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LEGAL NOTICE 

This information was prepared by Gas Technology Institute ("GTI") for U.S. DOT/PHMSA and 

Operations Technology Development, OTD.  

Neither GTI, the members of GTI, the Sponsor(s), nor any person acting on behalf of any of 

them: 

Makes any warranty or representation, express or implied with respect to the accuracy, 

completeness, or usefulness of the information contained in this report, or that the use of any 

information, apparatus, method, or process disclosed in this report may not infringe privately-

owned rights.  Inasmuch as this project is experimental in nature, the technical information, 

results, or conclusions cannot be predicted.  Conclusions and analysis of results by GTI 

represent GTI's opinion based on inferences from measurements and empirical relationships, 

which inferences, and assumptions are not infallible, and with respect to which competent 

specialists may differ. 

Assumes any liability with respect to the use of, or for any and all damages resulting from the 

use of, any information, apparatus, method, or process disclosed in this report; any other use 

of, or reliance on, this report by any third party is at the third party's sole risk. 

The results within this report relate only to the items tested/reviewed. 
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PART I: SUMMARY, TECHNICAL APPROACH, AND 
DATA ORGANIZATION 

Part I contains:  

 Chapter 1: Executive Summary 

 Chapter 2: Technical Approach and Data Organization 

 

Chapter 1: Executive Summary 

1.1 Project Objective 
The deliverables of this project will facilitate the use of non-destructive surface testing: micro-

indentation, micro-machining, in situ chemistry, and replicate microscopy analysis as accurate, 

efficient, and cost-effective tools for material property confirmation.  

This work will provide benefits to pipeline safety, energy continuity, and integrity assessment 

programs since the developed techniques and models and validated testing technology will not 

require a line to be taken out of service or destructively cut out samples from the in-service 

pipeline. 

The results of this project will also be applicable to DOT/PHMSA regulations that require 

operators to backfill their material property records for grandfathered pipeline segments and/or 

those that do not have adequate material records. 

1.2 Acknowledgements 

Sponsors 

The project team greatly thanks the two sponsors of this effort: 

U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration, 

under project #729, agreement 693JK31810003. 

Public project web page at: https://primis.phmsa.dot.gov/matrix/PrjHome.rdm?prj=729 

Operations Technology Development, under project OTD 4.14.c.2 

Further information available at: https://www.otd-co.org. 
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Technical Advisory Panel (TAP)  

 DOT/PHMSA, OTD 

 GTI, Element Resources, and ASU 

 Gas Pipeline Participants 

o Ameren 

o Peoples Gas 

o North Shore Gas 

o National Fuel 

o Southwest Gas 

o Intermountain Gas 

o Dominion 

o National Grid 

Project Team 

 U.S. DOT / PHMSA: Joseph Pishnery (AOR) and Robert Smith (Prgm Mgr.) 

 OTD: Mike Adamo 

 Element Resources: Daniel Ersoy 

 Gas Technology Institute: Brian Miller and Marta Guerrero-Merino 

 Arizona State University: Dr. Yongming Liu, Jie Chen, Qionfang Zhang, Sonam Dahire, and 

Nan Xu 

1.3 Report Structure 

The report represents a significant body of work over 3 years+.  Therefore, the report is broken up 

into five "Parts" which each house Chapters related to the Part. 

The five Parts are: 

 Part I: Summary, Technical Approach, and Data Organization 

 Part II: Surface / Bulk Testing Comparisons 

 Part III: Modeling 

 Part IV: Project Conclusions and Recommendations 

 Part V: Appendices, References, and Attachments 
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1.4 Concise Report Chapter Summaries 
This section provides a high level and concise summary of each of the five Parts and related eight 

Chapters.  The remainder of the report provides further details for each section and the 

attachments which number 1,000 pages provide much more detail and supporting information. 

Part I: Summary, Technical Approach, and Data Organization 

Chapter 1: Executive Summary 

Provides concise summary of the project: objective, team, and chapter content. 

Chapter 2: Technical Approach and Data Organization 

The test results from thousands of lab and field material tests done on actual pipeline samples 

have been used to develop models that account for pipe material thermo-mechanical process 

variations and through-wall variability of material, mechanical, and chemical properties. 

A Technical Advisory Panel (TAP) was formed with the sponsors, the technical team, and eight 

pipeline operators.  The TAP was used to solicit input on scope of work details, operational 

considerations, and deliverable design.  

A separate "training set" of twenty pipelines was made available to GTI, Element Resources, and 

ASU to allow initial model testing and prove-out prior to the seventy primary samples that were 

used to fully characterize pipeline properties and the correlation of surface to bulk properties, as 

well as develop predictive models of bulk properties based solely on surface obtained pipeline 

data. 

A set of seventy pipeline samples (termed Pipe Library) that were in service from the natural gas 

industry were selected for the project testing and modeling.  A great deal of care and effort was 

put forth to select a reasonable number that provided the adequate breadth of variety as typically 

encountered by the industry in the field. 

The Pipe Library detailed breakdown in the report is termed the design of experiments (DOE).  The 

ranges for the key pipeline attributes are: 

 Installation years from 1930 to 2004 with over 60% pre-code pipelines 

 Diameters from 4 to 30 inches 

 Grades from A to X52 

 All steel types: rimmed/capped, semi-killed, and fully killed 

 All key long seam types: ERW, SAW, Seamless, and Spiral 

 Wall thickness over wide range: 0.156 to 0.460 inches 

 Chemistry grade variety, e.g.: 1008, 1010, 1015, 1016, 1021, 1022, 1023, 1025, 1026, 1030, 

1522, 1525, and vanadium and niobium High Strength Low Allow (HSLA) grades 

 ASTM Grain Size (log scale) range spanning: 7.0 to 13.0 

A structured, column database was developed with 203 variables (fields) to collect and organize all 

project test data from the lab and field-based testing.  A separate, similar but smaller database, 

was designed to collect and organize a supplemental toughness testing program.  These databases 
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house nearly 15,000 data entries from lab and field-based testing and are provided as Appendix A 

and Appendix B external Excel files in column database orientations. 

Part II: Surface / Bulk Testing Comparisons 

Chapter 3: Material Yield and Tensile Strength, Grain Size, and Chemistry 

This chapter describes the trends and comparisons between surface and bulk pipe properties.  

Methodologies are listed in Chapter 2 and the associated and very detailed Attachments to this 

report.  Readers are directed to these sections for more information related to methods and 

procedures. 

The chapter is broken down into four main sections, one each focused on: yield strength, ultimate 

tensile strength, chemistry, and grain size.  Chemistry is also very important to determine steel 

type. 

The testing uncovered a range of variation across the pipe wall thickness.  The data used in this 

Chapter is provided in Appendix A. 

For the normalized/annealed seamless pipelines, the properties were mostly uniform or isotropic 

across the pipe wall, meaning that the nondestructive evaluation technologies done on the pipe 

outer wall surface are representative of the rest of the wall and therefore the bulk properties 

needed for characterization. 

For non-seamless pipes (that have long seam welds) there can be significant anisotropic properties 

of yield strength and chemistry (specifically carbon segregation) between the surface obtained 

values and an average across the wall and/or bulk chemistry and full-wall mechanical testing 

results.   

The reasons for this difference between the surface and bulk properties is discussed in detail in 

this chapter, but in summary the major categorical factors are: (a) cold work and forming stress 

from pipe manufacturing (without post production normalizing/annealing as in seamless pipe), (b) 

chemical segregation from primary steel production (e.g., rimmed/capped centerline carbon 

segregation), (c) HSLA steel grain refinement especially near the outer surfaces of the pipe wall, 

and (d) other thermomechanical factors. 

The surface NDE test results from two technologies (Frontics AIS and MMT HSD) for yield strength 

and ultimate tensile strength were compared to the full-wall lab test results.   

The observed trends likely indicate that the MMT HSD "surface scratch-type" technique (see 

Attachments) interrogates mostly the outer layers of the pipe wall while the Frontics AIS 

"indentation-type" technique (see Attachments) may in effect test deeper into the pipe wall.   

Seamless pipe is normalized/annealed and is therefore very homogenous across its thickness.  

Welded pipe on the other hand is produced from hot rolled plate or strip that usually exhibits 

through-thickness variations in microstructure. These differences in grain size or in pearlite 

interlamellar distance are produced by localized through-thickness differences in temperature as 

the plate is rolled and then cooled on the run-out table.  In addition, forming the pipe through the 

U-bend, O-bend, and Expansion (UOE) process followed by welding often produces significant 
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residual stresses and cold work that tends to make the outer layers of the pipe "stronger" from a 

yield testing standpoint.  Finally, the cold expansion step (and potential mill hydrotest) may or 

may not have been performed which introduces another element of uncertainty in properties 

prediction. 

The same can be said for HSLA steels that due to the chemistry and grain refiners added, and 

thermomechanical processing, may lead to a finer (smaller diameter) grain size structure on the 

outer walls of the pipe thickness. This could also increase the yield strength near the surface due 

to the well-known Hall-Petch phenomenon that finer grain sizes contribute to higher yield 

strengths.  While the properties of all steels are affected by thermomechanical processing factors, 

HSLA or micro-alloyed steels are produced in way so as to maximize the strengthening 

mechanisms available through controlled rolling and accelerated cooling.  

Taken as a whole, and on average, welded and/or HSLA pipes and steels lead to a pipe stronger on 

the outside layers than the inside layers.  From the data, this appears to be a likely reason why the 

MMT surface yield strengths (prior to any modeling) are higher for these situations than the full-

wall lab tensile tests.   

Both NDE techniques exhibited little difference between the lab and their NDE surface-derived 

tensile strengths.  This is consistent with the reality that the factors that produce a gradient of 

yield strength across a pipe wall do not affect the ultimate tensile strength the same way.  The 

yield strength is very sensitive to any changes that reduce or increase the ability for atomic slip 

planes and dislocations to move through the material matrix, whereas tensile strength is actual 

breaking of these bonds outright.   

Chapter 4: Material Toughness (Supplemental Section) 

A subset of 30 of the 70 pipeline samples from the DOE had extensive Charpy V-notch (CVN) 

toughness testing completed on them.  The data for these is provided in Appendix B. 

This chapter analyzes the results of the testing which included CVN absorbed energy, lateral 

expansion, and percent shear over various temperatures.  Enough temperatures were performed to 

establish the CVN upper shelf energy level. 

Frontics also tested these 30 pipeline samples in the form of coupons for KIC fracture toughness.  

Those results are presented in Attachment #4 but are not compared directly to the CVN values 

since the testing direction and mode are different. 

In general, the CVN energy went down when temperature was reduced and phosphorous and 

sulfur levels increased for non-HSLA steels.  

