
1

CAAP Final Report

Date of Report: September 29, 2022

Prepared for: U.S. DOT Pipeline and Hazardous Materials Safety Administration

Annual Period: From (September 29, 2019) to (September 29, 2022)

Contract Number: 693JK31950002CAAP

Project Title: AI-Enabled Interactive Threats Detection using a Multi-Camera Stereo Vision

System

Prepared by: Dr. Yongming Liu (PI), Dr. Yang Yu (Co-PI), Mr. Rahul Rathnakumar, Ms.

Sampriti Neog, Mr. Gowtham Dakshnamoorthy, Mr. Rakesh Balamurugan

Contact Information:

Dr. Yongming Liu (PI), Email: Yongming.Liu@asu.edu

Dr. Yang Yu (Co-PI), Email: yangyu18@asu.edu

2

Table of Contents

1 EXECUTIVE SUMMARY ... 15

1.1 Project Status – Proposed vs. Delivered .. 15

1.2 Summary of Accomplishments ... 17

2 DEPTH MAP GENERATION AND CAMERA CALIBRATION PROCEDURES 19

2.1 Working Principle of Stereovision .. 19

2.2 Camera Calibration and Preliminary Case Studies on the Aptina AR0330 Camera 21

2.3 Design Criteria and Hardware Prototypes ... 27

2.3.1 Hardware prototype 1 .. 27

2.3.2 Hardware prototype 2 ... 29

2.4 Depth Map Generation and Evaluation of the Intel RealSense D435i Camera 35

2.4.1 Analysis of the generated depth map for depth resolution limits 35

2.4.2 Surface roughness profile – Signal vs Noise at high resolution 38

2.5 Disparity Map Post-Processing Methods for Improving Depth Quality 40

2.5.1 Post-Processing of the Disparity map using Gaussian Pyramids 40

2.5.2 Disparity Map Post Processing using a Hole Filling Algorithm............................. 42

2.6 Extremum Seeking Controller for Depth Map Optimization .. 43

3 DATA-DRIVEN TECHNIQUES FOR DEFECT DETECTION ... 50

3.1 Fully Supervised RGB-D Semantic Segmentation with Uncertainty............................ 50

3.1.1 Feature Fusion using Fully Convolutional Networks ... 50

3.1.2 Epistemic and Aleatoric Uncertainty Quantification using MC-Dropout 58

3.1.3 Results and Discussion ... 65

3.2 Semi-Supervised Semantic Segmentation using Activation Map Interpolation 74

3.2.1 Background ... 74

3

3.2.2 Related Work... 76

3.2.3 Methodology ... 78

3.2.4 Results and Discussion ... 82

4 DAMAGE PROGNOSTICS AND PHYSICS-BASED MODELS FOR INTERACTING

THREATS... 89

4.1 Semi-Empirical models for failure pressure and remaining useful life estimates 89

4.2 Kriging model trained on FEM data for failure analysis .. 91

4.2.1 Methodology ... 92

4.2.2 Results and Discussion ... 92

4.3 Assessment of X65 Gas Pipeline using FEA for Interacting Corrosion Pits and

Comparison with ASME B31G .. 94

4.3.1 Verification and Validation of FEA analysis .. 94

4.3.2 Parametric Study ... 95

5 3D RECONSTRUCTION, SYSTEM INTEGRATION AND OPERATIONAL

PROCEDURES... 100

5.1 RGB-D 3D Reconstruction of a pipe using Simultaneous Localization and Mapping

(SLAM) ... 100

5.2 Orientation Estimation using a Kalman Filter versus a Complementary Filter 107

5.3 Robot Operation Procedure... 113

5.4 Integrating semantic segmentation and risk assessment ... 114

6 CONCLUSIONS... 117

7 APPENDIX A ... 119

7.1 Empirical evaluation of stereo-matching parameters for the Intel RealSense D435i

Camera .. 119

7.1.1 Sensitivity analysis of object area measurements to the camera parameters 120

4

7.2 Sensitivity analysis of object depth measurements to the camera parameters 134

7.2.1 Methodology ... 134

7.2.2 Results and Discussion ... 136

8 APPENDIX B ... 146

8.1 Hardware prototype 1 ... 146

8.2 Hardware prototype 2 ... 150

5

LIST OF FIGURES

Figure 2.1: (a) Projection from the image plane to 3D world coordinates is only known up to scale

(b) Triangulation approach to find the corresponding point on the second camera for a point on the

first camera.. 19

Figure 2.2: Dual Lens Aptina AR0330 USB Camera ... 23

Figure 2.3: Calibration images .. 23

Figure 2.4: Reprojection errors of calibration ... 24

Figure 2.5: Visualization of multi-plane camera calibration .. 24

Figure 2.6: Image pair captured by the stereo camera for Case Study 1: (a) Left camera image (b)

Right camera image (c) Edge length of the cube (d) Disparity map for case study 1 25

Figure 2.7: Location and 2D coordinates of the vertices of L1: (a) rectified left image; (b) rectified

right image .. 26

Figure 2.8: Image pair captured by the camera for case study 2: (a) Left image (b) Right image (c)

Computed disparity map (d) Computed depth map .. 27

Figure 2.9: (a) Camera housing module (b) Vehicle tank assembly (c) Robot arm assembly (d)

Assembled robot carrier .. 28

Figure 2.10: (a) Original RGB image (b) Computed depth map .. 29

Figure 2.11: Demonstration of the angled view (a) RGB image (d) Depth map (original) (c) Depth

map (filled).. 30

Figure 2.12: (a-b) CAD model of the robot prototype platform demonstrating the height adjustment

mechanism using the PA-07 actuator. (c) Stereo camera mounted on the platform 31

Figure 2.13: Schematic diagram of the integrated hardware electronics 34

Figure 2.14: Integrated hardware prototype .. 34

Figure 2.15: (a) Sensitivity of the depth map to regions at various distances in (mm) to

perturbations in disparity, focal length, and baseline. (b) Sensitivity of the depth to disparity

perturbations for objects at various distances ... 36

Figure 2.16: Relating the length of an object in pixels to its real-world length 37

Figure 2.17 (a-c) RGB images for smooth, roughness level 1 and roughness level 2 surfaces

respectively, Bottom Row (d-f) Depth maps in white to black scale for smooth, roughness level 1

and roughness level 2 surfaces respectively. (g-i) Depth histograms for smooth, roughness level 1

and roughness level 2 surfaces respectively ... 39

6

Figure 2.18: Filling missing values using a hierarchical pyramid approach (Adelson et al., 1984)

... 40

Figure 2.19: (a) Original Disparity Map (b) Disparity Map after Post-Processing with Gaussian

Pyramids ... 42

Figure 2.20: Depth map hole filling algorithm demonstration (a) RGB Image (b) Depth map with

holes (c) Post-processed depth map .. 43

Figure 2.21: Extremum seeking control loop ... 44

Figure 2.22: Demonstration 1: Baseline test case in a well-lit scene with the factory D435i

parameter settings ... 47

Figure 2.23: Demonstration 2: Poor lighting conditions with bad parameter settings: Low

exposure, gain and IR laser power .. 48

Figure 2.24: Demonstration 3: Test case with varying external illumination conditions starting with

a dark environment with poor initial condition setting ... 49

Figure 3.1: Overview of the proposed network architecture .. 51

Figure 3.2: RGB-D Fusion Module .. 55

Figure 3.3: RGB-DNC Data Pre-processing Module. .. 55

Figure 3.4: Demonstration of the curvature and normal maps for idealized surface formulations

... 57

Figure 3.5: DNC data derived from the point cloud representation ... 58

Figure 3.6: Bayesian Linear Model baseline uncertainties with Gaussian prior for (Top) 1 Training

sample (Middle-1) 3 Training samples (Middle-2) 20 Training samples (Bottom) 100 Training

samples: Left column – Total uncertainty; Middle column – Epistemic uncertainty; Right column

– Aleatoric uncertainty .. 62

Figure 3.7: MC-Dropout uncertainties for (Top) 1 Training sample (Middle-1) 3 Training samples

(Middle-2) 20 Training samples (Bottom) 100 Training samples: Left column – Total uncertainty;

Middle column – Epistemic uncertainty; Right column – Aleatoric uncertainty 63

Figure 3.8: (a) Visualization of the two moons dataset with a visualization of the decision boundary

when using MC-Dropout (b) Classification with uncertainty in the two moons dataset - Variation

of uncertainties with sample size .. 65

Figure 3.9: (a) CrackForest dataset and (b) ASU Pipe Dataset .. 66

Figure 3.10: Uncertainty Evaluation for images from the ConcreteCrack dataset with a model

7

trained on the CrackForest dataset: (a) Aleatoric Uncertainty and (b) Epistemic Uncertainty 66

Figure 3.11: Defect measurement demonstration on the pipeline sample 68

Figure 3.12 : Classwise Epistemic Uncertainty - F1 score calibration performance for the ASU

Pipe RGB-D validation set across classes: Top row - Small ASU Pipe Dataset with a test set held-

out (Left) Background (Middle) Cracks (Right) Pits, Bottom Row - Augmented ASU Pipe Dataset

with test samples augmented from the training samples for verifying model calibration assuming

the test set distribution is very close to the training data distribution (Left) Background (Middle)

Cracks (Right) Pits .. 70

Figure 3.13: Demonstrative detections from the ASU pipe dataset: (Left to Right) Image, Ground

Truth, Prediction and Total Uncertainty ... 71

Figure 3.14: Classwise Epistemic Uncertainty - F1 score calibration performance for the

ConcreteCrack dataset by class: Top-Row: Original unaltered data (a) Background (b) Crack,

Bottom-Row: Data with added Gaussian noise and random brightness, contrast, hue and saturation

jitter for (c) Background (d) Crack ... 72

Figure 3.15: Demonstrative examples of detections in the CrackForest (Top-3 rows) and the

ConcreteCrack Dataset (Bottom-3 rows). Images from Left to Right: Input, Prediction, Ground

Truth (GT), Total Uncertainty .. 73

Figure 3.16: (a) Epistemic Uncertainty across various dropouts and input data types (b) Aleatoric

Uncertainty across various dropouts and input data types (c) Mean-F1 across various dropouts and

input data types ... 74

Figure 3.17: Cluster assumption demonstration by computing the patch wise Euclidean distance

between a patch and its neighbors. Higher values are indicated with yellow: The left-most image

is the input, followed by the distance maps (DM) of the following: the input image, the activation

map from the end of convolutional Block 1, and the activation map from the end of Block 5. ... 79

Figure 3.18: Overall methodology for semi-supervised segmentation using interpolation

consistency in the probability space: Blocks with the same colors denote related elements. 80

Figure 3.19:Demonstrative detections on the NEU validation set: (Left to Right) Image, Ground

Truth, Predictions: 5% labeled training data, 10% labeled training data, 20% labeled training data,

50% labeled training data, 100% labeled training data... 83

Figure 3.20: Demonstrative detections illustrating the effect of adding additional unlabeled data to

the set and using the consistency loss. In this case, the comparison is made between the fully

file:///C:/Users/Rahul/Documents/Work/693JK31950002CAAP_TEMPLATE_REPORT%2001082023.docx%23_Toc124112055
file:///C:/Users/Rahul/Documents/Work/693JK31950002CAAP_TEMPLATE_REPORT%2001082023.docx%23_Toc124112056
file:///C:/Users/Rahul/Documents/Work/693JK31950002CAAP_TEMPLATE_REPORT%2001082023.docx%23_Toc124112056
file:///C:/Users/Rahul/Documents/Work/693JK31950002CAAP_TEMPLATE_REPORT%2001082023.docx%23_Toc124112056
file:///C:/Users/Rahul/Documents/Work/693JK31950002CAAP_TEMPLATE_REPORT%2001082023.docx%23_Toc124112056
file:///C:/Users/Rahul/Documents/Work/693JK31950002CAAP_TEMPLATE_REPORT%2001082023.docx%23_Toc124112056
file:///C:/Users/Rahul/Documents/Work/693JK31950002CAAP_TEMPLATE_REPORT%2001082023.docx%23_Toc124112056

8

supervised case with 30 labeled samples, and the semi-supervised case with 30 labeled samples

and 570 unlabeled samples. .. 84

Figure 3.21: Demonstrative detections on the CrackForest validation set: (Left to Right) Image,

Ground Truth, 5% Labeled, 10% Labeled, 20% Labeled, 50% Labeled, Fully Labeled 86

Figure 4.1: Prediction of failure pressure with depth to wall thickness ratio for a carbon steel pipe

... 89

Figure 4.2: Comparing the cumulative failure probability of the surrogate model and the ASME

B31G model .. 93

Figure 4.3: FEA simulation result where the limit load predicted by it is more conservative than

the modified ASME B31G formula. ... 95

Figure 4.4: (a) True stress-strain curve for X65 (b) Plastic strain vs true stress in ANSYS 96

Figure 4.5: Von Mises Failure Criterion Across the ligament of the defect 97

Figure 4.6: Interaction distance between pits vs burst pressure .. 97

Figure 5.1: Overall system diagram for RTAB-Map (Labbé & Michaud, 2019) 100

Figure 5.2: RTAB-Map SLAM: Visual Odometry system components (Labbé & Michaud, 2019)

... 101

Figure 5.3: Frame stitching using SLAM in a feature-sparse pipeline environment 102

Figure 5.4: Demonstrative odometry measurements and inlier detection in real-time from the

stationary test on the plastic pipe: (a) Angle data (b) Inlier ratio (c) Frame with defect features

... 104

Figure 5.5: Rotation of the camera on the axis of the plastic pipe causes an intermittent loss of

odometry due to the sparsity of feature matches between subsequent frames 105

Figure 5.6: (a) Pitch angle of the camera (b) Inlier ratios for a rotation cycle on the corroded steel

pipe sample. .. 106

Figure 5.7: Demonstration of pipe scan with rotation of the camera about the axis of the pipe, and

translation of the robot along the pipe. The trajectory of the camera system is estimated and shown

in white.. 107

Figure 5.8: Pitch, yaw and roll angles computed using the motion module 110

Figure 5.9: (a) Angular velocity measurement data from gyroscope (b) Ground truth orientation

for the sensor ... 110

Figure 5.10: (a) Orientation prediction and ground truth using Kalman Filter (b) Orientation

9

prediction and ground truth using Complementary Filter... 111

Figure 5.11: Flow chart of Hardware-Software Integration ... 112

Figure 5.12: Demonstration of inspection in a sample pipe with pit and crack defects. (a) Image

(b) Detection (c) Uncertainty (d) Remaining Useful Life estimate– Corrosion 115

Figure 5.13: Converted model in ANSYS and Von-Mises stress around the internal defect 116

Figure 7.1: Intel Realsense D435i camera system (Intel RealSense, 2022) 119

Figure 7.2: Original RGB image ... 121

Figure 7.3: Contour extraction from the depth map ... 121

Figure 7.4: (a) Original RGB image of a coin (b) Image with overlaid contour 122

Figure 7.5: Geometry of a camera lens ... 122

Figure 7.6: Contour area calculation for depth map ... 124

Figure 7.7: Representative contours for various values of gain.. 126

Figure 7.8: Contour area error variation with respect to camera gain .. 126

Figure 7.9: Depth frame for gain in range (16-55 dB) .. 127

Figure 7.10: Representative contours for various values of gains .. 128

Figure 7.11: (a) Contour area error variation for varying exposure 𝑤𝑚2𝑠 (b) Distorted raw depth

frame for exposure>45000 W ... 128

Figure 7.12: Representative contours for various values of Laser Power 129

Figure 7.13: Contour area error variation for varying laser power ... 129

Figure 7.14: Representative contours for various values of second peak threshold 130

Figure 7.15: (a) Contour area error variation for varying the second peak threshold (b) Depth map

for second peak threshold beyond 600 pixels ... 130

Figure 7.16: Representative contours for various values of neighbor threshold 131

Figure 7.17: (a) Contour area error variation for varying neighbor threshold (b) Distorted depth

map for neighbor threshold above 400 pixels ... 131

Figure 7.18: Representative contours for various values of disparity shift 132

Figure 7.19: (a) Contour area error variation for varying disparity shift (b) Distorted raw depth

map beyond disparity shift of 120 pixels .. 132

Figure 7.20: Contour capture at an object thickness of (a) 1.8cm and (b) 1cm 134

Figure 7.21: Object of thickness 18 mm thickness used for sensitivity analysis 135

Figure 7.22: RGB and depth map corresponding to the 3D map.. 135

10

Figure 7.23: Contour extraction process for thickness estimation .. 136

Figure 7.24: Contours across gains (dB) (a) 16 (b) 36 (c) 56 (d) 76 (e) 96 (f) 116 136

Figure 7.25: Plot of error in thickness estimation versus camera gain 137

Figure 7.26: Contours across exposures (𝑊𝑚2𝑠): (a) 0 (b) 500 (c) 1000 (d) 7500 (e) 14500 (f)

16000... 137

Figure 7.27: Plot of exposure versus error in thickness estimation .. 138

Figure 7.28: Contours and depth map for exposure below 2000 𝑊𝑚2𝑠 138

Figure 7.29: Contours and depth map for exposure between 2000-16000 𝑊𝑚2𝑠 139

Figure 7.30: Contours and depth map for exposure above 16000 𝑊𝑚2𝑠 139

Figure 7.31: Contours across second peak thresholds (pixels): .. 140

Figure 7.32: Plot of second peak threshold versus error in thickness estimation 140

Figure 7.33: Contours across disparity shift (pixel): (a) 0 (b) 50 (c) 100 (d) 150 (e) 200 (f) 250

... 141

Figure 7.34: Plot of disparity shift versus error in thickness estimation 141

Figure 7.35: Contours across neighbor threshold (pixel): (a) 0 (b) 50 (c) 100 (d) 150 (e) 200 (f)

250... 142

Figure 7.36: Plot of neighbor threshold versus error in thickness .. 142

Figure 7.37: Contours across laser power (W): (a) 0 (b) 50 (c) 100 (d) 150 (e) 200 (f) 250 143

Figure 7.38: Plot of laser power versus error in thickness .. 143

Figure 7.39: (a) 3-D visualization of a 5 mm thickness coin (b) 3-D visualization of a coin of a

thickness of 1.75 mm .. 144

Figure 7.40: Contour extraction from the depth map for the object of 5 mm thickness 145

Figure 7.41: Contour extraction from the depth map for the object of 1.74 mm thickness 145

Figure 7.42: (a) 3-D RGB textured point cloud; (b) Depth map for the object of 8 mm diameter (c)

3-D RGB textured point cloud; (d) Depth map for the object of 7.5 mm diameter.................... 146

Figure 8.1: Fisheye stereo camera .. 150

11

LIST OF TABLES

Table 2.1: Distance estimation results .. 26

Table 3.1: Comparing the performance of various types of input data at a constant dropout value

... 69

Table 3.2: Dataset sizes... 83

Table 3.3: Metrics computed for the validation set at various proportions of labeled samples, with

a performance comparison between the loss ramp-up approach and the equally weighted losses

approach .. 85

Table 3.4: Metrics computed for the validation set at various proportions of labeled samples, with

a performance comparison between the semi-supervised model and the fully supervised model 87

Table 3.5: Comparison of the results obtained in the test set for the NEU dataset 87

Table 3.6: Comparison of results obtained in the test set for the CrackForest dataset 88

Table 4.1: Input parameters for the surrogate model for the baseline experiment 92

Table 4.2: Experimental details for the defect size configuration .. 94

Table 4.3: Summary of datapoints used for the parametric study .. 98

Table 4.4: Comparison of the ASME B31G burst pressure and FEA burst pressure 99

Table 7.1: Contour area at various distances in pixel coordinates and world coordinates 125

Table 7.2: Variation of error in area computation with resolution ... 133

Table 7.3: Variation of error in area computation with surface area change 133

Table 7.4: Variation of error in area computation with change in object thickness 134

Table 7.5: Error in thickness estimation versus Resolution .. 144

Table 8.1: Components list for the height adjustment mechanism ... 150

Table 8.2: Technical specifications of the12V brushed DC motors ... 151

Table 8.3: Technical specifications of the PA-07 linear actuators ... 151

Table 8.4: Truth Table for L298N Motor Driver Module for Direction Control 151

Table 8.5: Technical specifications of the DRV8834 Stepper Motor Driver Module 152

Table 8.6: Truth Table for DRV8834 Stepper Motor Driver Module for Micro stepping 152

Table 8.7: PS4 Controller button mappings to robot functions. ... 152

12

LIST OF ABBREVIATIONS

Abbreviation Definition

ASIC Application-Specific Integrated Circuit

ASME American Society of Mechanical Engineers

ASU Arizona State University

BLUP Best Linear Unbiased Predictor

BRIEF Binary Robust Independent Elementary Features

CAM Class Activation Map

CFD CrackForest Dataset

CNN Convolutional Neural Network

DM Distance Map

DNC Depth Normal Curvature

DOF Degrees of Freedom

ESC Extremum Seeking Control

FAST Features from Accelerated Segment Test

FCN Fully Convolutional Network

FEA Finite Element Analysis

GAN Generative Adversarial Network

GAP Global Average Pooling

GFTT Good Features To Track

GPU Graphics Processing Unit

HPF High Pass Filter

ICT Interpolation Consistency Training

ILI In-Line Inspection

13

IMU Inertial Measurement Unit

IR Infrared

KL Kullbak Leibler

LBP Local Binary Pattern

LTM Long Term Memory

MC Monte Carlo

MLE Maximum Likelihood Estimate

MSE Mean Squared Error

NEU Northeastern University (China)

NLL Negative Log Likelihood

NNDR Nearest Neighbor Distance Ratio

NYU New York University

ORB Oriented FAST and Rotated BRIEF

PLA Polylactic Acid

PS2 PlayStation2

PS4 PlayStation4

PWM Pulse Width Modulation

RANSAC Random Sample Consensus

RMSE Root Mean Squared Error

RTAB Real-Time Appearance Based

SDK Software Development Kit

SIFT Scale Invariant Feature Transform

SLAM Simultaneous Localization and Mapping

SMYS Specified Minimum Yield Strength

14

STM Short Term Memory

SVD Singular Value Decomposition

SVM Support Vector Machine

USB Universal Serial Bus

VGG Visual Geometry Group

WM Working Memory

YOLO You Only Look Once

15

1 EXECUTIVE SUMMARY

1.1 Project Status – Proposed vs. Delivered

Tasks Proposed Delivered

Task 1.1 Reports and codes for stereo vision

algorithm developed for generating a

depth map of pipeline surface

1. RealSense SDK is used for the baseline

results in depth map generation.

2. Extremum-seeking control algorithm codes

are delivered to improve depth map quality

automatically.

Task 1.2
Reports and drawings for optimal

design criteria and calibration

procedures of the prototype device

1. Hardware calibration was performed, and

design criteria were outlined for in-line

inspection with a single rotating camera

system.

Task 1.3
Reports and specifications for the

hardware requirements for desired

performance and future

commercialization plans

1. Sensitivity analysis and experiments for

depth camera performed and results

documented.

2. Analytical analysis of depth camera to

determine depth and area resolution

documented and contextualized in the

framework of ILI.

Task 1.4
Full-scale prototype device and

reports on preliminary testing in

laboratory experiments

1. Proposed hardware components have been

specified for the robotic platform with codes

delivered. The prototype is built as a single

unit and evaluated in the pipeline

environment.

16

Task

2.1/Task

2.2

Reports and codes for the trained

deep learning model and detection

performance for pipeline anomaly

detection

1. Dataset collection for ILI defect detection

model.

2. Proposed a fully supervised RGB-D fusion

network for semantic segmentation with

MC Dropout uncertainty.

3. Proposed a point-cloud derived data stream

for the CNN to leverage the geometrical

features of the pipe – called the DNC

representation.

4. Empirical comparison between various

encoder backbones for semantic

segmentation.

5. Defect quantification using semantic

segmentation results for crack and corrosion

defects.

6. Proposed a semi-supervised learning

algorithm for defect detection based on

interpolation consistency training.

Task 2.3 Reports and tools for the physics-

based models developed for

assessing interactive threats and

damage prognostics

1. Utilized the ASME B31G and NG-18

models to estimate remaining useful life.

2. Application of a Kriging-based surrogate

model trained on FEM data to estimate

remaining useful life for crack and corrosion

defects.

3. Interacting threat assessment for corrosion

pits using FEM and comparison with ASME

B31G.

17

Task 2.4
Reports on demonstration study of

the hardware-software integrated

prototype device for ILI of actual

pipeline systems

1. Reporting, demonstration, and code for the

integrated functioning of the prototype.

1.2 Summary of Accomplishments

Journal Papers

▪ Epistemic and Aleatoric Uncertainty Quantification for Defect Detection using an RGB-D

Fusion Network (Revisions in progress)

▪ Semi-Supervised Surface Defect Segmentation with Activation Map Interpolation (In

Preparation)

Poster presentations

▪ AI-Enabled Interacting Threats Detection using a Multi-Camera Stereo-Vision System,

PHMSA R&D Forum 2020

▪ Threat Detection using Active Stereo for In-Line Inspection in Gas Pipelines, PRCI Fall

Technical Meeting 2022

Doctoral Symposium

▪ AI-Enabled Interacting Threat Detection using a Multi-Camera Stereo-Vision System,

PHM Society Conference, 2020

Educational Accomplishments

▪ Sampriti Neog (MS) Mechatronics, Robotics and Automation Engineering (2021)

Student Contributors

▪ Rahul Rathnakumar (PhD student)

▪ Rakesh Balamurugan (MS student)

▪ Chinmay Dixit (MS student)

▪ Utkarsh Pujar (MS student)

▪ Omar Serag (Undergraduate student)

18

▪ Kailing Liu (MS stundent)

▪ Sampriti Neog (MS Student)

▪ Karthikeya Vemullapalli (MS student)

▪ Rohith Kalyan Kavadappu (MS student)

▪ Gowtham Dakshnamoorthy (MS student)

▪ Abhishek Srinivas Loganathan (MS student)

19

2 DEPTH MAP GENERATION AND CAMERA CALIBRATION PROCEDURES

2.1 Working Principle of Stereovision

Stereovision relies on matching corresponding points in one camera to another camera. This

requires camera calibration, followed by triangulation. We briefly explain this process here to help

readers from fields outside computer vision. Existing literature in photogrammetry has extensive

descriptions that can be referred to for further details (Hartley & Zisserman, 2004).

