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According to the Pipeline and 

Hazardous Materials Safety 

Administration (PHMSA), during the 

past 20 years in the US there were 

reported:[1]

• 12,505 incidents

• 270 fatalities

• 1176 injuries

• Cost of $9.9 billion 

• Environmental destruction

Motivation

6%

18%

14%

9%

40%

6%
7%

Incident Cause Breakdown (2021) 

All other causes

Corrosion

Excavation damage

Incorrect operation

Material/weld/equip

failure

Natural force damage

Other outside force

damage

[1] from PHMSA website reports
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Corrosion in pipes 

• Uniform, pitting, stress corrosion, erosion

• Internal/external 

• Wall-thickness loss & loss of pressure

Mitigation strategies currently used in industry :

• Coatings, cathodic protection, corrosion inhibitors,

pigging, visual inspections, and non-destructive evaluation.

Motivation

PittingExternal 

Corrosion
Askari et al., 2019 
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Conventional guided wave inspection (GUW) [3,4]

Major limitations

• Ineffective in screening the pipe for small defects

• No capacity for sizing the defects

• No tomographic capacity

• Requires large number of sensors 

[3] Alleyne et al., 2004 , [4] Lowe et al., 2006, [5] Fong 2005 

Motivation – Nondestructive Evaluation (NDE)

transducers

[5]

computer

Transmitter/receiver Reflection Damage

Pipe

Guided mode

Inspection system

Transmitted 

wave
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Motivation - SHM

Acoustic Emission (AE)

Different mechanisms → Acoustic energy

o Corrosion, internal pressure, cracking

Monitor AE features:

o Energy, Amplitude, Frequency.

Distinguish between different forms of 

corrosion like:[5]

o Pitting, uniform, stress cracking 

Gaps in knowledge

Using the HGUW AE for estimating:

o Estimate corrosion growth/intensity.

o Predict the corrosion   

flaw

Steel Tank

AE system

computer

AE sensors

[5] Jomdecha et al., 2007, [6] Jirarungsatian et al., 2010 
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Research objective

• The main objective of this work is to a develop a systematic approach by which the 

underlying structural health condition of steel pipes could be assessed using non-

destructive methodologies.

• Overall, it is proposed to use a novel class of sensing system, helical guided 

ultrasonic waves (HGUW) and advanced data processing techniques for supporting 

corrosion diagnosis and decision-making.
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Project timeline

Task Description Year 1 Year 2 Year 3 Extension

Quarter 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Task 1: Development of numerical model to predict HGUW

Task 2: Development of algorithms for corrosion damage

assessment by HGUW

Task 3: Experimental Tests

Task 4: Deliverables

Quarterly Status Report

Kick-off Meeting

Mid-term Summary

Final Report

• Original Award: $299,686.00
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Development of numerical model to 

predict HGUW
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Task 1
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Task 1: Development of numerical model to predict HGUW

Finite-Element (FE) modeling details

• ABAQUS commercial FE software

• 3-dimensional modeling

Methodology

I. A segment of the pipe was modeled based on the 

actual dimensions.

II. Corrosion was modeled by means of pipe wall-

thinning (both internal & external). 

III. Helical waves were generated using an appropriate 

force configuration at different nodes.

IV. Time-domain waveforms were collected at nodes of 

interest.   

V. Waveforms processed for identifying features of the 

HGUW that correlate with the different thickness-

loss.

thickness

3cm

Transmitting/receiving

nodes

30% loss

3 cm 3 cm

50% loss

Different 

thickness-loss 

profiles
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Modeling considerations

(3) Absorbing layers with increased damping:

𝐿𝑎𝑙𝑖𝑑 = λmax × 3

𝐶𝑀 𝑥 = 𝐶𝑀𝑚𝑎𝑥

𝑥

𝐿𝑎𝑙𝑖𝑑

3

( ~10 cm )

𝑑

(2) Nodal forces for Lamb wave excitation:

Hanning force function 

Δ𝑡 =
1

20𝑓𝑚𝑎𝑥
𝑙𝑚𝑎𝑥
𝑡ℎ𝑖𝑐𝑘. =

𝑑

10
𝑙𝑚𝑎𝑥 =

λmin

15

(1) Spatial & temporal resolution:

𝑙𝑚𝑎𝑥
𝑡ℎ𝑖𝑐𝑘.

𝑙𝑚𝑎𝑥

𝑧
𝑟

𝑙𝑚𝑎𝑥

FEM 

element

Task 1: Development of numerical model to predict HGUW



• Comparison of models with (damaged) & without (pristine) a wall-thinning
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Task 1: Development of numerical model to predict HGUW



Modeling objectives

• Use of the FEM models to assess the efficacy of 

the corrosion assessment algorithms 

developed in Task 2

15

ART output
D1

Task 1: Development of numerical model to predict HGUW

Modeled 

pipe

Simulated 

damage

Example of damage localization 

using ART algorithm 



Development of algorithms for 

corrosion damage assessment
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Task2 
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Helical guided waves

• Localize defects

• Estimate of the defect’s size

• Estimate the remnant wall-thickness 

• Identify critical stages of corrosion

• Distinguish corrosion mechanisms

• Predict corrosion rate

Few sensors

Increase inspected area

flawTransmitter

Receiver

Active monitoring Passive monitoring 

flaw

AE sensor

Advantages

Task 2: Development of algorithms for corrosion damage assessment

• 2 different approaches have been investigated:



Task 2: Active pipeline health monitoring-(2step approach)
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Helical guided wave signal 

Corrosion localization

(CL)

Corrosion sizing

(Cs)

Baseline 

subtraction

Pristine Damaged

Damage index

(d)