The research team feels that this Chapter will provide an excellent foundation for future research 

and development as new field-ready and non-destructive toughness test methods are developed. 
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Part III: Modeling 

Chapter 5: Causally Based Regression 

This chapter contains the regression and model fits (when provided) from the nondestructive 

technology and the causal models from the analysis developed during this project, as well as 

historical models from the literature.   

The causality of each model is a function of the choices of independent variables and how they are 

interacted or not.  The choices for the structure of the causal models were based on the range of 

API steels tested and expected in the field, i.e., the DOE.  These include lower to moderate carbon 

steels with ferritic and/or pearlitic phase structures.  The inclusion of the key alloy elements used 

to strengthen the steels through solid solution and precipitation strengthening were accounted for 

as well. 

Many historic models recorded in the literature were tested but it became evident that although 

these models did have some merit, that the lack of ubiquitous computing power from the decades 

that they were developed potentially resulted in a limited number of terms for the least square 

regressions and exclusion of some key, higher order terms.  With the availability of very powerful 

personal computers and equally important the associated statistical analysis packages, there were 

no restrictions on the causal model terms and forms selected for modeling in this project. 

The best causal models for the Frontics and MMT NDE technologies were developed for yield 

strength and outperformed all the other models from historical research or those that were 

developed at the time by the technology provider in some cases. 

The modeling of the ultimate tensile strength was a much simpler formula from a causal basis.  It 

is highly dependent on manganese and carbon content.  There are only minimal differences 

between all of the models for ultimate tensile strength for both the custom and the historic 

models in the literature. 

In summary, the project was highly successful with the model development.  The causal model 

developed and combined with the Frontics AIS output for yield strength was able to achieve a 

predicted vs. actual regression fit with a 95% confidence for predicting yield strength across the 

entire pipe sample DOE. The MMT technology showed non-conservative bias in all models for yield 

strength, especially near or above 50 ksi actual (full-wall) yield strength for the aforementioned 

reasons.  The ultimate tensile strength causal models achieved the same 95% confidence level for 

both NDE technologies across the full pipe DOE range. 

Chapter 6: Data Analytics Modeling: OLS, BMA, BNM, GPM, and MBGPM 

Several classical and novel data analytics methods are demonstrated, compared, and validated 

using the collected experimental datasets. They are: ordinary least-square regression (OLS), 

Bayesian Model Averaging (BMA), Bayesian Network Model (BNM), Gaussian Process Model (GPM), 

and Manifold-Based Gaussian Process Model (MBGPM). The results showed that the Bayesian 

averaging and updating principle is able to show the best prediction performance with large 

uncertainties from measurements. It also shows that the Frontics measurements have less 

prediction error in the investigated data analytics methods which is consistent with the causal-
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based OLS modeling of Chapter 5.  The models developed in this chapter are included as R-

language source code in Appendix D. 

Part IV: Project Conclusions and Recommendations 

Chapter 7: Conclusions 

1. The project successfully measured and categorized the mechanical, chemical, and physical 

differences across a broad range of pipe sample walls through methodical full-wall and bulk 

testing as compared to surface-collected physical, mechanical, and chemical NDE testing. 

2. Differences in yield strength between the surface derived values and bulk, full-wall were 

analyzed via a sensitivity study and explained through the changes in surface yield strength 

due to primary steel production processes, seam type and pipe forming process, and steel 

chemistry.  All these factors/variables can be determined from surface testing. 

3. Based on the extensive testing and analysis an ambitious set of modeling tasks were completed 

include causal-based OLS and data analytics-based modeling.  Successful models for yield 

strength and ultimate tensile strength were developed to predict bulk properties from purely 

surface obtained information for yield strength and tensile strength. 

4. The optimum causal models combined with the Frontics AIS technology surface data achieved 

a 95% confidence in yield strength predictions by overlapping the full-wall yield strength from 

lab tests across the entire pipe sample DOE.  The optimal models for the MMT HSD exhibited 

bias in the yield strength for certain pipe configurations related to non-isotropic properties 

across the pipe wall.  The models reduced the bias of the MMT results, but could not 

completely adjust for it particularly at higher yield strengths. 

5. Both NDE technologies optimal models, coupled with the surface data, achieved 95% 

confidence in ultimate tensile strength predictions by overlapping the full-wall ultimate tensile 

strength from lab testing across the entire pipe sample DOE. 

6. Chemistry values were correlated successfully for 15 key elements, and the only significant 

variation of chemical properties across the pipe wall was noted from surface to bulk values for 

carbon and sulfur.  A set of chemical element kernel distributions were developed to estimate 

the magnitude of these differences across the pipe wall based on steel type and other factors. 

7. A supplemental body of detailed toughness testing was completed on over 40% of the pipe 

samples in the DOE and collected and analyzed as a supplemental task of the project.  This 

work will provide invaluable to future NDE technology development aimed at estimating pipe 

toughness through surface nondestructive testing. 
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Chapter 8: Recommendations 

1. The relations, models, and distributions developed under this project can be used to predict 

full-wall yield and ultimate strengths from surface-based NDE technology such as Frontics AIS 

and MMT HSD for seamless pipes.   

2. The Frontics AIS technology also was successful at a 95% confidence for predicting yield 

strength across the entire pipe sample DOE on non-seamless pipes, i.e., pipes with long seam 

welds like ERW, SAW, etc. 

3. Further research is warranted/advised into the promising MMT HSD technology to help reduce 

bias in the full-wall yield strength predictions based on surface readings for non-seamless pipe 

that have variation of yield strength across the pipe thickness cross section.  The current 

models provided by the manufacturer and developed under this project could not remove the 

bias in these measurements, particularly for higher yield strengths.  

4. The relations, models, and distributions developed under this project can be used to predict 

full-wall ultimate tensile strengths from surface-based NDE technology such as Frontics AIS 

and MMT HSD.  Using the causal-based models developed, both technologies achieved a 95% 

confidence for predicting tensile strength across the entire pipe sample DOE, seamless or non-

seamless. 

Part V: Appendices, References, and Attachments 

Appendices 

 Appendix A: External File - Project Master Data Table for 70 Pipeline Samples in Excel  (778KB). 
APPENDIX_A_MASTER_DATA_TABLE_V01.xlsx 

 Appendix B: External File - Charpy Toughness and Related Data 30 Pipeline Samples in Excel (195 KB). 
APPENDIX_B_CHARPY_DATA_TABLE_V01.xlsx 

 Appendix C: Contained in this report - Causal-Based Regression Output Tables. 

 Appendix D: External File - R-Code for Regressions in Chapter 6 in a ZIP file (53 KB). APPENDIX_D_CH6_R-
CODE.zip 

References 

 Final report citations are expanded in this section. Contained in this report. 

Attachments 

 Attachment #1 - Frontics: Measurement of Yield strength, Tensile strength and Fracture toughness of API 5L 
pipe using Instrumented Indentation Testing (328 pages pdf). FARE-190603-1 Part I.pdf 

 Attachment #2 - Frontics: Measurement of Yield strength, Tensile strength and Fracture toughness of API 5L 
pipe using Instrumented Indentation Testing - Part II (298 pages). FARE-190603-1 Part II.pdf 

 Attachment #3 - Frontics: Measurement of Yield strength, Tensile strength and Fracture toughness of API 5L 
pipe using Instrumented Indentation Testing - Additional Sample (8 pages). FARE-190723-1 Part I Appendix 
2.pdf 

 Attachment #4 - Frontics: Measurement of Yield strength, Tensile strength and Fracture toughness of API 5L 
pipe samples using Instrumented Indentation Testing - Coupon testing (108 pages). FARE-201122A.pdf 

 Attachment #5 - MMT: Procedure Bundle (47 pages). 2020MMTProcedureBundle_2021.03.01.pdf 

 Attachment #6 - MMT: Final report for nondestructive HSD Testing for 70 cutout samples (267 pages). 
2021.02.10-MMTFinalNDEReportForGTI19006.pdf  
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Chapter 2: Technical Approach and Data 
Organization 

2.1 Overview 

Focus 

This project's focus is to test and model state-of-the-art technology from Massachusetts Materials 

Technologies (MMT), Frontics America (Frontics), SciApps, Arizona State University (ASU), Element 

Resources, and the Gas Technology Institute (GTI). 

The test results from thousands of lab and field material tests done on actual pipeline samples 

have been used to develop models that account for pipe material thermo-mechanical process 

variations and through-wall variability of material, mechanical, and chemical properties.   

A simplified interrelation diagram between properties is shown in Figure 1 below. 

 

Figure 1. A Simplified Interrelation Diagram. 

 

These correlations will allow surface-obtainable information from indentation and other surface 

testing techniques, surface chemistry analysis, and surface optical microscopy to be used for 

material property validation for pipelines. 
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Project Structure and Implementation Plan 

The project team structure is shown in Figure 2. 

 

Figure 2. Project Team Structure. 

 

 

2.2 Approach by Task 

Task 1: Form Technical Advisory Panel and Scope Confirmation  

 The project was kicked off via a teleconference with DOT PHMSA and OTD to confirm scope, 

schedule, and communication plans 

 A Technical Advisory Panel (TAP) was formed with the sponsors, the technical team, and eight 

pipeline operators.  The TAP was used to solicit input on scope of work details, operational 

considerations, and deliverable design.  

 

Task 2: Develop Project Database and Pipeline Sample Library 

 Previously tested and available material properties of pipeline steels were organized and 

compiled, including: surface and bulk chemistry; surface and bulk mechanical properties (yield 

and tensile strength, toughness, hardness); and surface and bulk metallurgical grain size.   

 Pipeline samples were selected from the extensive GTI pipeline library and supplemented with 

testing samples received from the TAP and other utility and pipeline operators. 

 A training set of twenty pipelines was made available to GTI, Element Resources, and ASU to 

allow initial model testing and prove out prior to the seventy additional samples that needed 

comprehensive testing done. 



11 

 

Task 3: Develop Testing Matrix and Execute Testing 

A testing matrix was developed using the MMT, Frontics, ICP, and field microscopy testing 

technology and methods, coupled with the database design and physical samples from Task 2.  

These tests were executed and correlated with full-wall and bulk tests of the same pipeline 

specimens. 

A high level summary of the extensive tests completed is listed directly below.  The test 

data/matrix is contained in Appendix A and Appendix B which are external Excel spreadsheet 

files with flat-table column oriented databases.  The test data represents approximately 15,000 

cells or data points from the tests noted below.  Several photos of testing equipment are presented 

in Figure 3 as well. 