It can be inferred from Figure 2.1 that a point in an image can be projected along a ray to a point

in the 3D space and vice versa. The point determines the ray equation on the image plane and the

camera's optical center. The projection of a pixel on the image plane onto the 3D space is only

determined by the equation of the ray projected from the camera. In other words, we know the

position of the 3D point subject to a scaling parameter for the depth. On the other hand, we can

completely determine the position of a projected pixel from the 3D space provided we know the

location and orientation of the camera's image plane. In Figure 2.1, there are two calibrated

cameras. In this context, calibration is the process of determining the camera's internal parameters

and the camera's position and orientation. The calibration is represented with calibration matrices

𝑃1and 𝑃2 for the first and second cameras, respectively. If this matrix is known, it is possible to

project a 3D point in the scene to a pixel on the camera, provided the camera's field of view is high

enough.

 (a) (b)

Figure 2.1: (a) Projection from the image plane to 3D world coordinates is only known up to

scale (b) Triangulation approach to find the corresponding point on the second camera for a point

on the first camera.

20

𝑥 = 𝑃𝑥 2. 1

𝑃 = [
𝑓 0 𝑝𝑥

0 𝑓 𝑝𝑦

0 0 1

] [

𝑟1 𝑟2 𝑟3 𝑡1
𝑟4 𝑟5 𝑟6 𝑡2
𝑟7 𝑟8 𝑟9 𝑡3

]
2. 2

In Equations 2.1 and 2.2 the pixel coordinate 𝑥 is obtained by linearly transforming the world

coordinates 𝑋 using the calibration matrix 𝑃. The calibration matrix consists of the intrinsic

parameters represented by 𝑓, 𝑝𝑥 and 𝑝𝑦 and the relative rotation matrix and translation vector from

a common coordinate system given by the 𝑟𝑖 and 𝑡𝑖 respectively.

The inverse problem involves computing a point in the world corresponding to a point in the image.

Given two cameras with known calibration matrices, an estimate without scale ambiguity can be

made using triangulation. A point in the image plane of one camera can lie anywhere on a ray

projected from the image plane. The intersection of the ray from the second camera with the ray

from the first camera provides the corresponding match. The 3D point and the rays to the 3D point

from each camera plane constitute the epipolar plane. The epipolar plane is constrained to be

hinged to the line joining the optical centers of the two cameras, known as the baseline. In general,

the correspondences of a point in the first image plane lie on a line called the epipolar line on the

second image plane. This epipolar line is used for the matching point search. Determining the

equation of this epipolar line requires a transformation from a point in the first image plane as

shown in Equations 2.3 and 2.4:

𝑙′ = 𝐸𝑥, 𝑥′𝑇𝑙′ = 0 2. 3

𝐸 = 𝑡 𝑋 𝑅 2. 4

 𝑡 and 𝑅 are the relative translation vector and rotation matrix, respectively, for each image plane

to obtain the essential matrix E.

The search space for the matching process is made smaller by rectification - projecting the images

from both cameras onto a common image plane. This puts the epipoles of both image planes at

infinity. All epipolar lines are, therefore, parallel. The consequence of this projection is that the

second image is shifted along with a line relative to the first image, removing the 3 relative

rotational degrees of freedom and 2 translational degrees of freedom. Figure 2.1 (b) shows the top-

21

down view of the rectified configuration of the two-camera system. Using similar triangles, we

can derive the depth of a point using Equations 2.5 and 2.6:

𝑏 + 𝑥𝑙 − 𝑥𝑟

𝑧 − 𝑓
=

𝑏

𝑧

2. 5

𝑧 =
𝑓𝑏

𝑑

2. 6

where 𝑏 is the baseline, 𝑓 is the focal length, 𝑧 is the depth of the point in the world frame, 𝑥𝑙 and

𝑥𝑟 are the horizontal coordinates in the image plane, and 𝑑 is the disparity.

2.2 Camera Calibration and Preliminary Case Studies on the Aptina AR0330 Camera

A camera projects 3D points in the real-world to 2D points on an image plane by using the

following mapping:

𝑢 = 𝐾[𝑅|𝑇]𝑋 2. 7

 where K is the 3-by-3 camera intrinsic matrix comprised of intrinsic parameters, including the

focal length and principle point; R and T are the 3-by-3 rotation matrix and 3-by-1 translation

vector (extrinsic parameters), respectively; the vector 𝒖 = [𝑥 𝑦 1] represents the 2D

coordinates of the points in the image plane; 𝑿 = [𝑋 𝑌 𝑍 1] represents the 3D coordinates of

the points in the real world. Equation 2.7 can be simplified to a form similar to Equation 2.1 as:

𝑢 = 𝑃𝑋 2. 8

where P is the 3x4 camera projection matrix. In a stereo vision system, an object point in the real

world is mapped onto image planes by the two cameras as:

𝑢 = 𝑃1𝑋 2. 9

𝑣 = 𝑃2𝑋 2. 10

where X is the 3D coordinate of the object point; P1 and P2 are the camera projection matrices of

22

the two cameras, respectively; and u and v are the 2D coordinates of the object point in the image

plane of cameras 1 and 2, respectively. Recall that the two vectors in the same direction have a

cross product of zero. Thus, we have:

𝑢 × 𝑃1𝑋 = 0 2. 11

𝑣 × 𝑃2𝑋 = 0 2. 12

which can be expressed as:

𝑢 × 𝑃1𝑋 = [

𝑦𝑢𝑝1
3𝑇 − 𝑝1

2𝑇

𝑝1
1𝑇 − 𝑥𝑢𝑝1

3𝑇

𝑥𝑢𝑝1
2𝑇 − 𝑦𝑢𝑝1

1𝑇

] 𝑋 = [
0
0
0
]

2. 13

𝑣 × 𝑃1𝑋 = [

𝑦𝑣𝑝2
3𝑇 − 𝑝2

2𝑇

𝑝2
1𝑇 − 𝑥𝑣𝑝2

3𝑇

𝑥𝑣𝑝2
2𝑇 − 𝑦𝑣𝑝2

1𝑇

] 𝑋 = [
0
0
0
]

2. 14

where 𝒑𝟏
𝑛𝑻 and 𝒑𝟏

𝑛𝑻 are the transpose of the nth row of the camera projection matrix P1 and P2,

respectively. Combining Equation 2.13 and Equation 2.14 gives:

[

𝑦𝑢𝑝1

3𝑇 − 𝑝1
2𝑇

𝑝1
1𝑇 − 𝑥𝑢𝑝1

3𝑇

𝑦𝑣𝑝2
3𝑇 − 𝑝2

2𝑇

𝑝2
1𝑇 − 𝑥𝑣𝑝2

3𝑇]

𝑋 = [

0
0
0
0

]

2. 15

Equation 2.15 represents a homogeneous linear system that can be solved using Singular Value

Decomposition (SVD) to obtain the 3D coordinate X. Once the coordinates of two critical points,

X1 and X2 are known, we can then compute the distance between the two points as:

𝑑𝑖𝑠𝑡 = √(𝑋1 − 𝑋2)2 + (𝑌1 − 𝑌2)2 + (𝑍1 − 𝑍2)2

2. 16

For the experiment, a dual-lens USB webcam shown in Figure 2.2 is adopted. Each camera has a

resolution of 640x480. To obtain the camera projection matrix, multi-plane calibration is

conducted. The calibration image set includes 15 pairs of images of a chessboard placed at different

23

angles and distances from the camera, as shown in Figure 2.3. The calibration is done using

Zhang’s Camera Calibration Algorithm (Z. Zhang, 2000). The reprojection errors of the calibration

are plotted in Figure 2.4. The reprojection errors are small, with an average error of approximately

0.15, indicating that accurate calibration was performed. A visualization of the calibration is shown

in Figure 2.5. The calibrated camera parameters, including the camera projection matrix, the

relative orientation between cameras, and the rectification rotation matrix, were stored for later

use in distance estimation.

Figure 2.2: Dual Lens Aptina AR0330 USB Camera

The purpose of the experiment is to verify that the developed algorithm can be used to characterize

the pipeline defect in terms of its size and depth. For this purpose, two case studies were designed,

including one case for size estimation and the other case for depth estimation. A Rubik's cube was

adopted to represent the ‘defect’ in this experiment.

Figure 2.3: Calibration images

24

Figure 2.4: Reprojection errors of calibration

Figure 2.5: Visualization of multi-plane camera calibration

Case study 1

For Case study 1, the Rubik's cube is placed on a shelf, as shown in top row of Figure 2.6. The top

two layers of the cube are rotated to form two inclined surfaces. The objective is to estimate the

edge length of each layer of the cube as denoted by L1, L2, and L3, shown in Figure 2.6 (c).

25

(a) (b)

 (c) (d)

Figure 2.6: Image pair captured by the stereo camera for Case Study 1: (a) Left camera image (b)

Right camera image (c) Edge length of the cube (d) Disparity map for case study 1

The captured image pair is rectified, and the disparity map is obtained using semi-global matching

algorithm as shown in Figure 2.6 (d), where the outline of the shelf and cube can be seen from the

disparity map. The procedures for distance estimation are illustrated here by using L1 as an

example. First, the 2D coordinates of the vertices are obtained from the rectified images, as shown

in Figure 2.7. It can be seen that: (1) the 2D pixel coordinates of the left vertex of L1 are [331 42]

and [288 42] in the left and right images, respectively; (2) the 2D pixel coordinates of the right

vertex of L1 are [376 42] and [333 42] in the left and right images, respectively. Then, the 3D

coordinates of the vertices are computed using the algorithm developed above. In this case, the 3D

coordinates of the left and right vertices of L1 are estimated to be (21.75, -278.11, 1129.49) mm

and (80.01, -277.14, 1125.21) mm, respectively. Finally, the edge length is computed using

Equation 2.16. The edge length L1 is estimated to be 5.84 cm, while the true length is measured

at 5.62 cm. The same procedures are repeated for all three edges shown in Figure 2.6 (d), and the

results are summarized in Table 2.1. The developed algorithm can estimate the edge length with

good accuracy. The error for L2 is larger due to the higher degree of inclination.

26

Figure 2.7: Location and 2D coordinates of the vertices of L1: (a) rectified left image; (b)

rectified right image

Table 2.1: Distance estimation results

Case study 2

The purpose of Case study 2 is to demonstrate that the developed algorithm can estimate the depth

of ‘defect’. For this purpose, the Rubik's cube is placed against the wall to simulate a defect

protruding out of the pipeline surface, as shown in Figure 2.8 (a) and (b). In this case, the depth to

be estimated is equal to the edge length of the cube.

From the camera calibration, the focal length is 869.31 pixels, and the baseline distance between

the two cameras is measured at 59.77 mm. The depth of all pixels can be obtained, and the depth

map is plotted in Figure 2.8 (c).The depth of four representative points is denoted in Figure 2.8

(d). It can be seen the depth of the wall is approximately 143.1 cm while the depth of the cube is

approximately 137.4 cm, based on which the depth of the ‘defect’ is estimated to be 5.7 cm which

is very close to the actual value of 5.62 cm. It should be noted that the estimated depth is

approximate values because the plane of the camera is aligned parallel to the wall only by hand.

Therefore, more rigorous alignment is performed to ensure that the obtained depth reflects the

shortest distance from the camera plane to the defect surface.

Edge Left vertex coordinate

(mm)

Right vertex coordinate

(mm)

Distance

(cm)

Error

(%)

L1 (21.75, -278.11, 1129.49) (80.01, -277.14,1125.21) 5.84 3.97

L2 (16.91, -244.43,1154.33) (51.72, -233.52,1102.62) 6.33 12.61

L3 (37.30, -236.19,1127.57) (94.17, -235.51,1123.99) 5.70 1.40

27

 (a) (b)

 (c) (d)

Figure 2.8: Image pair captured by the camera for case study 2: (a) Left image (b) Right image

(c) Computed disparity map (d) Computed depth map

2.3 Design Criteria and Hardware Prototypes

2.3.1 Hardware prototype 1

The initial hardware prototype was in line with the proposed multi-camera configuration. The

inspection device hosts 3 stereo-cameras, each covering a portion of the pipe's Field of View

(FoV). A housing module holds these cameras in place. The housing module is fixed onto a rotating

arm connected to a tracked robot base.

The camera housing module will be used to host three pairs of stereo cameras. Figure 2.9 (a) shows

the camera setup with one camera. The camera bed where the cameras were to be placed was

designed according to this area's requirement to accommodate them. The field of view of the

camera is 180⁰ and the angle at which the cameras were placed was to be calculated. Since the

field of view of the camera was 180⁰, we placed it at an optimal angle so that it would cover a

major portion of the pipe's inner surface. To accommodate this, the cameras are placed at 37.5⁰

28

with respect to the pipe's inner surface. This was because we need to stitch the images obtained

from each pair of stereo cameras, and each pair of the stereo camera needed to cover at least 120⁰.

We must also cover the region directly perpendicular to the camera on the pipe surface. Thus, we

chose an angle higher than 1200, which was 142.50. We selected a commercial eight degrees of

freedom (DOF) vehicle robot with 8-Axis RC robotic arm for the robot carrier. Details of this

carrier and camera are listed in Appendix B. The camera module and the robot platform are shown

in Figure 2.9.

 (a) (b)

(c) (d)

Figure 2.9: (a) Camera housing module (b) Vehicle tank assembly (c) Robot arm assembly (d)

Assembled robot carrier

A demonstration with simulated defects is conducted to visualize the pipe surface with simulated

defects. For the demonstration, the camera housing module was elevated to the axis center of the

pipe, and a ruler was placed at the end which was to be observed to show different contours. The

surface also had an irregularity to simulate what rust would look like. This was done to demonstrate

that the depth map generated could identify both contour types, i.e., the crack propagating inwards

and rust protruding outwards. Once the setup was complete, the stereo vision code was run, and

29

the results were generated. The RGB image of the pipe is shown in Figure 2.10 (a). This shows

the two types of contours, i.e., the ruler and the surface irregularity. It should be noted that this

image is distorted around the edges as a fisheye camera was used. The depth map was generated

and shown in Figure 2.10 (b). The contours of the ruler and two surface irregularities can be clearly

seen from the depth map. The ruler was placed to simulate protruding irregularities in the pipe,

and its edges worked as cracks to show the depth in the cracks. The other irregularity shown

worked as simulated rust in the pipe. In addition, the depth map generated is sensitive to the

lighting condition.

 (a) (b)

Figure 2.10: (a) Original RGB image (b) Computed depth map

2.3.2 Hardware prototype 2

This prototype is a significant modification of Hardware prototype 1. A multi-camera system

would have been useful to cover an effective field of view greater than any one camera, provided

the placement of these cameras was made correctly. However, In-Line Inspection (ILI) tools with

cameras not oriented normally towards the pipe wall reduce the detection capabilities in the depth

map, as shown in Figure 2.11. Figure 2.11 has a nut that is 20mm long and has a maximum depth

of approximately 10mm. The depth map does not indicate the object is present, despite it being

much larger than the lowest pixel resolution provided by the depth map. Furthermore, the oblique

viewing angle of the camera presents difficulties for extracting normal and curvature features from

the point cloud that can indicate bumps in the surface. A simplified design is therefore proposed.

A rotating single-camera system replaces the fixed multi-camera system. The rotation is about an

axis parallel to the pipe's axis, so the camera is always facing normally to the pipe surface. This

means that any surface defect that changes the pipe radius will be more visible, as the radial change

in depth is captured directly by the depth map, which maps the z-component of the point cloud.

30

Additionally, the proposed design guarantees that the entire pipe section can be covered with a

rotation about the axis and a translation along the length of the pipe. It is also possible to add

additional degrees of freedom, such as translation vertically or horizontally with respect to the

camera mount so that the robot can navigate closer to or away from a particular defect on the pipe

wall to get clearer images.

 (a) (b) (c)

Figure 2.11: Demonstration of the angled view (a) RGB image (d) Depth map (original) (c)

Depth map (filled)

Figure 2.11 has a nut that is 20mm long and has a maximum depth of approximately 10mm. The

depth map does not indicate the object is present, despite it being much larger than the lowest pixel

resolution provided by the depth map. Furthermore, the oblique viewing angle of the camera

presents difficulties for extracting normal and curvature features from the point cloud that can

indicate bumps in the surface. A simplified design is therefore proposed. A rotating single-camera

system replaces the fixed multi-camera system. The rotation is about an axis parallel to the pipe's

axis, so the camera is always facing normally to the pipe surface. This means that any surface

defect that changes the pipe radius will be more visible, as the radial change in depth is captured

directly by the depth map, which maps the z-component of the point cloud. Additionally, the

proposed design guarantees that the entire pipe section can be covered with a rotation about the

axis and a translation along the length of the pipe. It is also possible to add additional degrees of

freedom, such as translation vertically or horizontally with respect to the camera mount so that the

robot can navigate closer to or away from a particular defect on the pipe wall to get clearer images.

The proposed design is shown in Figure 2.12. For the modification of the robotic platform, the

following criteria were kept in mind:

• 3D-Printable: The custom parts were designed to be 3D-printable to reduce the time

needed to prototype and take advantage of the lab resources.

31

• Co-axiality of the stereo camera: During the initial calibration procedures of the camera,

we assessed the disparity of the camera for different heights, and it was found that the

disparity shift was manageable when the camera was between 12-15 cm from the pipe

surface. A height adjustment mechanism was designed and fabricated to fulfill this

requirement for a range of pipeline sizes (16-20 inches).

 (a) (b) (c)

Figure 2.12: (a-b) CAD model of the robot prototype platform demonstrating the height

adjustment mechanism using the PA-07 actuator. (c) Stereo camera mounted on the platform

Precise actuation and feedback of the angular component of the pose of the stereo camera:

A stepper motor was used to precisely actuate the stereo camera around the pipe, as shown in

Figure 2.12 (c). To complement the roll angle data from the stereo camera IMU, an AS5600

encoder was attached to the back of the stepper camera. A mount had to be designed for it such

that the AS5600 is placed at a distance between 3-5mm from the permanent magnet. During the

trial runs outside the pipe sample, an external AC/DC adapter with a range of 12V was used.

During the pipeline run, 4-rechargeable 18650 Li-Ion batteries were connected in series,

generating a total of 14.4V. The power supply capacity was estimated to be 3300mAh as the

connection is made in series. These batteries are held in a bracket along the frame of the robot.

Microcontrollers: Initially, the Arduino Uno was used to control the elements, such as actuators

and stepper motors. It has 26 I/O pins in total (Digital-14, PWM/Digital-6, Analog-6). This is not

sufficient for all the components of the robot. To allow for more I/O pins, we upgraded the

controller to the Arduino Mega 2560. With 70 pins (Digital-39, PWM/Digital-15, Analog-16),

connecting all the hardware components with options for further expansions was possible. Next,

we attempted to control the robot using an older PS2 controller. It had a receiver module that was

connected to the Arduino for data transmission. One of the disadvantages of having PS2 controller

as the control module of the existing circuit is that it needs an individual receiver module to get

32

signals from the controller. The receiver module is connected to the Arduino board using jumper

cables, so the receiver module might get disconnected from the Arduino. We upgraded the PS2

controller to a DualShock 4 wireless controller to mitigate this.

DualShock 4 wireless controller is found to be better than PS2 Controller-Receiver module for the

following reasons:

▪ Unlike the PS2 Controller, the DualShock PS4 controller does not have a separate receiver

module

▪ The optimum range of PS2 receiver module is between 8-10 meters, whereas the range of

DualShock PS4 controller has a range of 15.2 to 30.5 meters.

The Arduino Mega does not have an in-built Bluetooth module, but it could be attached externally

e.g., HC-05 Bluetooth module.

To further improve the integration process, we used a Raspberry Pi as the hub computer on-board

the robot, with an Arduino for minimal processing assistance. The earlier version of the robot code

was running exclusively on Arduino, which presented several difficulties during integration. The

Raspberry Pi has the following advantages over Arduino:

▪ The Raspberry Pi can be connected wirelessly to the server PC using the onboard Wi-Fi

module.

• Arduino Mega 2560 has a flash memory of 256kb and cannot handle multiple processes.

Raspberry Pi comes with 8GB of RAM and can handle multiple processes simultaneously.

• Raspberry Pi offers more flexibility when it comes to programming languages than

Arduino for rapid prototyping of software solutions.

As part of the porting process of the developed Arduino functionality to Raspberry Pi, the code

was converted from C to Python.

Motors and drivers: Our hardware consists of two linear actuators, PA-07, for adjustment of the

camera axis about the dimension of the pipes. For the robot's movement along the pipe, two geared

DC motors are installed on the rear end of the robot. Both elements work in the range of 12V, and

L298N motor driver individually controls them. It has two techniques to control two motors

simultaneously - PWM (Pulse Width Modulation) for speed and Dual H-Bridge for rotation. It can

control DC motors with a voltage range of 5-35V with a minimum logic voltage requirement of

33

5V. Therefore, it is powered up directly by the Raspberry Pi board. The speed of the motors (DC

motors) and Rate of Stroke (Actuators) could be altered by changing the frequency of the analog

PWM signal. The rotational direction (DC motors) and the Direction of Stroke (Actuators) could

be changed by reversing the inputs for motor drivers.

We use the NEMA-17 stepper motor for the rotation of the camera. The NEMA-17 has a step angle

of 1.80 (200 steps for a complete revolution) with holding torque of 0.44Nm. It draws a current of

1.8A at 5V. The DRV8834 motor driver controls it. This motor driver is capable of micro-stepping,

speed, and direction control. It has two micro stepping pins, enabling us to attain 1/32 of the initial

step resolution. The base speed is set by means of a pulse signal, and then the stepping is done as

per the requirement. The motor driver is capable of driving stepper motors from 2.5V to 10.8V

with a minimum logic voltage requirement of 2.5V. Therefore, it is also powered up by the

Raspberry Pi board. The technical specifications and the logic table of the elements used are listed

in Appendix B. The overall schematic is summarized in Figure 2.13, and the integrated prototype

used in the trial run is shown in Figure 2.14.

34

Figure 2.13: Schematic diagram of the integrated hardware electronics

Figure 2.14: Integrated hardware prototype

35

2.4 Depth Map Generation and Evaluation of the Intel RealSense D435i Camera

2.4.1 Analysis of the generated depth map for depth resolution limits

For industrial inspection, the ideal outcome is to detect defects, measure them, and quantify their

respective uncertainties. This is a multi-step process, with uncertainties propagating from the

sensor into the detection model and finally manifesting themselves in the measurement. We start

by modeling the depth sensor. Any sensor output can be expressed in the form of a mean signal, 𝑧̅

and a set of variances:

𝑧 = 𝑧̅ + 𝜖𝑠 + 𝜖𝑡 2. 17

𝜖 = 𝜖𝑠 + 𝜖𝑡 2. 18

where 𝜖𝑠 and 𝜖𝑡 are the spatial and temporal noise, respectively.

The overall uncertainty of the depth map depends on both the sensor's spatial and temporal noise.

We limit the scope of this section to characterizing the noise sources at the signal output level.

Explicit analytical modeling of the causes of this noise is not performed, as noise can result from

several factors, such as lens distortion. In addition, the pixel resolution limitations lead to the

quantization of disparity. The other noise source is the matching process and the image quality.

This is dependent on the application in consideration. The matching cost function for finding

corresponding points can suffer from ambiguities that lead to multiple matches with similar

matching scores for in-line inspection. Filtering out the best match from a set of similar candidate

matches has been done internally using the D435i stereo-matching algorithm.

A normalized metric called the subpixel Root Mean Squared Error (RMSE) is utilized to evaluate

sensor performance, which is obtained from fitting a plane onto a depth map of a flat wall. The

plane fit has an associated RMSE that estimates the spatial noise in the image, and the calibrated

camera was found to have a temporally stabilized RMSE of 0.12%.

The subpixel RMS error is given in the form of disparity in pixels and is a function of the plane-

fit projected depth 𝑧𝑝 and the actual depth 𝑧𝑖, given by 𝑅𝑀𝑆𝐸 = √𝑧𝑖
2– 𝑧𝑝

2. Knowing the RMSE

of a plane fit only provides a metric for the inherent noise level in the sensor. However, this does

36

not answer the crucial question of the minimum change in depth that the sensor can reliably detect,

which is an important parameter that needs to be measured for optical metrology. For this, we

examine the sensitivity of the depth function to infinitesimal changes in the variables it depends

on:

𝑑𝑧 = −
𝑧2

𝑓𝑏
𝑑𝑑 +

𝑧

𝑏
𝑑𝑏 +

𝑧

𝑓
𝑑𝑓

2. 19

The focal length and baseline are fixed for the D435i, so the sensitivity of the depth to small

changes in disparity is proportional to the square of the depth. This means that an infinitesimal

change in disparity for an object that is close to the camera would cause a smaller change in depth

compared to an object that is farther away. The consequence of this relationship is that finer depth

sensitivities are possible for the same perturbation in disparity for objects that are closer to the

camera. This is demonstrated in Figure 2.15 (b).

