoric Uncertainty Quantification for Defect Detection using an RGB-D 

Fusion Network (Revisions in progress) 

▪ Semi-Supervised Surface Defect Segmentation with Activation Map Interpolation (In 

Preparation) 

Poster presentations 

▪ AI-Enabled Interacting Threats Detection using a Multi-Camera Stereo-Vision System, 

PHMSA R&D Forum 2020 

▪ Threat Detection using Active Stereo for In-Line Inspection in Gas Pipelines, PRCI Fall 

Technical Meeting 2022 

Doctoral Symposium 

▪ AI-Enabled Interacting Threat Detection using a Multi-Camera Stereo-Vision System, 

PHM Society Conference, 2020 

Educational Accomplishments 

▪ Sampriti Neog (MS) Mechatronics, Robotics and Automation Engineering (2021) 

Student Contributors 

▪ Rahul Rathnakumar (PhD student) 

▪ Rakesh Balamurugan (MS student) 

▪ Chinmay Dixit (MS student)  

▪ Utkarsh Pujar (MS student) 

▪ Omar Serag (Undergraduate student) 
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▪ Kailing Liu (MS stundent) 

▪ Sampriti Neog (MS Student) 

▪ Karthikeya Vemullapalli (MS student) 

▪ Rohith Kalyan Kavadappu (MS student) 

▪ Gowtham Dakshnamoorthy (MS student) 

▪ Abhishek Srinivas Loganathan (MS student)  
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2 DEPTH MAP GENERATION AND CAMERA CALIBRATION PROCEDURES 

2.1 Working Principle of Stereovision 

Stereovision relies on matching corresponding points in one camera to another camera. This 

requires camera calibration, followed by triangulation. We briefly explain this process here to help 

readers from fields outside computer vision. Existing literature in photogrammetry has extensive 

descriptions that can be referred to for further details (Hartley & Zisserman, 2004).  

It can be inferred from Figure 2.1 that a point in an image can be projected along a ray to a point 

in the 3D space and vice versa. The point determines the ray equation on the image plane and the 

camera's optical center. The projection of a pixel on the image plane onto the 3D space is only 

determined by the equation of the ray projected from the camera. In other words, we know the 

position of the 3D point subject to a scaling parameter for the depth. On the other hand, we can 

completely determine the position of a projected pixel from the 3D space provided we know the 

location and orientation of the camera's image plane. In Figure 2.1, there are two calibrated 

cameras. In this context, calibration is the process of determining the camera's internal parameters 

and the camera's position and orientation. The calibration is represented with calibration matrices 

𝑃1and 𝑃2 for the first and second cameras, respectively. If this matrix is known, it is possible to 

project a 3D point in the scene to a pixel on the camera, provided the camera's field of view is high 

enough. 

  

                                                 (a)                                            (b)  

Figure 2.1: (a) Projection from the image plane to 3D world coordinates is only known up to 

scale (b) Triangulation approach to find the corresponding point on the second camera for a point 

on the first camera. 
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𝑥 = 𝑃𝑥 2. 1  

𝑃 = [
𝑓 0 𝑝𝑥

0 𝑓 𝑝𝑦

0 0 1

] [

𝑟1 𝑟2 𝑟3 𝑡1
𝑟4 𝑟5 𝑟6 𝑡2
𝑟7 𝑟8 𝑟9 𝑡3

]  
2. 2  

In Equations 2.1 and 2.2 the pixel coordinate 𝑥 is obtained by linearly transforming the world 

coordinates 𝑋 using the calibration matrix 𝑃. The calibration matrix consists of the intrinsic 

parameters represented by 𝑓, 𝑝𝑥 and 𝑝𝑦 and the relative rotation matrix and translation vector from 

a common coordinate system given by the 𝑟𝑖 and 𝑡𝑖 respectively. 

The inverse problem involves computing a point in the world corresponding to a point in the image. 

Given two cameras with known calibration matrices, an estimate without scale ambiguity can be 

made using triangulation. A point in the image plane of one camera can lie anywhere on a ray 

projected from the image plane. The intersection of the ray from the second camera with the ray 

from the first camera provides the corresponding match. The 3D point and the rays to the 3D point 

from each camera plane constitute the epipolar plane. The epipolar plane is constrained to be 

hinged to the line joining the optical centers of the two cameras, known as the baseline. In general, 

the correspondences of a point in the first image plane lie on a line called the epipolar line on the 

second image plane. This epipolar line is used for the matching point search. Determining the 

equation of this epipolar line requires a transformation from a point in the first image plane as 

shown in Equations 2.3 and 2.4: 

𝑙′ = 𝐸𝑥, 𝑥′𝑇𝑙′ = 0  2. 3  

𝐸 = 𝑡 𝑋 𝑅  2. 4  

 𝑡 and 𝑅 are the relative translation vector and rotation matrix, respectively, for each image plane 

to obtain the essential matrix E. 

The search space for the matching process is made smaller by rectification - projecting the images 

from both cameras onto a common image plane. This puts the epipoles of both image planes at 

infinity. All epipolar lines are, therefore, parallel. The consequence of this projection is that the 

second image is shifted along with a line relative to the first image, removing the 3 relative 

rotational degrees of freedom and 2 translational degrees of freedom. Figure 2.1 (b) shows the top-
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down view of the rectified configuration of the two-camera system. Using similar triangles, we 

can derive the depth of a point using Equations 2.5 and 2.6: 

𝑏 + 𝑥𝑙 − 𝑥𝑟

𝑧 − 𝑓
=

𝑏

𝑧
 

2. 5  

𝑧 =
𝑓𝑏

𝑑
  

2. 6  

where 𝑏 is the baseline, 𝑓 is the focal length, 𝑧 is the depth of the point in the world frame, 𝑥𝑙 and 

𝑥𝑟 are the horizontal coordinates in the image plane, and 𝑑 is the disparity. 

2.2 Camera Calibration and Preliminary Case Studies on the Aptina AR0330 Camera 

A camera projects 3D points in the real-world to 2D points on an image plane by using the 

following mapping: 

𝑢 = 𝐾[𝑅|𝑇]𝑋 2. 7  

 where K is the 3-by-3 camera intrinsic matrix comprised of intrinsic parameters, including the 

focal length and principle point; R and T are the 3-by-3 rotation matrix and 3-by-1 translation 

vector (extrinsic parameters), respectively; the vector 𝒖 = [𝑥 𝑦 1] represents the 2D 

coordinates of the points in the image plane; 𝑿 = [𝑋 𝑌 𝑍 1] represents the 3D coordinates of 

the points in the real world. Equation 2.7 can be simplified to a form similar to Equation 2.1 as: 

𝑢 = 𝑃𝑋 2. 8  

where P is the 3x4 camera projection matrix. In a stereo vision system, an object point in the real 

world is mapped onto image planes by the two cameras as: 

𝑢 = 𝑃1𝑋 2. 9  

 

𝑣 = 𝑃2𝑋 2. 10  

where X is the 3D coordinate of the object point; P1 and P2 are the camera projection matrices of 
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the two cameras, respectively; and u and v are the 2D coordinates of the object point in the image 

plane of cameras 1 and 2, respectively. Recall that the two vectors in the same direction have a 

cross product of zero. Thus, we have: 

𝑢 × 𝑃1𝑋 = 0 2. 11  

𝑣 × 𝑃2𝑋 = 0 2. 12  

which can be expressed as: 

𝑢 × 𝑃1𝑋 = [

𝑦𝑢𝑝1
3𝑇 − 𝑝1

2𝑇

𝑝1
1𝑇 − 𝑥𝑢𝑝1

3𝑇

𝑥𝑢𝑝1
2𝑇 − 𝑦𝑢𝑝1

1𝑇

] 𝑋 = [
0
0
0
] 

2. 13  

𝑣 × 𝑃1𝑋 = [

𝑦𝑣𝑝2
3𝑇 − 𝑝2

2𝑇

𝑝2
1𝑇 − 𝑥𝑣𝑝2

3𝑇

𝑥𝑣𝑝2
2𝑇 − 𝑦𝑣𝑝2

1𝑇

] 𝑋 = [
0
0
0
] 

2. 14  

where 𝒑𝟏
𝑛𝑻 and 𝒑𝟏

𝑛𝑻 are the transpose of the nth row of the camera projection matrix P1 and P2, 

respectively. Combining Equation 2.13 and Equation 2.14 gives: 

[
 
 
 
 
𝑦𝑢𝑝1

3𝑇 − 𝑝1
2𝑇

𝑝1
1𝑇 − 𝑥𝑢𝑝1

3𝑇

𝑦𝑣𝑝2
3𝑇 − 𝑝2

2𝑇

𝑝2
1𝑇 − 𝑥𝑣𝑝2

3𝑇]
 
 
 
 

𝑋 = [

0
0
0
0

] 

2. 15  

Equation 2.15 represents a homogeneous linear system that can be solved using Singular Value 

Decomposition (SVD) to obtain the 3D coordinate X. Once the coordinates of two critical points, 

X1 and X2 are known, we can then compute the distance between the two points as:  

𝑑𝑖𝑠𝑡 = √(𝑋1 − 𝑋2)2 + (𝑌1 − 𝑌2)2 + (𝑍1 − 𝑍2)2 

                            

2. 16  

For the experiment, a dual-lens USB webcam shown in Figure 2.2 is adopted. Each camera has a 

resolution of 640x480. To obtain the camera projection matrix, multi-plane calibration is 

conducted. The calibration image set includes 15 pairs of images of a chessboard placed at different 
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angles and distances from the camera, as shown in Figure 2.3. The calibration is done using 

Zhang’s Camera Calibration Algorithm (Z. Zhang, 2000). The reprojection errors of the calibration 

are plotted in Figure 2.4. The reprojection errors are small, with an average error of approximately 

0.15, indicating that accurate calibration was performed. A visualization of the calibration is shown 

in Figure 2.5. The calibrated camera parameters, including the camera projection matrix, the 

relative orientation between cameras, and the rectification rotation matrix, were stored for later 

use in distance estimation. 

 

Figure 2.2: Dual Lens Aptina AR0330 USB Camera 

The purpose of the experiment is to verify that the developed algorithm can be used to characterize 

the pipeline defect in terms of its size and depth. For this purpose, two case studies were designed, 

including one case for size estimation and the other case for depth estimation. A Rubik's cube was 

adopted to represent the ‘defect’ in this experiment. 

 

Figure 2.3: Calibration images 
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Figure 2.4: Reprojection errors of calibration 

 

Figure 2.5: Visualization of multi-plane camera calibration 

Case study 1 

For Case study 1, the Rubik's cube is placed on a shelf, as shown in top row of Figure 2.6. The top 

two layers of the cube are rotated to form two inclined surfaces. The objective is to estimate the 

edge length of each layer of the cube as denoted by L1, L2, and L3, shown in Figure 2.6 (c). 
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(a)                                           (b)  

  

                                                 (c)                                              (d)  

Figure 2.6: Image pair captured by the stereo camera for Case Study 1: (a) Left camera image (b) 

Right camera image (c) Edge length of the cube (d) Disparity map for case study 1 

The captured image pair is rectified, and the disparity map is obtained using semi-global matching 

algorithm as shown in Figure 2.6 (d), where the outline of the shelf and cube can be seen from the 

disparity map. The procedures for distance estimation are illustrated here by using L1 as an 

example. First, the 2D coordinates of the vertices are obtained from the rectified images, as shown 

in Figure 2.7. It can be seen that: (1) the 2D pixel coordinates of the left vertex of L1 are [331 42] 

and [288 42] in the left and right images, respectively; (2) the 2D pixel coordinates of the right 

vertex of L1 are [376 42] and [333 42] in the left and right images, respectively. Then, the 3D 

coordinates of the vertices are computed using the algorithm developed above. In this case, the 3D 

coordinates of the left and right vertices of L1 are estimated to be (21.75, -278.11, 1129.49) mm 

and (80.01, -277.14, 1125.21) mm, respectively. Finally, the edge length is computed using 

Equation 2.16. The edge length L1 is estimated to be 5.84 cm, while the true length is measured 

at 5.62 cm. The same procedures are repeated for all three edges shown in Figure 2.6 (d), and the 

results are summarized in Table 2.1. The developed algorithm can estimate the edge length with 

good accuracy. The error for L2 is larger due to the higher degree of inclination. 



26 
 

 

Figure 2.7: Location and 2D coordinates of the vertices of L1: (a) rectified left image; (b) 

rectified right image 

Table 2.1: Distance estimation results 

Case study 2 

The purpose of Case study 2 is to demonstrate that the developed algorithm can estimate the depth 

of ‘defect’. For this purpose, the Rubik's cube is placed against the wall to simulate a defect 

protruding out of the pipeline surface, as shown in Figure 2.8 (a) and (b). In this case, the depth to 

be estimated is equal to the edge length of the cube.  

From the camera calibration, the focal length is 869.31 pixels, and the baseline distance between 

the two cameras is measured at 59.77 mm. The depth of all pixels can be obtained, and the depth 

map is plotted in Figure 2.8 (c).The depth of four representative points is denoted in Figure 2.8 

(d). It can be seen the depth of the wall is approximately 143.1 cm while the depth of the cube is 

approximately 137.4 cm, based on which the depth of the ‘defect’ is estimated to be 5.7 cm which 

is very close to the actual value of 5.62 cm. It should be noted that the estimated depth is 

approximate values because the plane of the camera is aligned parallel to the wall only by hand. 

Therefore, more rigorous alignment is performed to ensure that the obtained depth reflects the 

shortest distance from the camera plane to the defect surface. 

Edge Left vertex coordinate 

(mm) 

Right vertex coordinate 

(mm) 

Distance  

(cm) 

Error 

(%) 

L1 (21.75, -278.11, 1129.49) (80.01, -277.14,1125.21) 5.84 3.97 

L2 (16.91, -244.43,1154.33) (51.72, -233.52,1102.62) 6.33 12.61 

L3 (37.30, -236.19,1127.57) (94.17, -235.51,1123.99) 5.70 1.40 
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                                                  (a)                                             (b) 

 

                                                  (c)                                             (d) 

Figure 2.8: Image pair captured by the camera for case study 2: (a) Left image (b) Right image 

(c) Computed disparity map (d) Computed depth map 

2.3 Design Criteria and Hardware Prototypes 

2.3.1 Hardware prototype 1 

The initial hardware prototype was in line with the proposed multi-camera configuration. The 

inspection device hosts 3 stereo-cameras, each covering a portion of the pipe's Field of View 

(FoV). A housing module holds these cameras in place. The housing module is fixed onto a rotating 

arm connected to a tracked robot base. 

The camera housing module will be used to host three pairs of stereo cameras. Figure 2.9 (a) shows 

the camera setup with one camera. The camera bed where the cameras were to be placed was 

designed according to this area's requirement to accommodate them. The field of view of the 

camera is 180⁰ and the angle at which the cameras were placed was to be calculated. Since the 

field of view of the camera was 180⁰, we placed it at an optimal angle so that it would cover a 

major portion of the pipe's inner surface. To accommodate this, the cameras are placed at 37.5⁰ 
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with respect to the pipe's inner surface. This was because we need to stitch the images obtained 

from each pair of stereo cameras, and each pair of the stereo camera needed to cover at least 120⁰. 

We must also cover the region directly perpendicular to the camera on the pipe surface. Thus, we 

chose an angle higher than 1200, which was 142.50. We selected a commercial eight degrees of 

freedom (DOF) vehicle robot with 8-Axis RC robotic arm for the robot carrier. Details of this 

carrier and camera are listed in Appendix B. The camera module and the robot platform are shown 

in Figure 2.9. 

   

                                                       (a)                                     (b) 

  

(c)                                  (d) 

Figure 2.9: (a) Camera housing module (b) Vehicle tank assembly (c) Robot arm assembly (d) 

Assembled robot carrier 

A demonstration with simulated defects is conducted to visualize the pipe surface with simulated 

defects. For the demonstration, the camera housing module was elevated to the axis center of the 

pipe, and a ruler was placed at the end which was to be observed to show different contours. The 

surface also had an irregularity to simulate what rust would look like. This was done to demonstrate 

that the depth map generated could identify both contour types, i.e., the crack propagating inwards 

and rust protruding outwards. Once the setup was complete, the stereo vision code was run, and 
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the results were generated. The RGB image of the pipe is shown in Figure 2.10 (a). This shows 

the two types of contours, i.e., the ruler and the surface irregularity. It should be noted that this 

image is distorted around the edges as a fisheye camera was used. The depth map was generated 

and shown in Figure 2.10 (b). The contours of the ruler and two surface irregularities can be clearly 

seen from the depth map. The ruler was placed to simulate protruding irregularities in the pipe, 

and its edges worked as cracks to show the depth in the cracks. The other irregularity shown 

worked as simulated rust in the pipe. In addition, the depth map generated is sensitive to the 

lighting condition.  

 

                             (a)                                                                          (b)  

Figure 2.10: (a) Original RGB image (b) Computed depth map 

2.3.2 Hardware prototype 2 

This prototype is a significant modification of Hardware prototype 1. A multi-camera system 

would have been useful to cover an effective field of view greater than any one camera, provided 

the placement of these cameras was made correctly. However, In-Line Inspection (ILI) tools with 

cameras not oriented normally towards the pipe wall reduce the detection capabilities in the depth 

map, as shown in Figure 2.11. Figure 2.11 has a nut that is 20mm long and has a maximum depth 

of approximately 10mm. The depth map does not indicate the object is present, despite it being 

much larger than the lowest pixel resolution provided by the depth map. Furthermore, the oblique 

viewing angle of the camera presents difficulties for extracting normal and curvature features from 

the point cloud that can indicate bumps in the surface. A simplified design is therefore proposed. 

A rotating single-camera system replaces the fixed multi-camera system. The rotation is about an 

axis parallel to the pipe's axis, so the camera is always facing normally to the pipe surface. This 

means that any surface defect that changes the pipe radius will be more visible, as the radial change 

in depth is captured directly by the depth map, which maps the z-component of the point cloud. 
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Additionally, the proposed design guarantees that the entire pipe section can be covered with a 

rotation about the axis and a translation along the length of the pipe. It is also possible to add 

additional degrees of freedom, such as translation vertically or horizontally with respect to the 

camera mount so that the robot can navigate closer to or away from a particular defect on the pipe 

wall to get clearer images. 

 

                                 (a)                                    (b)                                       (c) 

Figure 2.11: Demonstration of the angled view (a) RGB image (d) Depth map (original) (c) 

Depth map (filled) 

Figure 2.11 has a nut that is 20mm long and has a maximum depth of approximately 10mm. The 

depth map does not indicate the object is present, despite it being much larger than the lowest pixel 

resolution provided by the depth map. Furthermore, the oblique viewing angle of the camera 

presents difficulties for extracting normal and curvature features from the point cloud that can 

indicate bumps in the surface. A simplified design is therefore proposed. A rotating single-camera 

system replaces the fixed multi-camera system. The rotation is about an axis parallel to the pipe's 

axis, so the camera is always facing normally to the pipe surface. This means that any surface 

defect that changes the pipe radius will be more visible, as the radial change in depth is captured 

directly by the depth map, which maps the z-component of the point cloud. Additionally, the 

proposed design guarantees that the entire pipe section can be covered with a rotation about the 

axis and a translation along the length of the pipe. It is also possible to add additional degrees of 

freedom, such as translation vertically or horizontally with respect to the camera mount so that the 

robot can navigate closer to or away from a particular defect on the pipe wall to get clearer images. 

The proposed design is shown in Figure 2.12. For the modification of the robotic platform, the 

following criteria were kept in mind: 

• 3D-Printable: The custom parts were designed to be 3D-printable to reduce the time 

needed to prototype and take advantage of the lab resources. 
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• Co-axiality of the stereo camera: During the initial calibration procedures of the camera, 

we assessed the disparity of the camera for different heights, and it was found that the 

disparity shift was manageable when the camera was between 12-15 cm from the pipe 

surface. A height adjustment mechanism was designed and fabricated to fulfill this 

requirement for a range of pipeline sizes (16-20 inches). 

   

                             (a)                             (b)                                          (c) 

Figure 2.12: (a-b) CAD model of the robot prototype platform demonstrating the height 

adjustment mechanism using the PA-07 actuator. (c) Stereo camera mounted on the platform 

Precise actuation and feedback of the angular component of the pose of the stereo camera: 

A stepper motor was used to precisely actuate the stereo camera around the pipe, as shown in 

Figure 2.12 (c). To complement the roll angle data from the stereo camera IMU, an AS5600 

encoder was attached to the back of the stepper camera. A mount had to be designed for it such 

that the AS5600 is placed at a distance between 3-5mm from the permanent magnet. During the 

trial runs outside the pipe sample, an external AC/DC adapter with a range of 12V was used. 

During the pipeline run, 4-rechargeable 18650 Li-Ion batteries were connected in series, 

generating a total of 14.4V. The power supply capacity was estimated to be 3300mAh as the 

connection is made in series. These batteries are held in a bracket along the frame of the robot.  

Microcontrollers: Initially, the Arduino Uno was used to control the elements, such as actuators 

and stepper motors. It has 26 I/O pins in total (Digital-14, PWM/Digital-6, Analog-6). This is not 

sufficient for all the components of the robot. To allow for more I/O pins, we upgraded the 

controller to the Arduino Mega 2560. With 70 pins (Digital-39, PWM/Digital-15, Analog-16), 

connecting all the hardware components with options for further expansions was possible. Next, 

we attempted to control the robot using an older PS2 controller. It had a receiver module that was 

connected to the Arduino for data transmission. One of the disadvantages of having PS2 controller 

as the control module of the existing circuit is that it needs an individual receiver module to get 
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signals from the controller. The receiver module is connected to the Arduino board using jumper 

cables, so the receiver module might get disconnected from the Arduino. We upgraded the PS2 

controller to a DualShock 4 wireless controller to mitigate this. 

DualShock 4 wireless controller is found to be better than PS2 Controller-Receiver module for the 

following reasons: 

▪ Unlike the PS2 Controller, the DualShock PS4 controller does not have a separate receiver 

module  

▪ The optimum range of PS2 receiver module is between 8-10 meters, whereas the range of 

DualShock PS4 controller has a range of 15.2 to 30.5 meters. 

The Arduino Mega does not have an in-built Bluetooth module, but it could be attached externally 

e.g., HC-05 Bluetooth module.  