Surface, field-based testing includes technology from MMT, Frontics, and Sci-Apps: 

• Surface Yield and Tensile Strength remote and across welds 

– MMT Hardness, Strength, and Ductility (HSD) 

– Frontics Advanced Indentation System (AIS) 

• Surface Toughness 

– Frontics AIS KIC fracture toughness estimates (supplemental task) 

• Surface Chemistry 

– SciApps field-ready, surface-based Handheld Laser Induced Breakdown Spectroscopy 

(HH LIBS) Optical Emission Spectroscopy (OES) 

– Surface removed filings 

• Surface Microstructure and Grain Size 

– Field-based replicates 

– In situ microscopy 

Baseline (referee) lab-based testing includes 

• Lab-based Strength via full wall tensile tests per ASTM A370  Fig A2.3 specimen 5 with 1"-

gauge length longitudinal specimens and an average of 3 specimens 

• Lab-based Chemistry 

– Lab Glow Discharge Spectroscopy (GDS) chemistry at 4 different depths. (0.005", 

0.020", 3/4 thickness and mid thickness). Includes C, S, and P by GDS. 15 elements 

are included for baseline chemistry 

– Bulk Inductively Coupled Plasma (ICP) OES 

– Bulk LECO ASTM E1019 for C, S, and N 

• Lab-based Grain Size near surface, ¼ pt, and center for both longitudinal and transverse 

sections, average of 6 readings; then average of near surface grain sizes (~0.005" deep) 

longitudinal and transverse specimens 

• Lab-based Hardness via OD Rockwell B Hardness after ~ 0.005" surface grind; ID Rockwell 

B hardness after ~ 0.005" surface grind 

• Lab-based Toughness via full Charpy S-curve toughness curve testing and development 
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Figure 3. Examples of Several Testing Methods. 

(a)  (b)  (c)   

 

(d)  (e)  (f)  

 

(g)  (h)  (i)  

(a) Frontics AIS, (b) MMT HSD, (c) SciApps HH LIBS-OES, (d) Tensile Bars, (e) Grains Size Computer, (f) Lab ICP-OES 

Chemistry, (g) Hardness Tester, (h) Charpy Small Hammer, (i) OES Units. 

 

 

  



13 

Task 4: Data Analysis and Model Development and Optimization 

Element Resources, GTI, and ASU provided advanced statistical analysis and surface-to-bulk 

causal-based regression and associated model development.  This included developing chemical-

physical-mechanical models for predicting the bulk mechanical properties (yield and tensile 

strength) of the steels from surface located measurements.   

The causal-based models incorporated factor interactions and variation in testing results and 

provided solutions.  Also included was the creation of probability distribution functions of the 

surface-to-bulk differences (mechanical and chemical data) and performing a sensitivity analysis 

by pipeline steel type, pipeline manufacture method, and other attributes. 

The modeling task was subdivided into eight broad categories as shown in Table 1 below.  The 

first three, led by Element Resources are presented in detail in Chapter 5, and the remaining five 

led by ASU, are presented in detail in Chapter 6. 

Table 1. Modeling Categories. 

Modeling Categories 

Team Lead Category Description Model Abbreviation 

Element 
Resources 
Chapter 5 

1 Descriptive Statistics of All Data DS 

2 Sensitivity Study of Independent on Dependent Variables SS 

3 Causal-Based - Ordinary Least Squares Models CB-OLS 

Arizona 
State 

University 
Chapter 6 

4 Ordinary Least Squares Models OLS 

5 Bayesian Update Model Averaging BMA 

6 Bayesian Network Model s BNM 

7 Gaussian Process Models GPM 

8 Manifold-Based Gaussian Process Models MB-GPM 

Task 5: Final Report and Implementation Guide 

 Development of this report and all supporting materials.   

 This report includes the final databases, completed causal models with coefficients by 

technology type for yield and tensile strength, and advanced numerical prediction models and 

the associated "R" programming language modeling source code (R is an open source, free 

application to the public). 

Task 6: Project Management and Communications 

 This task included regular communication and monthly updates to PHMSA and OTD, quarterly 

reporting activities, coordination with the TAP, subcontractors, and outside organizations and 

users, annual PHMSA Peer Reviews, and a final virtual presentation of the project results via a 

web-based meeting that PHMSA will organize and announce to the public. 

 A project presentation to at least one public pipeline conference/workshop/forum or 

published periodical/magazine. 

 A peer review paper from this research was accepted and published, "Probabilistic bulk 

property estimation using multimodality surface non-destructive measurements for vintage 

pipes", on June 22, 2020, in the Journal of Structural Safety (Elsevier)[1].  Additional papers are 

submitted and planned.    
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2.3 Pipe Sample Library Summary and Raw Testing Data 
A set of seventy pipeline samples that were in service from the natural gas industry were selected 

for the project testing and modeling.  A great deal of care and effort was put forth to select a 

reasonable number that provided the adequate breadth of variety as typically encountered by the 

industry in the field. 

Table 2 to Table 6 and Figure 4 to Figure 8 show the excellent range of pipeline samples by 

installation year, diameter, reported grade, steel type, long seam type, wall thickness, API grade, 

and chemistry (UNS) grade.  The points in the plots are jittered since they would otherwise 

overlap. 

The pipeline sample set proved to be very robust and provided an excellent range of seam types, 

HSLA and non-HSLA steels, ingot and slabs with and without significant carbon segregation, grain 

size variations, etc. 

The modeling section will show that the relationship between surface yield strength and bulk yield 

strength are sensitive to many of these factors and their variation from the outer surface of the 

pipe toward the centerline. 

Table 2. Pipeline Samples by Installation Year. 

Install Year  Freq.     Percent      Cum. 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
1930            1        1.43        1.43 
1947            5        7.14        8.57 
1950            2        2.86       11.43 
1952            1        1.43       12.86 
1953            1        1.43       14.29 
1954            3        4.29       18.57 
1956            1        1.43       20.00 
1958            2        2.86       22.86 
1959            1        1.43       24.29 
1960            6        8.57       32.86 
1961            1        1.43       34.29 
1963            3        4.29       38.57 
1965            4        5.71       44.29 
1966            3        4.29       48.57 
1967            2        2.86       51.43 
1968            6        8.57       60.00 
1970            1        1.43       61.43 
1972            3        4.29       65.71 
1973            1        1.43       67.14 
1981            1        1.43       68.57 
1983            2        2.86       71.43 
1992            1        1.43       72.86 
1995            1        1.43       74.29 
2004            1        1.43       75.71 
Unknown        17       24.29      100.00 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
Total          70      100.00 
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Table 3. Pipeline Samples by Diameter. 

Pipe Diam (in)      Freq.     Percent        Cum. 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
          4             5        7.14        7.14 
          6             9       12.86       20.00 
          8            16       22.86       42.86 
         10            12       17.14       60.00 
         12            10       14.29       74.29 
         16             5        7.14       81.43 
         18             3        4.29       85.71 
         20             4        5.71       91.43 
         24             3        4.29       95.71 
         26             2        2.86       98.57 
         30             1        1.43      100.00 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
      Total            70      100.00 

 

Table 4. Two Way Table of Pipeline Samples by Installation Year and Diameter. 

                                       Pipe Diameter                       
                      4   6    8   10   12   16   18   20   24   26   30   Total 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
Installation Year                                                                
  1930                              1                                          1 
  1947                         5                                               5 
  1950                                        2                                2 
  1952                                                                 1       1 
  1953                                        1                                1 
  1954                         2         1                                     3 
  1956                                   1                                     1 
  1958                         1                                  1            2 
  1959                1                                                        1 
  1960                3   2    1                                               6 
  1961                                   1                                     1 
  1963                              2    1                                     3 
  1965                    2    1         1                                     4 
  1966                1        2                                               3 
  1967                         1    1                                          2 
  1968                         3                   3                           6 
  1970                                        1                                1 
  1972                                        1         2                      3 
  1973                                                  1                      1 
  1981                    1                                                    1 
  1983                              1    1                                     2 
  1992                    1                                                    1 
  1995                              1                                          1 
  2004                                   1                                     1 
  Unknown                 3         6    3              1    3    1           17 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
  Total               5   9   16   12   10    5    3    4    3    2    1      70 
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Table 5. Two Way Table of Pipeline Samples by Installation Year and Reported Grade. 

                                         Pipe Grade Reported                           
                      GradeA   GradeB   NotReported   X30   X42   X42‐X52   X46   X52   Total 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
Installation Year                                                                             
  1930                     1                                                                1 
  1947                              5                                                       5 
  1950                                            2                                         2 
  1952                                                                              1       1 
  1953                              1                                                       1 
  1954                                            3                                         3 
  1956                                            1                                         1 
  1958                                            2                                         2 
  1959                                            1                                         1 
  1960                                            6                                         6 
  1961                                            1                                         1 
  1963                                            2                           1             3 
  1965                                            3           1                             4 
  1966                                            3                                         3 
  1967                              1             1                                         2 
  1968                                            3           1                     2       6 
  1970                                            1                                         1 
  1972                                            1           2                             3 
  1973                                                        1                             1 
  1981                                            1                                         1 
  1983                                            2                                         2 
  1992                                            1                                         1 
  1995                                            1                                         1 
  2004                                                        1                             1 
  Unknown                                        14     1               2                  17 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
  Total                    1        7            49     1     6         2     1     3      70 

 

It is important to note that after lab testing, the full-wall yield strengths ranged from 30 ksi to 

over 73 ksi in round numbers.  This includes the 49 unknown grades in the table above for the 70 

samples.  This is an excellent range and distribution of yield strengths that represents pipe 

strengths in service of most interest to this project and the associated surface to bulk property 

relationships. This distribution can be seen and ordered as desired in the Appendix A, Master Data 

Table. 
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Table 6. Two Way Table of Pipeline Samples by Installation Year and Steel Type. 

                                             Steel Type                       
                      KilledAl   KilledSi   RimmedCapped   SemiKilled   Total 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
Installation Year                                                             
  1930                                                 1                    1 
  1947                                  5                                   5 
  1950                                  2                                   2 
  1952                                                              1       1 
  1953                                                              1       1 
  1954                       1                         2                    3 
  1956                       1                                              1 
  1958                                                 1            1       2 
  1959                                                 1                    1 
  1960                       1                         1            4       6 
  1961                                                 1                    1 
  1963                       2          1                                   3 
  1965                                  2                           2       4 
  1966                       1                         1            1       3 
  1967                                  1              1                    2 
  1968                                  2              3            1       6 
  1970                                                 1                    1 
  1972                       1                                      2       3 
  1973                                                 1                    1 
  1981                       1                                              1 
  1983                       1                         1                    2 
  1992                                  1                                   1 
  1995                                  1                                   1 
  2004                                  1                                   1 
  Unknown                    1          8              5            3      17 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
  Total                     10         24             20           16      70 
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Figure 4. Pipeline Sample by Steel and Long Seam Type. 

 

 

Figure 5. Pipeline Sample by Installation Year and Pipe Grade. 

 

 

 



19 

Figure 6. Pipeline Sample by Diameter and Wall Thickness. 