 (a) (b)

Figure 2.15: (a) Sensitivity of the depth map to regions at various distances in (mm) to

perturbations in disparity, focal length, and baseline. (b) Sensitivity of the depth to disparity

perturbations for objects at various distances

For the spatial resolving power of the depth camera, consider an object that is 𝑧 mm away from

the sensor and a camera with horizontal and vertical resolutions 𝑋𝑟𝑒𝑠 and 𝑌𝑟𝑒𝑠. Assuming a pinhole

camera model, the length in pixels 𝑙𝐼 for an object of length 𝑙𝑊 in the world coordinates can be

derived using similar triangles, as shown in Figure 2.16. To get the image length in pixels, the

focal length also needs to be expressed in pixels, given by 𝑓𝑥. The camera field of view can be

expressed as 𝜃𝐻 for horizontal, and 𝜃𝑉 for vertical. A similar relation can be derived between the

37

height of the object and the height in pixels.

Figure 2.16: Relating the length of an object in pixels to its real-world length

The relationship between the length of an object in image coordinates and the world coordinates

can be determined using similar triangles:

𝑙𝐼
𝑓𝑥

=
𝑙𝑊
𝑧

2. 20

𝑓𝑥 =

1
2𝑋𝑟𝑒𝑠

tan (
𝜃𝐻

2)

2. 21

𝑙𝐼 =

1
2𝑋𝑟𝑒𝑠

tan (
𝜃𝐻

2)

𝑙𝑤
𝑧

2. 22

The D435i has a pixel size of 3𝜇𝑚 x 3𝜇𝑚. From the equation above, the smallest object that the

stereo-camera can detect can be found by computing
2𝑧𝑙𝐼

𝑓
 with a length in image space of 1 pixel.

For a defect that is 200mm away, which would be the case for our experimental setup for a 16-

inch diameter pipe, the length captured by 1 pixel is 0.621mm.

Additionally, an empirical evaluation of the Intel D435i depth camera to evaluate the quality of

the depth map was performed. The goal was to evaluate the effect of changes in camera parameters

on depth map quality, and to determine the parameter range at which the depth map most closely

resembles the real-world object dimensions. Bad sensor parameters can lead to object boundary

bleeding, missing values (holes) in the depth map, and noisy output. Detailed experimental results

38

are given in Appendix A.

2.4.2 Surface roughness profile – Signal vs Noise at high resolution

An interesting observation while capturing the images at the (1280x720) pixel resolution and depth

unit 1e-5 m was that the images captured by the depth sensor showed patterns like the ones found

on the wall as shown in Figure 2.17. The dramatic contrast in the depth map occurs because the

range has been limited to the minimum and maximum depth values to highlight differences in

depth. The camera was placed directly perpendicular to the surface, and this was verified by

ensuring that the depth did not vary substantially. To confirm whether this pattern was the surface

roughness profile, or the sensor noise, a comparative analysis was performed between the rough

wall and a baseline smooth wall. Three images were captured using the camera at a distance away

from the surface, pointing perpendicular to it, with the same camera settings. Aggressive temporal

smoothing was performed to average out temporally varying noise signals with large temporal

filters. The stabilized image was analyzed using a histogram of depth values. The spatial domain

is inspected using the depth histogram, and this would directly provide the distribution of depth

information. The smooth image and roughness-level 1 image distributions show minimal

differences between the two cases. Therefore, we can conclude that the detection of surface

roughness from depth maps at the levels indicated by the middle image in Figure 2.17 will be

unreliable. However, at a higher degree of roughness in the millimeter scale and above, it can be

detected, as shown by the histogram in Figure 2.17 (i). The distribution on the far-right histogram

has more pixels to the left of the highest mode of the distribution, indicating the peaks in the

roughness profile.

39

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

Figure 2.17 (a-c) RGB images for smooth, roughness level 1 and roughness level 2 surfaces

respectively, Bottom Row (d-f) Depth maps in white to black scale for smooth, roughness level 1

and roughness level 2 surfaces respectively. (g-i) Depth histograms for smooth, roughness level

1 and roughness level 2 surfaces respectively

The resolution of the defect was shown to improve with the increase in camera resolution from

848x480 pixels to 1280x720 pixels, along with a higher sensor noise profile. To further attempt an

improvement in the reconstruction, we tried to add a camera in series such that the common field

of view from the two cameras had a higher IR dot density as each camera had its own IR dot

projector. The D435i system is an “active-stereo” system that uses a combination of color imaging

and an IR dot pattern to perform stereo matching, and the dot patterns provide additional texture

to texture-less scenes, and these patterns are not visible. The color sensor detects these patterns

and is substantial only in high laser power. An increase in dot pattern density was expected to

40

improve the matching quality by providing even more density of textures for the matching

algorithm, however, no significant differences were observed.

2.5 Disparity Map Post-Processing Methods for Improving Depth Quality

2.5.1 Post-Processing of the Disparity map using Gaussian Pyramids

The disparity map obtained using the stereo block matching algorithm can contain invalid regions

with no disparity values. This can compromise detection and measurement results. This section

demonstrates a Gaussian Pyramid approach to post-process the generated disparity map in the

previous section. A Gaussian pyramid is a hierarchical image representation scheme that

downsamples the original image, followed by upsampling and interpolation. The overall method

for filling missing values is shown in Figure 2.18.

Figure 2.18: Filling missing values using a hierarchical pyramid approach (Adelson et al., 1984)

The original image, at its initial resolution, is considered level zero. The reduction output can be

denoted as 𝑅𝑛 where 𝑛 is the current reduction level. 𝑅0 consists of the top-most level, and a

weighting low pass filter kernel is convolved with the image and the image is subsampled by a

factor of two such that:

41

𝐼𝑘(𝑖, 𝑗) = ∑ ∑ 𝑤(𝑚, 𝑛)𝑔𝑘−1(2𝑖 + 𝑚, 2𝑗 + 𝑛)

2

𝑚=−2

2

𝑛=−2

2. 23

𝑅0 𝜖 𝑅
𝑀𝑥𝑁 , 𝑅1𝜖 𝑅

𝑐𝑒𝑖𝑙(
𝑀
2

)𝑥𝑐𝑒𝑖𝑙(
𝑁
2
)

A ratio 𝑟 =
𝑁𝑚𝑖𝑠𝑠𝑖𝑛𝑔

𝑁𝑡𝑜𝑡𝑎𝑙
 is computed for each scale, where 𝑁𝑚𝑖𝑠𝑠𝑖𝑛𝑔 is the number of missing values

and 𝑁𝑡𝑜𝑡𝑎𝑙 is the total number of pixels. As the resolution of the image reduces, the ratio parameter

decreases. We downsample the image until 𝑟 becomes zero or we get to the smallest possible

representation. The lowest obtained representation has no missing values. This representation is

then upsampled using the gaussian pyramid approach, where the pixels are upsampled as follows:

𝐼𝑘(𝑖, 𝑗) = ∑ ∑ 𝑤(𝑚, 𝑛)𝑔𝑘−1 (
𝑖 − 𝑚

2
,
𝑗 − 𝑛

2
)

2

𝑚=−2

2

𝑛=−2

2. 24

𝑅𝑘𝜖𝑅
𝑀𝑥𝑁 , 𝑅𝑘−1𝜖𝑅

2𝑀𝑥2𝑁

The weighting function that we used approximated the Gaussian shape as:

𝑤 = [
1

4
−

𝑎

2
,
1

4
, 𝑎,

1

4
,
1

4
−

𝑎

2
] , 𝑎 = 0.375

2. 25

The expansion back to the original size changes the pixel values in the original image. For

replacing the invalid regions in the raw image, we have replaced the reduced representation pixels

with the corresponding expansion image values in those indices if the reduced representation pixel

is a missing value. The disparity map before and after post-processing is shown in Figure 2.19.

There is no explicit assumption on the shape of the objects in the scene in this method.

42

(a) (b)

Figure 2.19: (a) Original Disparity Map (b) Disparity Map after Post-Processing with Gaussian

Pyramids

2.5.2 Disparity Map Post Processing using a Hole Filling Algorithm

In the previous section, the disparity map obtained was post-processed using a Gaussian pyramid-

based technique. The original image was progressively downsampled and then upsampled with a

Gaussian filter kernel. In this section, we improve upon this approach by imposing a first-order

smoothness assumption on the pixel values. The assumption makes it so that nearby pixels should

have similar intensities. Levin originally published the method (Levin et al., 2004) as a proposal

for an algorithm to colorize grayscale images. The assumption of having nearby pixels with similar

intensities makes it so that the entire depth map gets smoothed globally by using this algorithm,

and this is functionally like using Gaussian pyramids, although quantitatively different. The

algorithm accomplishes this by minimizing the sum of the squared difference between the color at

a particular pixel in a window and the weighted average of the neighbors within that window and

applies this algorithm globally.

Let 𝐼(𝑟) 𝑎𝑛𝑑 𝐼(𝑠) be the intensities respectively of two neighboring pixels on the normalized

intensity (greyscale) image, with 𝐼(𝑟) being the center pixel of a sub-matrix window within the

depth map. The window size is a user-defined parameter.

𝐽(𝑈) = ∑(𝐼(𝑟) − ∑ 𝑤𝑟𝑠𝐼(𝑠))

𝑠 𝜖𝑁𝑟

2

2. 26

43

The weighting function is large when 𝑌(𝑟) is closer to 𝑌(𝑠) and small when the two intensities are

different.

𝑤𝑟𝑠 = 𝑒
−

(𝐼(𝑟)−𝐼(𝑠))
2

2𝜎𝑟
2

2. 27

Two sparse matrices A and G are constructed, where A is an affinity matrix with the pixel-wise

values from the weighting function. G is a diagonal matrix. The new values for the depth map are

constructed by solving the equation:

𝐷′ = (𝐺 − 𝐴)−1 ∗ 𝐷 2. 28

This is equivalent to solving for the system 𝐴𝑥 = 𝑏, where the system is (G-A) instead of (D-W)

in the paper for obtaining normalized cut segmentation.

 (a) (b) (c)

Figure 2.20: Depth map hole filling algorithm demonstration (a) RGB Image (b) Depth map with

holes (c) Post-processed depth map

The resulting depth map is then multiplied by the maximum depth value in the original normalized

depth map to obtain the final filled output, as shown in Figure 2.20.

2.6 Extremum Seeking Controller for Depth Map Optimization

There are two levels of calibration for the D435i. The first level of calibration involves tuning the

camera's internal parameters and the extrinsic parameters' calibration to locate the camera in space.

This has already been completed and verified within the D435i Application-Specific Integrated

Circuit (ASIC) using onboard calibration algorithms (Intel RealSense, 2022). However, stereo-

matching using the D435i requires additional parameter tuning. Extremum Seeking Control (ESC)

is presented in this section as a solution for adaptive parameter calibration.

44

Extremum seeking is an online optimization technique that can be used for near real-time

parameter tuning when the system model is not known. We have a cost function that measures the

depth map quality, and this function is maximized (or minimized) iteratively in an online fashion.

In our case, the depth map is known, however the stereo-matching parameters go into a grey-box

matching algorithm that needs to be tuned. We can model the camera as a dynamical system,

parameterized by a state vector 𝑥(𝑡). The state is updated iteratively according to a control input

𝑢(𝑡). Parameters are input into a depth map generator function ℎ, which is iteratively evaluated

according to a cost metric 𝑔. The goal of the method is to find 𝑥∗ that minimizes this cost function.

The entire loop is shown in and is summarized in this section.

�̇� = 𝑓(𝑥(𝑡), 𝑢(𝑡)) 2. 29

𝑦(𝑡) = 𝑔 (ℎ(𝑥(𝑡))) 2. 30

𝑥 𝜖𝑅𝑛

𝐽: 𝑅𝑊𝑥𝐻 → 𝑅

ℎ: 𝑅𝑛 → 𝑅𝑊𝑥𝐻

Figure 2.21: Extremum seeking control loop

The cost function for our demonstration relies on generating a continuous depth map with valid

disparity pixels. With a changing environment that is unknown apriori, this would mean that the

optimal parameter settings can keep changing, leading to discontinuous depth maps. We directly

measure this using the following function:

45

ℎ(𝑥) = − log (
𝑛𝑓

𝑊𝑥𝐻
)

2. 31

The number of filled pixels 𝑛𝑓 in the frame or region of interest and the width and height of the

region of interest, frame are the inputs to this function. The extremum-seeking control approach

perturbs the parameters using a sinusoid to generate an AC signal of the form:

𝑥 = 𝑥𝑘 + asin(𝜔𝑡) 2. 32

The resulting cost function evaluation is also perturbed, and this perturbed function is passed

through a high pass filter (HPF) to remove the DC component of the signal. The extremum-seeking

controller is seen to be an online form of hill climbing or gradient descent, as the Taylor series

expansion of the cost function shows:

𝑔(𝑥) = 𝑔(𝑥𝑘) + ∇𝑔𝑘(𝑥 − 𝑥𝑘) 2. 33

𝑥 = 𝑥𝑘 + asin(𝜔𝑡) 2. 34

𝑔(𝑥) = 𝑔(𝑥𝑘) + 𝑎𝛻𝑔𝑘𝑠𝑖𝑛(𝜔𝑡) 2. 35

The high pass filtered output gets attenuated with a phase shift and the result is:

𝜁 = 𝐻𝑃𝐹(𝑔(𝑥)) 2. 36

𝜁 = aA∇𝑔𝑘sin(𝜔𝑡 + 𝜙) 2. 37

1

√2
< 𝐴 < 1

0 < 𝜙 < 450

The high pass filter provides an estimate of the gradient with a sinusoidal component. To make

this sinusoidal time-varying component strictly positive, we multiply with a sinusoid:

𝜉 = asin(𝜔𝑡) 𝜁 2. 38

𝜉 = a2Asin(𝜔𝑡) sin(𝜔𝑡 + 𝜙) ∇𝑔𝑘 2. 39

46

𝜉 = 𝑆(𝑡)∇𝑔𝑘 2. 40

Each parameter is updated as 𝑥𝑘 = 𝑥𝑘−1 − 𝛼∇𝑔𝑘 according to gradient descent can then be derived

using an integrator. The Z-Transform can illustrate how the transfer function of an integrator

directly provides the next iterate. The Z-Transform is given by:

𝑍{𝑥(𝑘)} = = ∑ 𝑥(𝑘)𝑧−𝑘

𝐾

𝑘=0

2. 41

𝑍{𝑥(𝑡)} = X(𝑧) 2. 42

 The transfer function in z-domain of an integrator is given by:

𝐼(𝑧) =
𝑘

1 − 𝑧−1

2. 43

 The update rule when transformed into z-domain and rewritten reproduces the transfer function:

𝑥𝑡 = 𝑥𝑡−1 + 𝛼∇𝑔 2. 44

Since 𝑍(𝑥(𝑘 − 1)) = 𝑧−1𝑋(𝑧):

𝑋(𝑧)(1 − 𝑧−1) = 𝛼∇𝑔 2. 45

 The integrator therefore performs parameter updates, modified by a gain proportional to learning

rate parameter 𝛼 in gradient descent.

For the demonstrations shown in this report, a perturbation sinusoid proposed by Scheinker et al

(Scheinker et al., 2021) is used:

𝑢𝑘 = √𝑎𝐸𝑆𝜔𝑖 cos(𝜔𝑖𝑘 + 𝑘𝐸𝑆𝐽(𝑥, 𝑘)) 2. 46

𝑎𝐸𝑆 = 𝜔𝑖𝐷
2 2. 47

𝜔 = [𝜔1, 𝜔2, … , 𝜔𝑛]

For each parameter in 𝑥, there is a corresponding dithering frequency. Another hyperparameter is

47

oscillation amplitude 𝐷. The final hyperparameter is the gain 𝑘𝐸𝑆. The oscillation amplitude is

varied until the parameter variation is high enough to demonstrate a corresponding change in the

objective function value, and the gain is then tuned to provide a local optimum. The demonstrations

use 3 critical parameters: Exposure, gain and IR dot projector power, that significantly influence

the continuity of the depth map. Given that the functional relationship between these parameters

and the cost function is apriori unknown, and there is no model-based learning involved, the

knowledge of “over” and “under” exposed is not known to the controller. In all the forthcoming

demonstrations, 𝑝1 is the exposure, 𝑝2 is the gain and 𝑝3 is the IR laser power.

To test how the controller performs, we first set up a baseline case of a bright environment with

the default settings of the camera, and the evolution of the cost function and parameters is seen in

Figure 2.22. The depth map reaches a local optimum in a few iterations and the parameter

oscillations are damped according to the hyperparameters specified earlier and a prespecified

decay rate that is applied to the oscillation amplitude in each iterative step.

Figure 2.22: Demonstration 1: Baseline test case in a well-lit scene with the factory D435i

parameter settings

Next, we darken the environment and start with bad initial conditions of the parameters, with the

exposure, gain and IR power all being set to their lowest possible values, leading to a highly

48

underexposed image pair, and the resulting stereo image had many discontinuities. Finally,

however, extremum seeking control converged to a local optimum as shown in Figure 2.23.

The third experiment takes a quickly varying environment by way of the surrounding brightness

of the scene. This situation could be like the one that a robot can encounter inside a pipe with

sections that may have varying lighting conditions. We first start similar to the second experiment

with a dark environment with bad initial conditions, for 5 seconds. We then introduce a light source

to the environment using a torch for 5 seconds. Then we remove the light source and measure the

change in the cost function. Given the chosen hyperparameters, the cost function signal showed

oscillations initially until the light source was introduced. With the introduction of the light source,

there were smaller perturbations to the cost function, followed by a stabilization of the cost shown

in Figure 2.24.

Figure 2.23: Demonstration 2: Poor lighting conditions with bad parameter settings: Low

exposure, gain and IR laser power

49

Figure 2.24: Demonstration 3: Test case with varying external illumination conditions starting

with a dark environment with poor initial condition setting

50

3 DATA-DRIVEN TECHNIQUES FOR DEFECT DETECTION

3.1 Fully Supervised RGB-D Semantic Segmentation with Uncertainty

3.1.1 Feature Fusion using Fully Convolutional Networks

This section describes a fully supervised machine learning framework for semantic scene

segmentation. Convolutional Neural Networks (CNN) yields a hierarchy of learnable features

obtained via training on a dataset. The Fully Convolutional Network (FCN) (Shelhamer et al.,

2017) is an end-to-end technique to train a model for pixel-wise prediction of categories,

segmenting the scene into the various known object categories. Convolutional networks have been

used for object detection and image segmentation. Patch-based, region-of-interest based methods

contain multiple steps such as region proposal search, as in the Mask R-CNN (K. He et al., 2017),

and Faster R-CNN (Ren et al., 2017) techniques, or it contains a fixed set of regions to directly

output a set of bounding boxes in an end-to-end fashion with requirements on anchor boxes, as in

the You Only Look Once (YOLO) network architecture (J. Li et al., 2018; Y. Li et al., 2019;

Redmon & Farhadi, 2018).

FCN takes inspiration from the classification convolutional network architecture and removes the

final fully connected layer, and replaces it with an expanding, upsampling architecture. Fully

connected layers can be interpreted as convolutions that cover the entire output from the previous

final convolution layer. Projecting the condensed representation to a higher feature dimension can

be accomplished using a deconvolution operation. This can be done in stages, mirroring the

convolution layers. The transposed convolution is not an inversion of the convolution but takes a

lower dimensional feature and applies a convolutional operation with padding on the lower

dimensional representation to transform it into the desired higher dimensional feature. The

usefulness of the transposed convolution is because we have learnable weights on the filter kernels,

and the eventual upsampled original dimension representation can be replaced with the label

matrix, consisting of pixel-wise labels for the object categories. Fusion at the convolutional layer

level is accomplished in FCNs by modifying the network architecture to combine feature

representations along the network. In our experiments, our FCN uses the VGG-16 backbone

network. The VGG-16 network consists of 5 convolutional blocks, where each block ends with a

max-pooling layer. The outputs of the max pooling layer and the corresponding similar-sized

51

output from the deconvolution layer are combined, as shown in Figure 3.1. Incorporation of

information from both the downsampling and upsampling layers enables pixel-wise predictions as

the downsampling layers provide cues on the presence of object categories, as seen in regular

classification networks, which leverage this information using fully connected layers, and the

upsampling layers enable localization of the objects of interest by expanding the condensed

representation.

Figure 3.1: Overview of the proposed network architecture

The purpose of using multiple modalities in prediction is to provide complementary information

to aid model prediction. The RGB data stream provides texture and plane-projected morphological

information without depth perception for industrial inspection. The depth stream provides a more

fine-grained morphological representation of the scene. We also propose a method to integrate

data streams derived from the depth stream that would be relevant to the pipeline defect detection

problem. Data fusion rules have been extensively studied in the field of image processing. The

complexity of the fusion methods has increased to produce incremental improvements in

quantitative performance metrics when evaluated on large datasets of natural images. However,

there are missing concrete explanations as to why these modifications work and whether the

improvements are predictably higher across different datasets. The empiricism of deep learning

architecture modifications led us to approach this part of the network by using a simpler fusion

rule architecture derived from classical decision-theoretic and data fusion principles. We contend

52

that there are two principled ways of approaching data fusion in the context of deep learning: (i)

Neural Architecture Search (ii) Rules-based fusion. The first approach seeks a network architecture

that can robustly fuse features from different data sources to satisfy a meta-objective of predicting

well across multiple datasets. The second approach, while not directly geared towards improving

detection performance metrics, would instead target providing interpretability for how the

individual modality information is being utilized for the final prediction and provide a way for the

end-user to make operational choices for sensor integration. We contend that industrial inspection

in its current state could benefit from a hybrid approach of data-driven feature extraction,

engineered data pre-processing, and feature fusion rules.

Fusion can be accomplished in multiple ways:

1. Data Fusion: In this case, the fusion occurs at the level of the raw data.

2. Feature Fusion: Features extracted from the data are fused together in intelligent ways to

produce a new, combined feature representation.

3. Decision Fusion: Several classifiers, each operating on one type of data, is used to fuse the

decisions made by each classifier to produce a combined evaluation using all the sources

available.

We use RGB-D data for performing hierarchical feature fusion and then integrate new data sources

derived from the depth map that was hypothesized to be relevant for pipeline data.

Fusion block architecture 1:

The first fusion architecture was built upon the VGG convolutional network backbone with pre-

trained weights. We remove the fully connected component and replace it with the new

deconvolutional layer that is to be trained with the NYU dataset. The fusion operation is:

𝑎𝐸𝑆 = 𝜔𝑖𝐷
2 3. 1

𝐹 = 𝑀𝑅𝐺𝐵 + 𝑀𝐷 3. 2

This is a simple element-wise addition of features from the convolutional layers. These outputs

are then combined with the corresponding deconvolutional layer

Fusion block architecture 2:

53

The second fusion architecture involved a change in the fusion block. We use a non-linear

weighted combination of the max pooling layer outputs from each convolutional block as follows:

𝐹 = 𝑓(𝑀𝑅𝐺𝐵, 𝑀𝐷) 3. 3

𝑓(𝑀𝑅𝐺𝐵, 𝑀𝐷) = 𝑅𝑒𝐿𝑈((𝑀𝑅𝐺𝐵, 𝑀𝐷) ∗ 𝐾) 3. 4

where K is a 1x1 convolutional filter set.

The input features from the color and depth streams are first concatenated to create an initial joint

representation. To implement non-linear weighting, we need to multiply the depth and RGB

components by a scale factor. Concatenation of the RGB and depth channels doubles the channel

dimension length. The convolutional operator acts on the two sections of the concatenated output

to reduce the channel dimension back to 64. The non-linear weighted combination fusion layer

produces a set of CO =
CI

2
 weighted combinations of input features that have 𝐶𝐼 channels. Let the

input features have a dimension of (𝐶𝐼 𝑋 𝑀 𝑋 𝑁). The 1x1 convolution layer has a shape

(𝐶𝑂 𝑋 𝐶𝐼 𝑋 1 𝑋 1). Each kernel 𝐾𝑖 produces a distribution of weights, when convolved with the

input features produces a weighted sum ∑ 𝐾𝑖𝑗. 𝐼𝑗 = 𝐹𝑖𝑗 . The final fused output of the 1x1

convolution is a concatenation of each of these individual weighted combinations of the original

input. From the point of view of interpretability, however, this is different from a simple weighted

combination. Instead, we have an output map that consists of a set of weighted combinations,

densely weighted by a combination of the input features:

𝐾1 = [𝐾11, 𝐾12, … , 𝐾1𝐶I
], … , 𝐾 𝐶𝑂

 = [𝐾𝐶𝑂1, 𝐾𝐶𝑂2 , … , 𝐾𝐶𝑂𝐶𝐼
] 3. 5

While the weights in this model are not resolved to the positive domain the kernels provide a way

to interpret the relative contribution of each input feature for each channel in the output feature.

Depth-Normal-Curvature Representation for Semantic Segmentation

The problem of transforming the depth map of a cylinder to an equivalent flat plate with

highlighted defect areas was studied by (Alzuhiri et al., 2021). (Alzuhiri et al., 2021) used a least-

squares fit of an ellipsoidal surface to accomplish this task. But this approach is computationally

intensive as it requires parametric modeling of pipeline geometry and is sensitive to the location

54

of the camera. Moreover, it was primarily used for the reconstruction of gas pipeline geometry.

We propose a representational scheme, the DNC (Depth-Normal-Curvature) representation. This

is a 6-channel representation compressed into 3 channels using 1x1 convolutions, as shown in

Figure 3.2. The surface normal is a 3-channel image, one for each component of the normal vector.

The curvature consists of the mean and Gaussian curvatures, which can be computed from the

principal curvatures of a point on a surface. The depth information obtained from the stereo camera

contains the curvature and normal information implicitly. Therefore, detailed descriptions of

surface characteristics can be derived from depth maps.