To further improve the integration process, we used a Raspberry Pi as the hub computer on-board 

the robot, with an Arduino for minimal processing assistance. The earlier version of the robot code 

was running exclusively on Arduino, which presented several difficulties during integration. The 

Raspberry Pi has the following advantages over Arduino: 

▪ The Raspberry Pi can be connected wirelessly to the server PC using the onboard Wi-Fi 

module.   

• Arduino Mega 2560 has a flash memory of 256kb and cannot handle multiple processes. 

Raspberry Pi comes with 8GB of RAM and can handle multiple processes simultaneously. 

• Raspberry Pi offers more flexibility when it comes to programming languages than 

Arduino for rapid prototyping of software solutions. 

As part of the porting process of the developed Arduino functionality to Raspberry Pi, the code 

was converted from C to Python.  

Motors and drivers: Our hardware consists of two linear actuators, PA-07, for adjustment of the 

camera axis about the dimension of the pipes. For the robot's movement along the pipe, two geared 

DC motors are installed on the rear end of the robot. Both elements work in the range of 12V, and 

L298N motor driver individually controls them. It has two techniques to control two motors 

simultaneously - PWM (Pulse Width Modulation) for speed and Dual H-Bridge for rotation. It can 

control DC motors with a voltage range of 5-35V with a minimum logic voltage requirement of 
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5V. Therefore, it is powered up directly by the Raspberry Pi board. The speed of the motors (DC 

motors) and Rate of Stroke (Actuators) could be altered by changing the frequency of the analog 

PWM signal. The rotational direction (DC motors) and the Direction of Stroke (Actuators) could 

be changed by reversing the inputs for motor drivers.  

We use the NEMA-17 stepper motor for the rotation of the camera. The NEMA-17 has a step angle 

of 1.80 (200 steps for a complete revolution) with holding torque of 0.44Nm. It draws a current of 

1.8A at 5V. The DRV8834 motor driver controls it. This motor driver is capable of micro-stepping, 

speed, and direction control. It has two micro stepping pins, enabling us to attain 1/32 of the initial 

step resolution. The base speed is set by means of a pulse signal, and then the stepping is done as 

per the requirement. The motor driver is capable of driving stepper motors from 2.5V to 10.8V 

with a minimum logic voltage requirement of 2.5V. Therefore, it is also powered up by the 

Raspberry Pi board. The technical specifications and the logic table of the elements used are listed 

in Appendix B. The overall schematic is summarized in Figure 2.13, and the integrated prototype 

used in the trial run is shown in Figure 2.14. 
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Figure 2.13: Schematic diagram of the integrated hardware electronics 

 

Figure 2.14: Integrated hardware prototype 
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2.4 Depth Map Generation and Evaluation of the Intel RealSense D435i Camera 

2.4.1 Analysis of the generated depth map for depth resolution limits 

For industrial inspection, the ideal outcome is to detect defects, measure them, and quantify their 

respective uncertainties. This is a multi-step process, with uncertainties propagating from the 

sensor into the detection model and finally manifesting themselves in the measurement. We start 

by modeling the depth sensor. Any sensor output can be expressed in the form of a mean signal, 𝑧̅  

and a set of variances: 

𝑧   = 𝑧̅ + 𝜖𝑠 + 𝜖𝑡 2. 17  

𝜖 =  𝜖𝑠 + 𝜖𝑡   2. 18  

where 𝜖𝑠 and 𝜖𝑡 are the spatial and temporal noise, respectively. 

The overall uncertainty of the depth map depends on both the sensor's spatial and temporal noise. 

We limit the scope of this section to characterizing the noise sources at the signal output level. 

Explicit analytical modeling of the causes of this noise is not performed, as noise can result from 

several factors, such as lens distortion. In addition, the pixel resolution limitations lead to the 

quantization of disparity. The other noise source is the matching process and the image quality. 

This is dependent on the application in consideration. The matching cost function for finding 

corresponding points can suffer from ambiguities that lead to multiple matches with similar 

matching scores for in-line inspection. Filtering out the best match from a set of similar candidate 

matches has been done internally using the D435i stereo-matching algorithm. 

A normalized metric called the subpixel Root Mean Squared Error (RMSE) is utilized to evaluate 

sensor performance, which is obtained from fitting a plane onto a depth map of a flat wall. The 

plane fit has an associated RMSE that estimates the spatial noise in the image, and the calibrated 

camera was found to have a temporally stabilized RMSE of 0.12%.  

The subpixel RMS error is given in the form of disparity in pixels and is a function of the plane-

fit projected depth 𝑧𝑝 and the actual depth 𝑧𝑖, given by 𝑅𝑀𝑆𝐸 = √𝑧𝑖
2– 𝑧𝑝

2. Knowing the RMSE 

of a plane fit only provides a metric for the inherent noise level in the sensor. However, this does 
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not answer the crucial question of the minimum change in depth that the sensor can reliably detect, 

which is an important parameter that needs to be measured for optical metrology. For this, we 

examine the sensitivity of the depth function to infinitesimal changes in the variables it depends 

on: 

𝑑𝑧 =  −
𝑧2

𝑓𝑏
𝑑𝑑 +

𝑧

𝑏
𝑑𝑏 +

𝑧

𝑓
𝑑𝑓 

2. 19  

The focal length and baseline are fixed for the D435i, so the sensitivity of the depth to small 

changes in disparity is proportional to the square of the depth. This means that an infinitesimal 

change in disparity for an object that is close to the camera would cause a smaller change in depth 

compared to an object that is farther away. The consequence of this relationship is that finer depth 

sensitivities are possible for the same perturbation in disparity for objects that are closer to the 

camera. This is demonstrated in Figure 2.15 (b). 

 

                                        (a)                                                                        (b) 

Figure 2.15: (a) Sensitivity of the depth map to regions at various distances in (mm) to 

perturbations in disparity, focal length, and baseline. (b) Sensitivity of the depth to disparity 

perturbations for objects at various distances 

For the spatial resolving power of the depth camera, consider an object that is 𝑧 mm away from 

the sensor and a camera with horizontal and vertical resolutions 𝑋𝑟𝑒𝑠 and 𝑌𝑟𝑒𝑠. Assuming a pinhole 

camera model, the length in pixels 𝑙𝐼 for an object of length 𝑙𝑊 in the world coordinates can be 

derived using similar triangles, as shown in Figure 2.16. To get the image length in pixels, the 

focal length also needs to be expressed in pixels, given by 𝑓𝑥. The camera field of view can be 

expressed as 𝜃𝐻 for horizontal, and 𝜃𝑉 for vertical. A similar relation can be derived between the 
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height of the object and the height in pixels. 

 

Figure 2.16: Relating the length of an object in pixels to its real-world length 

The relationship between the length of an object in image coordinates and the world coordinates 

can be determined using similar triangles: 

𝑙𝐼
𝑓𝑥

=
𝑙𝑊
𝑧

 
2. 20  

𝑓𝑥 =

1
2𝑋𝑟𝑒𝑠

tan (
𝜃𝐻

2 )
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𝑙𝐼 =

1
2𝑋𝑟𝑒𝑠

tan (
𝜃𝐻

2 )

𝑙𝑤
𝑧

  

2. 22  

The D435i has a pixel size of 3𝜇𝑚 x 3𝜇𝑚. From the equation above, the smallest object that the 

stereo-camera can detect can be found by computing 
2𝑧𝑙𝐼

𝑓
 with a length in image space of 1 pixel. 

For a defect that is 200mm away, which would be the case for our experimental setup for a 16-

inch diameter pipe, the length captured by 1 pixel is 0.621mm.  

Additionally, an empirical evaluation of the Intel D435i depth camera to evaluate the quality of 

the depth map was performed. The goal was to evaluate the effect of changes in camera parameters 

on depth map quality, and to determine the parameter range at which the depth map most closely 

resembles the real-world object dimensions. Bad sensor parameters can lead to object boundary 

bleeding, missing values (holes) in the depth map, and noisy output. Detailed experimental results 
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are given in Appendix A.  

2.4.2 Surface roughness profile – Signal vs Noise at high resolution 

An interesting observation while capturing the images at the (1280x720) pixel resolution and depth 

unit 1e-5 m was that the images captured by the depth sensor showed patterns like the ones found 

on the wall as shown in Figure 2.17. The dramatic contrast in the depth map occurs because the 

range has been limited to the minimum and maximum depth values to highlight differences in 

depth. The camera was placed directly perpendicular to the surface, and this was verified by 

ensuring that the depth did not vary substantially. To confirm whether this pattern was the surface 

roughness profile, or the sensor noise, a comparative analysis was performed between the rough 

wall and a baseline smooth wall. Three images were captured using the camera at a distance away 

from the surface, pointing perpendicular to it, with the same camera settings. Aggressive temporal 

smoothing was performed to average out temporally varying noise signals with large temporal 

filters. The stabilized image was analyzed using a histogram of depth values. The spatial domain 

is inspected using the depth histogram, and this would directly provide the distribution of depth 

information. The smooth image and roughness-level 1 image distributions show minimal 

differences between the two cases. Therefore, we can conclude that the detection of surface 

roughness from depth maps at the levels indicated by the middle image in Figure 2.17 will be 

unreliable. However, at a higher degree of roughness in the millimeter scale and above, it can be 

detected, as shown by the histogram in Figure 2.17 (i). The distribution on the far-right histogram 

has more pixels to the left of the highest mode of the distribution, indicating the peaks in the 

roughness profile.  
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                         (a)                                              (b)                                             (c) 

   

                         (d)                                              (e)                                             (f)  

   

                         (g)                                               (h)                                            (i) 

Figure 2.17 (a-c) RGB images for smooth, roughness level 1 and roughness level 2 surfaces 

respectively, Bottom Row (d-f) Depth maps in white to black scale for smooth, roughness level 1 

and roughness level 2 surfaces respectively. (g-i) Depth histograms for smooth, roughness level 

1 and roughness level 2 surfaces respectively  

The resolution of the defect was shown to improve with the increase in camera resolution from 

848x480 pixels to 1280x720 pixels, along with a higher sensor noise profile. To further attempt an 

improvement in the reconstruction, we tried to add a camera in series such that the common field 

of view from the two cameras had a higher IR dot density as each camera had its own IR dot 

projector. The D435i system is an “active-stereo” system that uses a combination of color imaging 

and an IR dot pattern to perform stereo matching, and the dot patterns provide additional texture 

to texture-less scenes, and these patterns are not visible. The color sensor detects these patterns 

and is substantial only in high laser power. An increase in dot pattern density was expected to 



40 
 

improve the matching quality by providing even more density of textures for the matching 

algorithm, however, no significant differences were observed. 

2.5 Disparity Map Post-Processing Methods for Improving Depth Quality 

2.5.1 Post-Processing of the Disparity map using Gaussian Pyramids 

The disparity map obtained using the stereo block matching algorithm can contain invalid regions 

with no disparity values. This can compromise detection and measurement results. This section 

demonstrates a Gaussian Pyramid approach to post-process the generated disparity map in the 

previous section. A Gaussian pyramid is a hierarchical image representation scheme that 

downsamples the original image, followed by upsampling and interpolation. The overall method 

for filling missing values is shown in Figure 2.18. 

 

Figure 2.18: Filling missing values using a hierarchical pyramid approach (Adelson et al., 1984) 

The original image, at its initial resolution, is considered level zero. The reduction output can be 

denoted as 𝑅𝑛 where 𝑛 is the current reduction level. 𝑅0 consists of the top-most level, and a 

weighting low pass filter kernel is convolved with the image and the image is subsampled by a 

factor of two such that: 
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𝐼𝑘(𝑖, 𝑗) = ∑ ∑ 𝑤(𝑚, 𝑛)𝑔𝑘−1(2𝑖 + 𝑚, 2𝑗 + 𝑛)

2

𝑚=−2

2

𝑛=−2
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𝑅0 𝜖 𝑅
𝑀𝑥𝑁 , 𝑅1𝜖 𝑅

𝑐𝑒𝑖𝑙(
𝑀
2

)𝑥𝑐𝑒𝑖𝑙(
𝑁
2
)
 

A ratio 𝑟 =
𝑁𝑚𝑖𝑠𝑠𝑖𝑛𝑔

𝑁𝑡𝑜𝑡𝑎𝑙
 is computed for each scale, where 𝑁𝑚𝑖𝑠𝑠𝑖𝑛𝑔 is the number of missing values 

and 𝑁𝑡𝑜𝑡𝑎𝑙 is the total number of pixels. As the resolution of the image reduces, the ratio parameter 

decreases. We downsample the image until 𝑟 becomes zero or we get to the smallest possible 

representation. The lowest obtained representation has no missing values. This representation is 

then upsampled using the gaussian pyramid approach, where the pixels are upsampled as follows: 

𝐼𝑘(𝑖, 𝑗) = ∑ ∑ 𝑤(𝑚, 𝑛)𝑔𝑘−1 (
𝑖 − 𝑚

2
,
𝑗 − 𝑛

2
)

2

𝑚=−2

2

𝑛=−2
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𝑅𝑘𝜖𝑅
𝑀𝑥𝑁 , 𝑅𝑘−1𝜖𝑅

2𝑀𝑥2𝑁 

The weighting function that we used approximated the Gaussian shape as: 

𝑤 = [
1

4
−

𝑎

2
,
1

4
, 𝑎,

1

4
,
1

4
−

𝑎

2
] , 𝑎 = 0.375 
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The expansion back to the original size changes the pixel values in the original image. For 

replacing the invalid regions in the raw image, we have replaced the reduced representation pixels 

with the corresponding expansion image values in those indices if the reduced representation pixel 

is a missing value. The disparity map before and after post-processing is shown in Figure 2.19. 

There is no explicit assumption on the shape of the objects in the scene in this method. 
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(a)                                                                         (b) 

Figure 2.19: (a) Original Disparity Map (b) Disparity Map after Post-Processing with Gaussian 

Pyramids 

2.5.2 Disparity Map Post Processing using a Hole Filling Algorithm 

In the previous section, the disparity map obtained was post-processed using a Gaussian pyramid-

based technique. The original image was progressively downsampled and then upsampled with a 

Gaussian filter kernel. In this section, we improve upon this approach by imposing a first-order 

smoothness assumption on the pixel values. The assumption makes it so that nearby pixels should 

have similar intensities. Levin originally published the method (Levin et al., 2004) as a proposal 

for an algorithm to colorize grayscale images. The assumption of having nearby pixels with similar 

intensities makes it so that the entire depth map gets smoothed globally by using this algorithm, 

and this is functionally like using Gaussian pyramids, although quantitatively different. The 

algorithm accomplishes this by minimizing the sum of the squared difference between the color at 

a particular pixel in a window and the weighted average of the neighbors within that window and 

applies this algorithm globally. 

Let 𝐼(𝑟) 𝑎𝑛𝑑 𝐼(𝑠) be the intensities respectively of two neighboring pixels on the normalized 

intensity (greyscale) image, with 𝐼(𝑟) being the center pixel of a sub-matrix window within the 

depth map. The window size is a user-defined parameter.  

𝐽(𝑈) =  ∑(𝐼(𝑟) − ∑ 𝑤𝑟𝑠𝐼(𝑠)) 

𝑠 𝜖𝑁𝑟

2

  
2. 26  
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The weighting function is large when 𝑌(𝑟) is closer to 𝑌(𝑠) and small when the two intensities are 

different.  

𝑤𝑟𝑠 = 𝑒
−

(𝐼(𝑟)−𝐼(𝑠))
2

2𝜎𝑟
2
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Two sparse matrices A and G are constructed, where A is an affinity matrix with the pixel-wise 

values from the weighting function. G is a diagonal matrix. The new values for the depth map are 

constructed by solving the equation: 

𝐷′ = (𝐺 − 𝐴)−1 ∗ 𝐷 2. 28  

This is equivalent to solving for the system 𝐴𝑥 = 𝑏, where the system is (G-A) instead of (D-W) 

in the paper for obtaining normalized cut segmentation. 

 

                       (a)                                                (b)                                              (c) 

Figure 2.20: Depth map hole filling algorithm demonstration (a) RGB Image (b) Depth map with 

holes (c) Post-processed depth map 

The resulting depth map is then multiplied by the maximum depth value in the original normalized 

depth map to obtain the final filled output, as shown in Figure 2.20.  

2.6 Extremum Seeking Controller for Depth Map Optimization 

There are two levels of calibration for the D435i. The first level of calibration involves tuning the 

camera's internal parameters and the extrinsic parameters' calibration to locate the camera in space. 

This has already been completed and verified within the D435i Application-Specific Integrated 

Circuit (ASIC) using onboard calibration algorithms (Intel RealSense, 2022). However, stereo-

matching using the D435i requires additional parameter tuning. Extremum Seeking Control (ESC) 

is presented in this section as a solution for adaptive parameter calibration. 
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Extremum seeking is an online optimization technique that can be used for near real-time 

parameter tuning when the system model is not known. We have a cost function that measures the 

depth map quality, and this function is maximized (or minimized) iteratively in an online fashion. 

In our case, the depth map is known, however the stereo-matching parameters go into a grey-box 

matching algorithm that needs to be tuned. We can model the camera as a dynamical system, 

parameterized by a state vector 𝑥(𝑡). The state is updated iteratively according to a control input 

𝑢(𝑡). Parameters are input into a depth map generator function ℎ, which is iteratively evaluated 

according to a cost metric 𝑔. The goal of the method is to find 𝑥∗ that minimizes this cost function. 

The entire loop is shown in and is summarized in this section. 

�̇� = 𝑓(𝑥(𝑡), 𝑢(𝑡)) 2. 29  

𝑦(𝑡) = 𝑔 (ℎ(𝑥(𝑡))) 2. 30  

𝑥 𝜖𝑅𝑛 

𝐽: 𝑅𝑊𝑥𝐻 → 𝑅  

ℎ: 𝑅𝑛 → 𝑅𝑊𝑥𝐻   

 

Figure 2.21: Extremum seeking control loop 

The cost function for our demonstration relies on generating a continuous depth map with valid 

disparity pixels. With a changing environment that is unknown apriori, this would mean that the 

optimal parameter settings can keep changing, leading to discontinuous depth maps. We directly 

measure this using the following function: 
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ℎ(𝑥) =  − log (
𝑛𝑓

𝑊𝑥𝐻
) 

2. 31  

The number of filled pixels 𝑛𝑓 in the frame or region of interest and the width and height of the 

region of interest, frame are the inputs to this function. The extremum-seeking control approach 

perturbs the parameters using a sinusoid to generate an AC signal of the form: 

𝑥 = 𝑥𝑘 + asin(𝜔𝑡) 2. 32  

The resulting cost function evaluation is also perturbed, and this perturbed function is passed 

through a high pass filter (HPF) to remove the DC component of the signal. The extremum-seeking 

controller is seen to be an online form of hill climbing or gradient descent, as the Taylor series 

expansion of the cost function shows: 

𝑔(𝑥) = 𝑔(𝑥𝑘) + ∇𝑔𝑘(𝑥 − 𝑥𝑘) 2. 33  

𝑥 = 𝑥𝑘 + asin(𝜔𝑡) 2. 34  

𝑔(𝑥) = 𝑔(𝑥𝑘) + 𝑎𝛻𝑔𝑘𝑠𝑖𝑛(𝜔𝑡) 2. 35  

The high pass filtered output gets attenuated with a phase shift and the result is: 

𝜁 = 𝐻𝑃𝐹(𝑔(𝑥)) 2. 36  

𝜁 =  aA∇𝑔𝑘sin(𝜔𝑡 + 𝜙) 2. 37  

1

√2
< 𝐴 < 1 

0 < 𝜙 < 450 

The high pass filter provides an estimate of the gradient with a sinusoidal component. To make 

this sinusoidal time-varying component strictly positive, we multiply with a sinusoid: 

𝜉 = asin(𝜔𝑡) 𝜁 2. 38  

𝜉 = a2Asin(𝜔𝑡) sin(𝜔𝑡 + 𝜙) ∇𝑔𝑘 2. 39  
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𝜉 = 𝑆(𝑡)∇𝑔𝑘  2. 40  

Each parameter is updated as 𝑥𝑘 = 𝑥𝑘−1 − 𝛼∇𝑔𝑘 according to gradient descent can then be derived 

using an integrator. The Z-Transform can illustrate how the transfer function of an integrator 

directly provides the next iterate. The Z-Transform is given by:  

𝑍{𝑥(𝑘)} = = ∑ 𝑥(𝑘)𝑧−𝑘

𝐾

𝑘=0

 
2. 41  

𝑍{𝑥(𝑡)} = X(𝑧) 2. 42  

 The transfer function in z-domain of an integrator is given by: 

𝐼(𝑧) =
𝑘

1 − 𝑧−1
 

2. 43  

 The update rule when transformed into z-domain and rewritten reproduces the transfer function: 

𝑥𝑡 = 𝑥𝑡−1 + 𝛼∇𝑔 2. 44  

Since 𝑍(𝑥(𝑘 − 1)) = 𝑧−1𝑋(𝑧): 

𝑋(𝑧)(1 − 𝑧−1) = 𝛼∇𝑔 2. 45  

 The integrator therefore performs parameter updates, modified by a gain proportional to learning 

rate parameter 𝛼 in gradient descent. 

For the demonstrations shown in this report, a perturbation sinusoid proposed by Scheinker et al 

(Scheinker et al., 2021) is used: 

𝑢𝑘 = √𝑎𝐸𝑆𝜔𝑖 cos(𝜔𝑖𝑘 + 𝑘𝐸𝑆𝐽(𝑥, 𝑘)) 2. 46  

𝑎𝐸𝑆 = 𝜔𝑖𝐷
2  2. 47  

𝜔 = [𝜔1, 𝜔2, … , 𝜔𝑛] 

For each parameter in 𝑥, there is a corresponding dithering frequency. Another hyperparameter is 
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oscillation amplitude 𝐷. The final hyperparameter is the gain 𝑘𝐸𝑆. The oscillation amplitude is 

varied until the parameter variation is high enough to demonstrate a corresponding change in the 

objective function value, and the gain is then tuned to provide a local optimum. The demonstrations 

use 3 critical parameters: Exposure, gain and IR dot projector power, that significantly influence 

the continuity of the depth map. Given that the functional relationship between these parameters 

and the cost function is apriori unknown, and there is no model-based learning involved, the 

knowledge of “over” and “under” exposed is not known to the controller. In all the forthcoming 

demonstrations, 𝑝1 is the exposure, 𝑝2 is the gain and 𝑝3 is the IR laser power. 