 

 

Figure 7. Pipeline Sample by Chemistry Grade and API Grade Reported. 
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Figure 8. Pipeline Sample by Steel Type and ASTM Grain Size. 
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2.4 Data Organization and Test Methods Used 
The master column database for the project is provided as a separate Excel Spreadsheet due to its size, see Appendix A for the main 

database and the supplemental Appendix B for the Charpy Toughness data and metadata used to create the plots in this report.  Table 

7 below describe the database columns of data. Table 8 provides a glossary of abbreviations and initialisms used in the database. 

Database Columns, Titles, and Descriptions with Test Method 

Table 7. Project Master Database Structure, Fields, and Testing Methods. 

Column No. Short Title Description 
1A PIPE_NUMBER Pipe number given by GTI for sample identification 
2A DIAMETER_NOMINAL Nominal diameter of the pipe in inches 

3A WALL_THICKNESS_AS_RECEIVED 
States the wall thickness of the pipe in inches without any treatment to the sample, i.e.: 
including corrosion products, adhesions 

3B WALL_THICKNESS_LAB_SAMPLE 
States the wall thickness of the pipe in inches after preparation of the sample for 
testing 

4A INSTALLATION_YEAR Specifies the installation date as provided by the utilities 
5A GRADE_REPORTED Shows the steel grade as known by the utilities 
6A STEEL_TYPE_ESTIMATE Specifies the GTI estimate of steel (rimmed, capped, killed Si, killed, Al, semi-killed) 
7A GRADE_CHEMISTRY_GROUP States the steel grade as per SAE-ASTM 

8A WELD_TYPE_GTI 
Determines whether the pipe has a weld or not and what type of weld it is according to 
GTI inspections 

8B WELD_TYPE_MMT 
Determines the type of ERW weld, either High Frequency (HF), High Frequency 
Normalized (HFN), or Low Frequency (LF), identified by MMT on 25 pipes of the 70 set 

9A YS_LAB_FULL_WALL 
Yield Strength mini: Shows the yield strength in ksi as evaluated from a mini 1” gauge 
length longitudinal sample 

9B YS_FULL_WALL_HALF_PERCENT_EUL 
Yield Strength mini: Shows the yield strength at 0.5% Elongation Under Load in ksi as 
evaluated from a mini 1” gauge length longitudinal sample 

9C UTS_LAB_FULL_WALL 
Tensile Strength mini: Shows the tensile strength in ksi as evaluated from a mini 1” 
gauge length longitudinal sample 

10A YS_FRONTICS_BASE 
Bulk Yield Strength as calculated by Frontics from their non-destructive Instrumented 
Indentation Testing (IIT) using AIS2100 

10B UTS_FRONTICS_BASE 
Bulk Ultimate Tensile Strength as calculated by Frontics from their non-destructive IIT 
using AIS2100 

11A YS_MMT_SURFACE 
Surface measurement of yield strength as 0.5% Elongation Under Load (EUL) obtained 
from MMT HSD Tester 

11B YS_MMT_SURFACE_SDV 
Standard deviation for the surface measurement of yield strength as 0.5% EUL 
obtained from MMT HSD Tester 
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Column No. Short Title Description 

11C UTS_MMT_SURFACE 
Surface measurement of Ultimate Tensile Strength (UTS) obtained from MMT HDS 
Tester 

11D UTS_MMT_SURFACE_SDV 
Standard deviation for the surface measurement of UTS obtained from MMT HSD 
Tester 

12A YS_MMT_BRM Predicted yield strength as 0.5% EUL using a Bayesian Linear Regression model 

12B YS_MMT_BRM_SDV 
Standard deviation for the predicted yield strength as 0.5% EUL using a Bayesian 
Linear Regression model 

12C UTS_MMT_BRM Predicted UTS using a Bayesian Linear Regression model 
12D UTS_MMT_BRM_SDV Standard deviation for the predicted UTS using a Bayesian Linear Regression model 
13A YS_MMT_LRM Predicted yield strength as 0.5% EUL using a Multiple Linear Regression model 

13B YS_MMT_LRM_SDV 
Standard deviation for the predicted yield strength as 0.5% EUL using a Multiple Linear 
Regression model 

13C UTS_MMT_LRM Predicted UTS using a Multiple Linear Regression model 
13D UTS_MMT_LRM_SDV Standard deviation for the predicted UTS using a Multiple Linear Regression model 
14A YS_MMT_ANN Predicted yield strength as 0.5% EUL using an Artificial Neural Network model 

14B YS_MMT_ANN_SDV 
Standard deviation for the predicted yield strength as 0.5% EUL using an Artificial 
Neural Network model 

14C UTS_MMT_ANN Predicted UTS using an Artificial Neural Network model 
14D UTS_MMT_ANN_SDV Standard deviation for the predicted UTS using an Artificial Neural Network model 

15A C_BULK 
Bulk chemical composition by weight percentage of carbon as per ASTM E1019 by 
Combustion 

15B, 15C MN_BULK, P_BULK 
Bulk chemical composition using ICP (Inductively Coupled Plasma). Lab weight 
percentage of elements, Manganese and Phosphorus 

15D S_BULK 
Bulk chemical composition by weight percentage of sulfur as per ASTM E1019 by 
Combustion 

15E - 15N [Element]_BULK 
Bulk chemical composition using ICP (Inductively Coupled Plasma). Lab weight 
percentage of elements, Al, Cr, Cu, Mo, Nb, Ni, Si, Ti, V, and B 

15O N_BULK 
Bulk chemical composition by weight percentage of nitrogen as per ASTM E1019 and 
E1409 using Fusion analysis (LECO) technique 

15P PEARLITE_PERC_BULK 
Percentage pearlite estimated by the lever rule using the bulk carbon content as per 
column 15A 

16A - 16O [Element]_5MIL 
Chemical composition by OES (optical emission spectroscopy) using a laboratory 
spectrometer, SPECTROMAXX, after grinding 0.005” from surface for C, Mn, P, S, Al, 
Cr, Cu, Mo, Nb, Ni, Si, Ti, V, B, and N in wt.% 

16P PEARLITE_PERC_5M 
Percentage pearlite estimated by the lever rule using the carbon content at 0.005” from 
surface as per column 16A 

17A - 17O [Element]_20MIL 
Chemical composition by OES (optical emission spectroscopy) using a laboratory 
spectrometer, SPECTROMAXX, at a depth of 0.020” from surface for C, Mn, P, S, Al, 
Cr, Cu, Mo, Nb, Ni, Si, Ti, V, B, and N in wt.% 
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Column No. Short Title Description 

18A - 18O [Element]_QTRTHK 
Chemical composition by OES (optical emission spectroscopy) using a laboratory 
spectrometer, SPECTROMAXX, at a depth of one quarter of the thickness from O.D. 
surface for C, Mn, P, S, Al, Cr, Cu, Mo, Nb, Ni, Si, Ti, V, B, and N in wt.% 

19A - 19O [Element]_MIDWALL 
Chemical composition by OES (optical emission spectroscopy) using a laboratory 
spectrometer, SPECTROMAXX, at midwall for C, Mn, P, S, Al, Cr, Cu, Mo, Nb, Ni, Si, 
Ti, V, B, and N in wt.% 

20A - 20O [Element]_AVEGDS 
Average of each element at the: 0.005”, 0.020”, and ¼ thickness, and midwall from the 
surface in wt.% 

20P PEARLITE_PERC_AVE_GDS 
Percentage pearlite estimated by the lever rule using the average carbon content as 
per column 20A 

21A - 21O [Element]_MMT_GRNDGS 
Chemical composition provided by MMT and obtained from pipe grindings for C, Mn, P, 
S, Al, Cr, Cu, Mo, Nb, Ni, Si, Ti, V, and B in wt.%. C and S measured by combustion 
analysis and rest of elements measured by ICP-OES 

22A - 22O [Element]_LIBS 
Surface chemical compositions obtained from SciAps Z-200 series hand-held device 
through Laser Induced Breakdown Spectroscopy (LIBS) for C, Mn, Al, Cr, Cu, Mo, Nb, 
Ni, Si, Ti, V, B, and N in wt.% 

23A - 23O [Element]_LIBS_ERR 
Instrument error for the surface chemical compositions obtained from SciAps Z-200 
series hand-held device LIBS for C, Mn, Al, Cr, Cu, Mo, Nb, Ni, Si, Ti, V, B, and N in 
wt.% 

24A - 24O [Element]_XRF 
Surface chemical composition obtained from SciAps X-series hand-del device through 
X-Ray Fluorescence (XRF) spectroscopy for C, Mn, P, S, Al, Cr, Cu, Mo, Nb, Ni, Si, Ti, 
V, B, and N in wt.% 

25A - 25O [Element]_XRF_ERR 
Instrument error for the surface chemical composition obtained from SciAps X-series 
hand-del device through X-Ray Fluorescence (XRF) spectroscopy for C, Mn, P, S, Al, 
Cr, Cu, Mo, Nb, Ni, Si, Ti, V, B, and N in wt.% 

26A HRBW_OD Rockwell hardness at the outer diameter (OD) of the pipe as per ASTM E18 
26B HRBW_ID Rockwell hardness at the inner diameter (ID) of the pipe as per ASTM E18 

33A GS_COMPOSITE 
Grain size represented as an ASTM number measured as an average as per ASTM 
E112 

33D GS_SURFACE 
Grain size represented as an ASTM number measured at the surface as per ASTM 
E112; typically, at about 0.005” from the surface. 
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Database Glossary of Acronyms and Abbreviations 

Table 8. Glossary of Database Terms. 

Acronym/Abbreviation Description 

AIS Advanced Indentation System 

ANN Artificial Neural Network 

ASTM American Society for Testing and Materials 

AVE Average 

BRM Bayesian Regression Model 

ERR Error 

ERW Electric Resistance Weld 

EUL Elongation Under Load 

GDS Glow Discharge Spectroscopy 

GS Grain Size (ASTM Number) 

GTI Gas Technology Institute 

HF High Frequency 

HFN High Frequency Normalized 

HSD Hardness, Strength, and Ductility 

HSLA High Strength Low Alloy Steel 

ICP Inductively Coupled Plasma 

ID Pipe Inner Diameter 

IIT Instrumented Indentation Testing 

LECO Laboratory Equipment Corporation 

LF Low Frequency 

LRM Linear Regression Model 

MIDWALL Midwall of Pipe 

MIL One thousandth of an inch (0.001 inches) 

MMT Massachusetts Materials Technology 

NAN Not a Number (intentionally blank) 

NDE Non-Destructive Evaluation 

OD Pipe Outer Diameter 

OES Optical Emission Spectroscopy 

PERC Percent 

QTRTHK Quarter Thickness of Pipewall 

SAE Society of Automotive Engineers 

SAW Submerged Arc Welding 

SDV Standard Deviation 

UTS Ultimate Tensile Strength 

YS Yield Strength 

LIBS Laser Induced Breakdown Spectroscopy 

XRF X-Ray Fluorescence 
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PART II: SURFACE / BULK TESTING COMPARISONS 

Part II contains:  

 Chapter 3: Material Yield and Tensile Strength, Chemistry, and Grainsize 

 Chapter 4: Material Toughness (Supplemental Section) 

 

Chapter 3: Material Yield and Tensile Strength, 
Chemistry, and Grain Size 

3.1 Overview 
The data used for this chapter is listed in the Appendix A and Appendix B sections of this report 

in detail and table form.   