Most of the ILI tools are used to inspect pipelines and run through the cylindrical sections in the

pipelines and the camera in our experiments is placed approximately along the axis of the pipe

about which it rotates. Therefore, the depth data is not captured obliquely but approximately

normal to the surface of the pipe. This makes it possible to take advantage of the symmetry in the

geometry of the view being captured. As the camera rotates about the pipe axis, the curvature of

the cylinder remains constant. It is important to note the sources that cause a deviation from this

ideal situation. They are as follows:

▪ the noise inherent in the depth signal,

▪ the noise induced by the algorithm used to compute curvature,

▪ the signals from the defect

Similarly, for general detection and scene understanding problems, the surface normal provides

additional geometric cues like curvature. The normal serves to provide a "bump map", similar in

vain to the ones used in computer graphics, to simulate wrinkles and bumps in textures. The

differential geometry of a surface provides a discretized formulation of normals from first

derivative information and curvatures from second derivative information if these derivatives exist

throughout the domain.

The surface normals and curvatures are derived from the depth map 𝑍 = ℎ(𝑋, 𝑌) which is a

Monge patch 𝜁 ∶ 𝑈 −> 𝑅3 with the form:

 𝜁(𝑋, 𝑌) = (𝑋, 𝑌, ℎ(𝑋, 𝑌)), (𝑋, 𝑌) ⊂ 𝑈 3. 6

The normals 𝜂 can be calculated using the first derivative information, and the curvature can be

55

calculated using the second derivative information. The Gaussian and mean curvatures K and H

of the surface are then computed using the standard equations describing the fundamental

coefficients of a surface.

Figure 3.2: RGB-D Fusion Module

Figure 3.3: RGB-DNC Data Pre-processing Module.

The derivatives are computed along the 𝑥1 and 𝑥2 directions as follows:

 𝐷𝑖 𝜁 = [
𝜕𝑋𝑗

𝜕𝑥𝑖

𝜕𝑌𝑗

𝜕𝑥𝑖

𝜕𝑍𝑗

𝜕𝑥𝑖
]

3. 7

𝐷𝑖𝑖 𝜁 = [
𝜕2𝑋𝑗

𝜕𝑥𝑖
2

𝜕2𝑌𝑗

𝜕𝑥𝑖
2

𝜕2𝑍𝑗

𝜕𝑥𝑖
2]

3. 8

𝐷𝑖𝑗 𝜁 = [
𝜕2𝑋𝑗

𝜕𝑥𝑖𝑥𝑗

𝜕2𝑌𝑗

𝜕𝑥𝑖𝑥𝑗

𝜕2𝑍𝑗

𝜕𝑥𝑖𝑥𝑗
]

3. 9

56

𝜂(𝑋, 𝑌) =
𝐷𝑥𝜁 𝑋 𝐷𝑦𝜁

|𝐷𝑥𝜁𝑋𝐷𝑦𝜁|

3. 10

The curvature information is derived from the fundamental coefficients of the surface by first

computing the inner product between the first derivatives for the first 3 components E, F, and G.

We use the inner product between the second derivative components of the surface and the normal

map for computing L, M and N:

𝐸 = 𝐷𝑥1
𝜁. 𝐷𝑥1

𝜁 3. 11

𝐹 = 𝐷𝑥1
𝜁. 𝐷𝑥2

𝜁 3. 12

𝐺 = 𝐷𝑥2
𝜁. 𝐷𝑥2

𝜁 3. 13

𝐿 = 𝐷𝑥1𝑥1
𝜁. 𝜂(𝑋, 𝑌) 3. 14

𝑀 = 𝐷𝑥1𝑦2
𝜁. 𝜂(𝑋, 𝑌) 3. 15

𝑁 = 𝐷𝑥2𝑥2
𝜁. 𝜂(𝑋, 𝑌) 3. 16

𝐾 =
𝐿𝑁 − 𝑀2

𝐸𝐺 − 𝐹2

3. 17

𝐻 =
𝐿𝐺 + 𝑁𝐸 − 2𝐹𝑀

2(𝐸𝐺 − 𝐹2)

3. 18

We utilize the equations outlined above to obtain representations of simple geometric shapes. This

curvature characterization is "visible-invariant", a feature that is invariant to viewpoint

transformations that preserve the visibility of the region in question. A discrete smooth flat plate

was created to demonstrate this method. We use a (1000x1000) grid with z = 1 as shown in Figure

3.4. The normals were calculated to be (0,0,1) across the entire grid, which is accurate. Both mean

and Gaussian curvatures are zero, which tells us that the computation is correct for the flat plate.

Next, a cylinder section was created using a (1000x1000) grid with a 180-degree field of view as

shown in Figure 3.4. The mean curvature was calculated to be -1, and the Gaussian curvature was

calculated to be 0. The cylinder created now can be considered as bending the flat plate about the

57

longitudinal axis. While the surface shape has changed, the length of the arc connecting two points

in that surface has not. The Gaussian curvature formulation outlined above is invariant to such

transformations and remains unchanged, but the mean curvature is not invariant to the change in

the embedding of the surface within the 3D space. The next case that is considered is the rotated

cylinder. This case demonstrates a scenario that can occur during data collection from the pipe

sample. Due to the misalignment of the camera, it is possible that the depth map can deviate from

being approximately normal to the surface. The curvatures demonstrate that they are

approximately invariant to such rotations.

Figure 3.4: Demonstration of the curvature and normal maps for idealized surface formulations

Figure 3.5 shows a demonstrative example comparing the depth data with the data derived from

it. This data is passed into the neural network using the RGB-DNC data processing module, as

shown in Figure 3.3. The Gaussian curvature is the only curvature used in our experiments as it

serves to indicate changes in surface shape at each discrete point of the surface. The curvatures

shown in the pitted surface indicate higher positive values than the surrounding area. Mean

curvature changes in sign depending on whether the surface is convex or concave from the camera

viewpoint, but Gaussian curvature is invariant to this change in direction. From the above

demonstrations, we observe that a Gaussian curvature feature descriptor without issues such as

signal noise is sufficient for detecting pitting defects embedded in a smooth cylinder.

58

Improvements to this formulation are directions for future research.

Figure 3.5: DNC data derived from the point cloud representation

3.1.2 Epistemic and Aleatoric Uncertainty Quantification using MC-Dropout

Structural prognostics benefit immensely from modeling predictive uncertainty at multiple stages

of analysis. Unfortunately, point estimates provided by deep neural networks may lead to

overconfident predictions that can be misleading. Ideally, we seek expressive models, have a

unifying formalism to help extend the model's capabilities for downstream tasks and have a way

to explain its predictions to the end user. This is achieved by taking a Bayesian view of the

problem. The Bayesian framework lends itself very well to modeling a broad range of problems,

and it is easier to work with at the level of prognostics and risk assessment. In this section, we

describe the Bayesian view of deep learning to evaluate and contextualize the uncertainties for

defect detection. We expand upon some of the challenges in the disambiguation of uncertainties

in the defect detection problem. We analyze a benchmark problem to verify the capabilities of this

approach to uncertainties and then justify the use of this approach to modeling uncertainties.

Consider the general setup for Bayesian inference: A prior distribution is defined over the space

of functions 𝑝(𝑓) where 𝑓 is a sample from the distribution of functions that could have generated

the data 𝐷 = (𝑋, 𝑌). The likelihood function is 𝑝(𝑌 | 𝑓, 𝑋). The posterior can be written using the

Bayes rule from the prior 𝑝(𝑓) and the likelihood function. For an unseen data point 𝑥∗, the

predictive distribution can be computed by integrating over all possible functions 𝑓∗ to yield the

conditional probability for prediction 𝑦∗:

59

𝑝(𝑦∗| 𝑥∗, 𝑋, 𝑌) = ∫ 𝑝(𝑦∗| 𝑓∗)𝑝(𝑓∗| 𝑥∗, 𝑋, 𝑌)𝑑𝑓∗ 3. 19

The problem with the above equation arises from the inability of neural networks to properly

estimate uncertainty as part of the prediction. Calculating a measure of uncertainty is more

challenging for deep networks than approaches such as Bayesian linear models and Gaussian

processes. This is because larger parameter spaces in deep networks produce posteriors that are

computationally intractable to integrate and do not have pre-determined conjugate forms that make

direct evaluations of updated posterior distributions possible. Due to these reasons, deep learning

does not lend itself to analytical Bayesian inference. Instead, it requires approximate inference

techniques, which have seen a lot of development in the computational statistics literature. This

paper aims to use a computationally cheap approximation to Bayesian inference in neural

networks, the dropout(Srivastava et al., 2014; Gal and Ghahramani, 2016). This approach relies

on producing Monte-Carlo draws from a neural network regularized by dropout to calculate a

measure of dispersion in the prediction. Dropout is classically used to modulate model complexity

by deactivating some parameters at random. In a Bayesian Deep Learning context, Gal et.al [16]

make use of dropout as a model averaging tool during inference by sampling prediction outputs

from various instantiations of the neural network. Their analysis shows that the dropout-

regularized model is learning parameters like that learned by the approximate posterior distribution

of a Deep Gaussian Process.

Evaluating the uncertainty is done by averaging 𝑁 forward passes during inference. This is

equivalent to drawing 𝑁 samples from the set of parameters defined in the model posterior and

evaluating a function using each of those samples. The variance of these samples computes a form

of uncertainty. Given that the desired output variable is drawn from an arbitrary distribution, the

sample mean approaches the population means at large sample sizes, with a spread that is dictated

by the form of the function resulting from each dropout sampling iteration. The question here is

whether the uncertainty is purely derived from the uncertainty about the weights. The analysis of

the variance in (Brach et al., 2020) provides some insight into this problem. If 𝐸𝑖 and 𝑉𝑖 are the

expected value and variance, respectively of the 𝑖𝑡ℎ node at the input and dropout is applied, the

expected value and variance at the output after dropout is given by:

60

𝐸𝑖
𝐷 = 𝐸𝑖(1 − 𝑝) 3. 20

 𝑉𝑖
𝐷 = 𝑉𝑖 𝑝(1 − 𝑝) + 𝑉𝑖 (1 − 𝑝)2 + 𝐸𝑖

2 𝑝(1 − 𝑝) 3. 21

The variance equation shows that there is a propagation of uncertainty across layers. Since the

input sample during inference has no uncertainty, the only contribution to the variance in MC

Dropout is from the dropout layer. Therefore, this component of uncertainty is driven by the weight

uncertainty.

The uncertainty in the model needs to be distinguished from the uncertainty in the input data. It is

possible to illustrate this distinction with the Bayesian Linear Regression model, where we

decompose the uncertainty into multiple parts, as shown in Figure 3.6. As always, there is an

uncertainty associated with the weights, which is expressed as part of the prior distribution. There

is also inherent uncertainty in the training data distribution. This is expressed using the likelihood

function of the output given the data and the parameters. The component of uncertainty that

depends on the noise in the training data distribution is called the aleatoric uncertainty. Classical

Bayesian linear regression formulations as shown by (Bishop, 2014) [18] assume a constant,

known value for this term. However, this assumption does not hold true for real-world data, as

some training samples can have higher variance than others - an example of this in the pipeline

problem is the greater predictive uncertainty at places where some occlusions and reflections cause

a degradation in the quality of the depth image. Occlusions and reflections can cause invalid depth

values, which in turn affects detection performance.

The proposed model learns a component of the variance as a function of the data, referred to as

the heteroscedastic aleatoric uncertainty - the component of uncertainty that cannot be explained

away with more data. The epistemic component of the uncertainty is calculated using Monte Carlo

(MC) dropout during inference. The robotic system that has been developed can produce data that

shows low variability in artifacts such as reflections and has high consistency in producing image

maps without occlusions, view changes, etc. These sources of variability can be considered “input-

dependent” and are captured by the heteroscedastic aleatoric uncertainty term. On the other hand,

the industrial imaging domain does not always have many samples to train a model on, which

requires epistemic uncertainty to reflect this. The approach used by Kendall and Gal (Kendall &

Gal, 2017) distinguishes epistemic and aleatoric uncertainty by deriving the loss function from the

61

likelihood formulation. We demonstrate this approach first on a toy classification problem.

Modeling – Regression uncertainty quantification:

We verify the required capabilities of the uncertainty modeling approach using a standard Bayesian

Linear Regression model as a benchmark with homoscedastic noise, as seen in Figure 3.7. The

network outputs 2 values – the prediction and its associated log-variance. The epistemic

uncertainty is captured by computing the variance of the MC Dropout draws. The aleatoric

uncertainty is captured by exponentiation and transforming the log variance back into the original

space. The model training assumes that the data generating distribution prior is a Gaussian. The

negative log-likelihood of this distribution produces the required regression loss, modified for

uncertainty quantification:

𝐿𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =
1

𝑁
∑

1

2𝜎(𝑥𝑖
2)

||𝑦𝑖 − 𝑥𝑖||
2
+ 0.5 ln 𝜎(𝑥𝑖)

2
3. 22

This is a modification of the MSE (Mean Squared Error) loss with an additional variance term.

For numerical stability, the 𝑙𝑜𝑔𝜎 (𝑥𝑖)
2 term is modeled using the aleatoric output directly, and the

variance in the first term is exponentiated to produce:

𝐿 =
1

𝑁
∑

1

2
||𝑦𝑖 − 𝑓(𝑥𝑖)|| +

1

2
𝑠𝑖

3. 23

The exponential in the first term ensures a positive value for the variance, and the second term

serves to balance the first as this term gives a larger contribution to the loss when the variance is

high. Kendall and Gal (Kendall & Gal, 2017) has derived this model from the likelihood loss, so

it is a “consequence of the probabilistic interpretation of the model.”

We analyze how well the model separates the sources of uncertainty. The baseline is a Bayesian

linear model to fit a line, with data generated from a Gaussian. In this case, we assume a known,

constant variance across the sampling domain to simplify the analysis. The objective of this

evaluation is to compare the epistemic uncertainties and the ability of the model to capture the

inherent noise in the data using the predictive aleatoric variance and analyze the reduction in

uncertainty for samples within the training domain compared to those far away from it.

Performance of the model outside the training data range [-1,-1] increases the epistemic

62

uncertainty, which is a desired characteristic for determining the distance of the samples from the

training data.

Total uncertainty Epistemic uncertainty Aleatoric uncertainty

Figure 3.6: Bayesian Linear Model baseline uncertainties with Gaussian prior for (Top) 1

Training sample (Middle-1) 3 Training samples (Middle-2) 20 Training samples (Bottom) 100

Training samples: Left column – Total uncertainty; Middle column – Epistemic uncertainty;

Right column – Aleatoric uncertainty

63

Total uncertainty Epistemic uncertainty Aleatoric uncertainty

Figure 3.7: MC-Dropout uncertainties for (Top) 1 Training sample (Middle-1) 3 Training

samples (Middle-2) 20 Training samples (Bottom) 100 Training samples: Left column – Total

uncertainty; Middle column – Epistemic uncertainty; Right column – Aleatoric uncertainty

Modeling – Classification uncertainty quantification:

Epistemic and aleatoric uncertainty is related to the decision boundary in classification. The neural

network used outputs 2 quantities – the prediction, and its associated aleatoric variance, which is

estimated implicitly without the need for ground truth variances. On the other hand, the epistemic

uncertainty is captured by computing the variance of the MC Dropout draws. We verify the

approach on the two moons dataset, visualized in Figure 3.8. The two moons dataset is a non-

linearly separable dataset with 2 inputs. Since the model has 2 categories, the network outputs 4

values – 2 for the predictions and 2 for each of the variances. The variance terms are the input-

64

dependent uncertainties. For a classifier:

𝑦𝑖 | 𝑥𝑖 ∼ 𝐵𝑒𝑟𝑛(𝜓(𝑤𝑇𝑥𝑖)) 3. 24

Assuming softmax activation 𝜓, the optimal weights can be derived using Maximum Likelihood

Estimation (MLE):

𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝑝(𝑦𝑖, 𝑥𝑖|𝑤)

𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤𝑝(𝑦𝑖|𝑥𝑖, 𝑤) 𝑝(𝑥𝑖 | 𝑤)

𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤𝑝(𝑦𝑖|𝑥𝑖, 𝑤)

3. 25

We model the prediction as a Gaussian distribution. The mean of this distribution is taken as the

prediction 𝑓(𝑥𝑖)
𝑤. The variance term comes from the learned aleatoric variance output from the

network. We then sample 𝑡 times from this distribution and then average its log-softmax over the

sampling dimension. To avoid underflow and overflow issues, this is implemented by first

transforming the 𝑦𝑖,𝑡 Using the log sum exp trick and then averaging over the sampling dimension.

The final form of the loss is implemented directly using the Negative Log-Likelihood (NLL) loss

after obtaining the samples as described and comparing the prediction against the ground truth.

The loss is stochastic because it depends on Monte Carlo drawing from the variance term.

𝑦𝑖|𝑤 ∼ 𝑁(𝑓(𝑥𝑖)
𝑤, 𝜎 𝑖

𝑤2
)

𝑦𝑖,𝑡 = 𝑓(𝑥𝑖)
𝑤 + 𝜖𝑡 , 𝜖𝑡 ∼ 𝑁(0, 𝜎 𝑖

𝑤2
)

𝐿𝑥 = 𝑁𝐿𝐿(𝑦𝑖, 𝑦𝑔𝑡)

3. 26

During inference, the procedure to compute uncertainty is by doing Monte Carlo sampling using

dropout to obtain predictions. The epistemic uncertainty is computed as the variance of these

predictions. The aleatoric uncertainty is the learned component of the prediction and is directly

obtained from the formulation. The results in Figure 3.8 show that the epistemic uncertainty

reduces with more training data while the aleatoric uncertainty remains oscillatory and

independent of this trend. It also shows a demonstrative example of what the decision boundary

looks like when using MC-Dropout. The areas with more data have a lower uncertainty in the

65

decision boundary, indicated by the lower amount of variance in classification. At the extreme

ends of the decision boundary, we notice a widening of the noise profile, indicating a higher

uncertainty for the discriminative model to assign a fixed label to a sample near the boundary.

 (a) (b)

Figure 3.8: (a) Visualization of the two moons dataset with a visualization of the decision

boundary when using MC-Dropout (b) Classification with uncertainty in the two moons dataset -

Variation of uncertainties with sample size

3.1.3 Results and Discussion

The technique used for uncertainty modeling was verified in the earlier section to capture the

desired behaviors for out-of-sample uncertainty, detecting the higher level of epistemic uncertainty

when the test samples are further away from the training samples and an invariant aleatoric

component with respect to the number of training samples. Therefore, the developed model was

applied to modeling the uncertainty in the ASU Pipe defects dataset and the CrackForest dataset.

The CrackForest dataset consists of 151 images of crack with asphalt backgrounds. The Concrete

Crack dataset is a larger dataset but is only used for validation, after training with the CrackForest

dataset. The results for the uncertainty quantification for each dataset is summarized in Figure 3.9.

We also apply the trained model to the Concrete Crack dataset, and the uncertainty quantification

results are compared against the CrackForest dataset in Figure 3.10. The use of these benchmark

datasets helps evaluate the model on a larger defect detection dataset. It also helps evaluate the

model performance when the training data distribution shifts away from the validation set, as in

Figure 3.10. The results show that the epistemic uncertainty remains consistent across training

66

samples, surprisingly showing lower average uncertainty values than the original dataset for the

lower sample regime. This observation was surprising, as we expected a gradual decrease in

epistemic uncertainty, with a higher uncertainty value for the cross-dataset examples.

 (a) (b)

Figure 3.9: (a) CrackForest dataset and (b) ASU Pipe Dataset

(a) (b)

Figure 3.10: Uncertainty Evaluation for images from the ConcreteCrack dataset with a model

trained on the CrackForest dataset: (a) Aleatoric Uncertainty and (b) Epistemic Uncertainty

A goal of predictive models under uncertainty is to ensure that a higher level of uncertainty is

assigned to labels that deviate from the ground truth. This can be verified in the validation set, as

the ground truth is available during evaluation. Figure 3.12 demonstrates how the epistemic

uncertainty score tracks with the prediction quality, which is measured by the class-wise F1 score.

Ideally, the points need to fall close to the red line, indicating an incr easing uncertainty for samples

67

with poor detection scores in the test set. The top row of Figure 3.12 is calibrated for the

background class and not for the defect classes, owing to a lower number of training samples

overall in the dataset. To demonstrate that more data does help in improving uncertainty

calibration, we overfit the model to a training set by splitting the training and validation sets after

performing manual data augmentation, which includes horizontal and vertical flips, and image

scaling to reduce the number of background pixels. While this approach is not recommended for

testing generalization, the objective of this test was to verify calibration, assuming only small

perturbations around the training data and with a greater number of training samples overall. We

also use this dataset and model to demonstrate the defect measurement results, as shown in Figure

3.11. The objective was to evaluate the D435i performance for quantifying defects and not the

model's generalization under a small training dataset. With more training data and a validation set

close to the training set, the uncertainty correlates well with the background and pitting defect

classes with a higher number of training samples compared to the crack defect. For the CrackForest

dataset, the background class is again well calibrated with respect to the prediction F1 score. The

concrete crack dataset, however, displayed an interesting trend, with the model producing nearly

all its variance in confidence within a narrow band of F-1 scores. To further investigate this, we

then added random brightness, saturation, contrast, and hue jitter along with standard Gaussian

noise to the input images to further perturb them from the training sample space, as seen in Figure

3.14. The reduction in image quality significantly reduced the overall F1 score for the crack defect

and altered the epistemic uncertainty for both the crack and the background. This implies that the

original observation was just the model predicting a relatively higher uncertainty for these new

samples, even with a good F1 score.

A demonstration of defect measurements and depth estimates is shown in Figure 3.11 with errors

indicating that the segmentation method can produce accurate defect areas with the variance in

predicting the defect boundary. The sensor can capture pitting depth on the millimeter scale but

has larger errors owing to resolution limitations. The spatial resolution limits and the segmentation

errors also affect the results for the width of thin cracks. The depth sensor was found to be

unreliable below the millimeter scale. It has reliable detections of defect depths on the millimeter

scale and high precision when the depth of the defect is at or above the order of 1/10th of a

centimeter. Signals of interest captured at sub-millimeter scales can be used for anomaly detection,

but the corresponding depth measurements will not be reliable. In pipe damage modeling, this

68

situation corresponds to early detection for corrosion and oxidization of metallic surfaces (B.

Zhang & Ma, 2019). At the early stages of surface degradation, the dominant anomaly signal is

increased metallic surface roughness, which can be detected but not precisely characterized by our

stereo setup. Further improvements to the depth resolution for optical metrology at a sub-

millimeter scale using commercial sensors is a promising research direction. This implies that

commercial sensors must be optimized for sub-millimeter scale defects for ease of use in industrial

metrology applications requiring precise defect depth estimates.

Figure 3.15 shows some demonstrative examples of detections along with the corresponding

uncertainties for the CrackForest and ConcreteCrack datasets. The detections for the ASU pipe

dataset are shown in Figure 3.13. The uncertainty maps show that the source of uncertainty is

largely at the boundaries of the detected defect. The variance in defect area profiles is useful for

downstream prognostics, and obtaining uncertainty estimates along with defect morphology is

essential for detailed risk evaluations. The reason why we have demonstrated this method on 3

types of datasets is to demonstrate the effectiveness of the method on various types of sensors. We

can also use higher resolution depth cameras, time of flight and structured light cameras for

collecting depth data. This gives users the ability to use transfer learning to adapt their model to

new types of sensors.

Figure 3.11: Defect measurement demonstration on the pipeline sample

69

Table 3.1: Comparing the performance of various types of input data at a constant dropout value

Data % Of full

dataset

Epistemic

Uncertainty

Aleatoric

Uncertainty

mF1

 25% 0.0123 1.0132 0.7028

RGB 50% 0.0130 1.0113 0.7566

 100% 0.0106 1.0135 0.7632

 25% 0.015 1.0176 0.6573

RGB-D 50% 0.0104 1.0177 0.7530

 100% 0.0101 1.0201 0.7555

 25% 0.0108 1.0500 0.6560

RGB-DC 50% 0.0098 1.0481 0.7455

 100% 0.0090 1.0456 0.7644

 25% 0.0142 1.0284 0.6585

RGB-DNC 50% 0.0113 1.0295 0.7527

 100% 0.0102 1.0296 0.7584

70

Figure 3.12 : Classwise Epistemic Uncertainty - F1 score calibration performance for the ASU Pipe RGB-D validation set across

classes: Top row - Small ASU Pipe Dataset with a test set held-out (Left) Background (Middle) Cracks (Right) Pits, Bottom

Row - Augmented ASU Pipe Dataset with test samples augmented from the training samples for verifying model calibration

assuming the test set distribution is very close to the training data distribution (Left) Background (Middle) Cracks (Right) Pits

71

Figure 3.13: Demonstrative detections from the ASU pipe dataset: (Left to Right) Image, Ground

Truth, Prediction and Total Uncertainty

Next, we analyze the various fusion layers' performance and input data types. Table 3.1 shows the

comparative performance of the RGB, RGB-D, RGB-DC, and RGB-DNC input data at various

training sample sizes at a dropout of 0.5. We also evaluate the model across various dropout ratios,

as shown in Figure 3.16. From the results, the data types themselves do not cause substantial

absolute improvements to raw detection performance. However, the ablation studies show that the

epistemic uncertainty is lower when using the fused representations than only using RGB data,

with the RGB-DC performing the best across all dropout ratios. The small dataset has some

limitations in the number of claims that can be made on generalization, but results have shown a

greater propensity for pitting defect accuracy improvements when using additional data apart from

just RGB information, with slight improvements to the mean F1 (mF1) score by the incorporation

of normal and curvature information instead of just the depth map. The F1 score is a harmonic

mean of precision and recall. Precision computes the proportion of true positives (TP) to the total

number of positive detections, including false positives (FP). Recall, on the other hand, computes

the proportion of true positives to the sum of true positives and missed detections (false negatives).