To test how the controller performs, we first set up a baseline case of a bright environment with 

the default settings of the camera, and the evolution of the cost function and parameters is seen in 

Figure 2.22. The depth map reaches a local optimum in a few iterations and the parameter 

oscillations are damped according to the hyperparameters specified earlier and a prespecified 

decay rate that is applied to the oscillation amplitude in each iterative step. 

 

Figure 2.22: Demonstration 1: Baseline test case in a well-lit scene with the factory D435i 

parameter settings 

Next, we darken the environment and start with bad initial conditions of the parameters, with the 

exposure, gain and IR power all being set to their lowest possible values, leading to a highly 
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underexposed image pair, and the resulting stereo image had many discontinuities. Finally, 

however, extremum seeking control converged to a local optimum as shown in Figure 2.23.  

The third experiment takes a quickly varying environment by way of the surrounding brightness 

of the scene. This situation could be like the one that a robot can encounter inside a pipe with 

sections that may have varying lighting conditions. We first start similar to the second experiment 

with a dark environment with bad initial conditions, for 5 seconds. We then introduce a light source 

to the environment using a torch for 5 seconds. Then we remove the light source and measure the 

change in the cost function. Given the chosen hyperparameters, the cost function signal showed 

oscillations initially until the light source was introduced. With the introduction of the light source, 

there were smaller perturbations to the cost function, followed by a stabilization of the cost shown 

in Figure 2.24. 

 

Figure 2.23: Demonstration 2: Poor lighting conditions with bad parameter settings: Low 

exposure, gain and IR laser power 
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Figure 2.24: Demonstration 3: Test case with varying external illumination conditions starting 

with a dark environment with poor initial condition setting 

  



50 
 

3 DATA-DRIVEN TECHNIQUES FOR DEFECT DETECTION 

3.1 Fully Supervised RGB-D Semantic Segmentation with Uncertainty 

3.1.1 Feature Fusion using Fully Convolutional Networks 

This section describes a fully supervised machine learning framework for semantic scene 

segmentation. Convolutional Neural Networks (CNN) yields a hierarchy of learnable features 

obtained via training on a dataset. The Fully Convolutional Network (FCN) (Shelhamer et al., 

2017) is an end-to-end technique to train a model for pixel-wise prediction of categories, 

segmenting the scene into the various known object categories. Convolutional networks have been 

used for object detection and image segmentation. Patch-based, region-of-interest based methods 

contain multiple steps such as region proposal search, as in the  Mask R-CNN (K. He et al., 2017), 

and Faster R-CNN (Ren et al., 2017) techniques, or it contains a fixed set of regions to directly 

output a set of bounding boxes in an end-to-end fashion with requirements on anchor boxes, as in 

the You Only Look Once (YOLO) network architecture (J. Li et al., 2018; Y. Li et al., 2019; 

Redmon & Farhadi, 2018).  

FCN takes inspiration from the classification convolutional network architecture and removes the 

final fully connected layer, and replaces it with an expanding, upsampling architecture. Fully 

connected layers can be interpreted as convolutions that cover the entire output from the previous 

final convolution layer. Projecting the condensed representation to a higher feature dimension can 

be accomplished using a deconvolution operation. This can be done in stages, mirroring the 

convolution layers. The transposed convolution is not an inversion of the convolution but takes a 

lower dimensional feature and applies a convolutional operation with padding on the lower 

dimensional representation to transform it into the desired higher dimensional feature. The 

usefulness of the transposed convolution is because we have learnable weights on the filter kernels, 

and the eventual upsampled original dimension representation can be replaced with the label 

matrix, consisting of pixel-wise labels for the object categories. Fusion at the convolutional layer 

level is accomplished in FCNs by modifying the network architecture to combine feature 

representations along the network. In our experiments, our FCN uses the VGG-16 backbone 

network. The VGG-16 network consists of 5 convolutional blocks, where each block ends with a 

max-pooling layer. The outputs of the max pooling layer and the corresponding similar-sized 
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output from the deconvolution layer are combined, as shown in Figure 3.1. Incorporation of 

information from both the downsampling and upsampling layers enables pixel-wise predictions as 

the downsampling layers provide cues on the presence of object categories, as seen in regular 

classification networks, which leverage this information using fully connected layers, and the 

upsampling layers enable localization of the objects of interest by expanding the condensed 

representation. 

 

Figure 3.1: Overview of the proposed network architecture 

The purpose of using multiple modalities in prediction is to provide complementary information 

to aid model prediction. The RGB data stream provides texture and plane-projected morphological 

information without depth perception for industrial inspection. The depth stream provides a more 

fine-grained morphological representation of the scene. We also propose a method to integrate 

data streams derived from the depth stream that would be relevant to the pipeline defect detection 

problem. Data fusion rules have been extensively studied in the field of image processing. The 

complexity of the fusion methods has increased to produce incremental improvements in 

quantitative performance metrics when evaluated on large datasets of natural images. However, 

there are missing concrete explanations as to why these modifications work and whether the 

improvements are predictably higher across different datasets. The empiricism of deep learning 

architecture modifications led us to approach this part of the network by using a simpler fusion 

rule architecture derived from classical decision-theoretic and data fusion principles. We contend 
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that there are two principled ways of approaching data fusion in the context of deep learning: (i) 

Neural Architecture Search (ii) Rules-based fusion. The first approach seeks a network architecture 

that can robustly fuse features from different data sources to satisfy a meta-objective of predicting 

well across multiple datasets. The second approach, while not directly geared towards improving 

detection performance metrics, would instead target providing interpretability for how the 

individual modality information is being utilized for the final prediction and provide a way for the 

end-user to make operational choices for sensor integration. We contend that industrial inspection 

in its current state could benefit from a hybrid approach of data-driven feature extraction, 

engineered data pre-processing, and feature fusion rules.  

Fusion can be accomplished in multiple ways:  

1. Data Fusion: In this case, the fusion occurs at the level of the raw data.  

2. Feature Fusion: Features extracted from the data are fused together in intelligent ways to 

produce a new, combined feature representation.  

3. Decision Fusion: Several classifiers, each operating on one type of data, is used to fuse the 

decisions made by each classifier to produce a combined evaluation using all the sources 

available. 

We use RGB-D data for performing hierarchical feature fusion and then integrate new data sources 

derived from the depth map that was hypothesized to be relevant for pipeline data. 

Fusion block architecture 1:  

The first fusion architecture was built upon the VGG convolutional network backbone with pre-

trained weights. We remove the fully connected component and replace it with the new 

deconvolutional layer that is to be trained with the NYU dataset. The fusion operation is:  

𝑎𝐸𝑆 = 𝜔𝑖𝐷
2  3. 1  

𝐹 = 𝑀𝑅𝐺𝐵 + 𝑀𝐷  3. 2  

This is a simple element-wise addition of features from the convolutional layers. These outputs 

are then combined with the corresponding deconvolutional layer 

Fusion block architecture 2:  
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The second fusion architecture involved a change in the fusion block. We use a non-linear 

weighted combination of the max pooling layer outputs from each convolutional block as follows: 

𝐹 = 𝑓(𝑀𝑅𝐺𝐵, 𝑀𝐷) 3. 3  

𝑓(𝑀𝑅𝐺𝐵, 𝑀𝐷) = 𝑅𝑒𝐿𝑈((𝑀𝑅𝐺𝐵, 𝑀𝐷) ∗ 𝐾) 3. 4  

where K is a 1x1 convolutional filter set. 

The input features from the color and depth streams are first concatenated to create an initial joint 

representation. To implement non-linear weighting, we need to multiply the depth and RGB 

components by a scale factor. Concatenation of the RGB and depth channels doubles the channel 

dimension length. The convolutional operator acts on the two sections of the concatenated output 

to reduce the channel dimension back to 64. The non-linear weighted combination fusion layer 

produces a set of CO  =
CI 

2
 weighted combinations of input features that have 𝐶𝐼 channels. Let the 

input features have a dimension of (𝐶𝐼 𝑋 𝑀 𝑋 𝑁 ). The 1x1 convolution layer has a shape 

(𝐶𝑂 𝑋 𝐶𝐼 𝑋 1 𝑋 1 ). Each kernel 𝐾𝑖 produces a distribution of weights, when convolved with the 

input features produces a weighted sum ∑ 𝐾𝑖𝑗. 𝐼𝑗 = 𝐹𝑖𝑗 . The final fused output of the 1x1 

convolution is a concatenation of each of these individual weighted combinations of the original 

input. From the point of view of interpretability, however, this is different from a simple weighted 

combination. Instead, we have an output map that consists of a set of weighted combinations, 

densely weighted by a combination of the input features: 

𝐾1 = [𝐾11, 𝐾12, … , 𝐾1𝐶I
], …  , 𝐾 𝐶𝑂

 = [𝐾𝐶𝑂1, 𝐾𝐶𝑂2 , … , 𝐾𝐶𝑂𝐶𝐼
] 3. 5  

While the weights in this model are not resolved to the positive domain the kernels provide a way 

to interpret the relative contribution of each input feature for each channel in the output feature. 

Depth-Normal-Curvature Representation for Semantic Segmentation 

The problem of transforming the depth map of a cylinder to an equivalent flat plate with 

highlighted defect areas was studied by (Alzuhiri et al., 2021). (Alzuhiri et al., 2021) used a least-

squares fit of an ellipsoidal surface to accomplish this task. But this approach is computationally 

intensive as it requires parametric modeling of pipeline geometry and is sensitive to the location 
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of the camera. Moreover, it was primarily used for the reconstruction of gas pipeline geometry.  

We propose a representational scheme, the DNC (Depth-Normal-Curvature) representation. This 

is a 6-channel representation compressed into 3 channels using 1x1 convolutions, as shown in 

Figure 3.2. The surface normal is a 3-channel image, one for each component of the normal vector. 

The curvature consists of the mean and Gaussian curvatures, which can be computed from the 

principal curvatures of a point on a surface. The depth information obtained from the stereo camera 

contains the curvature and normal information implicitly. Therefore, detailed descriptions of 

surface characteristics can be derived from depth maps. 

Most of the ILI tools are used to inspect pipelines and run through the cylindrical sections in the 

pipelines and the camera in our experiments is placed approximately along the axis of the pipe 

about which it rotates. Therefore, the depth data is not captured obliquely but approximately 

normal to the surface of the pipe. This makes it possible to take advantage of the symmetry in the 

geometry of the view being captured. As the camera rotates about the pipe axis, the curvature of 

the cylinder remains constant. It is important to note the sources that cause a deviation from this 

ideal situation. They are as follows: 

▪ the noise inherent in the depth signal,  

▪ the noise induced by the algorithm used to compute curvature,  

▪ the signals from the defect   

Similarly, for general detection and scene understanding problems, the surface normal provides 

additional geometric cues like curvature. The normal serves to provide a "bump map", similar in 

vain to the ones used in computer graphics, to simulate wrinkles and bumps in textures. The 

differential geometry of a surface provides a discretized formulation of normals from first 

derivative information and curvatures from second derivative information if these derivatives exist 

throughout the domain. 

The surface normals and curvatures are derived from the depth map 𝑍 =  ℎ(𝑋, 𝑌) which is a 

Monge patch 𝜁 ∶  𝑈 −>  𝑅3 with the form: 

 𝜁(𝑋, 𝑌) =  (𝑋, 𝑌, ℎ(𝑋, 𝑌)), (𝑋, 𝑌) ⊂  𝑈  3. 6  

The normals 𝜂 can be calculated using the first derivative information, and the curvature can be 
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calculated using the second derivative information. The Gaussian and mean curvatures K and H 

of the surface are then computed using the standard equations describing the fundamental 

coefficients of a surface. 

 

Figure 3.2: RGB-D Fusion Module 

 

Figure 3.3: RGB-DNC Data Pre-processing Module. 

The derivatives are computed along the 𝑥1 and 𝑥2 directions as follows: 

   𝐷𝑖  𝜁 =  [
𝜕𝑋𝑗

𝜕𝑥𝑖
 
𝜕𝑌𝑗

𝜕𝑥𝑖

𝜕𝑍𝑗

𝜕𝑥𝑖
 ] 

3. 7  

𝐷𝑖𝑖 𝜁 =  [
𝜕2𝑋𝑗

𝜕𝑥𝑖
2  

𝜕2𝑌𝑗

𝜕𝑥𝑖
2

𝜕2𝑍𝑗

𝜕𝑥𝑖
2  ] 

3. 8  

𝐷𝑖𝑗  𝜁 =  [
𝜕2𝑋𝑗

𝜕𝑥𝑖𝑥𝑗
 
𝜕2𝑌𝑗

𝜕𝑥𝑖𝑥𝑗

𝜕2𝑍𝑗

𝜕𝑥𝑖𝑥𝑗
 ] 

3. 9  
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𝜂(𝑋, 𝑌) =
𝐷𝑥𝜁 𝑋 𝐷𝑦𝜁

|𝐷𝑥𝜁𝑋𝐷𝑦𝜁|
 

3. 10  

The curvature information is derived from the fundamental coefficients of the surface by first 

computing the inner product between the first derivatives for the first 3 components E, F, and G. 

We use the inner product between the second derivative components of the surface and the normal 

map for computing L, M and N: 

𝐸 = 𝐷𝑥1
𝜁. 𝐷𝑥1

𝜁 3. 11  

𝐹 =  𝐷𝑥1
𝜁. 𝐷𝑥2

𝜁  3. 12  

𝐺 = 𝐷𝑥2
𝜁. 𝐷𝑥2

𝜁 3. 13  

𝐿 = 𝐷𝑥1𝑥1
𝜁. 𝜂(𝑋, 𝑌) 3. 14  

𝑀 = 𝐷𝑥1𝑦2
𝜁. 𝜂(𝑋, 𝑌)  3. 15  

𝑁 = 𝐷𝑥2𝑥2
𝜁. 𝜂(𝑋, 𝑌) 3. 16  

𝐾 =
𝐿𝑁 − 𝑀2

𝐸𝐺 − 𝐹2
  

3. 17  

𝐻 =
𝐿𝐺 + 𝑁𝐸 − 2𝐹𝑀

2(𝐸𝐺 − 𝐹2)
 

3. 18  

We utilize the equations outlined above to obtain representations of simple geometric shapes. This 

curvature characterization is "visible-invariant", a feature that is invariant to viewpoint 

transformations that preserve the visibility of the region in question. A discrete smooth flat plate 

was created to demonstrate this method. We use a (1000x1000) grid with z = 1 as shown in Figure 

3.4. The normals were calculated to be (0,0,1) across the entire grid, which is accurate. Both mean 

and Gaussian curvatures are zero, which tells us that the computation is correct for the flat plate. 

Next, a cylinder section was created using a (1000x1000) grid with a 180-degree field of view as 

shown in Figure 3.4. The mean curvature was calculated to be -1, and the Gaussian curvature was 

calculated to be 0. The cylinder created now can be considered as bending the flat plate about the 
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longitudinal axis. While the surface shape has changed, the length of the arc connecting two points 

in that surface has not. The Gaussian curvature formulation outlined above is invariant to such 

transformations and remains unchanged, but the mean curvature is not invariant to the change in 

the embedding of the surface within the 3D space. The next case that is considered is the rotated 

cylinder. This case demonstrates a scenario that can occur during data collection from the pipe 

sample. Due to the misalignment of the camera, it is possible that the depth map can deviate from 

being approximately normal to the surface. The curvatures demonstrate that they are 

approximately invariant to such rotations. 

 

Figure 3.4: Demonstration of the curvature and normal maps for idealized surface formulations 

Figure 3.5 shows a demonstrative example comparing the depth data with the data derived from 

it. This data is passed into the neural network using the RGB-DNC data processing module, as 

shown in Figure 3.3. The Gaussian curvature is the only curvature used in our experiments as it 

serves to indicate changes in surface shape at each discrete point of the surface. The curvatures 

shown in the pitted surface indicate higher positive values than the surrounding area. Mean 

curvature changes in sign depending on whether the surface is convex or concave from the camera 

viewpoint, but Gaussian curvature is invariant to this change in direction. From the above 

demonstrations, we observe that a Gaussian curvature feature descriptor without issues such as 

signal noise is sufficient for detecting pitting defects embedded in a smooth cylinder. 
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Improvements to this formulation are directions for future research.  

 

Figure 3.5: DNC data derived from the point cloud representation 

3.1.2 Epistemic and Aleatoric Uncertainty Quantification using MC-Dropout 

Structural prognostics benefit immensely from modeling predictive uncertainty at multiple stages 

of analysis. Unfortunately, point estimates provided by deep neural networks may lead to 

overconfident predictions that can be misleading. Ideally, we seek expressive models, have a 

unifying formalism to help extend the model's capabilities for downstream tasks and have a way 

to explain its predictions to the end user. This is achieved by taking a Bayesian view of the 

problem. The Bayesian framework lends itself very well to modeling a broad range of problems, 

and it is easier to work with at the level of prognostics and risk assessment. In this section, we 

describe the Bayesian view of deep learning to evaluate and contextualize the uncertainties for 

defect detection. We expand upon some of the challenges in the disambiguation of uncertainties 

in the defect detection problem. We analyze a benchmark problem to verify the capabilities of this 

approach to uncertainties and then justify the use of this approach to modeling uncertainties.  

Consider the general setup for Bayesian inference: A prior distribution is defined over the space 

of functions 𝑝(𝑓) where 𝑓 is a sample from the distribution of functions that could have generated 

the data  𝐷 = (𝑋, 𝑌). The likelihood function is 𝑝(𝑌 | 𝑓, 𝑋). The posterior can be written using the 

Bayes rule from the prior 𝑝(𝑓) and the likelihood function. For an unseen data point 𝑥∗, the 

predictive distribution can be computed by integrating over all possible functions 𝑓∗ to yield the 

conditional probability for prediction 𝑦∗: 
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𝑝(𝑦∗| 𝑥∗, 𝑋, 𝑌) = ∫  𝑝(𝑦∗| 𝑓∗)𝑝(𝑓∗| 𝑥∗, 𝑋, 𝑌)𝑑𝑓∗  3. 19  

The problem with the above equation arises from the inability of neural networks to properly 

estimate uncertainty as part of the prediction. Calculating a measure of uncertainty is more 

challenging for deep networks than approaches such as Bayesian linear models and Gaussian 

processes. This is because larger parameter spaces in deep networks produce posteriors that are 

computationally intractable to integrate and do not have pre-determined conjugate forms that make 

direct evaluations of updated posterior distributions possible. Due to these reasons, deep learning 

does not lend itself to analytical Bayesian inference. Instead, it requires approximate inference 

techniques, which have seen a lot of development in the computational statistics literature. This 

paper aims to use a computationally cheap approximation to Bayesian inference in neural 

networks, the dropout(Srivastava et al., 2014; Gal and Ghahramani, 2016). This approach relies 

on producing Monte-Carlo draws from a neural network regularized by dropout to calculate a 

measure of dispersion in the prediction. Dropout is classically used to modulate model complexity 

by deactivating some parameters at random. In a Bayesian Deep Learning context, Gal et.al [16] 

make use of dropout as a model averaging tool during inference by sampling prediction outputs 

from various instantiations of the neural network. Their analysis shows that the dropout-

regularized model is learning parameters like that learned by the approximate posterior distribution 

of a Deep Gaussian Process. 

Evaluating the uncertainty is done by averaging 𝑁 forward passes during inference. This is 

equivalent to drawing 𝑁 samples from the set of parameters defined in the model posterior and 

evaluating a function using each of those samples. The variance of these samples computes a form 

of uncertainty. Given that the desired output variable is drawn from an arbitrary distribution, the 

sample mean approaches the population means at large sample sizes, with a spread that is dictated 

by the form of the function resulting from each dropout sampling iteration. The question here is 

whether the uncertainty is purely derived from the uncertainty about the weights. The analysis of 

the variance in (Brach et al., 2020) provides some insight into this problem. If 𝐸𝑖 and 𝑉𝑖 are the 

expected value and variance, respectively of the 𝑖𝑡ℎ node at the input and dropout is applied, the 

expected value and variance at the output after dropout is given by: 
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𝐸𝑖
𝐷  =  𝐸𝑖(1 − 𝑝) 3. 20  

 𝑉𝑖
𝐷  =  𝑉𝑖 𝑝(1 − 𝑝) + 𝑉𝑖 (1 − 𝑝)2  +  𝐸𝑖

2 𝑝(1 − 𝑝) 3. 21  

The variance equation shows that there is a propagation of uncertainty across layers. Since the 

input sample during inference has no uncertainty, the only contribution to the variance in MC 

Dropout is from the dropout layer. Therefore, this component of uncertainty is driven by the weight 

uncertainty. 

The uncertainty in the model needs to be distinguished from the uncertainty in the input data. It is 

possible to illustrate this distinction with the Bayesian Linear Regression model, where we 

decompose the uncertainty into multiple parts, as shown in Figure 3.6. As always, there is an 

uncertainty associated with the weights, which is expressed as part of the prior distribution. There 

is also inherent uncertainty in the training data distribution. This is expressed using the likelihood 

function of the output given the data and the parameters. The component of uncertainty that 

depends on the noise in the training data distribution is called the aleatoric uncertainty. Classical 

Bayesian linear regression formulations as shown by (Bishop, 2014) [18] assume a constant, 

known value for this term. However, this assumption does not hold true for real-world data, as 

some training samples can have higher variance than others - an example of this in the pipeline 

problem is the greater predictive uncertainty at places where some occlusions and reflections cause 

a degradation in the quality of the depth image. Occlusions and reflections can cause invalid depth 

values, which in turn affects detection performance.  

The proposed model learns a component of the variance as a function of the data, referred to as 

the heteroscedastic aleatoric uncertainty - the component of uncertainty that cannot be explained 

away with more data. The epistemic component of the uncertainty is calculated using Monte Carlo 

(MC) dropout during inference. The robotic system that has been developed can produce data that 

shows low variability in artifacts such as reflections and has high consistency in producing image 

maps without occlusions, view changes, etc. These sources of variability can be considered “input-

dependent” and are captured by the heteroscedastic aleatoric uncertainty term. On the other hand, 

the industrial imaging domain does not always have many samples to train a model on, which 

requires epistemic uncertainty to reflect this. The approach used by Kendall and Gal (Kendall & 

Gal, 2017) distinguishes epistemic and aleatoric uncertainty by deriving the loss function from the 
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likelihood formulation. We demonstrate this approach first on a toy classification problem. 