Coordinates

𝝐ı,𝒄

𝐴 𝑚×𝑛 𝑥 𝑛×1 = 𝒅 𝑚×1

ART imaging

Phase velocity 

δ𝓉𝑖−𝑗,𝑐
ℎ

2D acoustic 

model

𝑙2 𝑙𝑙

Example: Assumed Speed (Corrosion) profile

75% thickness 

loss 

Pristine 
𝑡 𝑤𝑜

−
𝑡 𝑤𝑐

Different 

corrosion 

profiles 

Phase velocity 
തδ𝓉𝑖−𝑗,𝑐

ℎ

Correlation

Remaining thickness 100%50%

Experiment

Numerical



Task 2: Passive pipeline health monitoring – (AE)
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Amplitude of 1dBNumber of events 

greater than 𝑀

log10𝑁 = α − 𝒃 𝑀

Constant

Gutenberg-Richter empirical equation:

𝑏
1

linear 

fit

linear descending 

branch

Helical guided wave 

Acoustic Emission

Corrosion

b-value 

corrosion

AE sensor

Qualitative estimation 

of corrosion evolution



Experiments
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Task 3
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Experimental setup

PZT sensor Magnet

Defect 

locations

Hanning force function 

5.5 cycle Hanning profile burst 
(300 - 400 kHz, < 1.5 MHz-mm)

Task 3: Active pipeline health monitoring 



PZT sensor Magnet
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Results

• Each magnet was localized accurately

• 9 helical orders were considered

• 6 PZT sensors to cover 120 cm

• Artifacts at least < 12% smaller than the 

peak indication 

S1

S2

S3

S4

S5

S6

D2

Defect 

locations

S1

S2

S3

S4

S5

S6

D1

Defect 

locations

Task 3: Active pipeline health monitoring 
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D2

D1

D1 (5 x 3 cm)

D2 (3 x 3 cm)

6 PZT-

sensors
6 PZT-

sensors

60 cm

Task 3: Active pipeline health monitoring 

Results

• Accurate localization on realistic damages (D1,D2), 

simultaneously

• 5 helical orders were considered

• 12 PZT sensors to cover 60 cm.

ART imaging



cycle 2

cycle 4

cycle 6

cycle 8

cycle 10

pristine
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Accelerated corrosion setup

50% remaining 

thickness at 

cycle 10

Task 3: Active pipeline health monitoring 



Corrosion localization for cycles 1-10 (CL)
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Tomographic results (CS) 

Meas. thick. loss = 10%

Estim. thick. loss = 5% 

Meas. thick. loss = 25%

Estim. thick. loss = 25% 

Meas. thick. loss = 50%

Estim. thick. loss = 47% 

Task 3: Active pipeline health monitoring 

Results

• 5 helical orders were considered

• CL output typically > 2 coordinates locations

• Through CS the most accurate localization is chosen 

• CS yields accurate results for thickness loss > 10%
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Preamplifiers

Power supply

AE DAQ

Sensor 4

Sensor 5

Sensor 2

Salt-water tank

Power supply 

3A

0
.2

5
4

 m
  

Schedule 40

4

1

2

AE DAQ

0.4 m 0.35 m 0.35 m 0.4 m 

0.2 m 

4

2

3

5

61

60˚

0.1 m 

3% salt water

preamplifier

Test details

• Threshold = 38 dB 

• 35 cycles (~ 160 hours)

• 6 × AE sensors (R15a)

FE model

Task 3: Passive pipeline health monitoring 
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Combined b-values

Task 3: Passive pipeline health monitoring 

Results

• b-value estimated individually for each sensor

• Approximately 300 events/sensor for each b-value calculation

• 1.5 < b-value < 3

• Decreasing b-value 

• A combined b-value from all the sensors

• Linear interpolation of the b-values  

• Provide an envelope that characterizes the rate of corrosion

Number of events and b-value for individual sensors

envelope
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Task 3: Field testing  

Damage-free 

sectionDamaged section

PZT’s attached 

with epoxy

Large pits

Uniform wall 

thickness loss

• Poor signal-to-noise ratio

Findings
• High temperatures & rough 

surface led to weak bonding of 

the PZT to the structure. 

Pipe dimensions
• Diameter = 6 in

• Thickness = 0.3 in

• Fluid filled (type unsure)

Location
• Monroe Energy – Philadelphia PA
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Summary of findings & contributions

Helical Guided Ultrasonic Waves (HGUW)

Numerical modeling

• Guidelines for efficient modeling of HGUW using Finite Element methods

• FE modeling can estimate the interaction of HGUW with a variety of defects (e.g., corrosion, cracks)

Active Method

• Permanently attached, long-term monitoring system

• Reduced the number of sensing units

• Localization of corrosion-like defects in steel pipelines (internal & external, 10%CSA)

• Thickness reconstruction (tomography) 

• Algorithms effective for small & low-contrast defects

Passive Method

• Qualitative monitoring of corrosion is steel pipes by monitoring the HGUW Acoustic Emission 

• b-value methodology for corrosion 

• Assist the early diagnosis of corrosion in pipes

• Identify critical stages of the corrosion progression
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Recommendations for future work

Active method

• Establish confidence intervals or probability of detection (POD) for variety of defect sizes.

• Introduce additional corrosion profile parameters in 2D acoustic modeling.

• Extent the active monitoring algorithm to complex geometries.

• Investigate baseline-free alternatives.

Passive method

• Investigate pressurized pipes.

• Use the HGUW-AE for distinguishing different forms of corrosion.

• Investigate the HGUW-AE method for estimating the remnant thickness. 

For both methods

• Field testing to study the influence of noise and vibrations during data collection.  
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Thank you !
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University of Texas at Austin
salamone@utexas.edu
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