 Image Prediction GT Uncertainty

72

(a) (b)

(c) (d)

Figure 3.14: Classwise Epistemic Uncertainty - F1 score calibration performance for the

ConcreteCrack dataset by class: Top-Row: Original unaltered data (a) Background (b) Crack,

Bottom-Row: Data with added Gaussian noise and random brightness, contrast, hue and

saturation jitter for (c) Background (d) Crack

73

Figure 3.15: Demonstrative examples of detections in the CrackForest (Top-3 rows) and the

ConcreteCrack Dataset (Bottom-3 rows). Images from Left to Right: Input, Prediction, Ground

Truth (GT), Total Uncertainty

 Image Prediction GT Uncertainty

74

 (a) (b)

(c)

Figure 3.16: (a) Epistemic Uncertainty across various dropouts and input data types (b) Aleatoric

Uncertainty across various dropouts and input data types (c) Mean-F1 across various dropouts

and input data types

3.2 Semi-Supervised Semantic Segmentation using Activation Map Interpolation

3.2.1 Background

In the past decade, remarkable progress has been made in image segmentation due to the deep

learning revolution. The advent of powerful GPUs has enabled the industry to utilize large, labeled

training sets to fit deep networks with huge parameters. However, the pace of progress in

computation power has not remedied the lack of quality-labeled training data, which remains a

challenge. Furthermore, labeling data for semantic segmentation is also time-consuming and

75

expensive. Therefore, there is a need for a model that can learn from a small set of labeled examples

and a larger set of unlabeled samples. This section proposes a segmentation method for surface

defect detection, which will help condition monitoring and quality assessment framework for

manufacturing and civil infrastructure applications. While the defect image characteristics vary

between these applications, the data-driven approach used in our models mean that they can be

easily adapted.

Defect detection databases are currently limited compared to natural image database. This leads to

the lack of large datasets, which can hinder deep learning-based methods for defect detection. In

addition, manual labeling of datasets is also expensive and involves tedious work for experienced

engineers. These databases also present various challenges compared to natural images: They have

fewer distinctive features and often require algorithms that can work in real-time. They also have

high intra-class similarities and minuscule defects that can be hard to detect, such as hairline

cracks. Defect detection has been a focus of multiple studies for classification and coarse-grained

object detection. However, fewer studies focus on fine-grained detection and segmentation of

defects. Pixel-level segmentation offers significant advantages over detecting object categories

(classification) or coarse-grained bounding boxes, such as a better understanding of defect

morphology, which would help improve downstream prognostics, risk assessment, and quality

management. Given the issues surrounding data labeling requirements and the lack of quality

samples, this study addresses them by focusing on fine-grained defect detection using a limited

number of labeled samples and a larger corpus of unlabeled samples.

The proposed method will lie on the following cornerstones: The smoothness assumption, the

cluster assumption, and consistency regularization. The cluster assumption says that the decision

boundaries between classes should not overlap but instead be well-separated. The manifold

hypothesis states that the dissimilar data that are generated from the same process occupy the same

space in a low-dimensional manifold. Manifold learning, for example, finds the space that best

separates the classes in a lower dimension. Therefore, changing the space in which the data lies

can change a potentially non-linear decision boundary with intersections into well-separated

clusters that obey the cluster assumption. If the cluster assumption holds, consistency

regularization forces a network to produce consistent outputs for perturbed inputs. This is

accomplished by penalizing predictions on the perturbed input that deviate from the expected

76

output. Doing so increases the prediction accuracy at the original data point and in its

neighborhood. If the cluster assumption is violated, the consistency regularization may end up

offering no benefit, as some of the samples may get misclassified.

The consistency regularization assumption in image classification settings is easy to justify. Given

a labeled sample (𝑥𝐿 , 𝑦𝐿), any corruption or perturbation of the input 𝑥 ̃ = 𝑥𝐿 + 𝜖 should not

change the classification target. However, in the context of segmentation, the task is to produce a

dense pixel-wise prediction of classes. Some augmentations of the input, such as rotation or

translation, can distort the inter-pixel relations and leads to a completely different output.

Moreover, the cluster assumption is also shown to be violated at the image level, as low-density

regions do not line up with the boundaries of the objects of interest, as demonstrated by French et

al. Therefore, a method is needed to make the prediction robust to images in the neighborhood of

the original sample. Consistency regularization constrains the predictions in the neighborhood of

a sample to produce the exact prediction as the unperturbed samples. This approach is based on

the validity of the cluster assumption. The simplest way to enforce consistency regularization is to

perform random perturbations to the input. However, the space of possible perturbations in high-

dimensional data is large, and randomly choosing perturbations can be ineffective.

The proposed method takes in a corpus of a small set of labeled images and a larger set of unlabeled

images. The samples are passed into a multi-branch network, where a multi-component loss is

learned jointly. Labeled samples are learned using a supervised loss, and unlabeled samples are

learned using a consistency loss.

3.2.2 Related Work

Defect detection using optical methods has been studied extensively. Before the deep learning

revolution, a lot of the methods focused on hand-engineered feature classification and defect

classification using classical machine learning and statistical techniques. (Y. Liu et al., 2019) used

a multi-block local binary pattern (LBP) to filter features across multiple scales. (Y. Shi et al.,

2016) performs road crack detection using engineered features and random forests. (Suvdaa et al.,

2012) uses SIFT features followed by an SVM for defect classification. (M. Liu et al., 2016) uses

image binarization optimization using genetic algorithms to segment defects in an unsupervised

fashion, by using a thresholding approach based on inter and intra-class variance statistics. In most

77

of the classical image processing-based approaches, the process of detection is multi-stage,

requires lower amounts of training data and have simpler mathematical models, and complicated

algorithmic models. The advent of deep learning-based approaches saw rapid progress in test-set

performance for defect detection algorithms, and the focus shifted to highly data-driven methods

for detection. Classification based on deep learning has been explored by several works. (Y. Liu

et al., 2020) uses a CNN architecture with fixed scales at two image resolutions, which compute

features at the corresponding scales and are then concatenated for defect classification. (Chen et

al., 2018) uses an ensemble of three networks to classify defect images, and F.A. Saiz et al. (Saiz

et al., 2018) combines pre-processing steps with a CNN to increase robustness of the CNN to inter-

class defects. Semi-supervised classification algorithms such as (Di et al., 2019; Wang et al., 2021)

use varied methods to distinguish between textural samples with limited labeled data. (Di et al.,

2019) uses a large unlabeled corpus to train a convolutional auto-encoder and a GAN is then used

to increase the sample size. Finally, the encoder of the trained auto-encoder model is used to extract

features from the data and is fed into a softmax layer for classification. (Wang et al., 2021) uses a

graph-based deep network to perform classification. However, classification does not give us any

indication of object location, without further post-processing. This gap was filled by various object

detection (J. Li et al., 2018; Y. Li et al., 2019) and semantic segmentation methods. It has been

shown that deep networks-semantic segmentation approaches achieve particularly good

performance, with various architectural modifications to boost the performance in the validation

and test sets, as in (Cheng & Yu, 2021; Dong et al., 2020; Z. He & Liu, 2020; Tabernik et al.,

2020; Yang et al., 2020). However, a gap remains in addressing semi-supervised semantic

segmentation in surface defect detection applications, which this paper will address.

The task of semi-supervised learning has been explored using the following approaches: Pseudo-

Labeling and self-training (Lee, 2013), consistency regularization, interpolation consistency

training (ICT) (Verma et al., 2019), and virtual adversarial training (VAT) (Miyato et al., 2019).

The pseudo-labeling approach takes in a corpus of labeled and unlabeled samples and generates

fake targets for the unlabeled samples. For the segmentation problem, pseudo-labels can be

generated using Class Activation Maps (CAM) (Zhou et al., 2016). However, the problem with

pseudo-labels is that the errors made in target generation has no mechanism of correction. As a

result, using incorrect pseudo-labels will tend to propagate these errors through the model during

78

backpropagation, and cause a positive feedback loop of erroneous predictions leading to incorrect

weight updates. Self-training improves upon the pseudo-labeling approach by successively adding

in new samples into the corpus and by selecting the samples that it is most confident about.

Consistency regularization constrains the predictions in the neighborhood of a sample to produce

the same prediction as the unperturbed sample and is based on the validity of the cluster

assumption. The simplest way to enforce consistency regularization is to perform random

perturbations to the input. However, the space of possible perturbations in high dimensional data

is large and randomly choosing perturbations can be ineffective. Among the more sophisticated

consistency regularization models, the VAT model uses an adversarial perturbation to perturb the

input in the direction of the greatest predicted output change. The ICT approach uses an

interpolation between a pair of unlabeled samples such that the new sample lies in between the

two, and consistency is enforced by constraining the transition curve between the two points is

linear. CutMix (Yun et al., 2019) trains classifiers by introducing a random rectangular mask in

the image to inpaint another image, and effectively combine the two images to produce a

perturbation. (French et al., 2019) combines CutMix with the Mean Teacher model (Tarvainen &

Valpola, 2017), and predict pixel-wise semantic segmentation in a semi-supervised fashion. This

paper takes inspiration from the ICT approach to work for semantic segmentation by operating on

the probability space defined by the activation map of the features, instead of using the input space.

3.2.3 Methodology

Let (𝑥𝑖 , 𝑥𝑗) be a pair of unlabeled samples extracted from the data and let (𝑥𝑖
𝐶𝐴𝑀, 𝑥𝑗

𝐶𝐴𝑀) be the

activation maps of the representation. The class activation maps are obtained using a global

average pooling (GAP) layer (Zhou et al., 2016). The GAP performs a channel-wise spatial

averaging of data, and this is multiplied by the weights 𝑤𝑘
𝑐 to yield the activation map 𝑀𝑐 as

follows:

𝐹𝑘 = ∑ 𝑓𝑘(𝑥, 𝑦)

{𝑥,𝑦}

 3. 27

𝑀𝑐(𝑥, 𝑦) = ∑𝑤𝑘
𝑐𝑓𝑘(𝑥, 𝑦)

𝑘

 3. 28

79

Images at the input level are high-dimensional representations that do not strictly obey the cluster

assumption French, et.al, 2019. On the other hand, the hidden representations are at a lower

dimension and were expected to have better clustering properties. This is identified by plotting the

hidden representations' patch-wise Euclidean distances by first obtaining a class activation map

and then interpolating it to the original image size, as shown in Figure 3.17.

Figure 3.17: Cluster assumption demonstration by computing the patch wise Euclidean distance

between a patch and its neighbors. Higher values are indicated with yellow: The left-most image

is the input, followed by the distance maps (DM) of the following: the input image, the activation

map from the end of convolutional Block 1, and the activation map from the end of Block 5.

The patch-wise distances better conform to object boundaries at the hidden representation level

than the input level. The calculated class activation map produces pixel-wise probability

distributions that can be interpolated. The element-wise sum along the channel dimension is 1.

Therefore, the class activation map is a WxH-dimensional distribution. Assuming that each pixel

in the activation map is i.i.d (independent and identically distributed), they can be interpreted as

containing a probability distribution per pixel. By extension, it can also be argued that interpolating

the two activation maps can produce another probability distribution, as the operation performed

is a convex combination with every resulting value being positive. In interpolation consistency

 Input DM: Input Block 1 Block 5

80

training, the interpolation is performed using the following formulation directly on the input data

sample:

𝑥𝑚𝑖𝑥 = 𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑗

 𝜆~𝐵𝑒𝑡𝑎(𝛼, 𝛼)

3. 29

Following the ICT approach, a non-negative mixing value is sampled from the beta distribution.

The difference between this approach and the one described in ICT is that the interpolation happens

for segmentation instead of classification, and the level at which the mixing happens is not at the

image-level but at the level of the hidden layers. The resulting representation is then passed through

decoder layers to obtain a final set of features with the same dimension as the image. The inputs

(𝑥𝑖 , 𝑥𝑗) are also passed through the decoder separately and mixed using the mixing function again

at the higher dimension. To make this similar to the density from the input side, the features are

operated on by the softmax and the KL divergence loss between the mixed output �̃�𝑚𝑖𝑥 and the

output obtained by combining the predictions from 𝑓𝜃′(𝑥𝑖), 𝑓𝜃′(𝑥𝑗) is computed:

𝐿𝑐𝑜𝑛𝑠 = 𝐻 (�̃�𝑚𝑖𝑥, 𝑚𝑖𝑥(𝑓 𝜃, (𝑥𝑖), 𝑓𝜃(𝑥𝑗)) − 𝐻(�̃�𝑚𝑖𝑥)
3. 30

𝐻 − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

Figure 3.18: Overall methodology for semi-supervised segmentation using interpolation

consistency in the probability space: Blocks with the same colors denote related elements.

81

Figure 3.18 shows the overall methodology, where the network designated 𝑓(𝜃′) is obtained as

the exponential moving average of the weights of the central network 𝑓(𝜃), as in the mean-teacher

algorithm (Tarvainen & Valpola, 2017). The student decoder is the only decoder branch to have

its weights updated by backpropagation, and the knowledge from the student is distilled into the

teacher branch using the mean teacher algorithm. The mean teacher algorithm ensures that the

teacher model weights are updated according to the student decoder's exponential moving average

(EMA) at every step of the model.

𝑔(𝜃𝑡) = 𝛼𝑔(𝜃𝑡−1) + (1 − 𝛼)𝑓(𝜃𝑡) 3. 31

Choosing the mean teacher model in classification settings improved performance when the

number of labeled samples was scarce, even when compared to the Temporal-Ensembling model

(Laine & Aila, 2017).

The supervised loss function is computed on the outputs from the student decoder, and the loss is

the standard cross-entropy loss:

𝐿𝑠𝑢𝑝(𝑦�̃�, 𝑦𝑙) = 𝑦𝑙 log(𝑦�̃�) + (1 − 𝑦𝑙) log(1 − �̃�𝑙) 3. 32

The consistency loss function is computed by using the outputs from the teacher decoder and the

student decoder outputs. The loss is the KL-divergence loss, which is based on the relative entropy

function between two distributions:

𝐿𝑐𝑜𝑛𝑠(𝑦�̃�, 𝑦𝑙) = 𝐻 (�̃�𝑚𝑖𝑥, 𝑚𝑖𝑥 (𝑓𝜃(𝑥𝑖), 𝑓𝑡ℎ𝑒𝑡𝑎(𝑥𝑗))) − 𝐻(�̃�𝑚𝑖𝑥)

𝐻𝑃−𝑄 = ∑𝑃(𝑥) log (
𝑃(𝑥)

𝑄(𝑥)
)

𝑥𝜖𝑋

3. 33

The total loss is computed as the combination of the supervised and consistency losses, with a

ramp-up weight function 𝑤(𝑡) for the consistency loss such that it becomes more dominant in later

epochs:

𝐿 = 𝐿𝑠𝑢𝑝 + 𝑤(𝑡)𝐿𝑐𝑜𝑛𝑠 3. 34

The overall network architecture consists of an encoder, and two decoders, the teacher decoder,

82

and the student decoder. This is in keeping with the mean teacher model and the interpolation

consistency training approach mentioned in the preceding sections. The encoder is a VGG-16

network pretrained on the ImageNet dataset. The final fully connected layer and average pooling

layer is removed and replaced with an adaptive average pooling layer. The fully connected layer

is replaced with a 1x1 convolutional layer at the output of each of the 5 sub-blocks of the VGG-

16 network, used to compute class activation maps at each stage. The decoder consists of a series

of transposed convolutional layers, to upsample the image back to the original size.

The dataset is loaded into the network using a batching method that provides 3 sub-batches for

every iteration: 1 sub-batch for labeled images, and the other two consist of unlabeled images. The

labeled images are iteratively sampled with replacement until all the unlabeled images are

accounted for. The labeled image passes through the common VGG-16 encoder and the student

decoder. The unlabeled image first passes through the common encoder, and the corresponding

class activation maps are extracted and normalized to sum to 1 in the class dimension. Each of the

5 activation maps from the unlabeled data pair is interpolated, and the interpolated activation maps

are passed into the student decoder and resized back into the right channel dimensions using a 1x1

convolution.

The remaining unlabeled samples are passed through the teacher decoder and interpolated after the

outputs are obtained. The consistency loss is computed between the output obtained from the

interpolated inputs through the student decoder and the output interpolated after they pass through

the teacher decoder. This loss function is defined to be the KL-divergence loss, which measures

the similarity between probability distributions. In this case, the KL-divergence is computed by

summing over the class dimension, and then averaging over the batch and spatial dimensions.

3.2.4 Results and Discussion

We obtain results for this approach on benchmark datasets shown in Table 3.2 and compare it

against related works and show competitive performance. We first present the results obtained on

the NEU surface defect dataset and compared against the baseline supervised training method for

various parameter settings and labeled dataset sizes. These results are for a training set that consists

of 600 images, and a validation set that consists of 300 images from the surface defect dataset. The

training and validation sets are kept separate during the training of the model, so the model does

83

not use any of the validation samples for training. Loss function weighting is a training

hyperparameter. For the NEU dataset, the model performed best when the loss components were

both unweighted. The results show that the mIU obtained in the validation set using the semi-

supervised approach exceeds the fully supervised training baseline by 25% when there are only 30

labeled samples, and by 23% when there are 60 labeled samples, as shown in Table 3.3.

Figure 3.19:Demonstrative detections on the NEU validation set: (Left to Right) Image, Ground

Truth, Predictions: 5% labeled training data, 10% labeled training data, 20% labeled training

data, 50% labeled training data, 100% labeled training data.

Figure 3.20 shows some sample detections while using only 30 labeled images. The

demonstrations indicate that the semi-supervised learning model manages to obtain correct

detections in places where there are none in the supervised case and manages to eliminate spurious

noise produced in the detections of the supervised model. Figure 3.19 summarizes a compilation

of detections in the validation set with various amounts of labeled data.

Table 3.2: Dataset sizes

Dataset Training Validation

NEU 600 300

Crack Detection 135 16

84

Figure 3.20: Demonstrative detections illustrating the effect of adding additional unlabeled data

to the set and using the consistency loss. In this case, the comparison is made between the fully

supervised case with 30 labeled samples, and the semi-supervised case with 30 labeled samples

and 570 unlabeled samples.

The results in Table 3.3 show that the addition of these unlabeled samples, along with the

consistency loss, provided a boost to the performance of the semi-supervised model, as compared

to the purely supervised model. The table also shows, however, that the performance benefit

provided by the unlabeled samples starts to drop off as more data is added to the labeled list, with

a 50% labeled set providing only 1% less performance as compared to the semi-supervised model.

Having a 30-sample labeled set provided an IU that was 20% lower than training with the fully

supervised set, with all 600 samples being labeled.

A comparison was made between equally weighted losses and a ramp-up function applied to the

consistency loss over several epochs. In this case, the number of epochs was chosen to be 80

empirically, using the evolution of the supervised loss function in the unweighted case. This made

the supervised loss component dominant in the initial stages of the training. However, the

performance produced by this approach was consistently lower on the NEU dataset than that

produced when both the losses were weighted equally, as shown in Table 3.4.

To evaluate how much better the addition of 30 labeled samples is to the model, the model was

trained with only unlabeled samples. This meant that the network did not have any supervised loss

component but only an unsupervised loss. This resulted in a poor mIU of 8%, which was improved

85

more than 7x when a limited supervised set of 30 samples was added.

Finally, the results obtained from the proposed method were compared against benchmark results

from recent works in Table 3.5, and is shown to have comparable results with state of the art in

fully supervised learning, and the semi-supervised benchmarks perform at approximately 20%

lower than the fully labeled, fully supervised training model for the 5% labeled case, and 15%

points lower in the 50% labeled case.

Table 3.3: Metrics computed for the validation set at various proportions of labeled samples,

with a performance comparison between the loss ramp-up approach and the equally weighted

losses approach

The second dataset to be considered for evaluation is the CrackForest Dataset (CFD). This dataset

consists of a set of 151 labeled images and comprises a binary segmentation problem along with

their segmentations and ground truths. The challenge posed by this dataset is in the ability to

capture the crack morphology accurately. The experiments were conducted using 135 labeled

samples, along with data augmentation for the supervised baseline, and semi-supervised

benchmarks were computed as well. A comparison between the supervised baseline, other

supervised deep learning architectures, and traditional image processing methods is made. The

results indicate that the supervised baseline exceeds the performance of most of the preceding

Labeled Samples Supervision mIU

5% Ramp 0.46

 No Ramp 0.64

10% Ramp 0.53

 No Ramp 0.66

20% Ramp 0.57

 No Ramp 0.64

50% Ramp 0.63

 No Ramp 0.69

100% Supervised 0.84

86

works, as shown in Table 3.6, with a pixel tolerance of 0 for measuring true positives. Pixel

tolerances were introduced for this dataset to measure performance in other benchmarks, as the

ground truth measurements can have uncertainties, and the morphology of the detected cracks need

not align exactly with the pixels marked out in the ground truth. However, in this study, the

network used had enough parameters to be able to capture fine-grained localization information

and therefore did not have the issue of uncertainties in learning pixel-wise locations, unlike in

traditional image processing methods. The training set consisted of 135 labeled images, leaving

16 images for testing. The number of training samples was chosen to ensure ease of batching of

the semi-supervised data sampler. The performance gap between the supervised and semi-

supervised benchmark was narrower in this case due to the relative simplicity of this dataset. Some

demonstrative examples are shown in Figure 3.21.

Figure 3.21: Demonstrative detections on the CrackForest validation set: (Left to Right) Image,

Ground Truth, 5% Labeled, 10% Labeled, 20% Labeled, 50% Labeled, Fully Labeled

87

Table 3.4: Metrics computed for the validation set at various proportions of labeled samples,

with a performance comparison between the semi-supervised model and the fully supervised

model

Table 3.5: Comparison of the results obtained in the test set for the NEU dataset

Labeled Samples Supervision mIU

5% Supervised 0.39

 Semi-Supervised 0.64

10% Supervised 0.43

 Semi-Supervised 0.66

20% Supervised 0.51

 Semi-Supervised 0.64

50% Supervised 0.68

 Semi-Supervised 0.69

100% Supervised 0.84

Method Type Labeled mIU

SegNet Fully Supervised 100% 0.5657

PSPNet Fully Supervised 100% 0.7225

PGA-Net Fully Supervised 100% 0.8215

Ours Fully Supervised 100% 0.8309

Ours Semi Supervised 5% 0.6429

Ours Semi Supervised 10% 0.6674

Ours Semi Supervised 20% 0.6454

Ours Semi Supervised 50% 0.6992

88

Table 3.6: Comparison of results obtained in the test set for the CrackForest dataset

Method Type Labeled Tolerance

(px)

mIU F-1

Canny Image

Processing

- 5 - 0.1576

CrackForest Image-level

labels + Hand

engineered

features

- 5 - 0.8571

U-Net Fully

Supervised

100% 0 0.55 0.7015

Res U-Net +

ASPP

Fully

Supervised

100% 0 0.56 0.7121

Ours Fully

Supervised

100% 0 0.7312 0.8443

Ours Semi

Supervised

5% 0 0.6944 0.8194

Ours Semi

Supervised

10% 0 0.6881 0.8151

Ours Semi

Supervised

20% 0 0.7109 0.8310

Ours Semi

Supervised

50% 0 0.6733 0.8047

89

4 DAMAGE PROGNOSTICS AND PHYSICS-BASED MODELS FOR INTERACTING

THREATS

4.1 Semi-Empirical models for failure pressure and remaining useful life estimates

Figure 4.1: Prediction of failure pressure with depth to wall thickness ratio for a carbon steel pipe

This section summarizes a prognostic failure analysis for a single pitting defect using the pipe

failure formulation from ASME B31G (The American Society of Mechanical Engineers, 2009).

For a cylindrical pipe with yield strength 𝑆𝑦, wall thickness 𝑡, outer diameter 𝐷, and effective

length of the defect 𝐿, the allowed normal operating pressure is given by Barlow’s formula as:

𝑃𝑜𝑝 = 2 ∗ 𝑡 ∗
𝑆𝑦

𝐷

4. 1

 For a single corrosion defect that has a time-dependent depth and length 𝑑(𝑡), 𝑙(𝑡), the failure

pressure equations are given by:

𝑃𝑓 =
1.1𝑆𝑦2𝑡

𝐷

(

 1 − 0.85 (

𝑑
𝑡)

1 −
0.85 (

𝑑
𝑡)

𝑀1)

4. 2

90

where 𝑀1 is the Folias factor computed as:

𝑀1 = √1 + 0.6275𝑧 − 0.003375𝑧2 , 𝑧 =
𝐿2

𝐷𝑡
≤ 50

4. 3

𝑀1 = 0.032𝑧 + 3.3, 𝑧 =
𝐿2

𝐷𝑡
> 50

4. 4

Figure 4.1 shows a simple deterministic demonstration of the point of failure of the pipe with a

single pitting corrosion defect of a particular size and a deterministic growth rate. However, growth

rates and measurements of defect sizes have uncertainties. Therefore, to obtain the failure

probability, we perform a Monte-Carlo simulation with the defect size being a random variable

due to measurement uncertainty and the growth rate being a random variable due to model

uncertainty. The growth rate is assumed to be a linear function (Vanaei et al., 2017), but this model

does not consider the correlations between the defect's length and depth growth rate. The variables

are drawn from a standard normal distribution 𝑁(𝜇, 𝜎) as:

𝑁𝑑𝑒𝑝𝑡ℎ𝐺𝑟𝑜𝑤𝑡ℎ(𝜇𝑑 = 0.1, 𝜎𝑑 = 0.01) 4. 5

𝑁𝑙𝑒𝑛𝑔𝑡ℎ𝐺𝑟𝑜𝑤𝑡ℎ(𝜇𝑙 = 0.1, 𝜎𝑑 = 0.01) 4. 6

𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑑𝑒𝑝𝑡ℎ(𝜇𝑖𝑑 = 0.5, 𝜎𝑖𝑑 = 0.01) 4. 7

𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐿𝑒𝑛𝑔𝑡ℎ(𝜇𝑖𝑙 = 0.5, 𝜎𝑖𝑙 = 0.01) 4. 8

We can define a limit state function 𝑧 such that 𝑧 = 𝑃𝑓 − 𝑃𝑜𝑝 and the probability of failure is

computed by considering the simulation outcomes such that 𝑧 ≤ 0. The measured depth and the

length were first sampled from a normal distribution accounting for measurement uncertainty.