Modeling – Regression uncertainty quantification: 

We verify the required capabilities of the uncertainty modeling approach using a standard Bayesian 

Linear Regression model as a benchmark with homoscedastic noise, as seen in Figure 3.7. The 

network outputs 2 values – the prediction and its associated log-variance. The epistemic 

uncertainty is captured by computing the variance of the MC Dropout draws. The aleatoric 

uncertainty is captured by exponentiation and transforming the log variance back into the original 

space. The model training assumes that the data generating distribution prior is a Gaussian. The 

negative log-likelihood of this distribution produces the required regression loss, modified for 

uncertainty quantification: 

𝐿𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =
1

𝑁
∑

1

2𝜎(𝑥𝑖
2)

||𝑦𝑖 − 𝑥𝑖||
2
+  0.5 ln 𝜎(𝑥𝑖)

2  
3. 22  

This is a modification of the MSE (Mean Squared Error) loss with an additional variance term. 

For numerical stability, the 𝑙𝑜𝑔𝜎 (𝑥𝑖 )
2 term is modeled using the aleatoric output directly, and the 

variance in the first term is exponentiated to produce: 

𝐿 =
1

𝑁
∑

1

2
||𝑦𝑖 − 𝑓(𝑥𝑖)||  +

1

2
𝑠𝑖 

3. 23  

The exponential in the first term ensures a positive value for the variance, and the second term 

serves to balance the first as this term gives a larger contribution to the loss when the variance is 

high. Kendall and Gal (Kendall & Gal, 2017) has derived this model from the likelihood loss, so 

it is a “consequence of the probabilistic interpretation of the model.”  

We analyze how well the model separates the sources of uncertainty. The baseline is a Bayesian 

linear model to fit a line, with data generated from a Gaussian. In this case, we assume a known, 

constant variance across the sampling domain to simplify the analysis. The objective of this 

evaluation is to compare the epistemic uncertainties and the ability of the model to capture the 

inherent noise in the data using the predictive aleatoric variance and analyze the reduction in 

uncertainty for samples within the training domain compared to those far away from it. 

Performance of the model outside the training data range [-1,-1] increases the epistemic 
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uncertainty, which is a desired characteristic for determining the distance of the samples from the 

training data.  

Total uncertainty Epistemic uncertainty Aleatoric uncertainty 

 

Figure 3.6: Bayesian Linear Model baseline uncertainties with Gaussian prior for (Top) 1 

Training sample (Middle-1) 3 Training samples (Middle-2) 20 Training samples (Bottom) 100 

Training samples: Left column – Total uncertainty; Middle column – Epistemic uncertainty; 

Right column – Aleatoric uncertainty 
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Total uncertainty Epistemic uncertainty Aleatoric uncertainty 

 

Figure 3.7: MC-Dropout uncertainties for (Top) 1 Training sample (Middle-1) 3 Training 

samples (Middle-2) 20 Training samples (Bottom) 100 Training samples: Left column – Total 

uncertainty; Middle column – Epistemic uncertainty; Right column – Aleatoric uncertainty 

Modeling – Classification uncertainty quantification: 

Epistemic and aleatoric uncertainty is related to the decision boundary in classification. The neural 

network used outputs 2 quantities – the prediction, and its associated aleatoric variance, which is 

estimated implicitly without the need for ground truth variances. On the other hand, the epistemic 

uncertainty is captured by computing the variance of the MC Dropout draws. We verify the 

approach on the two moons dataset, visualized in Figure 3.8. The two moons dataset is a non-

linearly separable dataset with 2 inputs. Since the model has 2 categories, the network outputs 4 

values – 2 for the predictions and 2 for each of the variances. The variance terms are the input-
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dependent uncertainties. For a classifier: 

𝑦𝑖  | 𝑥𝑖 ∼  𝐵𝑒𝑟𝑛(𝜓(𝑤𝑇𝑥𝑖)) 3. 24  

Assuming softmax activation 𝜓, the optimal weights can be derived using Maximum Likelihood 

Estimation (MLE): 

𝑤 =  𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝑝(𝑦𝑖, 𝑥𝑖|𝑤) 

𝑤 =  𝑎𝑟𝑔𝑚𝑎𝑥𝑤𝑝(𝑦𝑖|𝑥𝑖, 𝑤) 𝑝(𝑥𝑖 | 𝑤) 

𝑤 =  𝑎𝑟𝑔𝑚𝑎𝑥𝑤𝑝(𝑦𝑖|𝑥𝑖, 𝑤)  

3. 25  

We model the prediction as a Gaussian distribution. The mean of this distribution is taken as the 

prediction 𝑓(𝑥𝑖)
𝑤. The variance term comes from the learned aleatoric variance output from the 

network. We then sample 𝑡 times from this distribution and then average its log-softmax over the 

sampling dimension. To avoid underflow and overflow issues, this is implemented by first 

transforming the 𝑦𝑖,𝑡 Using the log sum exp trick and then averaging over the sampling dimension. 

The final form of the loss is implemented directly using the Negative Log-Likelihood (NLL) loss 

after obtaining the samples as described and comparing the prediction against the ground truth. 

The loss is stochastic because it depends on Monte Carlo drawing from the variance term. 

𝑦𝑖|𝑤 ∼  𝑁(𝑓(𝑥𝑖)
𝑤, 𝜎 𝑖

𝑤2
) 

𝑦𝑖,𝑡 =  𝑓(𝑥𝑖)
𝑤 + 𝜖𝑡 , 𝜖𝑡  ∼  𝑁(0, 𝜎  𝑖

𝑤2
) 

𝐿𝑥 = 𝑁𝐿𝐿(𝑦𝑖, 𝑦𝑔𝑡)  

3. 26  

During inference, the procedure to compute uncertainty is by doing Monte Carlo sampling using 

dropout to obtain predictions. The epistemic uncertainty is computed as the variance of these 

predictions. The aleatoric uncertainty is the learned component of the prediction and is directly 

obtained from the formulation. The results in Figure 3.8 show that the epistemic uncertainty 

reduces with more training data while the aleatoric uncertainty remains oscillatory and 

independent of this trend. It also shows a demonstrative example of what the decision boundary 

looks like when using MC-Dropout. The areas with more data have a lower uncertainty in the 
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decision boundary, indicated by the lower amount of variance in classification. At the extreme 

ends of the decision boundary, we notice a widening of the noise profile, indicating a higher 

uncertainty for the discriminative model to assign a fixed label to a sample near the boundary. 

 

                                     (a)                                                                          (b) 

Figure 3.8: (a) Visualization of the two moons dataset with a visualization of the decision 

boundary when using MC-Dropout (b) Classification with uncertainty in the two moons dataset - 

Variation of uncertainties with sample size 

3.1.3 Results and Discussion 

The technique used for uncertainty modeling was verified in the earlier section to capture the 

desired behaviors for out-of-sample uncertainty, detecting the higher level of epistemic uncertainty 

when the test samples are further away from the training samples and an invariant aleatoric 

component with respect to the number of training samples. Therefore, the developed model was 

applied to modeling the uncertainty in the ASU Pipe defects dataset and the CrackForest dataset. 

The CrackForest dataset consists of 151 images of crack with asphalt backgrounds. The Concrete 

Crack dataset is a larger dataset but is only used for validation, after training with the CrackForest 

dataset. The results for the uncertainty quantification for each dataset is summarized in Figure 3.9. 

We also apply the trained model to the Concrete Crack dataset, and the uncertainty quantification 

results are compared against the CrackForest dataset in Figure 3.10. The use of these benchmark 

datasets helps evaluate the model on a larger defect detection dataset. It also helps evaluate the 

model performance when the training data distribution shifts away from the validation set, as in 

Figure 3.10. The results show that the epistemic uncertainty remains consistent across training 
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samples, surprisingly showing lower average uncertainty values than the original dataset for the 

lower sample regime. This observation was surprising, as we expected a gradual decrease in 

epistemic uncertainty, with a higher uncertainty value for the cross-dataset examples. 

 

                                        (a)                                                                  (b) 

Figure 3.9: (a) CrackForest dataset and (b) ASU Pipe Dataset 

 

(a)                                                                          (b)                      

Figure 3.10: Uncertainty Evaluation for images from the ConcreteCrack dataset with a model 

trained on the CrackForest dataset: (a) Aleatoric Uncertainty and (b) Epistemic Uncertainty 

A goal of predictive models under uncertainty is to ensure that a higher level of uncertainty is 

assigned to labels that deviate from the ground truth. This can be verified in the validation set, as 

the ground truth is available during evaluation. Figure 3.12 demonstrates how the epistemic 

uncertainty score tracks with the prediction quality, which is measured by the class-wise F1 score. 

Ideally, the points need to fall close to the red line, indicating an incr easing uncertainty for samples 
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with poor detection scores in the test set. The top row of Figure 3.12 is calibrated for the 

background class and not for the defect classes, owing to a lower number of training samples 

overall in the dataset. To demonstrate that more data does help in improving uncertainty 

calibration, we overfit the model to a training set by splitting the training and validation sets after 

performing manual data augmentation, which includes horizontal and vertical flips, and image 

scaling to reduce the number of background pixels. While this approach is not recommended for 

testing generalization, the objective of this test was to verify calibration, assuming only small 

perturbations around the training data and with a greater number of training samples overall. We 

also use this dataset and model to demonstrate the defect measurement results, as shown in Figure 

3.11. The objective was to evaluate the D435i performance for quantifying defects and not the 

model's generalization under a small training dataset. With more training data and a validation set 

close to the training set, the uncertainty correlates well with the background and pitting defect 

classes with a higher number of training samples compared to the crack defect. For the CrackForest 

dataset, the background class is again well calibrated with respect to the prediction F1 score. The 

concrete crack dataset, however, displayed an interesting trend, with the model producing nearly 

all its variance in confidence within a narrow band of F-1 scores. To further investigate this, we 

then added random brightness, saturation, contrast, and hue jitter along with standard Gaussian 

noise to the input images to further perturb them from the training sample space, as seen in Figure 

3.14. The reduction in image quality significantly reduced the overall F1 score for the crack defect 

and altered the epistemic uncertainty for both the crack and the background. This implies that the 

original observation was just the model predicting a relatively higher uncertainty for these new 

samples, even with a good F1 score. 

A demonstration of defect measurements and depth estimates is shown in Figure 3.11 with errors 

indicating that the segmentation method can produce accurate defect areas with the variance in 

predicting the defect boundary. The sensor can capture pitting depth on the millimeter scale but 

has larger errors owing to resolution limitations. The spatial resolution limits and the segmentation 

errors also affect the results for the width of thin cracks. The depth sensor was found to be 

unreliable below the millimeter scale. It has reliable detections of defect depths on the millimeter 

scale and high precision when the depth of the defect is at or above the order of 1/10th of a 

centimeter. Signals of interest captured at sub-millimeter scales can be used for anomaly detection, 

but the corresponding depth measurements will not be reliable. In pipe damage modeling, this 
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situation corresponds to early detection for corrosion and oxidization of metallic surfaces (B. 

Zhang & Ma, 2019). At the early stages of surface degradation, the dominant anomaly signal is 

increased metallic surface roughness, which can be detected but not precisely characterized by our 

stereo setup. Further improvements to the depth resolution for optical metrology at a sub-

millimeter scale using commercial sensors is a promising research direction. This implies that 

commercial sensors must be optimized for sub-millimeter scale defects for ease of use in industrial 

metrology applications requiring precise defect depth estimates. 

 

 

 

 

 

 

 

Figure 3.15 shows some demonstrative examples of detections along with the corresponding 

uncertainties for the CrackForest and ConcreteCrack datasets. The detections for the ASU pipe 

dataset are shown in Figure 3.13. The uncertainty maps show that the source of uncertainty is 

largely at the boundaries of the detected defect. The variance in defect area profiles is useful for 

downstream prognostics, and obtaining uncertainty estimates along with defect morphology is 

essential for detailed risk evaluations. The reason why we have demonstrated this method on 3 

types of datasets is to demonstrate the effectiveness of the method on various types of sensors. We 

can also use higher resolution depth cameras, time of flight and structured light cameras for 

collecting depth data. This gives users the ability to use transfer learning to adapt their model to 

new types of sensors.  

Figure 3.11: Defect measurement demonstration on the pipeline sample 
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Table 3.1: Comparing the performance of various types of input data at a constant dropout value 

Data % Of full 

dataset 

Epistemic 

Uncertainty 

Aleatoric 

Uncertainty 

mF1 

 25% 0.0123 1.0132 0.7028 

RGB 50% 0.0130 1.0113 0.7566 

 100% 0.0106 1.0135 0.7632 

 25% 0.015 1.0176 0.6573 

RGB-D 50% 0.0104 1.0177 0.7530 

 100% 0.0101 1.0201 0.7555 

 25% 0.0108 1.0500 0.6560 

RGB-DC 50% 0.0098 1.0481 0.7455 

 100% 0.0090 1.0456 0.7644 

 25% 0.0142 1.0284 0.6585 

RGB-DNC 50% 0.0113 1.0295 0.7527 

 100% 0.0102 1.0296 0.7584 
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Figure 3.12 : Classwise Epistemic Uncertainty - F1 score calibration performance for the ASU Pipe RGB-D validation set across 

classes: Top row - Small ASU Pipe Dataset with a test set held-out (Left) Background  (Middle) Cracks (Right) Pits, Bottom 

Row - Augmented ASU Pipe Dataset with test samples augmented from the training samples for verifying model calibration 

assuming the test set distribution is very close to the training data distribution (Left) Background (Middle) Cracks (Right) Pits 
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Figure 3.13: Demonstrative detections from the ASU pipe dataset: (Left to Right) Image, Ground 

Truth, Prediction and Total Uncertainty 

Next, we analyze the various fusion layers' performance and input data types. Table 3.1 shows the 

comparative performance of the RGB, RGB-D, RGB-DC, and RGB-DNC input data at various 

training sample sizes at a dropout of 0.5. We also evaluate the model across various dropout ratios, 

as shown in Figure 3.16. From the results, the data types themselves do not cause substantial 

absolute improvements to raw detection performance. However, the ablation studies show that the 

epistemic uncertainty is lower when using the fused representations than only using RGB data, 

with the RGB-DC performing the best across all dropout ratios. The small dataset has some 

limitations in the number of claims that can be made on generalization, but results have shown a 

greater propensity for pitting defect accuracy improvements when using additional data apart from 

just RGB information, with slight improvements to the mean F1 (mF1) score by the incorporation 

of normal and curvature information instead of just the depth map. The F1 score is a harmonic 

mean of precision and recall. Precision computes the proportion of true positives (TP) to the total 

number of positive detections, including false positives (FP). Recall, on the other hand, computes 

the proportion of true positives to the sum of true positives and missed detections (false negatives).  

 

  Image                Prediction                  GT                Uncertainty 
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(a)                                                               (b) 

  

(c)                                                              (d) 

Figure 3.14: Classwise Epistemic Uncertainty - F1 score calibration performance for the 

ConcreteCrack dataset by class: Top-Row: Original unaltered data (a) Background (b) Crack, 

Bottom-Row: Data with added Gaussian noise and random brightness, contrast, hue and 

saturation jitter for (c) Background (d) Crack 
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Figure 3.15: Demonstrative examples of detections in the CrackForest (Top-3 rows) and the 

ConcreteCrack Dataset (Bottom-3 rows). Images from Left to Right: Input, Prediction, Ground 

Truth (GT), Total Uncertainty 

  Image         Prediction             GT              Uncertainty 
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                                        (a)                                                                   (b) 

 

(c) 

Figure 3.16: (a) Epistemic Uncertainty across various dropouts and input data types (b) Aleatoric 

Uncertainty across various dropouts and input data types (c) Mean-F1 across various dropouts 

and input data types 

3.2 Semi-Supervised Semantic Segmentation using Activation Map Interpolation 

3.2.1 Background 

In the past decade, remarkable progress has been made in image segmentation due to the deep 

learning revolution. The advent of powerful GPUs has enabled the industry to utilize large, labeled 

training sets to fit deep networks with huge parameters. However, the pace of progress in 

computation power has not remedied the lack of quality-labeled training data, which remains a 

challenge. Furthermore, labeling data for semantic segmentation is also time-consuming and 
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expensive. Therefore, there is a need for a model that can learn from a small set of labeled examples 

and a larger set of unlabeled samples. This section proposes a segmentation method for surface 

defect detection, which will help condition monitoring and quality assessment framework for 

manufacturing and civil infrastructure applications. While the defect image characteristics vary 

between these applications, the data-driven approach used in our models mean that they can be 

easily adapted. 

Defect detection databases are currently limited compared to natural image database. This leads to 

the lack of large datasets, which can hinder deep learning-based methods for defect detection. In 

addition, manual labeling of datasets is also expensive and involves tedious work for experienced 

engineers. These databases also present various challenges compared to natural images: They have 

fewer distinctive features and often require algorithms that can work in real-time. They also have 

high intra-class similarities and minuscule defects that can be hard to detect, such as hairline 

cracks. Defect detection has been a focus of multiple studies for classification and coarse-grained 

object detection. However, fewer studies focus on fine-grained detection and segmentation of 

defects. Pixel-level segmentation offers significant advantages over detecting object categories 

(classification) or coarse-grained bounding boxes, such as a better understanding of defect 

morphology, which would help improve downstream prognostics, risk assessment, and quality 

management. Given the issues surrounding data labeling requirements and the lack of quality 

samples, this study addresses them by focusing on fine-grained defect detection using a limited 

number of labeled samples and a larger corpus of unlabeled samples. 

The proposed method will lie on the following cornerstones: The smoothness assumption, the 

cluster assumption, and consistency regularization. The cluster assumption says that the decision 

boundaries between classes should not overlap but instead be well-separated. The manifold 

hypothesis states that the dissimilar data that are generated from the same process occupy the same 

space in a low-dimensional manifold. Manifold learning, for example, finds the space that best 

separates the classes in a lower dimension. Therefore, changing the space in which the data lies 

can change a potentially non-linear decision boundary with intersections into well-separated 

clusters that obey the cluster assumption. If the cluster assumption holds, consistency 

regularization forces a network to produce consistent outputs for perturbed inputs. This is 

accomplished by penalizing predictions on the perturbed input that deviate from the expected 
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output. Doing so increases the prediction accuracy at the original data point and in its 

neighborhood. If the cluster assumption is violated, the consistency regularization may end up 

offering no benefit, as some of the samples may get misclassified. 

The consistency regularization assumption in image classification settings is easy to justify. Given 

a labeled sample (𝑥𝐿 , 𝑦𝐿), any corruption or perturbation of the input  𝑥 ̃ = 𝑥𝐿 + 𝜖 should not 

change the classification target. However, in the context of segmentation, the task is to produce a 

dense pixel-wise prediction of classes. Some augmentations of the input, such as rotation or 

translation, can distort the inter-pixel relations and leads to a completely different output. 

Moreover, the cluster assumption is also shown to be violated at the image level, as low-density 

regions do not line up with the boundaries of the objects of interest, as demonstrated by French et 

al. Therefore, a method is needed to make the prediction robust to images in the neighborhood of 

the original sample. Consistency regularization constrains the predictions in the neighborhood of 

a sample to produce the exact prediction as the unperturbed samples. This approach is based on 

the validity of the cluster assumption. The simplest way to enforce consistency regularization is to 

perform random perturbations to the input. However, the space of possible perturbations in high-

dimensional data is large, and randomly choosing perturbations can be ineffective.  

The proposed method takes in a corpus of a small set of labeled images and a larger set of unlabeled 

images. The samples are passed into a multi-branch network, where a multi-component loss is 

learned jointly. Labeled samples are learned using a supervised loss, and unlabeled samples are 

learned using a consistency loss. 

3.2.2 Related Work 

Defect detection using optical methods has been studied extensively. Before the deep learning 

revolution, a lot of the methods focused on hand-engineered feature classification and defect 

classification using classical machine learning and statistical techniques. (Y. Liu et al., 2019) used 

a multi-block local binary pattern (LBP) to filter features across multiple scales. (Y. Shi et al., 

2016) performs road crack detection using engineered features and random forests. (Suvdaa et al., 

2012) uses SIFT features followed by an SVM for defect classification. (M. Liu et al., 2016) uses 

image binarization optimization using genetic algorithms to segment defects in an unsupervised 

fashion, by using a thresholding approach based on inter and intra-class variance statistics. In most 
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of the classical image processing-based approaches, the process of detection is multi-stage, 

requires lower amounts of training data and have simpler mathematical models, and complicated 

algorithmic models. The advent of deep learning-based approaches saw rapid progress in test-set 

performance for defect detection algorithms, and the focus shifted to highly data-driven methods 

for detection. Classification based on deep learning has been explored by several works. (Y. Liu 

et al., 2020) uses a CNN architecture with fixed scales at two image resolutions, which compute 

features at the corresponding scales and are then concatenated for defect classification. (Chen et 

al., 2018) uses an ensemble of three networks to classify defect images, and F.A. Saiz et al. (Saiz 

et al., 2018) combines pre-processing steps with a CNN to increase robustness of the CNN to inter-

class defects. Semi-supervised classification algorithms such as (Di et al., 2019; Wang et al., 2021) 

use varied methods to distinguish between textural samples with limited labeled data. (Di et al., 

2019) uses a large unlabeled corpus to train a convolutional auto-encoder and a GAN is then used 

to increase the sample size. Finally, the encoder of the trained auto-encoder model is used to extract 

features from the data and is fed into a softmax layer for classification. (Wang et al., 2021) uses a 

graph-based deep network to perform classification. However, classification does not give us any 

indication of object location, without further post-processing. This gap was filled by various object 

detection (J. Li et al., 2018; Y. Li et al., 2019)  and semantic segmentation methods. It has been 

shown that deep networks-semantic segmentation approaches achieve particularly good 

performance, with various architectural modifications to boost the performance in the validation 

and test sets, as in (Cheng & Yu, 2021; Dong et al., 2020; Z. He & Liu, 2020; Tabernik et al., 

2020; Yang et al., 2020). However, a gap remains in addressing semi-supervised semantic 

segmentation in surface defect detection applications, which this paper will address. 

The task of semi-supervised learning has been explored using the following approaches: Pseudo-

Labeling and self-training (Lee, 2013), consistency regularization,  interpolation consistency 

training (ICT) (Verma et al., 2019), and virtual adversarial training (VAT) (Miyato et al., 2019). 