This chapter uses plots to describe the trends and comparisons.  Methodologies are listed in 

Chapter 2 and the associated and very detailed Attachments to this report.  Readers are directed 

to these sections for more information related to methods and procedure. 

The chapter is broken down into four main sections, one each focused on: yield strength, ultimate 

tensile strength, chemistry, and grain size.  The latter two are very important variables to 

determine steel type and associated with surface-based NDE to improve the bulk predictions of 

strength through modeling. 

Chapter 5 is focused on modeling of the surface obtainable data to provide unknown bulk 

predictions.  This chapter focuses on the bulk compared to the NDE data.  Therefore, this chapter 

is the basis of Chapter 5 and provides the input data and variables for the models.  The same is 

true for the data analytics modeling used in Chapter 6. 

For this chapter and the remainder of the report, when box plots are used the inner quartile region 

(IQR) represents 50% of the data points and the inner-box horizontal line is the median value.  The 

whiskers of the boxes extend up to 1.5x the length of the IQR and outlier values beyond that are 

plotted as points and jittered (laterally offset) only if necessary. 
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3.2 Yield and Tensile Strength 
Matrix plots are used to plot variables against each other in a systematic way.  They are good at 

displaying trends between variables, both independent and/or dependent variables. 

Figure 9 and Figure 10 contain a matrix plot of the seventy pipeline samples for yield strength and 

ultimate tensile strength respectively.  They include the lab tests and the two NDE techniques: 

Frontics AIS and MMT HSD, but the as measured surface values vs. models of the same which will 

be shown in Chapter 5. 

Matrix Plots of Bulk vs. Surface NDE Strength Comparisons 

Figure 9. Matrix Plot of Yield Strength: Lab vs. Surface. 

 

Figure 10. Matrix Plot of Tensile Strength: Lab vs. Surface. 
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The matrix plots reveal that there is excellent agreement between the two lab yield strength 
techniques and measure, i.e., 0.2% offset and 0.5% elongation under load.  These tests are done in 
an accredited lab and are intra-lab, i.e., from the same lab.  The MMT results appear to have a 
larger spread vs. the lab testing than the Frontics results do for yield testing, regardless of the lab 
method selected. 

The tensile results exhibit a generally tighter grouping of NDE results when compared to the lab 
results and there is no substantive difference noticeable on the matrix plots between the two NDE 
techniques themselves. 

Box Plots of Bulk vs. Surface NDE Strength Comparisons 

The matrix plots are more qualitative; therefore, it is useful to look at the same testing results for 

the seventy pipeline steels through box plots of strength. 

Figure 11 is the box plot of yield strengths for the seventy pipeline samples by lab or NDE 

technique.  The IQRs for the lab techniques, and the medians, are very close to being the same as 

is expected from the matrix plots.  The Frontics IQR is bound within the lab techniques and the 

median is very close.  The MMT IQR is shifted to the high side with the median value near the top 

of the lab IQR and the top of the MMT IQR is substantially higher than the lab or Frontics IQR.  

There is also a much higher top whisker for the MMT data on the same seventy pipeline samples. 

These trends will be explored in later Chapters in this report, as well as later in this Chapter, 

where an explanation is developed based on other variable relationships. 

 

Figure 11. Box Plot of Yield Strength by Technique. 

 

 

 



 

 

Page 28 
 

Figure 12 is a box plot of the ultimate tensile strength (referred to as tensile strength for the 

remainder of much of the report) for the seventy pipeline samples by lab or NDE technique.  The 

IQRs for the lab technique, and the medians, are very close to the same for the NDE techniques.  

The same can be said for the overall spread of the data. 

 

Figure 12. Box Plot of Tensile Strength by Technique. 

 

 

 

Bulk vs. Surface NDE Strength Comparisons by HSLA or Non-HSLA Grades 
To further examine the trends shown in this section above, and explain why such variation might 
be present, the yield and tensile strength values are plotted in a series of unity plots in this 
section. 

These plots have the lab (benchmark) yield or tensile strength on the y-axis and the surface NDE 
measure of the same parameter on the x-axis.  The 0.2% yield strength is used for comparison 
since this the more common and specified yield strength for pipeline steels, and as it turns out 
there is little to no difference between plotting it or the 0.5% EUL since they are effectively the 
same for all the pipeline samples. 

A 45 degree line is plotted on all the unit lines from the lower left to the upper right of the plot.  If 

the points fall on the line, it indicates that the sample has the same value for the lab and the NDE 

technique.  If the points are above the line, then the NDE technique has a lower strength 

(conservative) value and if below, the NDE technique has a higher strength (non-conservative) 

strength value. 

Figure 13 to Figure 16 plot the lab full wall yield and tensile strengths vs. the NDE techniques 

separating the seventy pipeline steels into HSLA (red circles) and non-HSLA (black circles) steels. 
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Figure 13. Lab vs. Frontics Surface Yield Strength by HSLA. 

 

 

Figure 14. Lab vs. Frontics Surface Tensile Strength by HSLA. 
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Figure 15. Lab vs. MMT Surface Yield Strength by HSLA. 

 

 

Figure 16. Lab vs. MMT Surface Tensile Strength by HSLA. 

 

 

From the plots one can see that for Frontics yield and tensile strength and MMT tensile strength 

that there is little difference in the difference magnitude or direction between the lab and the NDE 
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surface strength.  However, for the MMT yield strength there is a clear bias for the HSLA steels to 

indicate a higher yield strength from the MMT surface results vs. the lab tests.  

As will be shown later in this section via plot analysis and then quantitatively in the sensitivity 

study of the modeling Chapter, the HSLA is likely additive to the even more impactful seamless vs. 

non-seamless categorical variable.  This variable will be shown to have a very strong effect on the 

MMT results and bias in predictions due to the surface cold work and residual stresses typically 

present in these non-annealed, long seam welded and formed pipes. 

Bulk vs. Surface NDE Strength Comparisons by Steel Type and HSLA or Non-
HSLA Grades 

Figure 17 to Figure 20 are the same as the last section except the plots are further each divided  

into four subpanels by steel type.  As before, the tensile strengths do not appear to have 

correlation to steel type and for the Frontics AIS NDE technology, it appears that the yield strength 

is also not affected strongly by steel type. 

The MMT HSD NDE has some occurrence of non-conservative bias with all steel types for yield 

strength.  It is also evident that the silicon killed HSLA steels show the most likely preponderance 

of having a surface yield strength higher than the lab baseline is from the HSLA grades within this 

steel type. 

 

Figure 17. Lab vs. Frontics Surface Yield Strength by HSLA and Steel Type. 
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Figure 18. Lab vs. Frontics Surface Tensile Strength and Steel Type. 

 

 

Figure 19. Lab vs. MMT Surface Yield Strength by HSLA and Steel Type. 
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Figure 20. Lab vs. MMT Surface Tensile Strength by HSLA and Steel Type. 
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Bulk vs. Surface NDE Strength Comparisons by Weld Seam Type 

The observed trends likely indicate that the MMT HSD "surface scratch-type" technique (see 

Attachments) interrogates mostly the outer layers of the pipe wall while the Frontics AIS 

"indentation-type" technique (see Attachments) may in effect test deeper into the pipe wall.   

Seamless pipe is normalized/annealed and is therefore very homogenous across its thickness.  

Welded pipe on the other hand is produced from hot rolled plate or strip that usually exhibits 

through thickness variations in microstructure. These differences in grain size or in pearlite 

interlamellar distance are produced by localized through thickness differences in temperature as 

the plate is rolled and then cooled on the run-out table.   

In addition, forming the pipe through the U-bend, O-bend, and Expansion (UOE) process followed 

by welding often produces significant residual stresses and cold work that tends to make the 

outer layers of the pipe "stronger" from a yield testing standpoint.  Finally, the cold expansion step 

(and potential mill hydrotest) may or may not have been performed which introduces another 

element of uncertainty in properties prediction. 

The same can be said for HSLA steels that due to the chemistry and grain refiners added and the 

processing, tend to have a finer (smaller diameter) grain size structure on the outer walls of the 

pipe thickness. This would also increase the yield strength due to the well-known Hall-Petch 

phenomenon that finer grain sizes contribute to higher yield strengths. While the properties of all 

steels are affected by thermomechanical processing factors, HSLA or micro-alloyed steels are 

produced in way so as to maximize the strengthening mechanisms available through controlled 

rolling and accelerated cooling.  

Taken as a whole, and on average, welded and HSLA pipes and steels lead to a pipe stronger on the 

outside layers than the inside layers.  From the data this appears to be a very possible reason why 

the MMT surface yield strengths (prior to any modeling) are higher for these situations than the 

full-wall lab tensile test.  The next section contains plots that clearly show this.  The modeling in 

Chapter 5 and 6 can help mitigate this bias from the MMT surface data, but could not remove it 

totally. 

Figure 21 to Figure 24 show the same trends as the last two sections but each plot is subdivided 

by long seam weld type. Focusing on the ERW and Seamless weld types, the Frontics AIS NDE yield 

strength does not show bias by weld types when compared to the baseline full-wall lab results.  

The SAW and Spiral categories have too few samples to make a definitive statement.  The MMT 

HSD NDE results demonstrate that the Seamless pipes show no substantive bias, but the ERW 

pipes do.   

This could indicate that the MMT HSD "surface scratch-type" technique interrogates mostly the 

outer layers of the pipe wall while the Frontics AIS "indentation-type" technique may in effect test 

deeper into the pipe wall.  Seamless pipe is normalized/annealed and is therefore very 

homogenous across its thickness.  Welded pipe on the other hand is produced from hot rolled 

plate or strip that usually exhibits through thickness variations in microstructure. These 

differences in grain size or in pearlite interlamellar distance are produced by localized through 

thickness  differences in temperature as the plate is rolled and then cooled on the run-out table.  



 

 

Page 35 
 

In addition, forming the pipe  through the U-bend, O-bend, and Expansion (UOE) process followed 

by welding  can produce residual stresses and cold work that would tend to make the outer layers 

of the pipe "stronger" from a yield testing standpoint (the final cold expansion step may or may 

not have been performed which introduces another element of uncertainty in properties 

prediction). 