Then, the growth rate was also sampled from a normal distribution to account for model

uncertainty. The range of times for prognostics was from 10 years to 100 years, and the failure

pressure was calculated for upto 100 years. The pipe is considered to fail if the failure pressure

goes below the operating pressure, and if the predicted depth of the defect exceeds 90% of the pipe

wall thickness. For the next iteration, we sample once more from the normal distributions for the

depth and length of the defect along with their growth rates, and the process is repeated. The

91

instances of failure are counted, and if the probability of failure exceeds 20%, the pipe is said to

be unreliable.

4.2 Kriging model trained on FEM data for failure analysis

The active learning Kriging model (Echard et al., 2011) is an interpolation method used to estimate

a response at a certain point based on covariances. It is also used to determine the local variance

at a point in addition to predicting the value, unlike the Response surface model, which is only

useful in predicting the performance function’s sign. The role of limit state function G(x) is to find

the local variance as well as the value at the point. The active Learning Kriging model is an

approach where the mathematical model is updated after every prediction making the next

prediction more accurate.

The first step of Kriging consists of defining this stochastic field with its parameters according to

a design of experiments. The Best Linear Unbiased Predictor (BLUP) is used to estimate the value

at a given point.

𝐺(𝑥) = 𝐹(𝑥, 𝛽) + 𝑧(𝑥) 4. 9

𝐹(𝑥, 𝛽) is the deterministic part which gives an approximation of the response in mean.

𝐹(𝑥, 𝛽) = 𝑓(𝑥)𝑡𝛽 4. 10

 where 𝑓(𝑥)𝑡 = {𝑓1(𝑥),… , 𝑓𝑘(𝑥)}

z(x) is a stationary Gaussian process with zero mean and covariance between two points of space

x and w defined by:

𝑐𝑜𝑣(𝑧(𝑥); 𝑧(𝑤)) = 𝜎𝑧
2𝑅𝜃(𝑥;𝑤) 4. 11

 where 𝜎𝑧
2 is the process variance and 𝑅𝜃 the correlation function defined by its set of parameters

𝜃. The Kriging variance 𝜎𝐺
2(𝑥) is defined as the minimum of the mean squared error between Ĝ(x)

and G(x). It can be expressed as the following analytical function:

𝜎𝐺
2(𝑥) = 𝜎𝑧

2 (1 + 𝑢(𝑥)𝑇(1𝑇𝑅𝜃
−11)

−1
𝑢(𝑥) − 𝑟(𝑥)𝑇𝑅𝜃

−1𝑟(𝑥)) 4. 12

92

𝑤ℎ𝑒𝑟𝑒, 𝑢(𝑥) = 1𝑇𝑅𝜃
−1𝑟(𝑥)-1

4.2.1 Methodology

The methodology uses an iterative scheme to calculate the cumulative failure probability over time

using MC simulation. Initial defect sizes are sampled from a distribution over the surrogate model

input parameters and are updated using a linear growth rate function. Then the

responses are plotted for the parameters across time. For example, for the four responses observed

in 15 pipes across 10 years, the values will be stored in a 15x10x4 matrix. The limit state function

to assess probability of failure is as follows:

▪ Max 1st principal stress at the corrosion patch surface while Pressure=100% SMYS >

65 ksi

▪ Avg 1st principal stress along the tip of the crack > 94.3 ksi

▪ Max 1st principal stress along the crack tip > 114 ksi

▪ Max 1st principal stress within the volume > 133.6 ksi

If any of the criteria is met, then the failure case is recorded. The number of pipes failed is stored

in an array with 𝑁𝑓 being calculated across each time step.

4.2.2 Results and Discussion

This section outlines the work done in this quarter with the surrogate model. We first get baseline

results for the surrogate model and compare that against the original implementation with

parameters taken within the training data range. Then, we compare the results of cumulative failure

probability against the ASME B31G model. Finally, we attempt to remove the effect of the crack

from the surrogate model, thereby going away from the training data distribution of the surrogate

model and show that this does not capture the expected behavior from the model.

The baseline input parameters for the kriging model along with the ranges selected for this

demonstration is shown in Error! Not a valid bookmark self-reference.. The growth rate for the

defects is taken at a conservative 4 mpy. While this growth rate produces only approximate

estimates, for the purposes of benchmarking and preliminary analysis, we have assumed that this

is warranted. Figure 4.2 predicts earlier failure instances when given similar initial conditions for

both models.

93

Table 4.1: Input parameters for the surrogate model for the baseline experiment

Parameter Distribution

Initial crack depth 𝑁~(0.0869𝑒−3, 0.0454)

Initial crack length 𝑁~(0.5772𝑒−3, 0.2409)

Initial corrosion depth 𝑁~(0.0311𝑒−3, 0.0134)

Distance from the corrosion patch 𝑁~(−0.0427, 3.66)

Distance from the center of crack 𝑁~(0.0537, 3.66)

Growth rates 4 mpy - Constant

Figure 4.2: Comparing the cumulative failure probability of the surrogate model and the ASME

B31G model

94

4.3 Assessment of X65 Gas Pipeline using FEA for Interacting Corrosion Pits and

Comparison with ASME B31G

Finite element analysis has been a critical tool in the engineering industries in past decades. With

improvements in the computational hardware, the FEA analysis is much cheaper than in the last

decades. The X65 gas pipeline with corrosion defects can be analyzed using the Finite element

analysis to predict the burst pressure.

4.3.1 Verification and Validation of FEA analysis

The Finite element analysis has been verified and validated by comparing the FEA result against

the experimental results obtained by Choi et al., in (Choi et al., 2003). Therefore, the experimental

data for various defects sizes obtained by Choi et al. are tabulated in Table 4.2.

Table 4.2: Experimental details for the defect size configuration

To verify the FEA, the quarter pipe 3D model with created with the rectangular pit with the

dimensions of DB given in Table 4.2. The pipe’s outer diameter(D) is 762mm, and the thickness(t)

is 17.5mm. The hexagonal mesh was generated with a maximum element size of 5e-2 m. The mesh

near the defects was refined to achieve mesh convergence. The symmetry boundary condition and

internal pressure was applied as boundary conditions. When von mises stresses across the defect

thickness reached 90 % of the ultimate strength was considered a failure, as shown in Figure 4.5.

Pipe No Length of the

defect (l) (mm)

Width of the

defect (c) (mm)

Defect depth (t)

(mm)

Burst pressure

(𝑷𝒃)(MPa)

DA 200 50 4.4 24.11

DB 200 50 8.8 21.76

DC 200 50 13.1 17.15

LA 100 50 8.8 24.30

LC 300 50 8.8 19.80

CB 200 100 8.8 23.42

CC 200 200 8.8 22.64

95

The internal pressure increases until it comes to the failure criterion. The True stress-strain curve

from (Choi et al., 2003) was used to feed plastic strain vs. true stress values in ANSYS, as shown

in Figure 4.4.

Finally, the elastic-plastic finite element analysis is performed to predict the burst pressure. The

failure criterion was reached when the internal pressure was 21 MPa in FEA, and there was a 3.5%

error against the experimental failure pressure. Another case that was observed in (Choi et al.,

2003) was when the modified ASME B31G solution was less conservative than the one produced

by the FEA analysis. It is seen to occur for longer defects at higher depth-to-thickness ratios. We

show a similar case in Figure 4.3, for a defect of length 12.55mm, width 25mm and depth 14mm.

The depth of this defect is 80% of the pipe’s thickness and has an interaction distance of 2.5mm.

The FEM result shows a failure of the pipe at 22.33 MPa. The ASME result shows a resulting

failure pressure at 23.16 MPa, which is marginally higher.

Figure 4.3: FEA simulation result where the limit load predicted by it is more conservative than

the modified ASME B31G formula.

4.3.2 Parametric Study

After the evaluation of FEA, the parametric study was performed to compare the FEA burst

pressure and ASME B31G-2009 semi-empirical formula (of Mechanical Engineers, 2012). The

dimensions of the corrosion defects used for the parametric study were tabulated in Table 4.3.

Instead of using a single corrosion defect, this paper focuses on the parametric study of the

96

interaction pits with various defect depths (d) and interaction distances. But this interaction

distance greater than three times the pipe thickness (3t) is out of scope for this study. If the

interaction distance between the two pits is less than 3t, it will be considered a single pit, according

to the ASME (of Mechanical Engineers, 2012).

Figure 4.6 shows that the ASME burst pressure decreases with increasing interaction distance

between the pits, whereas the FEA burst pressure rises with increasing interaction distance.

Because the closer the interaction distance, the higher the stress concentration. Hence, the pipe

with closer interaction will fail earlier than the pipe with the farthest interaction pits. But ASME

B31G averages out the interaction distance as overall defect length; it shows the opposite trend. In

all the cases, the ASME B3G is more conservative than the FEA, with the disadvantage of pipe

being underused than its full potential.

The tabulated dimensions of the pits were modeled and analyzed using the same procedure

elaborated in the verification and validation section to predict the burst pressure of the pipe using

Finite element analysis. The results produced by ASME B31G semi-empirical formula (1) and

FEA are listed in Table 4.4.

 (a) (b)

Figure 4.4: (a) True stress-strain curve for X65 (b) Plastic strain vs true stress in ANSYS

97

Figure 4.5: Von Mises Failure Criterion Across the ligament of the defect

Figure 4.6: Interaction distance between pits vs burst pressure

98

Table 4.3: Summary of datapoints used for the parametric study

Case Name Defect

Length-1

(mm)

Defect

Length-2

(mm)

Defect

Width–1

(mm)

Defect

Width-2

(mm)

Defect

depth-

1 (mm)

Defect

depth-2

(mm)

Defect

distance

(mm)

𝐿𝑒250 𝑑 8.8

100 100 50 50 8.8 8.8 50

𝐿𝑒240 𝑑 8.8

100 100 50 50 8.8 8.8 40

𝐿𝑒230 𝑑 8.8

100 100 50 50 8.8 8.8 30

𝐿𝑒220 𝑑 8.8

100 100 50 50 8.8 8.8 20

𝐿𝑒210 𝑑 8.8

100 100 50 50 8.8 8.8 10

𝐿𝑒205 𝑑 8.8

100 100 50 50 8.8 8.8 5

𝐿𝑒201 𝑑 8.8

100 100 50 50 8.8 8.8 1

𝐿𝑒250 𝑑 10

100 100 50 50 10 10 50

𝐿𝑒240 𝑑 10

100 100 50 50 10 10 40

𝐿𝑒230 𝑑 10

100 100 50 50 10 10 30

𝐿𝑒220 𝑑 10

100 100 50 50 10 10 20

𝐿𝑒210 𝑑 10

100 100 50 50 10 10 10

𝐿𝑒205 𝑑 10 100 100 50 50 10 10 5

𝐿𝑒201 𝑑 10 100 100 50 50 10 10 1

𝐿𝑒250 𝑑 13

100 100 50 50 13 13 50

𝐿𝑒240 𝑑 13

100 100 50 50 13 13 40

𝐿𝑒230 𝑑 13

100 100 50 50 13 13 30

𝐿𝑒220 𝑑 13

100 100 50 50 13 13 20

𝐿𝑒210 𝑑 13

100 100 50 50 13 13 10

𝐿𝑒205 𝑑 13

100 100 50 50 13 13 5

99

Table 4.4: Comparison of the ASME B31G burst pressure and FEA burst pressure

Case Name ASME 𝑷𝒃 (MPa) FEA 𝑷𝒃(MPa)

𝐿𝑒250 𝑑 8.8 17.57 21.81

𝐿𝑒240 𝑑 8.8 17.71 21.67

𝐿𝑒230 𝑑 8.8 17.86 21.455

𝐿𝑒220 𝑑 8.8 18.04 21.24

𝐿𝑒210 𝑑 8.8 18.21 21.05

𝐿𝑒205 𝑑 8.8 18.31 20.92

𝐿𝑒201 𝑑 8.8 18.39 20.9

𝐿𝑒250 𝑑 10 16.40 21.35

𝐿𝑒240 𝑑 10 16.56 21

𝐿𝑒230 𝑑 10 16.73 20.55

𝐿𝑒220 𝑑 10 16.92 20.25

𝐿𝑒210 𝑑 10 17.12 19.99

𝐿𝑒205 𝑑 10 17.23 19.92

𝐿𝑒201 𝑑 10 17.31 19.8

𝐿𝑒250 𝑑 13 13.04 18.9

𝐿𝑒240 𝑑 13 13.22 18.25

𝐿𝑒230 𝑑 13 13.42 17.65

𝐿𝑒220 𝑑 13 13.64 17.25

𝐿𝑒210 𝑑 13 13.88 16.95

𝐿𝑒205 𝑑 13 14 16.76

100

5 3D RECONSTRUCTION, SYSTEM INTEGRATION AND OPERATIONAL

PROCEDURES

5.1 RGB-D 3D Reconstruction of a pipe using Simultaneous Localization and Mapping

(SLAM)

3D reconstruction of the pipe was performed using RGB-D Graph-based SLAM approach called

RTAB (Real-Time Appearance-Based) mapping. This technique is used to construct a 3-D map

using the loop closure detection method. Loop Closure detection is the process of finding matches

between current and previously visited locations by the RGBD sensor, which in our case was the

Intel Realsense D435i. This approach has been integrated with Robot Operating Systems (ROS)

as the “rtabmap_ros” package.

Figure 5.1: Overall system diagram for RTAB-Map (Labbé & Michaud, 2019)

The process of 3-d reconstruction is:

• The input to this algorithm is RGB-D or stereo images from the camera, odometry data,

and optionally laser scan or point cloud from 2D or 3D lidar. In our case, RGB-D image

and IMU (Inertial Measurement Unit) was used for odometry input. All the input data was

provided to the RTAB module in a synchronized time frame.

• Then the pose information and the RGBD- data are stored in the STM (short-term memory)

module. Since it is a graph-based map, it creates and stores this information in the form of

a tree node. The nodes are created at the detection rate of 1 Hz, ensuring that the successive

nodes overlap.

• The odometry information was taken from proprioceptive and non-proprioceptive methods

i.e., using visual odometry and the IMU in the D435 camera, respectively. Visual odometry

101

was calculated using the Frame-to-map approach. Frame-to-map registers the current frame

against a local map of features from the last keyframes.

• Whenever a new image and its odometry information are received as a node in STM, a

neighbor link is created between the consecutive frames. This ensures that whenever loop

closure is detected, the graph optimization algorithm propagates the error to each connected

node via links to decrease the odometry drift.

• Nodes are stored in STM till this buffer is filled with a range of 10 nodes before it is moved

to WM (working memory). Working memory is the memory where the nodes are compared

to make a loop closure if the nodes are similar.

• Nodes are transferred from WM to LTM (Long Term Memory) to ensure that the map

update time does not become too slow. The parameters for this are set at the default states

of 0ms (0ms implies indefinite time) for the update time threshold. To determine which

nodes to be transferred to LTM from WM, a weight is initialized to the nodes as 0 when it

enters STM and compares with the last node in the graph. If the neighboring nodes are

similar, the weight is increased by a value of the weight of the last node plus 1. The oldest

of the smallest weighted nodes is transferred to LTM. Whenever a loop closure is detected

by comparing the nodes in WM, the neighboring nodes of the location in WM are brought

back from LTM to WM for more loop closures. The output that we got in our task was the

map data which had the map of the pipe obtained by rotation and translation of the camera.

Figure 5.2: RTAB-Map SLAM: Visual Odometry system components (Labbé & Michaud, 2019)

The visual odometry was calculated using the following procedure:

102

The frame was processed based on GFTT (Good Features To Track) features (J. Shi & Tomasi,

1994; G. Zhang & Vela, 2015). Feature matching is done by NNDR ratio (Nearest Neighbor

Distance Ratio) test using BRISK descriptors, and to increase accuracy, the NNDR is kept low at

0.2. Higher values will get more matching pairs, but the accuracy will reduce. A wrong match can

cause the algorithm to fail in feature-poor environments with similar subregions. After the

correspondences are calculated, the transformation is calculated using Perspective-n-point

RANSAC. But the number of correspondences should be more than six to calculate the

transformation. With the estimated transformation, the camera's pose is updated whenever a new

node is created. Suppose the number of correspondences is less than 30% of the total number of

features. In that case, the feature map is updated using local bundle adjustment, which reduces the

reprojection error due to the lack of enough matching features.

Figure 5.3: Frame stitching using SLAM in a feature-sparse pipeline environment

The demonstration above illustrates the challenge of obtaining an accurate 3D reconstruction when

minimal distinguishing feature correspondences exist. The image on the left of Figure 5.3 shows

a rotation, and the one on the right shows a translation. The problem encountered during our

attempt at obtaining a reconstruction was the lack of enough inliers. Even if there were enough

inliers for one frame, the odometry could not accurately predict the camera's motion due to the

small number of features. Therefore, it caused the overlap and reprojection errors shown in Figure

5.3.

Next, a corroded steel pipe sample was acquired, which was used to perform an initial baseline

analysis of the pipe scanning method when the constraints surrounding the earlier robotic platform

were removed. The steel pipe sample, however, is less than 1m long, and detailed mapping quality

analyses across time would ideally require longer samples. This would help understand the pipe

103

scanning method's accuracy and robustness to factors such as IMU drift. In addition, the plastic

pipe has far fewer features than the corroded steel pipe, which posed a challenge to obtaining high-

quality odometry consistently, as shown below. Therefore, for tests in the report, the features used

were GFTT+ORB (J. Shi & Tomasi, 1994), and visual-inertial odometry using the frame-to-map

method (Labbé & Michaud, 2019) was done.

Test 1: Plastic pipe: Data and Discussion

Two tests on the plastic pipe are described herein. The first test is a stationary holding test to

capture the variability in the odometry, specifically the angular odometry in the presence of limited

features. On clean sections of the plastic pipe, the results continued to be inconsistent despite the

addition of external lighting and the stabilization of the camera position on the axis of the pipe

using the stepper motor. Odometry tended to be lost easily, as the RTAB-Map package could not

maintain a consistent series of matching frames. The camera view was then shifted to a location

where there was an indication of a defect on the plastic pipe, as shown in Figure 5.4. In this view,

the odometry became significantly better, with the feature matching algorithm consistently

obtaining between 100 to 300 inliers after the iterative RANSAC processing of consecutive

frames. The error in odometry is also lower than in the featureless case, resulting in no loss of

odometry. However, there is some noise in this measurement, but this noise was not significant

enough to cause poor odometry and trajectory outputs.

104

(a) (b)

(c)

Figure 5.4: Demonstrative odometry measurements and inlier detection in real-time from the

stationary test on the plastic pipe: (a) Angle data (b) Inlier ratio (c) Frame with defect features

The second test shows the limitations of the current technology for precise odometry in featureless

environments and the effects of specular reflection on depth quality. This test was done by rotating

the camera 360 degrees about the plastic pipe. The inliers were found to be inconsistent, and

odometry was repeatedly lost in intervals of the pipe where there were few matches, as shown in

Figure 5.5. External lighting also affects reflective surfaces’ depth maps, as specular reflections

can cause poor depth quality, which also leads to poor odometry results. The light source was

mounted behind the robot to illuminate the entire pipe section to correct this. Despite modifying

the light source, the odometry consistency did not improve.

105

Figure 5.5: Rotation of the camera on the axis of the plastic pipe causes an intermittent loss of

odometry due to the sparsity of feature matches between subsequent frames

Test 2: Corroded steel pipe: Data and Discussion

The stationary test for the steel pipe yielded more than twice the number of matches between

subsequent frames, causing the odometry computation to be very stable compared to that seen in

the plastic pipe. On the other hand, the pure rotation test yielded accurate odometry due to the high

numbers of matches and inliers, as shown in Figure 5.6. The reason for the oscillation and

variability in the inlier and match ratios is not determined yet. It needs to be investigated in the

future within the context of the algorithms used in RTAB-Map.

The next test for the corroded steel pipe was a complete scan with both rotation and translation.

This is demonstrated and attached as a video as part of the supplementary material. The scan speed

was varied and speeds up to one full pipe revolution per minute were achieved in this quarter. It is

important to note that the rotation speed of the stepper motor is inversely correlated with the quality

of the odometry. Speeds greater than approximately one rev/min resulted in unreliable or poor-

quality maps. A demonstrative image of the pipe traversal is shown in Figure 5.7.

106

(a)

(b)

Figure 5.6: (a) Pitch angle of the camera (b) Inlier ratios for a rotation cycle on the corroded steel

pipe sample.

107

Figure 5.7: Demonstration of pipe scan with rotation of the camera about the axis of the pipe,

and translation of the robot along the pipe. The trajectory of the camera system is estimated and

shown in white

5.2 Orientation Estimation using a Kalman Filter versus a Complementary Filter

Let 𝛼, 𝛽, 𝛾 be the pitch, roll, and yaw angles of a rigid body such as a camera, respectively. The

motion sensor provides three gyroscopic measurements and three accelerometer measurements.

The gyroscope provides the angular rate components, and the accelerometer provides the

acceleration components of the sensor. To estimate orientation, the initialization of the orientation

is done using the first measurements of the accelerometer as follows:

𝒂 = √𝑎𝑥
2 + 𝑎𝑦

2 + 𝑎𝑧
2 5. 1

𝛼0 = 𝑐𝑜𝑠−1 (
𝑎𝑥

𝒂
) 5. 2

𝛽0 = 𝑐𝑜𝑠−1 (
𝑎𝑦

𝒂
)

5. 3

𝛾0 = 𝑐𝑜𝑠−1 (
𝑎𝑧

𝒂
) 5. 4

To avoid the accumulation of errors while computing orientation, and to fuse the sensors data from

108

both the accelerometer and the gyroscope, the complementary filter is used. The complementary

filter is a combination of a high pass and a low pass filter, applied to the gyroscopic and

accelerometer components respectively. The low pass filter is used on the accelerometer as it is

sensitive to small accelerations in the short time scale that can be caused due to abrupt motions of

the camera due to servo startup and vibrations during movement. Gyroscopes in the long-term can

be prone to drift, which is an accumulating error. Therefore, the high pass filter on the gyroscope

enables the use of these values in a shorter time window, and the low pass filter on the

accelerometer reading makes use of it as an aggregate long-term measurement. For a general angle

𝜃 and sensor measurements 𝜃𝑎𝑐𝑐𝑒𝑙 and 𝜃𝑔𝑦𝑟𝑜, and the filter parameter 𝜙 is used to control the drift

and the noise weighting levels. For this example, we take this value to be 0.995:

𝜃 = 𝜙𝜃𝑔𝑦𝑟𝑜𝑑𝑡 + (1 − 𝜙)𝜃𝑎𝑐𝑐𝑒𝑙 5. 5

The complementary filter produces results for a camera rotating 3 rad (180 degrees) and returning

to its original position. These results are shown in Figure 5.8. The pitch rate is captured accurately,

however there is an error of 35 degrees introduced in the yaw component and a smaller error of

around 16 degrees (0.28 rad) in the roll component. To improve upon this, the Kalman filter is

used in this quarter to compare the results to the complementary filter.

The Kalman filter is a predictor-corrector estimator, which models a general process 𝑥 as follows:

𝑥𝑘 = 𝐹𝑘𝑥𝑘−1 + 𝑤𝑘 5. 6

𝑥𝑘 = [𝜃𝑘 , 𝑏𝑘, 𝑎𝑘]
𝑇 5. 7

𝜃𝑘 – 3x1 orientation error vector at step k

𝑏𝑘 – 3x1 gyro bias vector, at step k

𝑎𝑘 – 3x1 acceleration error vector at step k

𝑤𝑘 – 9x1 additive noise vector

𝐹𝑘 – state transition model

The prior and the state transition model starts out at zero as 𝑥𝑘 is the error process. For the Kalman

filter algorithm, the 𝑥𝑘 state vector is only calculable indirectly from a measurement 𝑧𝑘, which is

109

linearly related to 𝑥𝑘 as follows:

𝑧𝑘 = 𝐶𝑘𝑥𝑘 + 𝑣𝑘 5. 8

For the Kalman Filter, we obtain a 3x1 vector of differences in the sensor frame of reference

between the gravity estimate from the gyroscope and the accelerometer. The objective of the

Kalman filter is to compute an unbiased posterior estimate �̂�𝑘
+ of the underlying process 𝑥𝑘 from

i) extrapolation from the previous iteration's posterior estimate �̂�𝑘−1
+ and ii) from the current

measurement 𝑧𝑘:

�̂�𝑘
+ = (1 − 𝐾𝑘)�̂�𝑘−1

+ + 𝐾𝑘𝑧𝑘 5. 9

𝐾𝑘 – Kalman gain

The Kalman gain is given by:

𝐾 = 𝑃𝑘
−𝐻𝑘

𝑇𝑆𝑘
−1 5. 10

𝑃𝑘
− = 𝑄𝑘 5. 11

Here, 𝐻𝑘 is the 3x9 true state observation model, which is a function of the 3x1 gravity vector

estimated from the orientation of the sensor. 𝑆𝑘 is called the innovation covariance, used to track

the variability of the measurements, a function of the true state observation model 𝐻, the predicted

apriori estimate of the covariance of 𝐻 calculated in the previous iteration, and the covariance of

the noise of the observation model. 𝑄 is the 9x9 error estimate covariance that tracks the variability

in the state vector. For the demonstration, a simulated trajectory is used for the measurement data,

as shown in Figure 5.9. This is a set of pure rotations on all three axes. Applying the Kalman filter

to the incoming measurements from the IMU, the results are as follows, shown in Figure 5.10. The

parameters of the Kalman Filter have been set empirically, so this needs to be studied further in

the future. In contrast, the output from the complementary filter is less accurate and suffers from

higher deviations in comparison to the Kalman filter.