The pseudo-labeling approach takes in a corpus of labeled and unlabeled samples and generates 

fake targets for the unlabeled samples. For the segmentation problem, pseudo-labels can be 

generated using Class Activation Maps (CAM) (Zhou et al., 2016). However, the problem with 

pseudo-labels is that the errors made in target generation has no mechanism of correction. As a 

result, using incorrect pseudo-labels will tend to propagate these errors through the model during 
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backpropagation, and cause a positive feedback loop of erroneous predictions leading to incorrect 

weight updates. Self-training improves upon the pseudo-labeling approach by successively adding 

in new samples into the corpus and by selecting the samples that it is most confident about.  

Consistency regularization constrains the predictions in the neighborhood of a sample to produce 

the same prediction as the unperturbed sample and is based on the validity of the cluster 

assumption. The simplest way to enforce consistency regularization is to perform random 

perturbations to the input. However, the space of possible perturbations in high dimensional data 

is large and randomly choosing perturbations can be ineffective. Among the more sophisticated 

consistency regularization models, the VAT model uses an adversarial perturbation to perturb the 

input in the direction of the greatest predicted output change. The ICT approach uses an 

interpolation between a pair of unlabeled samples such that the new sample lies in between the 

two, and consistency is enforced by constraining the transition curve between the two points is 

linear. CutMix (Yun et al., 2019) trains classifiers by introducing a random rectangular mask in 

the image to inpaint another image, and effectively combine the two images to produce a 

perturbation. (French et al., 2019)  combines CutMix with the Mean Teacher model (Tarvainen & 

Valpola, 2017), and predict pixel-wise semantic segmentation in a semi-supervised fashion. This 

paper takes inspiration from the ICT approach to work for semantic segmentation by operating on 

the probability space defined by the activation map of the features, instead of using the input space. 

3.2.3 Methodology 

Let (𝑥𝑖 , 𝑥𝑗) be a pair of unlabeled samples extracted from the data and let (𝑥𝑖
𝐶𝐴𝑀, 𝑥𝑗

𝐶𝐴𝑀) be the 

activation maps of the representation. The class activation maps are obtained using a global 

average pooling (GAP) layer (Zhou et al., 2016). The GAP performs a channel-wise spatial 

averaging of data, and this is multiplied by the weights 𝑤𝑘
𝑐 to yield the activation map 𝑀𝑐 as 

follows:  

𝐹𝑘 = ∑ 𝑓𝑘(𝑥, 𝑦)

{𝑥,𝑦}

 3. 27  

𝑀𝑐(𝑥, 𝑦) =  ∑𝑤𝑘
𝑐𝑓𝑘(𝑥, 𝑦)

𝑘

  3. 28  
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Images at the input level are high-dimensional representations that do not strictly obey the cluster 

assumption French, et.al, 2019. On the other hand, the hidden representations are at a lower 

dimension and were expected to have better clustering properties. This is identified by plotting the 

hidden representations' patch-wise Euclidean distances by first obtaining a class activation map 

and then interpolating it to the original image size, as shown in Figure 3.17. 

 

Figure 3.17: Cluster assumption demonstration by computing the patch wise Euclidean distance 

between a patch and its neighbors. Higher values are indicated with yellow: The left-most image 

is the input, followed by the distance maps (DM) of the following: the input image, the activation 

map from the end of convolutional Block 1, and the activation map from the end of Block 5. 

The patch-wise distances better conform to object boundaries at the hidden representation level 

than the input level. The calculated class activation map produces pixel-wise probability 

distributions that can be interpolated. The element-wise sum along the channel dimension is 1. 

Therefore, the class activation map is a WxH-dimensional distribution. Assuming that each pixel 

in the activation map is i.i.d (independent and identically distributed), they can be interpreted as 

containing a probability distribution per pixel. By extension, it can also be argued that interpolating 

the two activation maps can produce another probability distribution, as the operation performed 

is a convex combination with every resulting value being positive. In interpolation consistency 

                    Input  DM:  Input        Block 1       Block 5  



80 
 

training, the interpolation is performed using the following formulation directly on the input data 

sample: 

𝑥𝑚𝑖𝑥 = 𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑗 

 𝜆~𝐵𝑒𝑡𝑎(𝛼, 𝛼) 

3. 29  

Following the ICT approach, a non-negative mixing value is sampled from the beta distribution. 

The difference between this approach and the one described in ICT is that the interpolation happens 

for segmentation instead of classification, and the level at which the mixing happens is not at the 

image-level but at the level of the hidden layers. The resulting representation is then passed through 

decoder layers to obtain a final set of features with the same dimension as the image. The inputs 

(𝑥𝑖 , 𝑥𝑗) are also passed through the decoder separately and mixed using the mixing function again 

at the higher dimension. To make this similar to the density from the input side, the features are 

operated on by the softmax and the KL divergence loss between the mixed output �̃�𝑚𝑖𝑥 and the 

output obtained by combining the predictions from 𝑓𝜃′(𝑥𝑖), 𝑓𝜃′(𝑥𝑗) is computed: 

𝐿𝑐𝑜𝑛𝑠 = 𝐻 (�̃�𝑚𝑖𝑥, 𝑚𝑖𝑥(𝑓 𝜃, (𝑥𝑖), 𝑓𝜃(𝑥𝑗)) − 𝐻(�̃�𝑚𝑖𝑥)  
3. 30  

𝐻 − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

 

Figure 3.18: Overall methodology for semi-supervised segmentation using interpolation 

consistency in the probability space: Blocks with the same colors denote related elements. 
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Figure 3.18 shows the overall methodology, where the network designated 𝑓(𝜃′) is obtained as 

the exponential moving average of the weights of the central network 𝑓(𝜃), as in the mean-teacher 

algorithm (Tarvainen & Valpola, 2017). The student decoder is the only decoder branch to have 

its weights updated by backpropagation, and the knowledge from the student is distilled into the 

teacher branch using the mean teacher algorithm. The mean teacher algorithm ensures that the 

teacher model weights are updated according to the student decoder's exponential moving average 

(EMA) at every step of the model.  

𝑔(𝜃𝑡) = 𝛼𝑔(𝜃𝑡−1 ) + (1 − 𝛼)𝑓(𝜃𝑡)  3. 31  

Choosing the mean teacher model in classification settings improved performance when the 

number of labeled samples was scarce, even when compared to the Temporal-Ensembling model 

(Laine & Aila, 2017).  

The supervised loss function is computed on the outputs from the student decoder, and the loss is 

the standard cross-entropy loss: 

𝐿𝑠𝑢𝑝(𝑦�̃�, 𝑦𝑙) =  𝑦𝑙 log(𝑦�̃�) + (1 − 𝑦𝑙) log(1 − �̃�𝑙)  3. 32  

The consistency loss function is computed by using the outputs from the teacher decoder and the 

student decoder outputs. The loss is the KL-divergence loss, which is based on the relative entropy 

function between two distributions: 

𝐿𝑐𝑜𝑛𝑠(𝑦�̃�, 𝑦𝑙) =  𝐻 (�̃�𝑚𝑖𝑥, 𝑚𝑖𝑥 (𝑓𝜃(𝑥𝑖), 𝑓𝑡ℎ𝑒𝑡𝑎(𝑥𝑗))) − 𝐻(�̃�𝑚𝑖𝑥) 

𝐻𝑃−𝑄 = ∑𝑃(𝑥) log (
𝑃(𝑥)

𝑄(𝑥)
)

𝑥𝜖𝑋

 

3. 33  

The total loss is computed as the combination of the supervised and consistency losses, with a 

ramp-up weight function 𝑤(𝑡) for the consistency loss such that it becomes more dominant in later 

epochs: 

𝐿 = 𝐿𝑠𝑢𝑝 + 𝑤(𝑡)𝐿𝑐𝑜𝑛𝑠   3. 34  

The overall network architecture consists of an encoder, and two decoders, the teacher decoder, 



82 
 

and the student decoder. This is in keeping with the mean teacher model and the interpolation 

consistency training approach mentioned in the preceding sections. The encoder is a VGG-16 

network pretrained on the ImageNet dataset. The final fully connected layer and average pooling 

layer is removed and replaced with an adaptive average pooling layer. The fully connected layer 

is replaced with a 1x1 convolutional layer at the output of each of the 5 sub-blocks of the VGG-

16 network, used to compute class activation maps at each stage. The decoder consists of a series 

of transposed convolutional layers, to upsample the image back to the original size.  

The dataset is loaded into the network using a batching method that provides 3 sub-batches for 

every iteration: 1 sub-batch for labeled images, and the other two consist of unlabeled images. The 

labeled images are iteratively sampled with replacement until all the unlabeled images are 

accounted for. The labeled image passes through the common VGG-16 encoder and the student 

decoder. The unlabeled image first passes through the common encoder, and the corresponding 

class activation maps are extracted and normalized to sum to 1 in the class dimension. Each of the 

5 activation maps from the unlabeled data pair is interpolated, and the interpolated activation maps 

are passed into the student decoder and resized back into the right channel dimensions using a 1x1 

convolution.  

The remaining unlabeled samples are passed through the teacher decoder and interpolated after the 

outputs are obtained. The consistency loss is computed between the output obtained from the 

interpolated inputs through the student decoder and the output interpolated after they pass through 

the teacher decoder. This loss function is defined to be the KL-divergence loss, which measures 

the similarity between probability distributions. In this case, the KL-divergence is computed by 

summing over the class dimension, and then averaging over the batch and spatial dimensions. 

3.2.4 Results and Discussion 

We obtain results for this approach on benchmark datasets shown in Table 3.2 and compare it 

against related works and show competitive performance. We first present the results obtained on 

the NEU surface defect dataset and compared against the baseline supervised training method for 

various parameter settings and labeled dataset sizes. These results are for a training set that consists 

of 600 images, and a validation set that consists of 300 images from the surface defect dataset. The 

training and validation sets are kept separate during the training of the model, so the model does 
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not use any of the validation samples for training. Loss function weighting is a training 

hyperparameter. For the NEU dataset, the model performed best when the loss components were 

both unweighted. The results show that the mIU obtained in the validation set using the semi-

supervised approach exceeds the fully supervised training baseline by 25% when there are only 30 

labeled samples, and by 23% when there are 60 labeled samples, as shown in Table 3.3.  

 

Figure 3.19:Demonstrative detections on the NEU validation set: (Left to Right) Image, Ground 

Truth, Predictions: 5% labeled training data, 10% labeled training data, 20% labeled training 

data, 50% labeled training data, 100% labeled training data. 

Figure 3.20 shows some sample detections while using only 30 labeled images. The 

demonstrations indicate that the semi-supervised learning model manages to obtain correct 

detections in places where there are none in the supervised case and manages to eliminate spurious 

noise produced in the detections of the supervised model. Figure 3.19 summarizes a compilation 

of detections in the validation set with various amounts of labeled data.  

Table 3.2: Dataset sizes 

Dataset Training Validation 

NEU 600 300 

Crack Detection 135 16 
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Figure 3.20: Demonstrative detections illustrating the effect of adding additional unlabeled data 

to the set and using the consistency loss. In this case, the comparison is made between the fully 

supervised case with 30 labeled samples, and the semi-supervised case with 30 labeled samples 

and 570 unlabeled samples. 

The results in Table 3.3 show that the addition of these unlabeled samples, along with the 

consistency loss, provided a boost to the performance of the semi-supervised model, as compared 

to the purely supervised model. The table also shows, however, that the performance benefit 

provided by the unlabeled samples starts to drop off as more data is added to the labeled list, with 

a 50% labeled set providing only 1% less performance as compared to the semi-supervised model. 

Having a 30-sample labeled set provided an IU that was 20% lower than training with the fully 

supervised set, with all 600 samples being labeled. 

A comparison was made between equally weighted losses and a ramp-up function applied to the 

consistency loss over several epochs. In this case, the number of epochs was chosen to be 80 

empirically, using the evolution of the supervised loss function in the unweighted case. This made 

the supervised loss component dominant in the initial stages of the training. However, the 

performance produced by this approach was consistently lower on the NEU dataset than that 

produced when both the losses were weighted equally, as shown in  Table 3.4. 

To evaluate how much better the addition of 30 labeled samples is to the model, the model was 

trained with only unlabeled samples. This meant that the network did not have any supervised loss 

component but only an unsupervised loss. This resulted in a poor mIU of 8%, which was improved 
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more than 7x when a limited supervised set of 30 samples was added.  

Finally, the results obtained from the proposed method were compared against benchmark results 

from recent works in Table 3.5, and is shown to have comparable results with state of the art in 

fully supervised learning, and the semi-supervised benchmarks perform at approximately 20% 

lower than the fully labeled, fully supervised training model for the 5% labeled case, and 15% 

points lower in the 50% labeled case.  

Table 3.3: Metrics computed for the validation set at various proportions of labeled samples, 

with a performance comparison between the loss ramp-up approach and the equally weighted 

losses approach 

The second dataset to be considered for evaluation is the CrackForest Dataset (CFD). This dataset 

consists of a set of 151 labeled images and comprises a binary segmentation problem along with 

their segmentations and ground truths. The challenge posed by this dataset is in the ability to 

capture the crack morphology accurately. The experiments were conducted using 135 labeled 

samples, along with data augmentation for the supervised baseline, and semi-supervised 

benchmarks were computed as well. A comparison between the supervised baseline, other 

supervised deep learning architectures, and traditional image processing methods is made. The 

results indicate that the supervised baseline exceeds the performance of most of the preceding 

Labeled Samples Supervision mIU 

5% Ramp 0.46 

 No Ramp 0.64 

10% Ramp 0.53 

 No Ramp 0.66 

20% Ramp 0.57 

 No Ramp 0.64 

50% Ramp 0.63 

 No Ramp 0.69 

100% Supervised 0.84 



86 
 

works, as shown in Table 3.6, with a pixel tolerance of 0 for measuring true positives. Pixel 

tolerances were introduced for this dataset to measure performance in other benchmarks, as the 

ground truth measurements can have uncertainties, and the morphology of the detected cracks need 

not align exactly with the pixels marked out in the ground truth. However, in this study, the 

network used had enough parameters to be able to capture fine-grained localization information 

and therefore did not have the issue of uncertainties in learning pixel-wise locations, unlike in 

traditional image processing methods. The training set consisted of 135 labeled images, leaving 

16 images for testing. The number of training samples was chosen to ensure ease of batching of 

the semi-supervised data sampler. The performance gap between the supervised and semi-

supervised benchmark was narrower in this case due to the relative simplicity of this dataset. Some 

demonstrative examples are shown in Figure 3.21. 

 

Figure 3.21: Demonstrative detections on the CrackForest validation set: (Left to Right) Image, 

Ground Truth, 5% Labeled, 10% Labeled, 20% Labeled, 50% Labeled, Fully Labeled 

 



87 
 

Table 3.4: Metrics computed for the validation set at various proportions of labeled samples, 

with a performance comparison between the semi-supervised model and the fully supervised 

model 

Table 3.5: Comparison of the results obtained in the test set for the NEU dataset 

Labeled Samples Supervision mIU 

5% Supervised 0.39 

 Semi-Supervised 0.64 

10% Supervised 0.43 

 Semi-Supervised 0.66 

20% Supervised 0.51 

 Semi-Supervised 0.64 

50% Supervised 0.68 

 Semi-Supervised 0.69 

100% Supervised 0.84 

Method Type Labeled mIU 

SegNet  Fully Supervised 100% 0.5657 

PSPNet Fully Supervised 100% 0.7225 

PGA-Net Fully Supervised 100% 0.8215 

Ours Fully Supervised 100% 0.8309 

Ours Semi Supervised 5% 0.6429 

Ours  Semi Supervised 10% 0.6674 

Ours Semi Supervised 20% 0.6454 

Ours Semi Supervised 50% 0.6992 
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Table 3.6: Comparison of results obtained in the test set for the CrackForest dataset 

  

Method Type Labeled Tolerance 

(px) 

mIU F-1 

Canny Image 

Processing 

- 5 - 0.1576 

CrackForest Image-level 

labels + Hand 

engineered 

features 

- 5 - 0.8571 

U-Net Fully 

Supervised 

100% 0 0.55 0.7015 

Res U-Net + 

ASPP 

Fully 

Supervised 

100% 0 0.56 0.7121 

Ours Fully 

Supervised 

100% 0 0.7312 0.8443 

Ours Semi 

Supervised 

5% 0 0.6944 0.8194 

Ours Semi 

Supervised 

10% 0 0.6881 0.8151 

Ours  Semi 

Supervised 

20% 0 0.7109 0.8310 

Ours Semi 

Supervised 

50% 0 0.6733 0.8047 
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4 DAMAGE PROGNOSTICS AND PHYSICS-BASED MODELS FOR INTERACTING 

THREATS 

4.1 Semi-Empirical models for failure pressure and remaining useful life estimates 

 

Figure 4.1: Prediction of failure pressure with depth to wall thickness ratio for a carbon steel pipe 

This section summarizes a prognostic failure analysis for a single pitting defect using the pipe 

failure formulation from ASME B31G (The American Society of Mechanical Engineers, 2009). 

For a cylindrical pipe with yield strength 𝑆𝑦, wall thickness 𝑡, outer diameter 𝐷, and effective 

length of the defect 𝐿, the allowed normal operating pressure is given by Barlow’s formula as:  

𝑃𝑜𝑝 = 2 ∗ 𝑡 ∗
𝑆𝑦

𝐷
 

4. 1  

 For a single corrosion defect that has a time-dependent depth and length 𝑑(𝑡), 𝑙(𝑡), the failure 

pressure equations are given by: 

𝑃𝑓 =
1.1𝑆𝑦2𝑡

𝐷

(

 
 1 − 0.85 (

𝑑
𝑡)

1 −
0.85 (

𝑑
𝑡)

𝑀1 )

 
 

 

4. 2  
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where  𝑀1 is the Folias factor computed as: 

𝑀1 = √1 + 0.6275𝑧 − 0.003375𝑧2 , 𝑧 =
𝐿2

𝐷𝑡
≤ 50  

4. 3  

𝑀1 = 0.032𝑧 + 3.3, 𝑧 =
𝐿2

𝐷𝑡
> 50  

4. 4  

Figure 4.1 shows a simple deterministic demonstration of the point of failure of the pipe with a 

single pitting corrosion defect of a particular size and a deterministic growth rate. However, growth 

rates and measurements of defect sizes have uncertainties. Therefore, to obtain the failure 

probability, we perform a Monte-Carlo simulation with the defect size being a random variable 

due to measurement uncertainty and the growth rate being a random variable due to model 

uncertainty. The growth rate is assumed to be a linear function (Vanaei et al., 2017), but this model 

does not consider the correlations between the defect's length and depth growth rate. The variables 

are drawn from a standard normal distribution 𝑁(𝜇, 𝜎) as: 

𝑁𝑑𝑒𝑝𝑡ℎ𝐺𝑟𝑜𝑤𝑡ℎ(𝜇𝑑 = 0.1, 𝜎𝑑 = 0.01) 4. 5  

𝑁𝑙𝑒𝑛𝑔𝑡ℎ𝐺𝑟𝑜𝑤𝑡ℎ(𝜇𝑙 = 0.1, 𝜎𝑑 =  0.01) 4. 6  

𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑑𝑒𝑝𝑡ℎ(𝜇𝑖𝑑 = 0.5, 𝜎𝑖𝑑 = 0.01) 4. 7  

𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐿𝑒𝑛𝑔𝑡ℎ(𝜇𝑖𝑙 = 0.5, 𝜎𝑖𝑙 = 0.01) 4. 8  

We can define a limit state function 𝑧 such that 𝑧 = 𝑃𝑓 − 𝑃𝑜𝑝 and the probability of failure is 

computed by considering the simulation outcomes such that 𝑧 ≤ 0. The measured depth and the 

length were first sampled from a normal distribution accounting for measurement uncertainty. 

Then, the growth rate was also sampled from a normal distribution to account for model 

uncertainty. The range of times for prognostics was from 10 years to 100 years, and the failure 

pressure was calculated for upto 100 years. The pipe is considered to fail if the failure pressure 

goes below the operating pressure, and if the predicted depth of the defect exceeds 90% of the pipe 

wall thickness. For the next iteration, we sample once more from the normal distributions for the 

depth and length of the defect along with their growth rates, and the process is repeated. The 
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instances of failure are counted, and if the probability of failure exceeds 20%, the pipe is said to 

be unreliable. 

4.2 Kriging model trained on FEM data for failure analysis 

The active learning Kriging model (Echard et al., 2011) is an interpolation method used to estimate 

a response at a certain point based on covariances. It is also used to determine the local variance 

at a point in addition to predicting the value, unlike the Response surface model, which is only 

useful in predicting the performance function’s sign. The role of limit state function G(x) is to find 

the local variance as well as the value at the point. The active Learning Kriging model is an 

approach where the mathematical model is updated after every prediction making the next 

prediction more accurate. 

The first step of Kriging consists of defining this stochastic field with its parameters according to 

a design of experiments. The Best Linear Unbiased Predictor (BLUP) is used to estimate the value 

at a given point. 

𝐺(𝑥) = 𝐹(𝑥, 𝛽) + 𝑧(𝑥)  4. 9  

𝐹(𝑥, 𝛽) is the deterministic part which gives an approximation of the response in mean. 

𝐹(𝑥, 𝛽) = 𝑓(𝑥)𝑡𝛽 4. 10  

 where 𝑓(𝑥)𝑡 = {𝑓1(𝑥),… , 𝑓𝑘(𝑥)} 

z(x) is a stationary Gaussian process with zero mean and covariance between two points of space 

x and w defined by: 

𝑐𝑜𝑣(𝑧(𝑥); 𝑧(𝑤)) = 𝜎𝑧
2𝑅𝜃(𝑥;𝑤) 4. 11  

 where 𝜎𝑧
2 is the process variance and 𝑅𝜃 the correlation function defined by its set of parameters 

𝜃. The Kriging variance 𝜎𝐺
2(𝑥)  is defined as the minimum of the mean squared error between Ĝ(x) 

and G(x). It can be expressed as the following analytical function: 

𝜎𝐺
2(𝑥) = 𝜎𝑧

2 (1 + 𝑢(𝑥)𝑇(1𝑇𝑅𝜃
−11)

−1
𝑢(𝑥) − 𝑟(𝑥)𝑇𝑅𝜃

−1𝑟(𝑥))  4. 12  
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𝑤ℎ𝑒𝑟𝑒,  𝑢(𝑥) = 1𝑇𝑅𝜃
−1𝑟(𝑥)-1 

4.2.1 Methodology 

The methodology uses an iterative scheme to calculate the cumulative failure probability over time 

using MC simulation. Initial defect sizes are sampled from a distribution over the surrogate model 

input parameters and are updated using a linear growth rate function. Then the 

responses are plotted for the parameters across time. For example, for the four responses observed 

in 15 pipes across 10 years, the values will be stored in a 15x10x4 matrix. The limit state function 

to assess probability of failure is as follows:  

▪ Max 1st principal stress at the corrosion patch surface while Pressure=100% SMYS > 

65 ksi  

▪ Avg 1st principal stress along the tip of the crack > 94.3 ksi 

▪ Max 1st principal stress along the crack tip > 114 ksi 

▪ Max 1st principal stress within the volume > 133.6 ksi 

If any of the criteria is met, then the failure case is recorded. The number of pipes failed is stored 

in an array with 𝑁𝑓 being calculated across each time step. 