The same can be said for HSLA steels that due to the chemistry and grain refiners added and the 

processing, tend to have a finer (smaller diameter) grain size structure on the outer walls of the 

pipe thickness. This would also increase the yield strength due to the well-known Hall-Petch 

phenomenon that finer grain sizes contribute to higher yield strengths. While the properties of all 

steels are affected by thermomechanical processing factors, HSLA or micro-alloyed steels are 

produced in way so as to maximize the strengthening mechanisms available through controlled 

rolling and accelerated cooling.  

Taken as a whole, and on average,  welded and HSLA pipes and steels lead to a pipe stronger on 

the outside layers than the inside layers.  From the data this appears to be a very possible reason 

why the MMT surface yield strengths (prior to any modeling) are higher for these situations than 

the full-wall lab tensile test.  The next section contains plots that clearly show this. 

Figure 21. Lab vs. Frontics Surface Yield Strength by Weld Seam Type. 

 



 

 

Page 36 
 

Figure 22. Lab vs. Frontics Surface Tensile Strength by Weld Seam Type. 

 

 

Figure 23. Lab vs. MMT Surface Yield Strength by Weld Seam Type. 
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Figure 24. Lab vs. MMT Surface Tensile Strength by Weld Seam Type. 
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Bulk vs. Surface NDE Strength Comparisons by Steel Type and Seamless or 
Welded 

Figure 25 to Figure 28 show the same trends as the last few sections but each plot is subdivided by 

steel type. The pipeline samples that are seamless are plotted as red circles and welded long seam 

samples are plotted as black circles. 

First, it is interesting to note that the Rimmed/Capped steels in Figure 25 show a slight bias with 

the Frontics AIS NDE where the surface NDE yield strength is either the same or marginally lower 

than the baseline full-wall lab yield strength.  This is expected since steels that go through the full 

or partial rimming process tend to have carbon center-line segregation in the ingot, leading to a 

lower yield strength on the surface and a higher yield strength in the center of the ingot and 

therefore pipe wall.  The carbon segregation of these steels will be dramatically shown later in this 

chapter. 

Figure 27 shows that the MMT HSD NDE surface yield strength with no post-processing models 

applied reveals seamless pipeline samples that have excellent correlation between the lab and NDE 

tests, regardless of the steel type.  However, for the non-seamless, i.e., welded long seam pipe that 

is not normalized, the HSD technology mostly has a higher yield strength than the full-wall lab 

yield strength.  This is true, except for the rimmed, welded pipes which has a good correlation to 

the lab tests.  It is possible that the lower strength of the rimmed ingot on the outside is offset by 

the added strength of the non-annealed welding process of forming the pipe.  This would explain 

all the trends in the plots discussed so far. 

 

Figure 25. Lab vs. Frontics Surface Yield Strength by Weld Seam Type and if Seamless. 
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Figure 26. Lab vs. Frontics Surface Tensile Strength by Weld Seam Type and if Seamless. 

 

 

Figure 27. Lab vs. MMT Surface Yield Strength by Weld Seam Type and if Seamless. 
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Figure 28. Lab vs. MMT Surface Tensile Strength by Weld Seam Type and if Seamless. 
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Bulk vs. Surface NDE Strength Comparisons by NDE Technology, Weld, and 
Grade Categories 

Figure 29 and Figure 30 combine multiple pipeline factors, i.e., variables, into two side-by-side 

comparison plots for yield strength and ultimate tensile strength respectively.  As already 

discussed, the MMT HSD NDE technology generally provides a higher than lab reading for yield 

strength, sometimes significant, for HSLA and non-seamless pipeline samples.  The ultimate 

tensile strength readings for both NDE technologies are more uniform around the lab readings. 

Figure 29. Lab vs. NDE Surface Yield Strength by Multiple Factors. 

 

Figure 30. Lab vs. NDE Surface Tensile Strength by Multiple Factors. 
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Bulk vs. Surface NDE Strength Comparisons by Pipe Diameter 

Figure 31 and Figure 32 show the similar strength comparisons but for pipe diameter and Figure 

33 and Figure 34 show the same as a function of pipe wall thickness. The relative diameter of the 

plotted values are proportional to the pipe diameter.  Upon careful comparison with the steel 

types, the observed trends are due to the steel types vs. the diameter or thickness for the MMT 

NDE technology. 

Figure 31. Lab vs. NDE Surface Yield Strength by Pipe Diameter. 

 

Figure 32. Lab vs. NDE Surface Tensile Strength by Pipe Diameter. 
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Bulk vs. Surface NDE Strength Comparisons by Pipe Thickness 

 

Figure 33. Lab vs. NDE Surface Yield Strength by Wall Thickness. 

 

 

Figure 34. Lab vs. NDE Surface Tensile Strength by Wall Thickness. 
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3.3 Grain Size 
Figure 35 shows the grain size comparison for the seventy pipeline samples between the surface at 

5 mils deep vs. the 4-depth average.  The correlation is excellent, with the values tightly grouped 

around the unity line.  The range of grain size values is also excellent as discussed in the pipe 

sample section earlier and represents the variety and range expected in the field. Figure 36 is the 

same data but further broken down by steel type as four separate panels. 

Surface vs. Ave Bulk Grain Size Unity Plots 

Figure 35. Grain Size Comparison - 5 mils vs. 4-Depth Composite. 

 

Figure 36. Grain Size Comparison - 5 mils vs. 4-Depth Composite by Steel Type. 
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Histogram and Density Plot of Delta Between Surface - Ave Bulk Grain Size 

Figure 37 shows a histogram and density plot of the difference of the surface grain size minus the 

4-depth composite grain size.  The plot is nearly centered on zero and the variation is across the 

range is normally distributed as shown by the red normal density plot overlaying the green density 

plot of the data.  Figure 38 plots the same data, but by steel type as separate panels, again with 

excellent correlation between the surface and composite across all steel types. 

Figure 37. Difference (Delta) Between Surface and 4-Depth Composite Grain Size. 

 

Figure 38. Difference Between Surface and 4-Depth Composite Grain Size by Steel Type. 
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3.4 Chemistry 

Compendium of Unity Comparison Scatter Plots at Various Depths by Element 

Aluminum (Al) 

The various depths, 4-depth average, and bulk Al chemistry weight percent values are consistent 

with each other.  There is no substantive overall segregation from surface to bulk or midwall. 

Figure 39. Aluminum Weight Percent Comparisons by Depths and Bulk. 
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Boron (Br) 

The various depths, 4-depth average, and bulk Br chemistry weight percent values are consistent 

with each other.  There is no substantive overall segregation from surface to bulk or midwall. 

Figure 40. Boron Weight Percent Comparisons by Depths and Bulk. 
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Carbon (C) 

The various depths, 4-depth average, and bulk C chemistry weight percent values show significant 

segregation as one would expect in these pipeline steels.  There is significantly lower carbon levels 

at and near the surface versus the 20 mil, quarter thickness, midwall, and bulk values. 

Figure 41. Carbon Weight Percent Comparisons by Depths and Bulk. 
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Chromium (Cr) 

The various depths, 4-depth average, and bulk Cr chemistry weight percent values are consistent 

with each other.  There is no substantive overall segregation from surface to bulk or midwall. 

. 

Figure 42. Chromium Weight Percent Comparisons by Depths and Bulk. 
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Copper (Cu) 

The various depths, 4-depth average, and bulk Cu chemistry weight percent values are consistent 

with each other.  There is no substantive overall segregation from surface to bulk or midwall. 

Figure 43. Copper Weight Percent Comparisons by Depths and Bulk. 
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Manganese (Mn) 

The various depths, 4-depth average, and bulk Mn chemistry weight percent values are consistent 

with each other.  There is no substantive overall segregation from surface to bulk or midwall. 

 

Figure 44. Manganese Weight Percent Comparisons by Depths and Bulk. 
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Molybdenum (Mo) 

The various depths, 4-depth average, and bulk Mo chemistry weight percent values are consistent 

with each other.  There is no substantive overall segregation from surface to bulk or midwall. 

Figure 45. Molybdenum Weight Percent Comparisons by Depths and Bulk. 
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Nitrogen (N) 

The various depths, 4-depth average, and bulk N chemistry weight percent values exhibit variation 

in both higher and lower values between the surface and the bulk or composite values.  Nitrogen is 

at a low level in steel and is also difficult to test for.  The 5 mil nitrogen level compares overall 

well with the 4-depth composite with some elevated levels from the surface locations. 

Figure 46. Nitrogen Weight Percent Comparisons by Depths and Bulk. 
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Niobium (Nb) 

The various depths, 4-depth average, and bulk Nb chemistry weight percent values are consistent 

with each other.  There is no substantive overall segregation from surface to bulk or midwall. 

Figure 47. Niobium Weight Percent Comparisons by Depths and Bulk. 
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Nickel (Ni) 

The various depths, 4-depth average, and bulk Ni chemistry weight percent values are consistent 

with each other.  There is no substantive overall segregation from surface to bulk or midwall. 

Figure 48. Nickel Weight Percent Comparisons by Depths and Bulk. 
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Phosphorus (P) 

The various depths, 4-depth average, and bulk P chemistry weight percent values are consistent 

with each other.  There is no substantive overall segregation from surface to bulk or midwall. 

Figure 49. Phosphorus Weight Percent Comparisons by Depths and Bulk. 
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Sulfur (S) 

The various depths, 4-depth average, and bulk S chemistry weight percent values show significant 

segregation as one would expect in these pipeline steels.  There are lower sulfur levels at and near 

the surface versus the 4-depth composite and bulk values. Sulfur is not known to have significant 

effect on yield or tensile strength but it is known to have a strong effect on Charpy toughness 

which could be a concern if surface chemistry were used in a surface to bulk toughness model.  

Figure 50. Sulfur Weight Percent Comparisons by Depths and Bulk. 
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Silicon (Si) 

The various depths, 4-depth average, and bulk Si chemistry weight percent values are consistent 

with each other.  There is no substantive overall segregation from surface to bulk or midwall. 

 

Figure 51. Silicon Weight Percent Comparisons by Depths and Bulk. 
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Titanium (Ti) 

The various depths, 4-depth average, and bulk Ti chemistry weight percent values are consistent 

with each other.  There is no substantive overall segregation from surface to bulk or midwall. 

 

Figure 52. Titanium Weight Percent Comparisons by Depths and Bulk. 
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Vanadium (V) 

The various depths, 4-depth average, and bulk V chemistry weight percent values are consistent 

with each other.  There is no substantive overall segregation from surface to bulk or midwall. 

Figure 53. Vanadium Weight Percent Comparisons by Depths and Bulk. 
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Chemistry Unity Plots by Element by Depth by Steel Type 

The chemistry distribution by depth by steel types are shown for the elements in Figure 54 to 

Figure 74. 