110

Figure 5.8: Pitch, yaw and roll angles computed using the motion module

 (a) (b)

Figure 5.9: (a) Angular velocity measurement data from gyroscope (b) Ground truth orientation

for the sensor

111

 (a) (b)

Figure 5.10: (a) Orientation prediction and ground truth using Kalman Filter (b) Orientation

prediction and ground truth using Complementary Filter

112

Figure 5.11: Flow chart of Hardware-Software Integration

113

5.3 Robot Operation Procedure

Figure 5.11 shows the overall flowchart of the hardware-software integrated prototype. We

assembled the robot as described in the hardware specification in Chapter 3, section 2. The

raspberry pi and the server computer are connected to the same network for the purposes of

transferring the relevant stepper motor angle data. The imaging data is obtained directly from the

D435i camera module, connected via USB cable to the server PC. We first obtain the RGB, X, Y

and Z frame data, along with the IMU data and AS5600 stepper encoder data. These files are then

processed offline for the downstream segmentation and risk assessment tasks.

The procedure to set up the robot is as follows:

▪ Power up the robot using the DC/Battery supply and connect the Raspberry Pi to the Wi-

Fi network.

▪ Connect the server PC to the same Wi-Fi network as the Raspberry Pi.

▪ Under configuration settings, enable VNC server.

▪ Using the VNC Viewer, connect with the IP address of the Raspberry Pi, it will open the

Raspbian OS

▪ In the Raspbian OS, under Bluetooth option, switch on and then connect with the Bluetooth

of DualShock PS4 Wireless Controller.

▪ Open “hardwareIntegration.py” and run the program.

Now that the robot is ready to move, it is placed at the open end of the pipe. The working logic of

the code is explained below as follows:

▪ The stepper motor's shaft axis is coaxial with the pipe's axis by altering the actuator's

height.

▪ The robot is then moved inside the pipe up to a distance where the camera’s field of view

(FOV) covers the first axial section of the pipe.

▪ The camera is rotated clockwise to capture data from the imaging, motion, and stepper

encoder modules. The camera records images at 30Hz and IMU data at 90Hz. This data is

transmitted to the server computer synchronously using a blocking call implemented in the

RealSense SDK named “wait_for_frames().” The AS5600 rotary encoder installed at the

backend of the stepper motor provides angle data to the server computer via the Arduino

114

and the Raspberry Pi using serial communication.

▪ After a full rotation cycle, the robot is moved to the pipe's next axial section, and the above

process repeats.

▪ This is done until the entire pipe is covered.

5.4 Integrating semantic segmentation and risk assessment

The data acquired from the processes described in the checklist are ingested into the server

computer and saved synchronously. Image data is then used sequentially using the PyTorch

Dataloader class for inference. The obtained segmentation results are then used to compute

epistemic and aleatoric uncertainty for the prediction as described earlier. The risk assessment

module then computes a frame-wise prediction of remaining service life based on the largest defect

detected by the segmentation network. The model for our prototype demonstration has been trained

on the same pipe as the demonstrated example, owing to the lack of additional pipe samples for

pitting defects. The testing distribution comes from the same distribution as the training set. The

generalization performance of this model has been reported as part of task 2.2.

The demonstration shown in Figure 5.12 shows the integration results. The image is fed into the

neural network sequentially to produce detections. The ASME B31G and NG 18 algorithms are

then used to quantify the failure pressure associated with corrosion defects. The current

implementation also includes the stepper motor encoder data, which provides us with an accurate

estimate of the stepper angular position.

The final demonstration in this section would be an FEM analysis of the surface captured from the

camera. The point cloud from the camera is saved as an STL file. The STL file was post-processed

using ANSYS SpaceClaim. The imported facets were converted into a surface and then extruded

to make a solid. This solid was then used to create a 3D pipe model with ground truth shown in

Figure 5.13. Program-controlled non-linear meshing with mesh refinement near the corrosion pit

was performed. The mesh was generated with 95665 nodes and 58842 elements. The von misses

stress was recorded when an internal pressure of 35 MPa was applied. Figure 5.13 shows that the

peaks in the Von-Mises stress occurs around the surface defects.

115

 (a) (b) (c)

 (d) (e) (f)

Figure 5.12: Demonstration of inspection in a sample pipe with pit and crack defects. (a) Image

(b) Detection (c) Uncertainty (d) Remaining Useful Life estimate– Corrosion

(e) Remaining Useful Life Estimate – Crack (f) Camera Orientation from Stepper Encoder

116

Figure 5.13: Converted model in ANSYS and Von-Mises stress around the internal defect

117

6 CONCLUSIONS

This report has summarized the contributions made toward prototyping a mobile robot that

performs data-driven evaluations of pipeline surfaces for defect detection, quantification, and

downstream risk assessment.

The first contribution of this project was to evaluate a commercially available stereo-vision sensor

for in-line inspection purposes. Analyses were performed on the sensitivity of parameters to depth

image resolution, and it was determined that the camera could capture defects in pipes up to 12

inches in diameter using disparity shift adjustments. The depth resolution was at 1mm, with signal

degradations below this limit, making the sensor unreliable for sub-millimeter depth evaluations.

The area resolution was sub-millimeter, making the sensor suitable for measuring small pits and

narrow crack widths if required. The project also designed the prototype to utilize one camera for

inspection instead of multiple cameras, resulting in significant weight reduction for the prototype

device and simplified downstream data analyses. The prototype design incorporates various off-

the-shelf electronics and drivers to achieve remote control of camera position and robot translation.

The second contribution of the project was the proposal and evaluation of a fully supervised

semantic segmentation network with heteroscedastic uncertainty estimates using a sampling-based

approach, the MC-dropout. Dropout provides an easily integrated means of evaluating the model

parameters' epistemic uncertainty; however, this work's additional contribution was to separate the

epistemic uncertainty and the aleatoric uncertainty by highlighting the effect of adding additional

image data on reducing predictive uncertainty.

The third contribution of this project was the proposal and evaluation of a semi-supervised

semantic segmentation technique based on the principles of interpolation and consistency

regularization. The lack of enough training data for this domain makes weakly-supervised and

semi-supervised learning techniques a crucial part of model development cost reduction. The

proposed model’s penalties on performance with equivalent fully supervised machine learning,

and deep learning models in the literature were evaluated. The results have indicated a 20%

reduction in performance compared to fully labeled datasets, with only 5% of the data being

labeled for the semi-supervised case.

The fourth contribution of this project was integrating existing semi-empirical methods into the

118

defect detection workflow. One of the disadvantages of the implemented ASME B31G model is

that the predictions for maintenance scheduling are overly conservative. Therefore, a FEM-based

surrogate model with training data was used to compare the results of remaining useful life with

the semi-empirical ASME B31G. The surrogate model was shown to predict failures earlier than

the semi-empirical model, as it considered situations with two interacting defects: cracks and

corrosion pits, compared to the ASME/NG-18 model, which considers these threats separately.

Finally, we compare the results of the ASME B31G model against FEA analysis for interacting

corrosion pit defects. The results indicated that the ASME B31G model was more conservative for

all cases except for very deep pits, where the ASME B31G model was marginally less

conservative.

119

7 APPENDIX A

7.1 Empirical evaluation of stereo-matching parameters for the Intel RealSense D435i

Camera

The camera used in this project is the Intel Realsense Camera D435i. Intel RealSense Vision

Processor acquires raw image streams from the depth cameras and computes high-resolution 3D

depth maps without needing a dedicated Graphics Processing Unit (GPU) or host processor. It has

a right imaging camera, left imaging camera, infrared (IR) projector, and an RGB module. The

stereo camera projects an infrared light pattern onto the scene to increase the texture of the low-

texture scenes. The benefit of using IR is that it can work on any lightning conditions for perceiving

depth. The depth depends on the spacing between the two sensors (baseline)- the wider the

baseline, the farther the depth computation. Figure 7.1 shows the Intel Realsense Depth camera

with its visible parts, such as IR module, left and right cameras, and the RGB module.

Figure 7.1: Intel Realsense D435i camera system (Intel RealSense, 2022)

In this section, we report the results of empirical sensitivity analysis. This is performed to evaluate

the robustness of the depth map to changes in camera parameters and to determine the parameter

range at which the depth map most closely resembles the real-world object dimensions. Bad sensor

parameters can lead to object boundary bleeding, missing values (holes) in the depth map, and

noisy output.

The considered parameters are:

▪ Exposure (
𝑊

𝑚2 𝑠): the amount of light per unit area reaching the surface of an electronic

image sensor.

▪ Gain (dB): Amplifies the entire image signal

▪ Laser Power (W): Power provided to the IR projector

120

▪ Second Peak Threshold: Determines how different the second-highest matches can be from

the first highest matches for stereo depth computation

▪ Neighbor Threshold: Determines the number of neighboring pixels to be considered in the

left image, which will be compared with the right image for depth computation

▪ Disparity Shift (Min-Z and Max-Z change in Pixels): Controls the modification of the Z-

min and Z-max values for the camera to visualize.

▪ Resolution: The fineness of detail in an image measured in pixels per inch (ppi)

We first analyze how these key parameters influence object area and then analyze how they

influence object depth computation.

7.1.1 Sensitivity analysis of object area measurements to the camera parameters

7.1.1.1 Methodology

Contour extraction extracts the region of interest containing the detected object boundary from the

depth map. Contours are extracted by joining pixels with the same color or intensity. This

computationally cheap approach can detect specific shape features in the image. Contours are

derived from traditional computer vision techniques like edge detection and boundary detection.

A boundary/edge is detected based on pixel difference in luminosity, texture, and perceptual

grouping from the background. Mathematically, the edge/boundary detection is performed by

convolving with local filters such as Sobel, Prewitt, Laplacian, Canny, etc., and then finding the

pixels with the highest gradient magnitude with respect to the local neighborhood pixels.

Prior to performing contour detection, hole filling is performed on the depth map using the inbuilt

Pyrealsense hole filling algorithm. Canny edge detection is performed on the image whose

thresholding is determined using the pixel histogram.

Canny edge detection is done in stages. Noise is removed from the image using 5x5 Gaussian

Filter. The image is then filtered using the Sobel operator, which finds derivatives in the horizontal

direction (𝐺𝑥) and vertical direction (𝐺𝑦). From there, we get the edge gradient and angle of the

pixels.

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2

121

𝜃 = atan (
𝐺𝑦

𝐺𝑥
)

Then, the non-max suppression operation is done on unwanted pixels for the edge. In the end, the

threshold value provided to the filter is used to find the correct and unwanted edge pixels.

After canny edge detection, morphological dilation is performed on the edges to ensure continuity.

Contour detection is then performed on the dilated image to find the boundary points. The

boundary points are a discrete set of pixel coordinates, and a curve is generated through these

points to create the best approximation. Finally, image moments from the contour are used to find

its centroid, which is used as a reference depth measurement.

Figure 7.2: Original RGB image

Figure 7.3: Contour extraction from the depth map

Figure 7.2 shows the original RGB image captured by the camera. In Figure 7.3, the upper left

image shows the depth map after hole filling superimposed on the RGB map for comparison. The

upper right image shows the Canny edge detection from the depth map superimposed on the RGB

122

map for comparison. The lower left image shows the contour extracted from the dilated version of

the canny edge detected map. For comparison, the lower right image shows the contour

superimposed on the RGB image.

The RGB image is first converted into grayscale, and then the pixel histogram is used to threshold

this grayscale image into a binary image. The binary threshold segments out the region of interest

from the background. The experiment was set up so that the region of interest could easily be

segmented using classical thresholding operations. Finally, the binary image is used to find the

contours. Figure 7.4 (a) shows the original RGB image. This image is overlaid with the extracted

contour in Figure 7.4 (b), where the green contour line represents an approximation to the region

boundary of the object of interest. In this method, the ground truth area was measured manually,

and the area of the depth map was converted from the pixel space into the world coordinate system

using the camera's intrinsic parameters. The camera intrinsics do not provide an accurate field of

view. It always has an error in the range of (-3,3) degrees. Thus, the field of view was calculated

from the focal length and frame dimensions as in Equation 7.1 and Equation 7.2.

 (a) (b)

Figure 7.4: (a) Original RGB image of a coin (b) Image with overlaid contour

Figure 7.5: Geometry of a camera lens

123

Figure 7.5 shows the basic geometry of a camera lens.

𝐻𝐹𝑂𝑉 = 2 ∗ tan−1 (0.5 ∗
𝑊

𝑓
)

7. 1

𝑉𝐹𝑂𝑉 = 2 ∗ tan−1 (0.5 ∗
𝐻

𝑓
)

7. 2

Focal length is calculated from the depth camera intrinsic parameters, and width and height are the

frame width and height in pixels. The depth coordinate system is orthogonal with the origin and

orientation of the depth camera. We compute the height and width of 1 pixel as shown in Equations

7.3, 7.4 and 7.5.

𝑊(1𝑝𝑥) =
𝑑𝑒𝑝𝑡ℎ ∗ tan (

𝐻𝐹𝑂𝑉
2)

𝐹𝑟𝑎𝑚𝑒𝑊𝑖𝑑𝑡ℎ

7. 3

𝐻(1𝑝𝑥) =
𝑑𝑒𝑝𝑡ℎ ∗ tan (

𝑉𝐹𝑂𝑉
2)

𝐹𝑟𝑎𝑚𝑒𝐻𝑒𝑖𝑔ℎ𝑡

7. 4

𝐴𝑟𝑒𝑎(𝑚𝑚2) = 𝐴𝑟𝑒𝑎(𝑃𝑥) ∗ 𝑊(1𝑝𝑥) ∗ 𝐻(1𝑝𝑥) 7. 5

𝐴𝑟𝑒𝑎(𝑚𝑚2) represents the area of the object (area of the cap in this experiment) in world

coordinates and 𝐴𝑟𝑒𝑎(𝑃𝑥) represents the area in pixels. W(1px) and H(1px) represents the width

and height of 1 pixel in world coordinates. The pixel area 𝐴𝑟𝑒𝑎(𝑃𝑥) is obtained by computing the

0th order image moment 𝑀00 on the binary image, for the region corresponding to the specific

contour in consideration:

𝑀00 = ∑𝑥𝑖𝑦𝑗𝐼(𝑥, 𝑦)

𝑖,𝑗

 7. 6

where x and y are the pixel index locations and 𝐼(𝑥, 𝑦) is the binary intensity of the pixel. This

effectively computes the number of pixels inside the contour. To verify whether the algorithm

works as expected and provides area computation estimates close to the ground truth, we first

apply it to an RGB image, where the contour estimate of the object overlaps very closely with the

object boundary. This is done because the parameter estimation on the depth map would lead to

124

changing object boundaries in the depth map. Once we verify that the area calculation method

returns accurate values with respect to the ground truth, we apply it to the depth map. The

measured contour area came out to be 4.44 𝑐𝑚2 using the above calculations. The ground truth

area is 4.84𝑐𝑚2, which leads to an error of 8%. The calculated fields of view, horizontal and

vertical, are 69.2𝑜 and 42.4𝑜 ,respectively. This experiment was performed to show that the

proposed algorithm for conversion of the area in pixels to world coordinates metrics (𝑚𝑚2) gives

consistent area in 𝑚𝑚2 by calculating the area of the same object from the depth map at varying

distances from the camera.

Figure 7.6: Contour area calculation for depth map

Figure 7.6 shows a demonstrative example of contour extraction from the depth map at a distance

𝑑 from the wall. The parameters were set by visual inspection such that the quality of the depth

map was reasonable. The distance of the camera from the wall was then varied. Table 7.1 shows

that even though the camera's distance from the object varies, the area in cm2 is the same. There is

a slight variation due to the sensor's temporal noise. The ground truth area for this image is

379.94𝑚𝑚2. The measured area of the contour from the depth map was approximately 32 mm2,

and the error was 15%.

125

Table 7.1: Contour area at various distances in pixel coordinates and world coordinates

Since the area error needed to be checked against a wide range of parameter values for any

parameter, capturing the image of an object (a bottle cap in this experiment) and uniform variation

of the parameters was automated using a python script. For every parameter value, the contour

area was calculated in the world coordinate system(cm2), and error was found with respect to the

ground truth area. The ground truth area was measured using a measuring tape.

Ground Truth Area: 379.94 𝑚𝑚2

Error percent is calculated as:

𝐸𝑟𝑟𝑜𝑟(%) = (
𝐴𝑟𝑒𝑎𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 − 𝐴𝑟𝑒𝑎𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ

𝐴𝑟𝑒𝑎𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ
) ∗ 100%

7. 7

Distance in cm Area of contour in pixels Area of contour in 𝑚𝑚2

23.1 5268 327.7

24.4 4686 325.23

27.2 3718 320

28.1 3545 326

29.9 3116.5 324

30 3082 323

126

7.1.1.2 Results and Discussion

The resultant image of the contours formed around the object is displayed by superimposing the

contour extracted from the depth map on the original RGB image for easy visual comparison.

Error in area of the cap with respect to change in gain (dB)

Figure 7.7: Representative contours for various values of gain.

Row 1 (Left to Right): Gain (dB) = [16, 22, 27]

Row 2 (Left to Right): Gain (dB) = [32, 37, 42]

Figure 7.8: Contour area error variation with respect to camera gain

The gain is the amplification of the image signal obtained from the image sensor. In Figure 7.7,

the resultant images show contours extracted from the depth map superimposed on an RGB image

for comparison. The images are obtained while varying the camera gain value.

127

 (a) (b)

Figure 7.9: Depth frame for gain in range (16-55 dB)

From Figure 7.8, it can be concluded that the depth map performs very well in the low gain range

(16-55). More gain introduces noise, which is the reason for depth map distortion for gains above

55dB. Please note that any error beyond 100% was clamped for better readability. Figure 7.9 (a)

shows the depth map after hole filling for gain in range 16-55 dB, and Figure 7.9 (b) shows the

depth map after hole filling for gain outside the range 16-55 dB.

Error in area of the cap with respect to change in Exposure

Exposure is the amount of light per unit area reaching the surface of an electronic image sensor. It

depends on how long the camera shutter is opened for the light to reach the camera. It is measured

in (
𝑊

𝑚2 𝑠). A high setting for exposure in a bright scene would lead to an overexposed image, where

the fine-grained details of the image are lost. Similarly, a low setting for exposure in a dark scene

would not give the sensor sufficient time to capture the salient features in the scene. Figure 7.10

shows the contours extracted from the depth maps when the exposure was changed from 0-25000

(
𝑊

𝑚2
𝑠). The depth map on the first two images shows a contour that does not match the object. This

is because the camera's exposure was too low to produce the object's shape, as shown in the last 4

images. On the other hand, exposures greater than 50,000 (
𝑊

𝑚2 𝑠) makes the image overexposed,

which also leads to poor detection and area computation.

128

Figure 7.10: Representative contours for various values of gains

Row 1 (Left to Right): Exposure (
𝑊

𝑚2 𝑠) = [0, 5000, 10000]

Row 2 (Left to Right): Exposure (
𝑊

𝑚2 𝑠) = [15000, 20000, 25000]

 (a) (b)

Figure 7.11: (a) Contour area error variation for varying exposure
𝑤

𝑚2 𝑠 (b) Distorted raw depth

frame for exposure>45000 W

From Figure 7.11 (a), it can be concluded that the depth map gives a reasonable estimation of the

area when the exposure lies in the range 10000-45000 (
𝑊

𝑚2 𝑠). However, exposure depends on the

light incident on the camera. More light creates a brighter image for both left and right cameras,

which loses the depth of information. Similarly, the image is too dark for less light, which again

leads to loss of depth information. So, it works only in a particular range depending on the external

129

lighting conditions. Figure 7.11 (b) shows the distorted depth map obtained when the exposure is

greater than 45000 (
𝑊

𝑚2 𝑠).

Error in area of cap with respect to change in Laser Power

Figure 7.12: Representative contours for various values of Laser Power

Row 1 (Left to Right): Laser power (W) = [0,10,20]

Row 2 (Left to Right): Laser power (W) = [30, 40, 50]

Laser power is the power provided to the IR projector. It is measured in Watts (W). Figure 7.12

shows the contours extracted from the depth maps when the exposure was changed from 0-50 W.

Figure 7.13 shows that the contour error variation is low for the entire range of laser power. Laser

power is required for long-range viewing and viewing in low texture and low brightness

environments. Since the object was at a constant distance and under sufficient lighting conditions,

there was no strong effect in area computation when the laser power was varied.

Figure 7.13: Contour area error variation for varying laser power

130

Error in the area of the cap with respect to change in second peak threshold

Figure 7.14: Representative contours for various values of second peak threshold

Row 1 (Left to Right): Second peak threshold (pixels) = [0,50, 100]

Row 2 (Left to Right): Second peak threshold (pixels) = [150, 200, 250]

 (a) (b)

Figure 7.15: (a) Contour area error variation for varying the second peak threshold (b) Depth

map for second peak threshold beyond 600 pixels

The second-peak threshold is a parameter used in the stereo-matching algorithm for depth

calculation. In the RealSense Software Development Kit (SDK), this parameter is referred to as

“dssecondpeak” - Figure 7.14 shows the contours extracted from the depth maps when the Second

Peak Threshold was changed from 0-250 pixels. As the second peak threshold tells how different

the first peak matches and second peak matches between the left and right camera need to be, as

the threshold increases, more matches are regarded as aliasing, and thus depth result is 0 in most

pixels. The plot in Figure 7.15 (a) shows a steep increase in error as we increase the second peak

threshold beyond 600 pixels. Figure 7.15 (b) shows the corresponding depth map for a high second

131

peak threshold.

Error in area of cap with respect to change in the neighbor threshold

Figure 7.16: Representative contours for various values of neighbor threshold

Row 1 (Left to Right): Neighbor threshold (pixels) = [0,50, 100]

Row 2 (Left to Right): Neighbor threshold (pixels) = [150, 200, 250]

The neighbor threshold is a parameter used in the computation of the stereo matching algorithm

for the depth map. In the RealSense SDK, this parameter is referred to as “dsneighbor”. Figure

7.16 shows the contours extracted from the depth maps when the neighbor threshold was changed

from 0-250 pixels. The plot in Figure 7.17 (a) shows that the depth map gives a good estimate of

the area when the neighbor threshold lies in the range of 0-400 pixels. Higher neighbor thresholds

produce many missing values in the depth map computation, rendering a poor-quality depth map,

as shown in Figure 7.17 (b).

 (a) (b)

Figure 7.17: (a) Contour area error variation for varying neighbor threshold (b) Distorted depth

map for neighbor threshold above 400 pixels

132

Error in area of cap with respect to change in Disparity Shift

Figure 7.18: Representative contours for various values of disparity shift

Row 1 (Left to Right): Disparity shift (pixels) = [0, 10, 20]

Row 2 (Left to Right): Disparity shift (pixels) = [30, 40, 50]

Disparity Shift changes the minimum and maximum depth that can be registered from the camera.

It is measured in pixels. Figure 7.18 shows the contours extracted from the depth maps when the

Disparity Shift was changed from 0-50 pixels. Figure 7.19 (a) shows that the depth map gives a

good estimate of object area for the disparity shift range 0-120 pixels. Beyond 120 pixels, the

camera ends up receiving a very narrow band of depth values (𝑍𝑚𝑖𝑛and 𝑍𝑚𝑎𝑥), which ends up

creating a depth map with many values missing. Figure 7.19 (b) demonstrates this phenomenon.

 (a) (b)

Figure 7.19: (a) Contour area error variation for varying disparity shift (b) Distorted raw depth

map beyond disparity shift of 120 pixels

Error in the area when resolution is changed

Resolution is the fineness of detail in an image measured in pixels per inch (ppi). Higher resolution

133

images correspond to images that can capture finer features and details in the image, whereas lower

resolution images take lower memory space, but are coarser. Table 7.2 shows the error variation

in surface area when the image's resolution is changed.

Table 7.2: Variation of error in area computation with resolution

Error in the area when the surface area of a custom object is changed

A custom object is created using clay dough. The shape of the object was a cuboid. The length and

breadth of a custom object are changed while the thickness is kept constant. In this experiment,

objects of varying sizes were placed in front of the camera, and the object's area was found using

the contour approximation method. Table 7.3 shows how the error percentage changes as the

surface area changes while keeping the object's thickness constant. The experiment gradually

reduced the object's size from (1.9x1.5) cm to (0.9x0.5) cm. The reduction in the object's size does

not independently impact the measurement accuracy, given that the object's thickness is held

constant. This is because a thicker object protrudes further out from the surface and has a greater

contrast from the background depths. The resolution limit determines per pixel area, which will

impact the size of the object that can be detected.

Table 7.3: Variation of error in area computation with surface area change

Length(mm) Breadth(mm) Thickness(mm) Error%

19 15 13 8.804

14 14 13 -4.329

9 5 13 9.64

Resolution Error in area

848x480 -13.29%

640x480 -11.76%

1280x720 -11.95%

134

Error in the area when object thickness is changed

Figure 7.20 shows the contours extracted from depth images for varied sizes of object thickness.

As shown in Table 7.4, we kept the length and width of the object constant and varied the depth

of the defect to find the error rate as the object's thickness is reduced. As expected, the error

increases when we reduce the object thickness. For example, at an object thickness of 1cm, the

area error increases to 15.69%. The shape characteristic in the detected contour for an object

thickness of 18mm captures the morphology of the actual defect. However, as the object thickness

is decreased to 10mm, the depth map does not preserve the object's shape. This leads to a much

higher error. This error would keep increasing in the sub-millimeter range.