4.2.2 Results and Discussion 

This section outlines the work done in this quarter with the surrogate model. We first get baseline 

results for the surrogate model and compare that against the original implementation with 

parameters taken within the training data range. Then, we compare the results of cumulative failure 

probability against the ASME B31G model. Finally, we attempt to remove the effect of the crack 

from the surrogate model, thereby going away from the training data distribution of the surrogate 

model and show that this does not capture the expected behavior from the model.  

The baseline input parameters for the kriging model along with the ranges selected for this 

demonstration is shown in Error! Not a valid bookmark self-reference.. The growth rate for the 

defects is taken at a conservative 4 mpy. While this growth rate produces only approximate 

estimates, for the purposes of benchmarking and preliminary analysis, we have assumed that this 

is warranted. Figure 4.2 predicts earlier failure instances when given similar initial conditions for 

both models.  
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Table 4.1: Input parameters for the surrogate model for the baseline experiment 

Parameter  Distribution  

Initial crack depth  𝑁~(0.0869𝑒−3, 0.0454) 

Initial crack length  𝑁~(0.5772𝑒−3, 0.2409) 

  

Initial corrosion depth  𝑁~(0.0311𝑒−3, 0.0134) 

  

Distance from the corrosion patch  𝑁~(−0.0427, 3.66) 

  

Distance from the center of crack  𝑁~(0.0537, 3.66) 

  

Growth rates 4 mpy - Constant 

 

 

Figure 4.2: Comparing the cumulative failure probability of the surrogate model and the ASME 

B31G model 
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4.3 Assessment of X65 Gas Pipeline using FEA for Interacting Corrosion Pits and 

Comparison with ASME B31G 

Finite element analysis has been a critical tool in the engineering industries in past decades. With 

improvements in the computational hardware, the FEA analysis is much cheaper than in the last 

decades. The X65 gas pipeline with corrosion defects can be analyzed using the Finite element 

analysis to predict the burst pressure. 

4.3.1 Verification and Validation of FEA analysis 

The Finite element analysis has been verified and validated by comparing the FEA result against 

the experimental results obtained by Choi et al., in (Choi et al., 2003). Therefore, the experimental 

data for various defects sizes obtained by Choi et al. are tabulated in Table 4.2. 

Table 4.2: Experimental details for the defect size configuration 

To verify the FEA, the quarter pipe 3D model with created with the rectangular pit with the 

dimensions of DB given in Table 4.2. The pipe’s outer diameter(D) is 762mm, and the thickness(t) 

is 17.5mm. The hexagonal mesh was generated with a maximum element size of 5e-2 m. The mesh 

near the defects was refined to achieve mesh convergence. The symmetry boundary condition and 

internal pressure was applied as boundary conditions. When von mises stresses across the defect 

thickness reached 90 % of the ultimate strength was considered a failure, as shown in Figure 4.5. 

Pipe No Length of the 

defect (l) (mm) 

Width of the 

defect (c) (mm) 

Defect depth (t) 

(mm) 

Burst pressure 

(𝑷𝒃)(MPa) 

DA 200 50 4.4 24.11 

DB 200 50 8.8 21.76 

DC 200 50 13.1 17.15 

LA 100 50 8.8 24.30 

LC 300 50 8.8 19.80 

CB 200 100 8.8 23.42 

CC 200 200 8.8 22.64 
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The internal pressure increases until it comes to the failure criterion. The True stress-strain curve 

from (Choi et al., 2003) was used to feed plastic strain vs. true stress values in ANSYS, as shown 

in Figure 4.4.  

Finally, the elastic-plastic finite element analysis is performed to predict the burst pressure. The 

failure criterion was reached when the internal pressure was 21 MPa in FEA, and there was a 3.5% 

error against the experimental failure pressure. Another case that was observed in (Choi et al., 

2003) was when the modified ASME B31G solution was less conservative than the one produced 

by the FEA analysis. It is seen to occur for longer defects at higher depth-to-thickness ratios. We 

show a similar case in Figure 4.3, for a defect of length 12.55mm, width 25mm and depth 14mm. 

The depth of this defect is 80% of the pipe’s thickness and has an interaction distance of 2.5mm. 

The FEM result shows a failure of the pipe at 22.33 MPa. The ASME result shows a resulting 

failure pressure at 23.16 MPa, which is marginally higher.  

 

Figure 4.3: FEA simulation result where the limit load predicted by it is more conservative than 

the modified ASME B31G formula. 

4.3.2 Parametric Study 

After the evaluation of FEA, the parametric study was performed to compare the FEA burst 

pressure and ASME B31G-2009 semi-empirical formula (of Mechanical Engineers, 2012). The 

dimensions of the corrosion defects used for the parametric study were tabulated in Table 4.3. 

Instead of using a single corrosion defect, this paper focuses on the parametric study of the 
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interaction pits with various defect depths (d) and interaction distances. But this interaction 

distance greater than three times the pipe thickness (3t) is out of scope for this study. If the 

interaction distance between the two pits is less than 3t, it will be considered a single pit, according 

to the ASME (of Mechanical Engineers, 2012). 

Figure 4.6 shows that the ASME burst pressure decreases with increasing interaction distance 

between the pits, whereas the FEA burst pressure rises with increasing interaction distance. 

Because the closer the interaction distance, the higher the stress concentration. Hence, the pipe 

with closer interaction will fail earlier than the pipe with the farthest interaction pits. But ASME 

B31G averages out the interaction distance as overall defect length; it shows the opposite trend. In 

all the cases, the ASME B3G is more conservative than the FEA, with the disadvantage of pipe 

being underused than its full potential.  

The tabulated dimensions of the pits were modeled and analyzed using the same procedure 

elaborated in the verification and validation section to predict the burst pressure of the pipe using 

Finite element analysis. The results produced by ASME B31G semi-empirical formula (1) and 

FEA are listed in Table 4.4. 

 

 

 

 

 

 

 

     (a)                                                                         (b) 

Figure 4.4: (a) True stress-strain curve for X65 (b) Plastic strain vs true stress in ANSYS 
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Figure 4.5: Von Mises Failure Criterion Across the ligament of the defect 

 

Figure 4.6: Interaction distance between pits vs burst pressure
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Table 4.3: Summary of datapoints used for the parametric study 

Case Name Defect 

Length-1 

(mm) 

Defect 

Length-2 

(mm) 

Defect 

Width–1 

(mm) 

Defect 

Width-2 

(mm) 

Defect 

depth-

1 (mm) 

Defect 

depth-2 

(mm) 

Defect 

distance 

(mm)  

𝐿𝑒250 𝑑 8.8 

 

100 100 50 50 8.8 8.8 50 

𝐿𝑒240 𝑑 8.8 

 

100 100 50 50 8.8 8.8 40 

𝐿𝑒230 𝑑 8.8 

 

100 100 50 50 8.8 8.8 30 

𝐿𝑒220 𝑑 8.8 

 

100 100 50 50 8.8 8.8 20 

𝐿𝑒210 𝑑 8.8 

 

100 100 50 50 8.8 8.8 10 

𝐿𝑒205 𝑑 8.8 

 

100 100 50 50 8.8 8.8 5 

𝐿𝑒201 𝑑 8.8 

 

100 100 50 50 8.8 8.8 1 

𝐿𝑒250 𝑑 10 

 
100 100 50 50 10 10 50 

𝐿𝑒240 𝑑 10 

 
100 100 50 50 10 10 40 

𝐿𝑒230 𝑑 10 

 
100 100 50 50 10 10 30 

𝐿𝑒220 𝑑 10 

 
100 100 50 50 10 10 20 

𝐿𝑒210 𝑑 10 

 
100 100 50 50 10 10 10 

𝐿𝑒205 𝑑 10 100 100 50 50 10 10 5 

𝐿𝑒201 𝑑 10 100 100 50 50 10 10 1 

𝐿𝑒250 𝑑 13 

 
100 100 50 50 13 13 50 

𝐿𝑒240 𝑑 13 

 
100 100 50 50 13 13 40 

𝐿𝑒230 𝑑 13 

 
100 100 50 50 13 13 30 

𝐿𝑒220 𝑑 13 

 

100 100 50 50 13 13 20 

𝐿𝑒210 𝑑 13 

 

100 100 50 50 13 13 10 

𝐿𝑒205 𝑑 13 

 

100 100 50 50 13 13 5 
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Table 4.4: Comparison of the ASME B31G burst pressure and FEA burst pressure 

 

Case Name ASME 𝑷𝒃 (MPa) FEA 𝑷𝒃(MPa) 

𝐿𝑒250 𝑑 8.8 17.57 21.81 

𝐿𝑒240 𝑑 8.8 17.71 21.67 

𝐿𝑒230 𝑑 8.8 17.86 21.455 

𝐿𝑒220 𝑑 8.8 18.04 21.24 

𝐿𝑒210 𝑑 8.8 18.21 21.05 

𝐿𝑒205 𝑑 8.8 18.31 20.92 

𝐿𝑒201 𝑑 8.8 18.39 20.9 

𝐿𝑒250 𝑑 10 16.40 21.35 

𝐿𝑒240 𝑑 10 16.56 21 

𝐿𝑒230 𝑑 10 16.73 20.55 

𝐿𝑒220 𝑑 10 16.92 20.25 

𝐿𝑒210 𝑑 10 17.12 19.99 

𝐿𝑒205 𝑑 10 17.23 19.92 

𝐿𝑒201 𝑑 10 17.31 19.8 

𝐿𝑒250 𝑑 13 13.04 18.9 

𝐿𝑒240 𝑑 13 13.22 18.25 

𝐿𝑒230 𝑑 13 13.42 17.65 

𝐿𝑒220 𝑑 13 13.64 17.25 

𝐿𝑒210 𝑑 13 13.88 16.95 

𝐿𝑒205 𝑑 13 14 16.76 
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5 3D  RECONSTRUCTION, SYSTEM INTEGRATION AND OPERATIONAL 

PROCEDURES 

5.1 RGB-D 3D Reconstruction of a pipe using Simultaneous Localization and Mapping 

(SLAM) 

3D reconstruction of the pipe was performed using RGB-D Graph-based SLAM approach called 

RTAB (Real-Time Appearance-Based) mapping. This technique is used to construct a 3-D map 

using the loop closure detection method. Loop Closure detection is the process of finding matches 

between current and previously visited locations by the RGBD sensor, which in our case was the 

Intel Realsense D435i. This approach has been integrated with Robot Operating Systems (ROS) 

as the “rtabmap_ros” package. 

 

Figure 5.1: Overall system diagram for RTAB-Map (Labbé & Michaud, 2019) 

The process of 3-d reconstruction is: 

• The input to this algorithm is RGB-D or stereo images from the camera, odometry data, 

and optionally laser scan or point cloud from 2D or 3D lidar. In our case, RGB-D image 

and IMU (Inertial Measurement Unit) was used for odometry input. All the input data was 

provided to the RTAB module in a synchronized time frame.  

• Then the pose information and the RGBD- data are stored in the STM (short-term memory) 

module. Since it is a graph-based map, it creates and stores this information in the form of 

a tree node. The nodes are created at the detection rate of 1 Hz, ensuring that the successive 

nodes overlap.  

• The odometry information was taken from proprioceptive and non-proprioceptive methods 

i.e., using visual odometry and the IMU in the D435 camera, respectively. Visual odometry 
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was calculated using the Frame-to-map approach. Frame-to-map registers the current frame 

against a local map of features from the last keyframes.  

• Whenever a new image and its odometry information are received as a node in STM, a 

neighbor link is created between the consecutive frames. This ensures that whenever loop 

closure is detected, the graph optimization algorithm propagates the error to each connected 

node via links to decrease the odometry drift. 

• Nodes are stored in STM till this buffer is filled with a range of 10 nodes before it is moved 

to WM (working memory). Working memory is the memory where the nodes are compared 

to make a loop closure if the nodes are similar.  

• Nodes are transferred from WM to LTM (Long Term Memory) to ensure that the map 

update time does not become too slow. The parameters for this are set at the default states 

of 0ms (0ms implies indefinite time) for the update time threshold. To determine which 

nodes to be transferred to LTM from WM, a weight is initialized to the nodes as 0 when it 

enters STM and compares with the last node in the graph. If the neighboring nodes are 

similar, the weight is increased by a value of the weight of the last node plus 1. The oldest 

of the smallest weighted nodes is transferred to LTM. Whenever a loop closure is detected 

by comparing the nodes in WM, the neighboring nodes of the location in WM are brought 

back from LTM to WM for more loop closures. The output that we got in our task was the 

map data which had the map of the pipe obtained by rotation and translation of the camera. 

 

Figure 5.2: RTAB-Map SLAM: Visual Odometry system components (Labbé & Michaud, 2019) 

The visual odometry was calculated using the following procedure:  
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The frame was processed based on GFTT (Good Features To Track) features (J. Shi & Tomasi, 

1994; G. Zhang & Vela, 2015). Feature matching is done by NNDR ratio (Nearest Neighbor 

Distance Ratio) test using BRISK descriptors, and to increase accuracy, the NNDR is kept low at 

0.2. Higher values will get more matching pairs, but the accuracy will reduce. A wrong match can 

cause the algorithm to fail in feature-poor environments with similar subregions. After the 

correspondences are calculated, the transformation is calculated using Perspective-n-point 

RANSAC. But the number of correspondences should be more than six to calculate the 

transformation. With the estimated transformation, the camera's pose is updated whenever a new 

node is created. Suppose the number of correspondences is less than 30% of the total number of 

features. In that case, the feature map is updated using local bundle adjustment, which reduces the 

reprojection error due to the lack of enough matching features. 

  

Figure 5.3: Frame stitching using SLAM in a feature-sparse pipeline environment 

The demonstration above illustrates the challenge of obtaining an accurate 3D reconstruction when 

minimal distinguishing feature correspondences exist. The image on the left of Figure 5.3 shows 

a rotation, and the one on the right shows a translation. The problem encountered during our 

attempt at obtaining a reconstruction was the lack of enough inliers. Even if there were enough 

inliers for one frame, the odometry could not accurately predict the camera's motion due to the 

small number of features. Therefore, it caused the overlap and reprojection errors shown in Figure 

5.3.  

Next, a corroded steel pipe sample was acquired, which was used to perform an initial baseline 

analysis of the pipe scanning method when the constraints surrounding the earlier robotic platform 

were removed. The steel pipe sample, however, is less than 1m long, and detailed mapping quality 

analyses across time would ideally require longer samples. This would help understand the pipe 
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scanning method's accuracy and robustness to factors such as IMU drift. In addition, the plastic 

pipe has far fewer features than the corroded steel pipe, which posed a challenge to obtaining high-

quality odometry consistently, as shown below. Therefore, for tests in the report, the features used 

were GFTT+ORB (J. Shi & Tomasi, 1994), and visual-inertial odometry using the frame-to-map 

method (Labbé & Michaud, 2019) was done.  

Test 1: Plastic pipe: Data and Discussion 

Two tests on the plastic pipe are described herein. The first test is a stationary holding test to 

capture the variability in the odometry, specifically the angular odometry in the presence of limited 

features. On clean sections of the plastic pipe, the results continued to be inconsistent despite the 

addition of external lighting and the stabilization of the camera position on the axis of the pipe 

using the stepper motor. Odometry tended to be lost easily, as the RTAB-Map package could not 

maintain a consistent series of matching frames. The camera view was then shifted to a location 

where there was an indication of a defect on the plastic pipe, as shown in Figure 5.4. In this view, 

the odometry became significantly better, with the feature matching algorithm consistently 

obtaining between 100 to 300 inliers after the iterative RANSAC processing of consecutive 

frames. The error in odometry is also lower than in the featureless case, resulting in no loss of 

odometry. However, there is some noise in this measurement, but this noise was not significant 

enough to cause poor odometry and trajectory outputs.  
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(a)                                                                (b) 

 

(c) 

Figure 5.4: Demonstrative odometry measurements and inlier detection in real-time from the 

stationary test on the plastic pipe: (a) Angle data (b) Inlier ratio (c) Frame with defect features 

The second test shows the limitations of the current technology for precise odometry in featureless 

environments and the effects of specular reflection on depth quality. This test was done by rotating 

the camera 360 degrees about the plastic pipe. The inliers were found to be inconsistent, and 

odometry was repeatedly lost in intervals of the pipe where there were few matches, as shown in 

Figure 5.5. External lighting also affects reflective surfaces’ depth maps, as specular reflections 

can cause poor depth quality, which also leads to poor odometry results. The light source was 

mounted behind the robot to illuminate the entire pipe section to correct this. Despite modifying 

the light source, the odometry consistency did not improve.  
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Figure 5.5: Rotation of the camera on the axis of the plastic pipe causes an intermittent loss of 

odometry due to the sparsity of feature matches between subsequent frames 

Test 2: Corroded steel pipe: Data and Discussion 

The stationary test for the steel pipe yielded more than twice the number of matches between 

subsequent frames, causing the odometry computation to be very stable compared to that seen in 

the plastic pipe. On the other hand, the pure rotation test yielded accurate odometry due to the high 

numbers of matches and inliers, as shown in Figure 5.6. The reason for the oscillation and 

variability in the inlier and match ratios is not determined yet. It needs to be investigated in the 

future within the context of the algorithms used in RTAB-Map.  

The next test for the corroded steel pipe was a complete scan with both rotation and translation. 

This is demonstrated and attached as a video as part of the supplementary material. The scan speed 

was varied and speeds up to one full pipe revolution per minute were achieved in this quarter. It is 

important to note that the rotation speed of the stepper motor is inversely correlated with the quality 

of the odometry. Speeds greater than approximately one rev/min resulted in unreliable or poor-

quality maps. A demonstrative image of the pipe traversal is shown in Figure 5.7.  
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(a) 

 

(b) 

Figure 5.6: (a) Pitch angle of the camera (b) Inlier ratios for a rotation cycle on the corroded steel 

pipe sample. 



107 
 

 

Figure 5.7: Demonstration of pipe scan with rotation of the camera about the axis of the pipe, 

and translation of the robot along the pipe. The trajectory of the camera system is estimated and 

shown in white 

5.2 Orientation Estimation using a Kalman Filter versus a Complementary Filter 

Let 𝛼, 𝛽, 𝛾 be the pitch, roll, and yaw angles of a rigid body such as a camera, respectively. The 

motion sensor provides three gyroscopic measurements and three accelerometer measurements. 

The gyroscope provides the angular rate components, and the accelerometer provides the 

acceleration components of the sensor. To estimate orientation, the initialization of the orientation 

is done using the first measurements of the accelerometer as follows: 

𝒂 = √𝑎𝑥
2 + 𝑎𝑦

2 + 𝑎𝑧
2 5. 1  

𝛼0 = 𝑐𝑜𝑠−1 (
𝑎𝑥

𝒂
) 5. 2  

𝛽0 = 𝑐𝑜𝑠−1 (
𝑎𝑦

𝒂
) 

5. 3  

𝛾0 = 𝑐𝑜𝑠−1 (
𝑎𝑧

𝒂
) 5. 4  

To avoid the accumulation of errors while computing orientation, and to fuse the sensors data from 
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both the accelerometer and the gyroscope, the complementary filter is used. The complementary 

filter is a combination of a high pass and a low pass filter, applied to the gyroscopic and 

accelerometer components respectively. The low pass filter is used on the accelerometer as it is 

sensitive to small accelerations in the short time scale that can be caused due to abrupt motions of 

the camera due to servo startup and vibrations during movement. Gyroscopes in the long-term can 

be prone to drift, which is an accumulating error. Therefore, the high pass filter on the gyroscope 

enables the use of these values in a shorter time window, and the low pass filter on the 

accelerometer reading makes use of it as an aggregate long-term measurement. For a general angle 

𝜃 and sensor measurements  𝜃𝑎𝑐𝑐𝑒𝑙 and 𝜃𝑔𝑦𝑟𝑜, and the filter parameter 𝜙 is used to control the drift 

and the noise weighting levels. For this example, we take this value to be 0.995: 

𝜃 = 𝜙𝜃𝑔𝑦𝑟𝑜𝑑𝑡 + (1 − 𝜙)𝜃𝑎𝑐𝑐𝑒𝑙 5. 5  

The complementary filter produces results for a camera rotating 3 rad (180 degrees) and returning 

to its original position. These results are shown in Figure 5.8. The pitch rate is captured accurately, 

however there is an error of 35 degrees introduced in the yaw component and a smaller error of 

around 16 degrees (0.28 rad) in the roll component. To improve upon this, the Kalman filter is 

used in this quarter to compare the results to the complementary filter. 