Most the elements do not exhibit segregation across the thickness in general as shown in the last 

section and the same holds true by steel type. 

The main exception to this is carbon segregation by depth.  Figure 56 is a histogram and density 

plot of carbon by steel type.  The difference between the LIBS surface carbon and the bulk carbon 

levels is greatest negative for rimmed and capped steels.  This is expected due to the centerline 

segregation of carbon in this steel type along the ingots which carries over to the produced pipe 

wall cross section.  The killed and semi-killed steels do not show this trend and exhibit a 

difference between surface and bulk that is equally split between low and high sides and centered 

around a difference of zero. 

Figure 57 is a box plot of all the seventy pipeline samples and shows that carbon values increase 

from 5 mils to 20 mills, to quarter thickness, and peak at the midwall.  The average of the 4-depth 

composite is similar to the bulk levels and the LIBS carbon levels, which are taken on the outer 

surface of the sample with minimal material removal, are closest to the 5 mil values. The MMT 

grindings, which go deeper into the pipe wall, are closer to the 20 mil depth distribution for 

carbon levels. 

Figure 58 shows that the carbon levels by steel type have different distributions by key depth 

points.  The rimmed and capped steels have the highest centerline (midwall) levels due to the 

carbon segregation that accumulates in the midwall area during the steel boiling and rimming 

action.  These steels even show segregation between the 20 mil depths and midwall. 

The fully and semi-killed, more modern steels have a much more uniform carbon distribution, 

especially from 20 mil through to the midwall, unlike the rimmed and capped steels. 

As discussed earlier, this carbon distribution can explain how the rimmed and capped steels help 

to mitigate an NDE technology that was reading higher yield strengths due to other factors on the 

pipe outer wall, such as the cold work effect and refined grain sizes of non-seamless pipe and 

HSLA steels, respectively.  Both of these factors increase the outer or surface yield strengths vs. 

the bulk or midwall. 

Figure 59 shows the general trend of lower carbon percent in all steel types between the 5 mil and 

20 mil depths. Figure 61 shows similarly for between 5 mils and the bulk.  However, Figure 60 

shows that when one compares the 20 mil depth to the bulk, those differences are negligible for 

the fully and semi killed steels, while still present for the rimmed and capped steels due to the 

much more significant centerline carbon segregation.  
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Aluminum (Al) 

Figure 54. Aluminum Weight Percent Comparisons at 5 mils vs. 20 mils by Steel Type. 

 

Boron (Br) 

Figure 55. Boron Weight Percent Comparisons at 5 mils vs. 20 mils by Steel Type. 
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Carbon (C) 

Figure 56. Carbon Weight Percent LIBS Surface vs. Bulk by Steel Type. 

 

 

Figure 57. Carbon Weight Percent by Depth of Wall and Technique. 
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Figure 58. Carbon Weight Percent by Depth of Wall, Technique, and Steel Type. 

 

 

Figure 59. Carbon Weight Percent Comparisons at 5 mils vs. 20 mils by Steel Type. 
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Figure 60. Carbon Weight Percent Comparisons at 20 mils vs. Bulk by Steel Type. 

 

 

 

Figure 61. Carbon Weight Percent Comparisons at 5 mils vs. Bulk by Steel Type. 
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Chromium (Cr) 

Figure 62. Chromium Weight Percent Comparisons at 5 mils vs. 20 mils by Steel Type. 

 

 

Copper (Cu) 

Figure 63. Copper Weight Percent Comparisons at 5 mils vs. 20 mils by Steel Type. 
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Manganese (Mn) 

Figure 64. Manganese Weight Percent LIBS Surface vs. Bulk by Steel Type. 

 

 

Figure 65. Manganese Weight Percent Comparisons at 5 mils vs. 20 mils by Steel Type. 
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Molybdenum (Mo) 

Figure 66. Molybdenum Weight Percent Comparisons at 5 mils vs. 20 mils by Steel Type. 

 

 

Nitrogen (N) 

Figure 67. Nitrogen Weight Percent Comparisons at 5 mils vs. 20 mils by Steel Type. 
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Niobium (Nb) 

Figure 68. Niobium Weight Percent Comparisons at 5 mils vs. 20 mils by Steel Type. 

 

 

Nickel (Ni) 

Figure 69. Nickel Weight Percent Comparisons at 5 mils vs. 20 mils by Steel Type. 
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Phosphorus (P) 

Figure 70. Phosphorus Weight Percent Comparisons at 5 mils vs. 20 mils by Steel Type. 

 

 

Sulfur (S) 

Figure 71. Sulfur Weight Percent Comparisons at 5 mils vs. 20 mils by Steel Type. 
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Silicon (Si) 

Figure 72. Silicon Weight Percent Comparisons at 5 mils vs. 20 mils by Steel Type. 

 

 

Titanium (Ti) 

Figure 73. Titanium Weight Percent Comparisons at 5 mils vs. 20 mils by Steel Type. 
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Vanadium (V) 

Figure 74. Vanadium Weight Percent Comparisons at 5 mils vs. 20 mils by Steel Type. 
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Chemistry Kernel Density Overlays by Element by Depth/Technique 
The chemistry kernel density overlays by element in Figure 75 to Figure 77 provide similar 
information as the unity plots in the last section.  The same trends can be seen, but distribution 
features such as unimodal or bimodal are evident as well. 

The carbon distribution in the third panel of Figure 75 is noteworthy.  As was discussed in the last 
section, the lower surface carbon levels of the 5 mil depth can be seen to be generally lower (curve 
is shifted to the right of the others). 
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Aluminum (Al), Boron (Br), Carbon (C), Chromium (Cr), Copper (Cu), and Manganese (Mn) 

 

Figure 75. Chemistry Kernel Density Overlays by Element by Depth/Technique. 

 

  



 

 

Page 75 
 

Molybdenum (Mo), Nitrogen (N), Niobium (Nb), Nickel (Ni), Phosphorus (P), and Sulfur (S) 

 

Figure 76. Chemistry Kernel Density Overlays by Element by Depth/Technique. 
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Silicon (Si), Titanium (Ti), and Vanadium (V) 

 

Figure 77. Chemistry Kernel Density Overlays by Element by Depth/Technique. 
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Chapter 4: Material Toughness (Supplemental 
Section) 

4.1 Overview 
This section of the report is provided as a supplemental section with the hope that the data 

provided and limited discussion will be helpful for researchers and technology developers moving 

forward as they attempt to develop and validate NDE technology to determine steel toughness in 

the field without cutout and testing. 

A subset of 30 of the 70 pipeline samples had extensive Charpy V-notch (CVN) toughness testing 

completed on them.  The data for these is provided in Appendix B in the form of a column 

database in Excel. 

This section plots the results of the testing which included CVN absorbed energy, lateral 

expansion, and percent shear over various temperatures.  Enough temperatures were performed to 

establish the CVN upper shelf energy level. 

Frontics also tested these 30 pipeline samples in the form of coupons for KIC testing.  Those 

results are presented in Attachment #4 but are not compared directly to these since the testing 

direction and mode are different between the Frontics tests and the CVN tests. 

In general, the CVN energy went down when temperature was reduced and phosphorous and 

sulfur levels increased for non-HSLA steels.  

The research team feels that this Chapter will provide an excellent foundation for future research 

and development as new field-ready and non-destructive toughness test methods are developed. 

Figure 78 to Figure 89 are presented in the remainder of this supplemental chapter without 

further comment. 
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Absorbed Energy, Lateral Expansion, and Percent Shear Overlay 

Figure 78. Charpy Absorbed Energy, Lateral Expansion, and % Shear Overlay. 
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Matrix Plot of Upper Shelf Energy vs. Key Variables 

 

Figure 79. Matrix Plot of Charpy Upper Shelf Energy vs. Key Variables. 
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Mean Upper Shelf Energy by Pipe Chemistry Grade 

 

 

Figure 80. Charpy Mean Upper Shelf Energy by Pipe Chemistry Grade. 
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Mean Upper Shelf Energy by Pipe Steel Type 

 

 

Figure 81. Charpy Mean Upper Shelf Energy by Pipe Steel Type. 
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Mean Upper Shelf Energy by Pipe Grade and Steel Type 

 

 

Figure 82. Mean CVN Upper Shelf Energy by Pipe Grade and Steel Type. 
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4.2 Effect of Carbon, Temperature, and Grade 

Absorbed Energy by Carbon Level and HSLA vs. Non-HSLA Grade 

 

Figure 83. Charpy Absorbed Energy by Carbon Level and HSLA vs. Non-HSLA Grade. 
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Absorbed Energy by Carbon Level and Temperature 

 

Figure 84. Charpy Absorbed Energy by Carbon Level and Temperature. 
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Absorbed Upper Shelf Energy by Carbon Level and HSLA vs. Non-HSLA Grade 

 

Figure 85. Absorbed Upper Shelf Energy by C Level and HSLA vs. Non-HSLA Grade. 
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4.3 Effect of Manganese and Temperature on Toughness 
 

Figure 86. Charpy Absorbed Energy by Manganese Level and Temperature. 
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4.4 Effect of Sulfur, Phosphorous, and Temperature on Toughness 
 

Figure 87. Mean Sulfur and Phosphorous Levels by Steel Type. 
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Figure 88. Charpy Absorbed Energy by Phosphorous Level and Temperature. 
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Figure 89. Charpy Absorbed Energy by Sulfur Level and Temperature. 
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PART III: MODELING 

Part III contains:  

 Chapter 5: Causally Based and NDE Operator Provided Regression 

 Chapter 6: Advanced Modeling Suite Analysis: OLS, BMA, BNM, GPM, and MBGPM 

 

Chapter 5: Causally Based and NDE Operator 
Provided Regressions 

5.1 Regression Modeling Overview and Nomenclature 
This chapter contains the regression and model fits (when provided) from the nondestructive 

technology and the causal models from the analysis, as well as historical models from the 

literature.  The abbreviations for the models in the plots are as follows and are used throughout 

the report: 

 LRM: Linear Regression Model; surface-to-bulk 

 OLS: Ordinary Least Squares; surface-to-bulk 

 BRM: Bayesian Regression Model; surface-to-bulk 

 ANN: Artificial Neural Network; surface-to-bulk 

 DAE: an OLS model based on causal relationships  

 MXX: various models from the historic literature based various model fits; surface-to-bulk 

 Surface: raw surface yield strength values (no model applied) from NDE technology 

 0.2% Offset: lab testing of tensile bars using the 0.2% offset method 

 0.5% EUL: lab testing tensile bars using the 0.5% elongation under load method 

Advanced data analytics modeling techniques are also presented in Chapter 6 and do not contain 

the causal relationships in this Chapter.  