 (a) (b)

Figure 7.20: Contour capture at an object thickness of (a) 1.8cm and (b) 1cm

Table 7.4: Variation of error in area computation with change in object thickness

Length(mm) Breadth(mm) Thickness(mm) Error%

15 14 18 4.4

15 14 10 15.6%

7.2 Sensitivity analysis of object depth measurements to the camera parameters

7.2.1 Methodology

For performing these experiments, an object of 18 mm thickness and 11-mm radius is placed on a

relatively flat wall in front of the camera as shown in Figure 7.21 and Figure 7.22. First, hole filling

is performed on the raw depth map from the camera using the built-in Pyrealsense hole-filling

135

algorithm. Canny edge detection is performed on the image whose thresholding is determined

using the pixel histogram. After canny edge detection, morphological dilation is performed on the

edges to ensure continuity. Contour detection is then performed on the dilated image to find the

boundary points. The boundary points are a discrete set of pixel coordinates, and a curve is

generated through these points to create the best approximation. The procedure is shown in Figure

7.23.

Figure 7.21: Object of thickness 18 mm thickness used for sensitivity analysis

Figure 7.22: RGB and depth map corresponding to the 3D map

After finding the contour and filling the inside part with a uniform color opposite the background,

the pixels inside the contour are separated from the background using the color difference. Then,

the distance from the camera to the object is obtained by calculating the distance of the camera

from the pixels inside the contour and the distance from the camera to the background is obtained

by calculating the distance from pixels in the background. Then the erroneous distance for each

pixel is removed before calculating the average distance (for all the pixels) from the background

and the object separately. The thickness of the object is estimated by the differences between the

background depth and the object depth.

136

Figure 7.23: Contour extraction process for thickness estimation

7.2.2 Results and Discussion

Error in the thickness estimation with respect to change in gain

(a) (b) (c) (d)

(e) (f)

Figure 7.24: Contours across gains (dB) (a) 16 (b) 36 (c) 56 (d) 76 (e) 96 (f) 116

Figure 7.24 shows the resulting object contours and Figure 7.25 shows that we can get the depth

information with reasonable accuracy in the Gain range of 16-140 dB with a resolution of 848x480.

137

Figure 7.25: Plot of error in thickness estimation versus camera gain

Error in the thickness estimation with respect to change in exposure

(a) (b) (c)

 (d) (e) (f)

Figure 7.26: Contours across exposures (
𝑊

𝑚2 𝑠): (a) 0 (b) 500 (c) 1000 (d) 7500 (e) 14500 (f) 16000

Figure 7.26 shows the extracted contours for various exposure settings. As shown in Figure 7.27,

the thickness estimation is valid only in the range of 2000 to 16000
𝑊

𝑚2
𝑠 with a resolution of

848x480 as the plot shows that the error is low in this range. The contour and raw depth map below

2000
𝑊

𝑚2
𝑠 are as shown in Figure 7.28. This shows that exposure below 2000

𝑊

𝑚2
𝑠 may not be

suitable for thickness estimation. Exposure depends on lighting conditions, and these might vary

with different lighting conditions, and auto-exposure algorithms are already present in the

Realsense camera system to calibrate this according to the scene brightness. The contour formation

138

for exposure between 2000-16000
𝑊

𝑚2 𝑠 is shown in Figure 7.29. The contour formation for

exposure beyond 16000
𝑊

𝑚2
𝑠 is plotted in Figure 7.30. The object contour is not detected in this

case, as for every scene, there is a range of exposures for which the depth map produces reasonably

accurate object contours, beyond which the camera's performance is severely degraded.

Figure 7.27: Plot of exposure versus error in thickness estimation

Figure 7.28: Contours and depth map for exposure below 2000
𝑊

𝑚2 𝑠

139

Figure 7.29: Contours and depth map for exposure between 2000-16000
𝑊

𝑚2 𝑠

Figure 7.30: Contours and depth map for exposure above 16000
𝑊

𝑚2
𝑠

140

 Error in the thickness estimation with respect to change in second peak threshold

(a) (b) (c)

 (d) (e) (f)

Figure 7.31: Contours across second peak thresholds (pixels):

(a) 0 (b) 100 (c) 200 (d) 300 (e) 400 (f) 500

Figure 7.32: Plot of second peak threshold versus error in thickness estimation

As shown in Figure 7.32, does not show a large variation in error magnitude as the second peak

threshold is varied. Unlike exposure and gain, which are heavily influenced by factors such as the

brightness of the scene, the thickness error is low through the entire range of the second peak

threshold. This is because the second peak threshold only influences the fill rate of the depth map,

that is, the number of holes, which affects area computation more than thickness. This is because

there are variations in external lighting conditions due to these experiments being conducted in the

home environment with loose lighting controls in contrast to the controls in the lab.

141

Error in the thickness estimation with respect to change in disparity shift

As shown in Figure 7.33 and Figure 7.34, the thickness estimation is good in the entire range of 0

to 150 pixels under the resolution of 848x480. However, this setting may cause holes in the depth

map if the camera is located further away from the inspected surface, in which case a setting of

zero is more appropriate. Lower depth values require higher disparity shifts for ensuring good

depth map quality.

(a) (b) (c)

 (d) (e) (f)

Figure 7.33: Contours across disparity shift (pixel): (a) 0 (b) 50 (c) 100 (d) 150 (e) 200 (f) 250

Figure 7.34: Plot of disparity shift versus error in thickness estimation

142

Error in the thickness estimation with respect to change in neighbor threshold

 (a) (b) (c)

 (d) (e) (f)

Figure 7.35: Contours across neighbor threshold (pixel): (a) 0 (b) 50 (c) 100 (d) 150 (e) 200 (f)

250

Figure 7.36: Plot of neighbor threshold versus error in thickness

As shown in figures Figure 7.35 and Figure 7.36, there is no significant improvement to the

thickness error estimation when the neighbor threshold is varied from 0 to 1000 pixels.

143

Error in the thickness estimation with respect to change in laser power

 (a) (b) (c)

 (d) (e) (f)

Figure 7.37: Contours across laser power (W): (a) 0 (b) 50 (c) 100 (d) 150 (e) 200 (f) 250

Figure 7.38: Plot of laser power versus error in thickness

As shown in Figure 7.37 and Figure 7.38, the change in laser power impacts the depth map quality

and thickness estimation accuracy, with increased laser power showing better performance. This

shows the benefit of using active stereo over conventional stereovision for optical metrology.

144

Error in the thickness estimation with respect to change in resolution

Table 7.5: Error in thickness estimation versus Resolution

Table 7.5 shows that the resolution has an insignificant effect on thickness but affects the pixel

length. It should be noted that the object's thickness is 18 mm, which is above the minimum depth

detectable by the camera. Therefore, changing the resolution does not significantly affect the

thickness. In addition, in the resolution of 1280x720, the disparity shift needs to be above 20 pixels

to get proper information about the object depth.

Error in the thickness estimation of an object of small thickness

 (a) (b)

Figure 7.39: (a) 3-D visualization of a 5 mm thickness coin (b) 3-D visualization of a coin of a

thickness of 1.75 mm

Figure 7.39 (a) shows the 3D reconstruction of the scene for the object of 5-mm thickness and

Figure 7.39 (b) shows the 3D reconstruction of the scene for the object of 1.75-mm thickness. The

surface reconstruction is obtained by using the point cloud generated by the depth frame aligned

with the RGB camera frame. Then, the RGB texture is applied to the point cloud instead of the

depth texture. The 5-mm thick object was created by stacking multiple coins on top of each other

for this experiment. For thickness estimation of an object of 5-mm thickness and 24-mm diameter,

Resolution Error in thickness Pixel length (mm)

640x360 -11% 0.5963

848x480 -7.5% 0.4472

1280x720 -8.02% 0.3003

145

the depth visualization is adjusted according to the distance of the object from the camera. Then

contour analysis was performed on the raw depth map, as shown in Figure 7.40. The error was

found to be around 22% under the resolution of 848x480. The error in the thickness of an object

of 24-mm diameter and 1.74-mm thickness was found to be 18.85%. The results are shown in

Figure 7.41.

Figure 7.40: Contour extraction from the depth map for the object of 5 mm thickness

Figure 7.41: Contour extraction from the depth map for the object of 1.74 mm thickness

Error in the thickness estimation of an object of a small area

Contour extraction did not yield reliable results for an object of 8mm diameter and 15mm

thickness, so we chose to get the depth information from the Intel RealSense viewer by inspection,

as shown in Figure 7.42.

The manual measurement of the depth using the RealSense viewer meant that the number of

significant figures that the depth could be computed to was at the millimeter scale. Secondly, it is

important to note that the shape of the object was not captured, and only one sample that indicated

146

a deformation in the surface corresponding to the location of the object was taken. An object of

21-mm thickness and 7.5-mm diameter was difficult to process with our contour algorithm, so we

chose to get the depth information from the Intel RealSense viewer, which is used to visualize the

raw depth map directly from the Camera, as shown in Figure 7.42 (d). The error was found to be

-9.1%.

 (a) (b)

 (c) (d)

Figure 7.42: (a) 3-D RGB textured point cloud; (b) Depth map for the object of 8 mm diameter

(c) 3-D RGB textured point cloud; (d) Depth map for the object of 7.5 mm diameter

8 APPENDIX B

8.1 Hardware prototype 1

We selected a commercial eight degrees of freedom (DOF) vehicle robot with 8-Axis RC robotic

arm for the robot carrier. The specification for this robot carrier is given below:

Y100 Tank chassis parameters

147

• Name: New Y-100 Tank Chassis

• Main body: aluminum alloy

• Surface: sandblasting oxidation

• Track: engineering plastics

• Color: Silver

• Size: 300*240*122mm (length * width * height)

• Weight: 1.16kg

• Motor: 9V 150rpm with encoder motor

9V 150rpm with encoder motor

• Working voltage: 9V

• Output rate: 150±10% rpm

• Load current: 200mA (Max)

• Stall current: 4500 mA (max)

• Stalling torque: 9.5kg

• Load speed: 100±10% rpm

• Load torque: 3000Ncm

• Load current: 1200mA (Max)

• Encode parameters: 2 pulses / circle

• Sensor operating voltage: 3-5V

Robotic arm parameters

• Mechanical arm body material: aluminum alloy

• Weight: 0.82kg (including servo weight)

• Color: silver

• Servo optional: MG996R metal gear large servo

• Features: The mechanical arm can be equipped with a mechanical gripper the weight of the

grip is about 500g; the base of the robot arm can be rotated 360 degrees.

MG996R servo parameters

• Name: MG996R

• Net weight: 55 g

148

• Size: 40.7*19.7*42.9 mm

• Pulling force: 9.4 kg/cm (4.8 V), 11 kg/cm (6 V)

• Reaction rate: 0.17 sec / 60 degree (4.8 V), 0.14 sec / 60 degree (6 V)

• Working voltage: 4.8-7.2 V

• Working temperature: 0°C-55°C

• Gear form: metal gear

Working dead zone: 5 𝜇s

Bearing wheel installation

The materials required to assemble the bearing wheel are M3*8 screw, 17 mm copper hex spacers,

M2 screw, bearings, wheel discs, and stainless-steel connector.

Driving wheel installation

For the driving wheel, the required materials are 28 mm copper hex screws, M3*8 screw, stainless-

steel connectors, jackscrew, geared wheel discs, aluminum alloy coupling, and M4*16 screws.

Tank Chassis installation

The required materials to assemble the Tank Chassis include 9V 150 rpm encoder motor, LED

lights, tracks, chassis panels, power cable, M3*12 screw, M3 nut, M3*10 screw are necessary for

the assembly of the tank. There are a total of ten bearing wheels and two driving wheels for this

model. The track is installed and since the tracks are individually connected with needles, the

length can be adjusted according to the needs.

Assembly of Robot Arm

The robot arm consists of a rotating base, left and right swing arm, a rocking arm, and a control

board.

Rotating Base

The materials required are M4*11 double pass coupling, M4*6 flat head screws, M3*8 inner

hexagon screws, M3 nut, tray bearing, single pass coupling, 25T disc metal horns, and steering

gear.

Left and Right Swing Arm

149

M3*8 inner hexagon screws, 25T metal horn, M4*6 screws, pendulum frame, M3*5 screws,

steering gear, and left, and right frames are assembled. And this assembly is installed on the

rotating base.

Rocking arm

M3*8 inner hexagon screws, U bracket, 25T metal horn, M3*8 flat head screw, steering gear,

M4*6 screws, steering gear bracket, swing fixing bracket, rocking fixing bracket, U shaped support

frame, connecting rod are installed together according to the manual. This assembled part is

installed to the previously connected servo arm with a rotating base.

Control Board

The control board tray bracket is attached to the rotating base. Materials required are M3*8 screws,

M3*6 screws, and a steering gear bracket. Bearing is attached to the steering gear bracket along

with steering gear.

Metal claw

The assembly of the claw is divided into 3 parts, which are claw arm 1, claw arm 2, and base of

claw. The parts include servo motor MG995, 25T metal horn, M3*8 hexagon screw, M3 nut, single

pass couplings, M3*6 flat head screw, M3*12 screw, and bearings.

Hardware specifications of the fish-eye stereo camera

 Performance: 1920x1080 MJPEG@30fps S/N Ratio: 39db

 Sensor: AR0330 Dynamic range: 72.4db

 Pixel Size: 5.07um X 3.38um

 Lens Parameter: M12 fisheye lens

 Board size: 86x23 mm

 Mini illumination: 0.1lux

 Sensitivity: 2.0 v/lux-sec @550nm

 Voltage: DC5V

 Current: 220mA-280mA

150

Figure 8.1: Fisheye stereo camera

8.2 Hardware prototype 2

We list here the details of the components for the second prototype.

Table 8.1: Components list for the height adjustment mechanism

Component No of pieces

Linear Actuators (PA-07) 2

Bottom mount for linear actuators 2

Top mount for linear actuators 2

Linear actuator support 2

Camera platform 1

Camera platform support 2

M4*35mm bolts 4

M4 nuts 8

M4 washers 4

151

Table 8.2: Technical specifications of the12V brushed DC motors

Table 8.3: Technical specifications of the PA-07 linear actuators

Table 8.4: Truth Table for L298N Motor Driver Module for Direction Control

Specifications Values

Gear ratio 20.4:1

Torque at maximum efficiency 1.1 kg.cm

Maximum power 9.4 W

Speed at maximum efficiency 420 rpm

Specifications Values

Driver voltage 5-35V

Driver current 2A

Max supply voltage (Maximum) 46V

Motor supply current (Maximum) 2A

Input 1 Input 2 Spinning Direction

Low Low Motor OFF

High Low Forward

Low High Backward

High High Motor OFF

152

Table 8.5: Technical specifications of the DRV8834 Stepper Motor Driver Module

Table 8.6: Truth Table for DRV8834 Stepper Motor Driver Module for Micro stepping

Table 8.7: PS4 Controller button mappings to robot functions.

Key press Corresponding motion of the robot

L1 Forward Stroke of Actuators

R1 Backward Stroke of Actuators

Start Start Automated Scanning

Options Stop Automated Scanning

Triangle Enabling 1/4 Micro stepping

Circle Enabling 1/8 Micro stepping

Square Enabling 1/32 Micro stepping

Forward Forward movement of robot

Backward Backward movement of robot

Specifications Values

Continuous current per phase 1.5A

Max current per phase 2A

Max logic voltage 5.5V

Max power supply voltage 11.8V

M0 M1 Micro step resolution

Floating Low 1/4 step

Low High 1/8 step

High High 1/16 step

Floating High 1/32 step

153

References

Adelson, E. H., Anderson, C. H., Bergen, J. R., Burt, P. J., & Ogden, J. M. (1984). Pyramid

methods in image processing. RCA Engineer, 29(6), 33–41.

Alzuhiri, M., Farrag, K., Lever, E., & Deng, Y. (2021). An Electronically Stabilized Multi-Color

Multi-Ring Structured Light Sensor for Gas Pipelines Internal Surface Inspection. IEEE

Sensors Journal, 21(17), 19416–19426. https://doi.org/10.1109/JSEN.2021.3086415

Bishop, C. M. (2014). Bishop - Pattern Recognition And Machine Learning - Springer 2006.

Antimicrobial Agents and Chemotherapy, 58(12).

Brach, K., Sick, B., & Urr, O. D. .̈ (2020). Single Shot MC Dropout Approximation.

https://doi.org/10.48550/arxiv.2007.03293

Chen, W., Gao, Y., Gao, L., & Li, X. (2018). A New Ensemble Approach based on Deep

Convolutional Neural Networks for Steel Surface Defect classification. Procedia CIRP.

https://doi.org/10.1016/j.procir.2018.03.264

Cheng, X., & Yu, J. (2021). RetinaNet with Difference Channel Attention and Adaptively Spatial

Feature Fusion for Steel Surface Defect Detection. IEEE Transactions on Instrumentation

and Measurement. https://doi.org/10.1109/TIM.2020.3040485

Choi, J. B., Goo, B. K., Kim, J. C., Kim, Y. J., & Kim, W. S. (2003). Development of limit load

solutions for corroded gas pipelines. International Journal of Pressure Vessels and Piping,

80(2), 121–128. https://doi.org/10.1016/S0308-0161(03)00005-X

Di, H., Ke, X., Peng, Z., & Dongdong, Z. (2019). Surface defect classification of steels with a new

semi-supervised learning method. Optics and Lasers in Engineering.

https://doi.org/10.1016/j.optlaseng.2019.01.011

Dong, H., Song, K., He, Y., Xu, J., Yan, Y., & Meng, Q. (2020). PGA-Net: Pyramid Feature Fusion

and Global Context Attention Network for Automated Surface Defect Detection. IEEE

Transactions on Industrial Informatics. https://doi.org/10.1109/TII.2019.2958826

Echard, B., Gayton, N., & Lemaire, M. (2011). AK-MCS: An active learning reliability method

combining Kriging and Monte Carlo Simulation. Structural Safety, 33(2), 145–154.

https://doi.org/10.1016/J.STRUSAFE.2011.01.002

154

French, G., Laine, S., Aila, T., Mackiewicz, M., & Finlayson, G. (2019). Semi-supervised semantic

segmentation needs strong, varied perturbations.

Gal, Y., & Ghahramani, Z. (n.d.). Dropout as a Bayesian Approximation: Appendix.

Gal, Y., & Ghahramani, Z. (2016). Dropout as a Bayesian Approximation: Representing Model

Uncertainty in Deep Learning (pp. 1050–1059). PMLR.

https://proceedings.mlr.press/v48/gal16.html

Hartley, R., & Zisserman, A. (2004). Multiple View Geometry in Computer Vision. Cambridge

University Press. https://doi.org/10.1017/CBO9780511811685

He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017). Mask R-CNN. Proceedings of the IEEE

International Conference on Computer Vision. https://doi.org/10.1109/ICCV.2017.322

He, Z., & Liu, Q. (2020). Deep Regression Neural Network for Industrial Surface Defect

Detection. IEEE Access. https://doi.org/10.1109/ACCESS.2020.2975030

Intel RealSense. (2022). Intel RealSense D400 Series Product Family Datasheet.

Kendall, A., & Gal, Y. (2017). What Uncertainties Do We Need in Bayesian Deep Learning for

Computer Vision? Proceedings of the 31st International Conference on Neural Information

Processing Systems, 5580–5590.

Labbé, M., & Michaud, F. (2019). RTAB-Map as an open-source lidar and visual simultaneous

localization and mapping library for large-scale and long-term online operation. Journal of

Field Robotics. https://doi.org/10.1002/rob.21831

Laine, S., & Aila, T. (2017). Temporal ensembling for semi-supervised learning. 5th International

Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings.

Lee, D.-H. (2013). Pseudo-label: The simple and efficient semi-supervised learning method for

deep neural networks. ICML 2013 Workshop: Challenges in Representation Learning.

Levin, A., Lischinski, D., & Weiss, Y. (2004). Colorization using optimization. ACM Transactions

on Graphics. https://doi.org/10.1145/1015706.1015780

Li, J., Su, Z., Geng, J., & Yin, Y. (2018). Real-time Detection of Steel Strip Surface Defects Based

on Improved YOLO Detection Network. IFAC-PapersOnLine.

155

https://doi.org/10.1016/j.ifacol.2018.09.412

Li, Y., Han, Z., Xu, H., Liu, L., Li, X., & Zhang, K. (2019). YOLOv3-lite: A lightweight crack

detection network for aircraft structure based on depthwise separable convolutions. Applied

Sciences (Switzerland). https://doi.org/10.3390/app9183781

Liu, M., Liu, Y., Hu, H., & Nie, L. (2016). Genetic algorithm and mathematical morphology based

binarization method for strip steel defect image with non-uniform illumination. Journal of

Visual Communication and Image Representation.

https://doi.org/10.1016/j.jvcir.2015.04.005

Liu, Y., Xu, K., & Xu, J. (2019). An improved MB-LBP defect recognition approach for the

surface of steel plates. Applied Sciences (Switzerland). https://doi.org/10.3390/app9204222

Liu, Y., Yuan, Y., Balta, C., & Liu, J. (2020). A light-weight deep-learning model with multi-scale

features for steel surface defect classification. Materials.

https://doi.org/10.3390/ma13204629

Miyato, T., Maeda, S. I., Koyama, M., & Ishii, S. (2019). Virtual Adversarial Training: A

Regularization Method for Supervised and Semi-Supervised Learning. IEEE Transactions on

Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2018.2858821

of Mechanical Engineers, A. S. (2012). Manual for Determining the Remaining Strength of

Corroded Pipelines: A Supplement to ASME B31 Code for Pressure Piping: an American

National Standard. American Society of Mechanical Engineers.

Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement.

http://arxiv.org/abs/1804.02767

Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and

Machine Intelligence. https://doi.org/10.1109/TPAMI.2016.2577031

Saiz, F. A., Serrano, I., Barandiaran, I., & Sanchez, J. R. (2018). A Robust and Fast Deep Learning-

Based Method for Defect Classification in Steel Surfaces. 9th International Conference on

Intelligent Systems 2018: Theory, Research and Innovation in Applications, IS 2018 -

Proceedings. https://doi.org/10.1109/IS.2018.8710501

156

Scheinker, A., Scheinker, D., Alexander Scheinker, C., & Alamos, L. (2021). Extremum seeking

for optimal control problems with unknown time-varying systems and unknown objective

functions. International Journal of Adaptive Control and Signal Processing, 35(7), 1143–

1161. https://doi.org/10.1002/ACS.3097

Semi-supervised semantic segmentation needs strong, varied perturbations. (n.d.).

Shelhamer, E., Long, J., & Darrell, T. (2017). Fully Convolutional Networks for Semantic

Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence.

https://doi.org/10.1109/TPAMI.2016.2572683

Shi, J., & Tomasi, C. (1994). Good features to track. Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition.

https://doi.org/10.1109/cvpr.1994.323794

Shi, Y., Cui, L., Qi, Z., Meng, F., & Chen, Z. (2016). Automatic road crack detection using random

structured forests. IEEE Transactions on Intelligent Transportation Systems.

https://doi.org/10.1109/TITS.2016.2552248

Srivastava, N., Hinton, G., Krizhevsky, A., & Salakhutdinov, R. (2014). Dropout: A Simple Way

to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research, 15,

1929–1958.

Suvdaa, B., Ahn, J., & Ko, J. (2012). Steel surface defects detection and classification using SIFT

and voting strategy. International Journal of Software Engineering and Its Applications.

Tabernik, D., Šela, S., Skvarč, J., & Skočaj, D. (2020). Segmentation-based deep-learning

approach for surface-defect detection. Journal of Intelligent Manufacturing.

https://doi.org/10.1007/s10845-019-01476-x

Tarvainen, A., & Valpola, H. (2017). Mean teachers are better role models: Weight-averaged

consistency targets improve semi-supervised deep learning results. Advances in Neural

Information Processing Systems.

The American Society of Mechanical Engineers. (2009). ASME B31G - Manual for Determining

the Remaining Strength of Corroded Pipelines. American National Standard.

Vanaei, H. R., Eslami, A., & Egbewande, A. (2017). A review on pipeline corrosion, in-line

157

inspection (ILI), and corrosion growth rate models. In International Journal of Pressure

Vessels and Piping. https://doi.org/10.1016/j.ijpvp.2016.11.007

Verma, V., Lamb, A., Kannala, J., Bengio, Y., & Lopez-Paz, D. (2019). Interpolation consistency

training for semi-supervised learning. IJCAI International Joint Conference on Artificial

Intelligence. https://doi.org/10.24963/ijcai.2019/504

Wang, Y., Gao, L., Gao, Y., & Li, X. (2021). A new graph-based semi-supervised method for

surface defect classification. Robotics and Computer-Integrated Manufacturing.

https://doi.org/10.1016/j.rcim.2020.102083

Yang, F., Zhang, L., Yu, S., Prokhorov, D., Mei, X., & Ling, H. (2020). Feature Pyramid and

Hierarchical Boosting Network for Pavement Crack Detection. IEEE Transactions on

Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2019.2910595

Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., & Yoo, Y. (2019). CutMix: Regularization Strategy

to Train Strong Classifiers with Localizable Features.

Zhang, B., & Ma, X. L. (2019). A review—Pitting corrosion initiation investigated by TEM. In

Journal of Materials Science and Technology (Vol. 35, Issue 7).

https://doi.org/10.1016/j.jmst.2019.01.013

Zhang, G., & Vela, P. A. (2015). Good features to track for visual SLAM. Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition.

https://doi.org/10.1109/CVPR.2015.7298743

Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 22(11), 1330–1334.

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2016). Learning Deep Features for

Discriminative Localization. Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition. https://doi.org/10.1109/CVPR.2016.319