The Kalman filter is a predictor-corrector estimator, which models a general process 𝑥 as follows: 

𝑥𝑘 = 𝐹𝑘𝑥𝑘−1 + 𝑤𝑘 5. 6  

𝑥𝑘 = [𝜃𝑘 , 𝑏𝑘, 𝑎𝑘]
𝑇 5. 7  

𝜃𝑘 – 3x1 orientation error vector at step k 

𝑏𝑘 – 3x1 gyro bias vector, at step k 

𝑎𝑘 – 3x1 acceleration error vector at step k 

𝑤𝑘 – 9x1 additive noise vector 

𝐹𝑘 – state transition model 

The prior and the state transition model starts out at zero as 𝑥𝑘 is the error process. For the Kalman 

filter algorithm, the 𝑥𝑘 state vector is only calculable indirectly from a measurement 𝑧𝑘, which is 
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linearly related to 𝑥𝑘 as follows: 

𝑧𝑘 = 𝐶𝑘𝑥𝑘 + 𝑣𝑘 5. 8  

For the Kalman Filter, we obtain a 3x1 vector of differences in the sensor frame of reference 

between the gravity estimate from the gyroscope and the accelerometer. The objective of the 

Kalman filter is to compute an unbiased posterior estimate �̂�𝑘
+ of the underlying process 𝑥𝑘 from 

i) extrapolation from the previous iteration's posterior estimate �̂�𝑘−1
+  and ii) from the current 

measurement 𝑧𝑘: 

�̂�𝑘
+ = (1 − 𝐾𝑘)�̂�𝑘−1

+ + 𝐾𝑘𝑧𝑘 5. 9  

𝐾𝑘 – Kalman gain 

The Kalman gain is given by: 

𝐾 = 𝑃𝑘
−𝐻𝑘

𝑇𝑆𝑘
−1 5. 10  

𝑃𝑘
− = 𝑄𝑘 5. 11  

Here, 𝐻𝑘 is the 3x9 true state observation model, which is a function of the 3x1 gravity vector 

estimated from the orientation of the sensor. 𝑆𝑘 is called the innovation covariance, used to track 

the variability of the measurements, a function of the true state observation model 𝐻, the predicted 

apriori estimate of the covariance of 𝐻 calculated in the previous iteration, and the covariance of 

the noise of the observation model. 𝑄 is the 9x9 error estimate covariance that tracks the variability 

in the state vector. For the demonstration, a simulated trajectory is used for the measurement data, 

as shown in Figure 5.9. This is a set of pure rotations on all three axes. Applying the Kalman filter 

to the incoming measurements from the IMU, the results are as follows, shown in Figure 5.10. The 

parameters of the Kalman Filter have been set empirically, so this needs to be studied further in 

the future. In contrast, the output from the complementary filter is less accurate and suffers from 

higher deviations in comparison to the Kalman filter.  



110 
 

 

Figure 5.8: Pitch, yaw and roll angles computed using the motion module 

 

                                          (a)                                                                      (b)  

Figure 5.9: (a) Angular velocity measurement data from gyroscope (b) Ground truth orientation 

for the sensor 
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     (a)                                                                     (b) 

Figure 5.10: (a) Orientation prediction and ground truth using Kalman Filter (b) Orientation 

prediction and ground truth using Complementary Filter 
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Figure 5.11: Flow chart of Hardware-Software Integration 
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5.3 Robot Operation Procedure 

Figure 5.11 shows the overall flowchart of the hardware-software integrated prototype. We 

assembled the robot as described in the hardware specification in Chapter 3, section 2. The 

raspberry pi and the server computer are connected to the same network for the purposes of 

transferring the relevant stepper motor angle data. The imaging data is obtained directly from the 

D435i camera module, connected via USB cable to the server PC. We first obtain the RGB, X, Y 

and Z frame data, along with the IMU data and AS5600 stepper encoder data. These files are then 

processed offline for the downstream segmentation and risk assessment tasks. 

The procedure to set up the robot is as follows: 

▪ Power up the robot using the DC/Battery supply and connect the Raspberry Pi to the Wi-

Fi network.  

▪ Connect the server PC to the same Wi-Fi network as the Raspberry Pi. 

▪ Under configuration settings, enable VNC server. 

▪ Using the VNC Viewer, connect with the IP address of the Raspberry Pi, it will open the 

Raspbian OS 

▪ In the Raspbian OS, under Bluetooth option, switch on and then connect with the Bluetooth 

of DualShock PS4 Wireless Controller.  

▪ Open “hardwareIntegration.py” and run the program. 

Now that the robot is ready to move, it is placed at the open end of the pipe. The working logic of 

the code is explained below as follows: 

▪ The stepper motor's shaft axis is coaxial with the pipe's axis by altering the actuator's 

height. 

▪ The robot is then moved inside the pipe up to a distance where the camera’s field of view 

(FOV) covers the first axial section of the pipe.  

▪ The camera is rotated clockwise to capture data from the imaging, motion, and stepper 

encoder modules. The camera records images at 30Hz and IMU data at 90Hz. This data is 

transmitted to the server computer synchronously using a blocking call implemented in the 

RealSense SDK named “wait_for_frames().” The AS5600 rotary encoder installed at the 

backend of the stepper motor provides angle data to the server computer via the Arduino 
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and the Raspberry Pi using serial communication.  

▪ After a full rotation cycle, the robot is moved to the pipe's next axial section, and the above 

process repeats. 

▪ This is done until the entire pipe is covered.  

5.4 Integrating semantic segmentation and risk assessment 

The data acquired from the processes described in the checklist are ingested into the server 

computer and saved synchronously. Image data is then used sequentially using the PyTorch 

Dataloader class for inference. The obtained segmentation results are then used to compute 

epistemic and aleatoric uncertainty for the prediction as described earlier. The risk assessment 

module then computes a frame-wise prediction of remaining service life based on the largest defect 

detected by the segmentation network. The model for our prototype demonstration has been trained 

on the same pipe as the demonstrated example, owing to the lack of additional pipe samples for 

pitting defects. The testing distribution comes from the same distribution as the training set. The 

generalization performance of this model has been reported as part of task 2.2. 

The demonstration shown in Figure 5.12 shows the integration results. The image is fed into the 

neural network sequentially to produce detections. The ASME B31G and NG 18 algorithms are 

then used to quantify the failure pressure associated with corrosion defects. The current 

implementation also includes the stepper motor encoder data, which provides us with an accurate 

estimate of the stepper angular position. 

The final demonstration in this section would be an FEM analysis of the surface captured from the 

camera. The point cloud from the camera is saved as an STL file. The STL file was post-processed 

using ANSYS SpaceClaim. The imported facets were converted into a surface and then extruded 

to make a solid. This solid was then used to create a 3D pipe model with ground truth shown in 

Figure 5.13. Program-controlled non-linear meshing with mesh refinement near the corrosion pit 

was performed. The mesh was generated with 95665 nodes and 58842 elements. The von misses 

stress was recorded when an internal pressure of 35 MPa was applied. Figure 5.13 shows that the 

peaks in the Von-Mises stress occurs around the surface defects. 
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                      (a)                                                  (b)                                                   (c) 

 

                           (d)                                                   (e)                                                 (f) 

Figure 5.12: Demonstration of inspection in a sample pipe with pit and crack defects. (a) Image 

(b) Detection (c) Uncertainty (d) Remaining Useful Life estimate– Corrosion 

(e) Remaining Useful Life Estimate – Crack (f) Camera Orientation from Stepper Encoder 
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Figure 5.13: Converted model in ANSYS and Von-Mises stress around the internal defect  
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6 CONCLUSIONS 

This report has summarized the contributions made toward prototyping a mobile robot that 

performs data-driven evaluations of pipeline surfaces for defect detection, quantification, and 

downstream risk assessment.  

The first contribution of this project was to evaluate a commercially available stereo-vision sensor 

for in-line inspection purposes. Analyses were performed on the sensitivity of parameters to depth 

image resolution, and it was determined that the camera could capture defects in pipes up to 12 

inches in diameter using disparity shift adjustments. The depth resolution was at 1mm, with signal 

degradations below this limit, making the sensor unreliable for sub-millimeter depth evaluations. 

The area resolution was sub-millimeter, making the sensor suitable for measuring small pits and 

narrow crack widths if required. The project also designed the prototype to utilize one camera for 

inspection instead of multiple cameras, resulting in significant weight reduction for the prototype 

device and simplified downstream data analyses. The prototype design incorporates various off-

the-shelf electronics and drivers to achieve remote control of camera position and robot translation.  

The second contribution of the project was the proposal and evaluation of a fully supervised 

semantic segmentation network with heteroscedastic uncertainty estimates using a sampling-based 

approach, the MC-dropout. Dropout provides an easily integrated means of evaluating the model 

parameters' epistemic uncertainty; however, this work's additional contribution was to separate the 

epistemic uncertainty and the aleatoric uncertainty by highlighting the effect of adding additional 

image data on reducing predictive uncertainty.  

The third contribution of this project was the proposal and evaluation of a semi-supervised 

semantic segmentation technique based on the principles of interpolation and consistency 

regularization. The lack of enough training data for this domain makes weakly-supervised and 

semi-supervised learning techniques a crucial part of model development cost reduction. The 

proposed model’s penalties on performance with equivalent fully supervised machine learning, 

and deep learning models in the literature were evaluated. The results have indicated a 20% 

reduction in performance compared to fully labeled datasets, with only 5% of the data being 

labeled for the semi-supervised case.  

The fourth contribution of this project was integrating existing semi-empirical methods into the 
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defect detection workflow. One of the disadvantages of the implemented ASME B31G model is 

that the predictions for maintenance scheduling are overly conservative. Therefore, a FEM-based 

surrogate model with training data was used to compare the results of remaining useful life with 

the semi-empirical ASME B31G. The surrogate model was shown to predict failures earlier than 

the semi-empirical model, as it considered situations with two interacting defects: cracks and 

corrosion pits, compared to the ASME/NG-18 model, which considers these threats separately. 

Finally, we compare the results of the ASME B31G model against FEA analysis for interacting 

corrosion pit defects. The results indicated that the ASME B31G model was more conservative for 

all cases except for very deep pits, where the ASME B31G model was marginally less 

conservative.   
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7 APPENDIX A 

7.1 Empirical evaluation of stereo-matching parameters for the Intel RealSense D435i 

Camera 

The camera used in this project is the Intel Realsense Camera D435i. Intel RealSense Vision 

Processor acquires raw image streams from the depth cameras and computes high-resolution 3D 

depth maps without needing a dedicated Graphics Processing Unit (GPU) or host processor. It has 

a right imaging camera, left imaging camera, infrared (IR) projector, and an RGB module. The 

stereo camera projects an infrared light pattern onto the scene to increase the texture of the low-

texture scenes. The benefit of using IR is that it can work on any lightning conditions for perceiving 

depth. The depth depends on the spacing between the two sensors (baseline)- the wider the 

baseline, the farther the depth computation. Figure 7.1 shows the Intel Realsense Depth camera 

with its visible parts, such as IR module, left and right cameras, and the RGB module. 

 

Figure 7.1: Intel Realsense D435i camera system (Intel RealSense, 2022) 

In this section, we report the results of empirical sensitivity analysis. This is performed to evaluate 

the robustness of the depth map to changes in camera parameters and to determine the parameter 

range at which the depth map most closely resembles the real-world object dimensions. Bad sensor 

parameters can lead to object boundary bleeding, missing values (holes) in the depth map, and 

noisy output.  

The considered parameters are: 

▪ Exposure (
𝑊

𝑚2 𝑠): the amount of light per unit area reaching the surface of an electronic 

image sensor. 

▪ Gain (dB): Amplifies the entire image signal 

▪ Laser Power (W): Power provided to the IR projector 
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▪ Second Peak Threshold: Determines how different the second-highest matches can be from 

the first highest matches for stereo depth computation 

▪ Neighbor Threshold: Determines the number of neighboring pixels to be considered in the 

left image, which will be compared with the right image for depth computation  

▪ Disparity Shift (Min-Z and Max-Z change in Pixels): Controls the modification of the Z-

min and Z-max values for the camera to visualize. 

▪ Resolution: The fineness of detail in an image measured in pixels per inch (ppi) 

We first analyze how these key parameters influence object area and then analyze how they 

influence object depth computation. 

7.1.1 Sensitivity analysis of object area measurements to the camera parameters 

7.1.1.1 Methodology 

Contour extraction extracts the region of interest containing the detected object boundary from the 

depth map. Contours are extracted by joining pixels with the same color or intensity. This 

computationally cheap approach can detect specific shape features in the image. Contours are 

derived from traditional computer vision techniques like edge detection and boundary detection. 

A boundary/edge is detected based on pixel difference in luminosity, texture, and perceptual 

grouping from the background. Mathematically, the edge/boundary detection is performed by 

convolving with local filters such as Sobel, Prewitt, Laplacian, Canny, etc., and then finding the 

pixels with the highest gradient magnitude with respect to the local neighborhood pixels. 

Prior to performing contour detection, hole filling is performed on the depth map using the inbuilt 

Pyrealsense hole filling algorithm. Canny edge detection is performed on the image whose 

thresholding is determined using the pixel histogram.  

Canny edge detection is done in stages. Noise is removed from the image using 5x5 Gaussian 

Filter. The image is then filtered using the Sobel operator, which finds derivatives in the horizontal 

direction (𝐺𝑥) and vertical direction (𝐺𝑦). From there, we get the edge gradient and angle of the 

pixels. 

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2 
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𝜃 = atan (
𝐺𝑦

𝐺𝑥
) 

Then, the non-max suppression operation is done on unwanted pixels for the edge. In the end, the 

threshold value provided to the filter is used to find the correct and unwanted edge pixels. 

After canny edge detection, morphological dilation is performed on the edges to ensure continuity. 

Contour detection is then performed on the dilated image to find the boundary points. The 

boundary points are a discrete set of pixel coordinates, and a curve is generated through these 

points to create the best approximation. Finally, image moments from the contour are used to find 

its centroid, which is used as a reference depth measurement. 

 
Figure 7.2: Original RGB image 

 

Figure 7.3: Contour extraction from the depth map 

Figure 7.2 shows the original RGB image captured by the camera. In Figure 7.3, the upper left 

image shows the depth map after hole filling superimposed on the RGB map for comparison. The 

upper right image shows the Canny edge detection from the depth map superimposed on the RGB 
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map for comparison. The lower left image shows the contour extracted from the dilated version of 

the canny edge detected map. For comparison, the lower right image shows the contour 

superimposed on the RGB image. 

The RGB image is first converted into grayscale, and then the pixel histogram is used to threshold 

this grayscale image into a binary image. The binary threshold segments out the region of interest 

from the background. The experiment was set up so that the region of interest could easily be 

segmented using classical thresholding operations. Finally, the binary image is used to find the 

contours. Figure 7.4 (a) shows the original RGB image. This image is overlaid with the extracted 

contour in Figure 7.4 (b), where the green contour line represents an approximation to the region 

boundary of the object of interest. In this method, the ground truth area was measured manually, 

and the area of the depth map was converted from the pixel space into the world coordinate system 

using the camera's intrinsic parameters. The camera intrinsics do not provide an accurate field of 

view. It always has an error in the range of (-3,3) degrees. Thus, the field of view was calculated 

from the focal length and frame dimensions as in Equation 7.1 and Equation 7.2. 

 

 

                                                  (a)                                                (b) 

Figure 7.4: (a) Original RGB image of a coin (b) Image with overlaid contour 

 

Figure 7.5: Geometry of a camera lens 

 



123 
 

Figure 7.5 shows the basic geometry of a camera lens. 

𝐻𝐹𝑂𝑉 = 2 ∗ tan−1 (0.5 ∗
𝑊

𝑓
) 

7. 1  

𝑉𝐹𝑂𝑉 = 2 ∗ tan−1 (0.5 ∗
𝐻

𝑓
) 

7. 2  

Focal length is calculated from the depth camera intrinsic parameters, and width and height are the 

frame width and height in pixels. The depth coordinate system is orthogonal with the origin and 

orientation of the depth camera. We compute the height and width of 1 pixel as shown in Equations  

7.3, 7.4 and 7.5. 

𝑊(1𝑝𝑥) =
𝑑𝑒𝑝𝑡ℎ ∗ tan (

𝐻𝐹𝑂𝑉
2 )

𝐹𝑟𝑎𝑚𝑒𝑊𝑖𝑑𝑡ℎ
 

7. 3  

𝐻(1𝑝𝑥) =
𝑑𝑒𝑝𝑡ℎ ∗ tan (

𝑉𝐹𝑂𝑉
2 )

𝐹𝑟𝑎𝑚𝑒𝐻𝑒𝑖𝑔ℎ𝑡
 

7. 4  

𝐴𝑟𝑒𝑎(𝑚𝑚2) =  𝐴𝑟𝑒𝑎(𝑃𝑥) ∗ 𝑊(1𝑝𝑥) ∗ 𝐻(1𝑝𝑥) 7. 5  

𝐴𝑟𝑒𝑎(𝑚𝑚2) represents the area of the object (area of the cap in this experiment) in world 

coordinates and 𝐴𝑟𝑒𝑎(𝑃𝑥) represents the area in pixels. W(1px) and H(1px) represents the width 

and height of 1 pixel in world coordinates. The pixel area 𝐴𝑟𝑒𝑎(𝑃𝑥) is obtained by computing the 

0th order image moment 𝑀00 on the binary image, for the region corresponding to the specific 

contour in consideration: 

𝑀00 = ∑𝑥𝑖𝑦𝑗𝐼(𝑥, 𝑦)

𝑖,𝑗

   7. 6  

where x and y are the pixel index locations and 𝐼(𝑥, 𝑦) is the binary intensity of the pixel. This 

effectively computes the number of pixels inside the contour. To verify whether the algorithm 

works as expected and provides area computation estimates close to the ground truth, we first 

apply it to an RGB image, where the contour estimate of the object overlaps very closely with the 

object boundary. This is done because the parameter estimation on the depth map would lead to 
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changing object boundaries in the depth map. Once we verify that the area calculation method 

returns accurate values with respect to the ground truth, we apply it to the depth map. The 

measured contour area came out to be 4.44 𝑐𝑚2 using the above calculations. The ground truth 

area is 4.84𝑐𝑚2, which leads to an error of 8%. The calculated fields of view, horizontal and 

vertical, are 69.2𝑜 and 42.4𝑜 ,respectively. This experiment was performed to show that the 

proposed algorithm for conversion of the area in pixels to world coordinates metrics (𝑚𝑚2) gives 

consistent area in 𝑚𝑚2 by calculating the area of the same object from the depth map at varying 

distances from the camera. 

 

Figure 7.6: Contour area calculation for depth map 

Figure 7.6 shows a demonstrative example of contour extraction from the depth map at a distance 

𝑑 from the wall. The parameters were set by visual inspection such that the quality of the depth 

map was reasonable. The distance of the camera from the wall was then varied. Table 7.1 shows 

that even though the camera's distance from the object varies, the area in cm2 is the same. There is 

a slight variation due to the sensor's temporal noise. The ground truth area for this image is 

379.94𝑚𝑚2. The measured area of the contour from the depth map was approximately 32 mm2, 

and the error was 15%.  
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Table 7.1: Contour area at various distances in pixel coordinates and world coordinates 

 

 

 

 

 

 

 

Since the area error needed to be checked against a wide range of parameter values for any 

parameter, capturing the image of an object (a bottle cap in this experiment) and uniform variation 

of the parameters was automated using a python script. For every parameter value, the contour 

area was calculated in the world coordinate system(cm2), and error was found with respect to the 

ground truth area. The ground truth area was measured using a measuring tape. 

Ground Truth Area: 379.94 𝑚𝑚2 

Error percent is calculated as: 

𝐸𝑟𝑟𝑜𝑟(%) = (
𝐴𝑟𝑒𝑎𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 − 𝐴𝑟𝑒𝑎𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ

𝐴𝑟𝑒𝑎𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ
) ∗ 100% 

7. 7  

Distance in cm Area of contour in pixels Area of contour in 𝑚𝑚2 

23.1 5268 327.7 

24.4 4686 325.23 

27.2 3718 320 

28.1 3545 326 

29.9 3116.5 324 

30 3082 323 
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7.1.1.2 Results and Discussion 

The resultant image of the contours formed around the object is displayed by superimposing the 

contour extracted from the depth map on the original RGB image for easy visual comparison. 

Error in area of the cap with respect to change in gain (dB) 

 

Figure 7.7: Representative contours for various values of gain. 

Row 1 (Left to Right): Gain (dB) = [16, 22, 27] 

Row 2 (Left to Right): Gain (dB) = [32, 37, 42] 

 

Figure 7.8: Contour area error variation with respect to camera gain 

The gain is the amplification of the image signal obtained from the image sensor. In Figure 7.7, 

the resultant images show contours extracted from the depth map superimposed on an RGB image 

for comparison. The images are obtained while varying the camera gain value. 
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                                        (a)                                                                       (b) 

Figure 7.9: Depth frame for gain in range (16-55 dB) 

From Figure 7.8, it can be concluded that the depth map performs very well in the low gain range 

(16-55). More gain introduces noise, which is the reason for depth map distortion for gains above 

55dB. Please note that any error beyond 100% was clamped for better readability. Figure 7.9 (a) 

shows the depth map after hole filling for gain in range 16-55 dB, and Figure 7.9 (b) shows the 

depth map after hole filling for gain outside the range 16-55 dB. 

Error in area of the cap with respect to change in Exposure 

Exposure is the amount of light per unit area reaching the surface of an electronic image sensor. It 

depends on how long the camera shutter is opened for the light to reach the camera. It is measured 

in (
𝑊

𝑚2 𝑠). A high setting for exposure in a bright scene would lead to an overexposed image, where 

the fine-grained details of the image are lost. Similarly, a low setting for exposure in a dark scene 

would not give the sensor sufficient time to capture the salient features in the scene. Figure 7.10 

shows the contours extracted from the depth maps when the exposure was changed from 0-25000 

(
𝑊

𝑚2
𝑠). The depth map on the first two images shows a contour that does not match the object. This 

is because the camera's exposure was too low to produce the object's shape, as shown in the last 4 

images. On the other hand, exposures greater than 50,000 (
𝑊

𝑚2 𝑠) makes the image overexposed, 

which also leads to poor detection and area computation.  
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Figure 7.10: Representative contours for various values of gains 

Row 1 (Left to Right): Exposure (
𝑊

𝑚2 𝑠) = [0, 5000, 10000] 

Row 2 (Left to Right): Exposure (
𝑊

𝑚2 𝑠) = [15000, 20000, 25000] 

  

                                        (a)                                                                (b) 

Figure 7.11: (a) Contour area error variation for varying exposure 
𝑤

𝑚2 𝑠 (b) Distorted raw depth 

frame for exposure>45000 W 

From Figure 7.11 (a), it can be concluded that the depth map gives a reasonable estimation of the 

area when the exposure lies in the range 10000-45000 (
𝑊

𝑚2 𝑠). However, exposure depends on the 

light incident on the camera. More light creates a brighter image for both left and right cameras, 

which loses the depth of information. Similarly, the image is too dark for less light, which again 

leads to loss of depth information. So, it works only in a particular range depending on the external 
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lighting conditions. Figure 7.11 (b) shows the distorted depth map obtained when the exposure is 

greater than 45000 (
𝑊

𝑚2 𝑠).  

Error in area of cap with respect to change in Laser Power 

 

Figure 7.12: Representative contours for various values of Laser Power 

Row 1 (Left to Right): Laser power (W) = [0,10,20] 

Row 2 (Left to Right): Laser power (W) = [30, 40, 50] 

Laser power is the power provided to the IR projector. It is measured in Watts (W). Figure 7.12 

shows the contours extracted from the depth maps when the exposure was changed from 0-50 W. 

Figure 7.13 shows that the contour error variation is low for the entire range of laser power. Laser 

power is required for long-range viewing and viewing in low texture and low brightness 

environments. Since the object was at a constant distance and under sufficient lighting conditions, 

there was no strong effect in area computation when the laser power was varied. 

 

Figure 7.13: Contour area error variation for varying laser power 
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Error in the area of the cap with respect to change in second peak threshold 

 

Figure 7.14: Representative contours for various values of second peak threshold 

Row 1 (Left to Right): Second peak threshold (pixels) = [0,50, 100] 

Row 2 (Left to Right): Second peak threshold (pixels) = [150, 200, 250] 

  

                                        (a)                                                                 (b) 

Figure 7.15: (a) Contour area error variation for varying the second peak threshold (b) Depth 

map for second peak threshold beyond 600 pixels 

The second-peak threshold is a parameter used in the stereo-matching algorithm for depth 

calculation. In the RealSense Software Development Kit (SDK), this parameter is referred to as 

“dssecondpeak” - Figure 7.14 shows the contours extracted from the depth maps when the Second 

Peak Threshold was changed from 0-250 pixels. As the second peak threshold tells how different 

the first peak matches and second peak matches between the left and right camera need to be, as 

the threshold increases, more matches are regarded as aliasing, and thus depth result is 0 in most 

pixels. The plot in Figure 7.15 (a) shows a steep increase in error as we increase the second peak 

threshold beyond 600 pixels. Figure 7.15 (b) shows the corresponding depth map for a high second 
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peak threshold.  

Error in area of cap with respect to change in the neighbor threshold 

 

Figure 7.16: Representative contours for various values of neighbor threshold 

Row 1 (Left to Right): Neighbor threshold (pixels) = [0,50, 100] 

Row 2 (Left to Right): Neighbor threshold (pixels) = [150, 200, 250] 

The neighbor threshold is a parameter used in the computation of the stereo matching algorithm 

for the depth map. In the RealSense SDK, this parameter is referred to as “dsneighbor”. Figure 

7.16 shows the contours extracted from the depth maps when the neighbor threshold was changed 

from 0-250 pixels. The plot in Figure 7.17 (a) shows that the depth map gives a good estimate of 

the area when the neighbor threshold lies in the range of 0-400 pixels. Higher neighbor thresholds 

produce many missing values in the depth map computation, rendering a poor-quality depth map, 

as shown in Figure 7.17 (b).  

  

                                      (a)                                                                  (b) 

Figure 7.17: (a) Contour area error variation for varying neighbor threshold (b) Distorted depth 

map for neighbor threshold above 400 pixels 
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Error in area of cap with respect to change in Disparity Shift 

 

Figure 7.18: Representative contours for various values of disparity shift 

Row 1 (Left to Right): Disparity shift (pixels) = [0, 10, 20] 

Row 2 (Left to Right): Disparity shift (pixels) = [30, 40, 50] 

Disparity Shift changes the minimum and maximum depth that can be registered from the camera. 

It is measured in pixels. Figure 7.18 shows the contours extracted from the depth maps when the 

Disparity Shift was changed from 0-50 pixels. Figure 7.19 (a) shows that the depth map gives a 

good estimate of object area for the disparity shift range 0-120 pixels. Beyond 120 pixels, the 

camera ends up receiving a very narrow band of depth values (𝑍𝑚𝑖𝑛and 𝑍𝑚𝑎𝑥), which ends up 

creating a depth map with many values missing. Figure 7.19 (b) demonstrates this phenomenon.  

  

                                       (a)                                                                   (b) 

Figure 7.19: (a) Contour area error variation for varying disparity shift (b) Distorted raw depth 

map beyond disparity shift of 120 pixels 

Error in the area when resolution is changed 

Resolution is the fineness of detail in an image measured in pixels per inch (ppi). Higher resolution 
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images correspond to images that can capture finer features and details in the image, whereas lower 

resolution images take lower memory space, but are coarser. Table 7.2 shows the error variation 

in surface area when the image's resolution is changed. 

Table 7.2: Variation of error in area computation with resolution 

Error in the area when the surface area of a custom object is changed 

A custom object is created using clay dough. The shape of the object was a cuboid. The length and 

breadth of a custom object are changed while the thickness is kept constant. In this experiment, 

objects of varying sizes were placed in front of the camera, and the object's area was found using 

the contour approximation method. Table 7.3 shows how the error percentage changes as the 

surface area changes while keeping the object's thickness constant. The experiment gradually 

reduced the object's size from (1.9x1.5) cm to (0.9x0.5) cm. The reduction in the object's size does 

not independently impact the measurement accuracy, given that the object's thickness is held 

constant. This is because a thicker object protrudes further out from the surface and has a greater 

contrast from the background depths. The resolution limit determines per pixel area, which will 

impact the size of the object that can be detected.  

Table 7.3: Variation of error in area computation with surface area change 

Length(mm) Breadth(mm) Thickness(mm) Error% 

19 15 13 8.804 

14 14 13 -4.329 

9 5 13 9.64 

 

Resolution Error in area 

848x480 -13.29% 

640x480 -11.76% 

1280x720 -11.95% 
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Error in the area when object thickness is changed 

Figure 7.20 shows the contours extracted from depth images for varied sizes of object thickness. 

As shown in Table 7.4, we kept the length and width of the object constant and varied the depth 

of the defect to find the error rate as the object's thickness is reduced. As expected, the error 

increases when we reduce the object thickness. For example, at an object thickness of 1cm, the 

area error increases to 15.69%. The shape characteristic in the detected contour for an object 

thickness of 18mm captures the morphology of the actual defect. However, as the object thickness 

is decreased to 10mm, the depth map does not preserve the object's shape. This leads to a much 

higher error. This error would keep increasing in the sub-millimeter range. 

  

                     (a)                                    (b) 

Figure 7.20: Contour capture at an object thickness of (a) 1.8cm and (b) 1cm 

Table 7.4: Variation of error in area computation with change in object thickness 

Length(mm) Breadth(mm) Thickness(mm) Error% 

15 14 18 4.4 

15 14 10 15.6% 

7.2 Sensitivity analysis of object depth measurements to the camera parameters 

7.2.1 Methodology 

For performing these experiments, an object of 18 mm thickness and 11-mm radius is placed on a 

relatively flat wall in front of the camera as shown in Figure 7.21 and Figure 7.22. First, hole filling 

is performed on the raw depth map from the camera using the built-in Pyrealsense hole-filling 
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algorithm. Canny edge detection is performed on the image whose thresholding is determined 

using the pixel histogram. After canny edge detection, morphological dilation is performed on the 

edges to ensure continuity. Contour detection is then performed on the dilated image to find the 

boundary points. The boundary points are a discrete set of pixel coordinates, and a curve is 

generated through these points to create the best approximation. The procedure is shown in Figure 

7.23. 

 

Figure 7.21: Object of thickness 18 mm thickness used for sensitivity analysis 

  

Figure 7.22: RGB and depth map corresponding to the 3D map 

After finding the contour and filling the inside part with a uniform color opposite the background, 

the pixels inside the contour are separated from the background using the color difference. Then, 

the distance from the camera to the object is obtained by calculating the distance of the camera 

from the pixels inside the contour and the distance from the camera to the background is obtained 

by calculating the distance from pixels in the background. Then the erroneous distance for each 

pixel is removed before calculating the average distance (for all the pixels) from the background 

and the object separately. The thickness of the object is estimated by the differences between the 

background depth and the object depth.  
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Figure 7.23: Contour extraction process for thickness estimation 

7.2.2 Results and Discussion 

Error in the thickness estimation with respect to change in gain 

    

(a)                   (b)                           (c)                          (d) 

   

(e)                              (f)  

Figure 7.24: Contours across gains (dB) (a) 16 (b) 36 (c) 56 (d) 76 (e) 96 (f) 116 

Figure 7.24 shows the resulting object contours and Figure 7.25 shows that we can get the depth 

information with reasonable accuracy in the Gain range of 16-140 dB with a resolution of 848x480. 
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Figure 7.25: Plot of error in thickness estimation versus camera gain 

Error in the thickness estimation with respect to change in exposure 

  

(a)                                 (b)                               (c) 

   

                (d)                               (e)                                  (f) 

Figure 7.26: Contours across exposures (
𝑊

𝑚2 𝑠): (a) 0 (b) 500 (c) 1000 (d) 7500 (e) 14500 (f) 16000 

Figure 7.26 shows the extracted contours for various exposure settings. As shown in Figure 7.27, 

the thickness estimation is valid only in the range of 2000 to 16000 
𝑊

𝑚2
𝑠 with a resolution of 

848x480 as the plot shows that the error is low in this range. The contour and raw depth map below 

2000 
𝑊

𝑚2
𝑠 are as shown in Figure 7.28. This shows that exposure below 2000 

𝑊

𝑚2
𝑠 may not be 

suitable for thickness estimation. Exposure depends on lighting conditions, and these might vary 

with different lighting conditions, and auto-exposure algorithms are already present in the 

Realsense camera system to calibrate this according to the scene brightness. The contour formation 
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for exposure between 2000-16000 
𝑊

𝑚2 𝑠 is shown in Figure 7.29. The contour formation for 

exposure beyond 16000 
𝑊

𝑚2
𝑠 is plotted in Figure 7.30. The object contour is not detected in this 

case, as for every scene, there is a range of exposures for which the depth map produces reasonably 

accurate object contours, beyond which the camera's performance is severely degraded.  

 

Figure 7.27: Plot of exposure versus error in thickness estimation 

 

Figure 7.28: Contours and depth map for exposure below 2000 
𝑊

𝑚2 𝑠 
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Figure 7.29: Contours and depth map for exposure between 2000-16000 
𝑊

𝑚2 𝑠 

 

Figure 7.30: Contours and depth map for exposure above 16000 
𝑊

𝑚2
𝑠 
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 Error in the thickness estimation with respect to change in second peak threshold 

   

(a)                                          (b)                                         (c) 

    

          (d)                                          (e)                                         (f) 

Figure 7.31: Contours across second peak thresholds (pixels): 

(a) 0  (b) 100  (c) 200  (d) 300  (e) 400 (f) 500 

 

Figure 7.32: Plot of second peak threshold versus error in thickness estimation 

As shown in Figure 7.32, does not show a large variation in error magnitude as the second peak 

threshold is varied. Unlike exposure and gain, which are heavily influenced by factors such as the 

brightness of the scene, the thickness error is low through the entire range of the second peak 

threshold. This is because the second peak threshold only influences the fill rate of the depth map, 

that is, the number of holes, which affects area computation more than thickness. This is because 

there are variations in external lighting conditions due to these experiments being conducted in the 

home environment with loose lighting controls in contrast to the controls in the lab.  



141 
 

Error in the thickness estimation with respect to change in disparity shift 

As shown in Figure 7.33 and Figure 7.34, the thickness estimation is good in the entire range of 0 

to 150 pixels under the resolution of 848x480. However, this setting may cause holes in the depth 

map if the camera is located further away from the inspected surface, in which case a setting of 

zero is more appropriate. Lower depth values require higher disparity shifts for ensuring good 

depth map quality. 

   

(a)                                      (b)                                          (c) 

   

       (d)                                        (e)                                           (f) 

Figure 7.33: Contours across disparity shift (pixel): (a) 0 (b) 50 (c) 100 (d) 150 (e) 200 (f) 250 

 

Figure 7.34: Plot of disparity shift versus error in thickness estimation 
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Error in the thickness estimation with respect to change in neighbor threshold 

   

                             (a)                                    (b)                                     (c) 

   

                             (d)                                     (e)                                     (f) 

Figure 7.35: Contours across neighbor threshold (pixel): (a) 0 (b) 50 (c) 100 (d) 150 (e) 200 (f) 

250 

 

Figure 7.36: Plot of neighbor threshold versus error in thickness 

As shown in figures Figure 7.35 and Figure 7.36, there is no significant improvement to the 

thickness error estimation when the neighbor threshold is varied from 0 to 1000 pixels.  
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Error in the thickness estimation with respect to change in laser power 

   

                              (a)                                      (b)                                       (c) 

   

                               (d)                                      (e)                                       (f) 

Figure 7.37: Contours across laser power (W): (a) 0 (b) 50 (c) 100 (d) 150 (e) 200 (f) 250 

 

Figure 7.38: Plot of laser power versus error in thickness 

As shown in Figure 7.37 and Figure 7.38, the change in laser power impacts the depth map quality 

and thickness estimation accuracy, with increased laser power showing better performance. This 

shows the benefit of using active stereo over conventional stereovision for optical metrology.  
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Error in the thickness estimation with respect to change in resolution 

Table 7.5: Error in thickness estimation versus Resolution 

Table 7.5 shows that the resolution has an insignificant effect on thickness but affects the pixel 

length. It should be noted that the object's thickness is 18 mm, which is above the minimum depth 

detectable by the camera. Therefore, changing the resolution does not significantly affect the 

thickness. In addition, in the resolution of 1280x720, the disparity shift needs to be above 20 pixels 

to get proper information about the object depth.  

Error in the thickness estimation of an object of small thickness 

  

                                             (a)                                                          (b)                                                                  

Figure 7.39: (a) 3-D visualization of a 5 mm thickness coin (b) 3-D visualization of a coin of a 

thickness of 1.75 mm 

Figure 7.39 (a) shows the 3D reconstruction of the scene for the object of 5-mm thickness and 

Figure 7.39 (b) shows the 3D reconstruction of the scene for the object of 1.75-mm thickness. The 

surface reconstruction is obtained by using the point cloud generated by the depth frame aligned 

with the RGB camera frame. Then, the RGB texture is applied to the point cloud instead of the 

depth texture. The 5-mm thick object was created by stacking multiple coins on top of each other 

for this experiment. For thickness estimation of an object of 5-mm thickness and 24-mm diameter, 

Resolution Error in thickness Pixel length (mm) 

640x360 -11% 0.5963 

848x480 -7.5% 0.4472 

1280x720 -8.02% 0.3003 
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the depth visualization is adjusted according to the distance of the object from the camera. Then 

contour analysis was performed on the raw depth map, as shown in Figure 7.40. The error was 

found to be around 22% under the resolution of 848x480. The error in the thickness of an object 

of 24-mm diameter and 1.74-mm thickness was found to be 18.85%. The results are shown in 

Figure 7.41. 

 

Figure 7.40: Contour extraction from the depth map for the object of 5 mm thickness 

 

Figure 7.41: Contour extraction from the depth map for the object of 1.74 mm thickness 

Error in the thickness estimation of an object of a small area 

Contour extraction did not yield reliable results for an object of 8mm diameter and 15mm 

thickness, so we chose to get the depth information from the Intel RealSense viewer by inspection, 

as shown in Figure 7.42.  

The manual measurement of the depth using the RealSense viewer meant that the number of 

significant figures that the depth could be computed to was at the millimeter scale. Secondly, it is 

important to note that the shape of the object was not captured, and only one sample that indicated 
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a deformation in the surface corresponding to the location of the object was taken. An object of 

21-mm thickness and 7.5-mm diameter was difficult to process with our contour algorithm, so we 

chose to get the depth information from the Intel RealSense viewer, which is used to visualize the 

raw depth map directly from the Camera, as shown in Figure 7.42 (d). The error was found to be 

-9.1%. 

  

                                                   (a)                                          (b) 

  

                                                  (c)                                             (d) 

Figure 7.42: (a) 3-D RGB textured point cloud; (b) Depth map for the object of 8 mm diameter 

(c) 3-D RGB textured point cloud; (d) Depth map for the object of 7.5 mm diameter 

8 APPENDIX B 

8.1 Hardware prototype 1 

We selected a commercial eight degrees of freedom (DOF) vehicle robot with 8-Axis RC robotic 

arm for the robot carrier. The specification for this robot carrier is given below: 

Y100 Tank chassis parameters 
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• Name: New Y-100 Tank Chassis 

• Main body: aluminum alloy 

• Surface: sandblasting oxidation 

• Track: engineering plastics 

• Color: Silver 

• Size: 300*240*122mm (length * width * height) 

• Weight: 1.16kg 

• Motor: 9V 150rpm with encoder motor 

9V 150rpm with encoder motor 

• Working voltage: 9V 

• Output rate: 150±10% rpm 

• Load current: 200mA (Max) 

• Stall current: 4500 mA (max) 

• Stalling torque: 9.5kg 

• Load speed: 100±10% rpm 

• Load torque: 3000Ncm 

• Load current: 1200mA (Max) 

• Encode parameters: 2 pulses / circle 

• Sensor operating voltage: 3-5V 

Robotic arm parameters 

• Mechanical arm body material: aluminum alloy 

• Weight: 0.82kg (including servo weight) 

• Color: silver 

• Servo optional: MG996R metal gear large servo 

• Features: The mechanical arm can be equipped with a mechanical gripper the weight of the 

grip is about 500g; the base of the robot arm can be rotated 360 degrees. 

MG996R servo parameters 

• Name: MG996R 

• Net weight: 55 g 
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• Size: 40.7*19.7*42.9 mm 

• Pulling force: 9.4 kg/cm (4.8 V), 11 kg/cm (6 V) 

• Reaction rate: 0.17 sec / 60 degree (4.8 V), 0.14 sec / 60 degree (6 V) 

• Working voltage: 4.8-7.2 V 

• Working temperature: 0°C-55°C 

• Gear form: metal gear 

Working dead zone: 5 𝜇s 

Bearing wheel installation 

The materials required to assemble the bearing wheel are M3*8 screw, 17 mm copper hex spacers, 

M2 screw, bearings, wheel discs, and stainless-steel connector.  

Driving wheel installation 

For the driving wheel, the required materials are 28 mm copper hex screws, M3*8 screw, stainless-

steel connectors, jackscrew, geared wheel discs, aluminum alloy coupling, and M4*16 screws. 

Tank Chassis installation 

The required materials to assemble the Tank Chassis include 9V 150 rpm encoder motor, LED 

lights, tracks, chassis panels, power cable, M3*12 screw, M3 nut, M3*10 screw are necessary for 

the assembly of the tank. There are a total of ten bearing wheels and two driving wheels for this 

model. The track is installed and since the tracks are individually connected with needles, the 

length can be adjusted according to the needs.  

Assembly of Robot Arm 

The robot arm consists of a rotating base, left and right swing arm, a rocking arm, and a control 

board. 

Rotating Base 

The materials required are M4*11 double pass coupling, M4*6 flat head screws, M3*8 inner 

hexagon screws, M3 nut, tray bearing, single pass coupling, 25T disc metal horns, and steering 

gear. 

Left and Right Swing Arm 
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M3*8 inner hexagon screws, 25T metal horn, M4*6 screws, pendulum frame, M3*5 screws, 

steering gear, and left, and right frames are assembled. And this assembly is installed on the 

rotating base. 

Rocking arm 

M3*8 inner hexagon screws, U bracket, 25T metal horn, M3*8 flat head screw, steering gear, 

M4*6 screws, steering gear bracket, swing fixing bracket, rocking fixing bracket, U shaped support 

frame, connecting rod are installed together according to the manual. This assembled part is 

installed to the previously connected servo arm with a rotating base. 

Control Board 

The control board tray bracket is attached to the rotating base. Materials required are M3*8 screws, 

M3*6 screws, and a steering gear bracket. Bearing is attached to the steering gear bracket along 

with steering gear.  

Metal claw 

The assembly of the claw is divided into 3 parts, which are claw arm 1, claw arm 2, and base of 

claw. The parts include servo motor MG995, 25T metal horn, M3*8 hexagon screw, M3 nut, single 

pass couplings, M3*6 flat head screw, M3*12 screw, and bearings.  

Hardware specifications of the fish-eye stereo camera 

   Performance: 1920x1080 MJPEG@30fps       S/N Ratio: 39db 

   Sensor: AR0330         Dynamic range: 72.4db 

   Pixel Size: 5.07um X 3.38um 

   Lens Parameter: M12 fisheye lens 

   Board size: 86x23 mm 

   Mini illumination: 0.1lux 

   Sensitivity: 2.0 v/lux-sec @550nm 

   Voltage: DC5V 

   Current: 220mA-280mA 
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Figure 8.1: Fisheye stereo camera  

8.2 Hardware prototype 2 

We list here the details of the components for the second prototype. 

Table 8.1: Components list for the height adjustment mechanism 

Component No of pieces 

Linear Actuators (PA-07) 2 

Bottom mount for linear actuators 2 

Top mount for linear actuators 2 

Linear actuator support 2 

Camera platform 1 

Camera platform support 2 

M4*35mm bolts 4 

M4 nuts 8 

M4 washers 4 
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Table 8.2: Technical specifications of the12V brushed DC motors 

Table 8.3: Technical specifications of the PA-07 linear actuators 

Table 8.4: Truth Table for L298N Motor Driver Module for Direction Control 

Specifications Values 

Gear ratio 20.4:1 

Torque at maximum efficiency 1.1 kg.cm 

Maximum power 9.4 W 

Speed at maximum efficiency 420 rpm 

Specifications Values 

Driver voltage 5-35V 

Driver current 2A 

Max supply voltage (Maximum) 46V 

Motor supply current (Maximum) 2A 

Input 1 Input 2 Spinning Direction 

Low Low Motor OFF 

High Low Forward 

Low High Backward 

High High Motor OFF 
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Table 8.5: Technical specifications of the DRV8834 Stepper Motor Driver Module 

Table 8.6: Truth Table for DRV8834 Stepper Motor Driver Module for Micro stepping 

Table 8.7: PS4 Controller button mappings to robot functions. 

Key press Corresponding motion of the robot 

L1 Forward Stroke of Actuators 

R1 Backward Stroke of Actuators 

Start Start Automated Scanning 

Options Stop Automated Scanning 

Triangle Enabling 1/4 Micro stepping 

Circle Enabling 1/8 Micro stepping 

Square Enabling 1/32 Micro stepping 

Forward Forward movement of robot 

Backward Backward movement of robot 

Specifications Values 

Continuous current per phase 1.5A 

Max current per phase 2A 

Max logic voltage 5.5V 

Max power supply voltage 11.8V 

M0 M1 Micro step resolution 

Floating Low 1/4 step 

Low High 1/8 step 

High High 1/16 step 

Floating High 1/32 step 
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