Regressed Delta Between Lab and NDE Strengths 

Regressions were completed on the delta or difference between the bulk testing and the NDE 

predicted value.  Therefore, the delta was defined for the YS and UTS as: 

ys_delta = (lab full wall yield strength) - (NDE yield strength prediction) 

uts_delta = (lab full wall ultimate tensile strength) - (NDE ultimate tensile strength prediction) 

Dependent and Independent Regression Variables 

These delta's are the dependent variables (DV).  To get the prediction for bulk strength from either 

relationship one would subtract the NDE prediction from the delta strength calculated via the 
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fitted regression equations from the surface measurable independent variables (IV) used for each 

equation. 

Choice of Lab Yield Strength Method 

The lab full-wall yield strength used for the Frontics technology was the 0.2% offset yield strength 

and for the MMT technology, the 0.5% elongation under load per their request and the basis of the 

technology.  As shown in Chapter 3, the two types of yield strengths tracked nearly identically as 

one would expect for these types of steels, so the distinction was not critical but followed in any 

event. 

Form of Regression Equations and Nomenclature 

Instead of listing all forms of the equations used for regression with every term and each 

coefficient, the listings below will be in a more general nature to allow one to see the specific 

independent variables, their power, and their interactions.   

By listing the models in this fashion, users of the models may set up the equations in the correct 

form with their software platform of choice and use their units of choice. 

The model listing uses the variable nomenclature from the regression fitting to prevent 

transcription errors.  The prefix and operators used are defined as follows and are common in the 

statistical analysis field: 

 Prefix of "c." on an IV is used when it is a continuous variable and interacted with another 

variable.  The prefix is not needed when the variable is standalone, i.e., interacted. 

 Prefix of "i." on an IV is used when it is a categorical (aka factor) variable and interacted 

with another variable. The prefix is not needed when the variable is standalone, i.e., 

interacted. 

 The "#" operator is a two factor interaction without the single factor terms included.  

Additional variables may be chained together to obtain two, three, etc. interaction variable. 

A single factor can be interacted with itself to create a squared term and so on. 

 The "##" operation is a full factor interaction that includes the single factor terms in the 

regression as well. 

Model Naming Convention for Historical and Newly Developed Causal 
Equations 

The models used are based on metallurgical principles and those starting with "M" are from the 

literature and cited.  The models starting with "DAE" are custom metallurgical models developed 

under this project and in every case the final "DAE" forms that were down selected outperformed 

the literature models and the NDE maker's regression models if provided. 

The causality of each model is a function of the choices of IV and how they are interacted or not.  

The choices for the structure of the DAE prefixed models were based on the range of API steels 

tested and expected in the field.  These include lower to moderate carbon steels with ferritic 

and/or pearlitic phase structures. 
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The inclusion of the key alloy elements used to strengthen the steels through solid solution and 

precipitation strengthening were accounted for. 

Surface Obtained Variables for Independent Variables 

 All the values for the IV's were selected and input from the surface obtained data.   

 The chemistry element values were from the surface at 5 mils deep as was the ratio 

(fraction) of ferrite to pearlite microstructures, which was based on carbon content and the 

lever rule.  This was checked with actual microscopy and found to be entirely consistent.  

 The grain diameter was based on surface measurements.  

 The diameter of the pipe was a known quantity. 

Steel Type Classifying Methodology Based on Surface Chemistry 

The steel types were inferred from the chemistry as follows and this well-established relationship 

proved highly accurate: 

Figure 90. Steel Type as Defined by Silicon and Aluminum Weight Percent's. 

 

 

Rimmed/Capped Steels 

Rimmed or Capped steels are produced from non-deoxidized liquid steel cast into ingots. 

While carbon will segregate at a micro level in all steels, in a rimmed ingot it also occurs at a 

macro level. As the liquid steel cools very low C iron will freeze to the ingot wall first because 

it has a higher freezing point than iron with more carbon in solution. Because the ingot is not 

deoxidized the liquid steel will appear to roll or boil in the mold as the dissolved gases come 

out of solution. This is called the rimming action and brings fresh liquid metal to the 

solidification front. The carbon is ejected towards the inside by the rolling liquid metal, if only 

a small rim zone is desired, the ingot can be mechanically capped, shutting down the evolution 

of gases and ending the rimming action. 

Rimmed/Capped are grouped as a one group and the following is provided as additional 

helpful information: 

 Greater crop of ingot on rimmed 

 Rimmed has very good surface quality 

 Rimmed steel exhibits rim zone visible to the unaided eye on an etched specimen at 3ft 

 Thin rim zone hard to tell apart rim vs. mechanically capped for ≥ 1015 steels 

>= < >= <
0.10 Si Killed Yes

0.10 0.02 Al Killed Yes

0.02 0.10 0.02 Semi‐Killed Partially

0.02 0.02 Rimmed/Capped No

Si Al
Steel Type De‐oxidized?

Regardless
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 Bulk Yield Tensile Elongation (YTE) properties likely similar between rimmed and 

rimmed/capped 

HSLA Steels 

High Strength Low Alloy (HSLA) steels were grouped into just one category using the category 

below based on the alloying element as prescribed in ASTM standards: 

 Classified: HSLA_Nb if Nb >= 0.005 wt% 

 Classified: HSLA_V >=0.02 wt% 

 

5.2 Generic Form of All Causal Regression Models 

Yield Strength Models 

Overview 

The yield strength models discussed in the section above are presented below in their generic 

form.  Each single or interacted term from the model will have a coefficient as well a single 

constant for the regression solution.  After testing an exhaustive number of models this set was 

narrowed down to the 12 candidate models listed below.   

Many historic models recorded in the literature were tested but it became evident that although 

these models did have some merit, that the lack of ubiquitous computing power from the decades 

that they were developed potentially resulted in a limited number of terms for the least square 

regressions and exclusion of some key, higher order terms.  With the availability of very powerful 

personal computers and equally importantly the associated statistical analysis packages, there was 

no restrictions on the causal model terms and forms selected for modeling. 

The best model for the Frontics NDE technology was found to be DAE_1_3 and for the MMT 

technology to be DAE_1_4mmt.  These two yield strength models outperformed all the other 

models used for the respective technologies.  Note the coefficients for the top performing yield 

and ultimate tensile strength causal models are listed in Appendix C.  The regression summaries 

are also provided in the same Appendix section. 

Top Performing Models 

The DAE_1_3 model is boxed (in green) since when used with the Frontics NDE technology 

unmodeled surface data, it produced the tightest predicted vs. actual predictions and a neutral (or 

no) bias towards the conservative or non-conservative side for accuracy.  This model also had the 

tightest spread or precision as measured by the regression output and confidence interval.  As will 

be shown in a later section, the 95% confidence interval of the regression output for the average 

yield strength prediction completely encompassed the unity line based on the lab results for yield 

strength. 

The DAE_1_4mmt model is boxed (in blue) since when used with the MMT technology unmodeled 

surface data, it produced the best results from the MMT NDE technology.  However, the output of 
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the MMT NDE technology using this model or the others provided by the technology provider 

demonstrated a bias for certain steels, as shown in Chapter 3, and will be demonstrated on the 

regression outputs vs. full lab testing overlays in this section. 

Constructed variables from standard variables are as follows: 

 n_sqrt = sqrt(n_5mil)     : square root of nitrogen percent at 5 mils 

 v_sqrt = sqrt(v_5mil)     : square root of vanadium percent at 5 mils 

 dNegSqrt = gd_surface^(-0.5)    : grain diameter raised to the -½ power 

 xp = pearlite_perc_5m/100    : fraction of pearlite microstructure 

 xf = 1-xp (note, this is the fraction of ferrite present) : fraction of ferrite microstructure 

 xfcubrt = xf^(1/3)     : cubic root of ferrite fraction 

 oneminusxfcubrt = (1-xfcubrt)     : 1-cubic root of ferrite fraction 

 mnRecip = (1/mn_5mil)     : reciprocal of manganese percent at 5 mils 

 DdivT = diameter_nominal/wall_thickness_as_recieved : nominal pipe diameter / wall thickness 

 

These terms are used in the listings below. The literature equations are shown for Frontics NDE as 

an example.  MMT provided three sets of models as noted earlier. 

 

Custom Yield Strength Metallurgically Based Models Developed in this Project 

DAE_1_1 
Custom model 
regress ys_deltaFront : 

 cu_5mil 
 mn_5mil 
 p_5mil 
 si_5mil 
 n_sqrt 
 c.xp#(c.c_5mil#c.c_5mil) 
 c.nb_5mil#c.c_5mil 
 c.xf#c.mn_5mil 
 c.mn_5mil#c.dNegSqrt 
 c.xf#c.mn_5mil#c.dNegSqrt 

 
 
DAE_1_2 
Custom model reduced terms (statistically significant terms only retained) 
regress ys_deltaFront : 

 mn_5mil 
 si_5mil 
 n_sqrt 
 c.xf#c.mn_5mil 
 c.mn_5mil#c.dNegSqrt 
 c.xf#c.mn_5mil#c.dNegSqrt 
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DAE_1_3 (used with Frontics NDE data) 
Custom blended model (DAE_1_1 plus categorical i.steelType and c.diameter_nominal variables) 
regress ys_deltaFront : 

 i.steelType 
 cu_5mil 
 mn_5mil 
 p_5mil 
 si_5mil 
 n_sqrt 
 diameter_nominal 
 c.xp#(c.c_5mil#c.c_5mil) 
 c.nb_5mil#c.c_5mil 
 c.xf#c.mn_5mil 
 c.mn_5mil#c.dNegSqrt 
 c.xf#c.mn_5mil#c.dNegSqrt 

 
 
 

 
DAE_1_4mmt (used with MMT NDE data) 
Used DAE1_3 and applied to MMT surface but also added i.seamless and i.hsla 
regress ys_deltaMMT : 

 i.steelType 
 i.seamless 
 i.hsla 
 cu_5mil 
 mn_5mil 
 p_5mil 
 si_5mil 
 n_sqrt 
 diameter_nominal 
 c.xp#(c.c_5mil#c.c_5mil) 
 c.nb_5mil#c.c_5mil 
 c.xf#c.mn_5mil 
 c.mn_5mil#c.dNegSqrt 
 c.xf#c.mn_5mil#c.dNegSqrt 
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Yield Strength Models from the Literature 

Note: the square brackets after the model numbers below, e.g. [X], are the references for the 

source of the model terms and the full citations are located in the Reference section of this report. 

 

Low Carbon 

M_17_1 [2] 
regress ys_deltaFront : 

 mn_5mil 
 si_5mil 
 n_sqrt 
 dNegSqrt 

 
M_17_2 [3] 
regress ys_deltaFront : 

 mn_5mil 
 si_5mil 
 n_5mil dNegSqrt 

 
M_17_3 [4, 5] 
regress ys_deltaFront : 

 mn_5mil 
 si_5mil 
 p_5mil 
 cu_5mil 
 n_5mil 
 dNegSqrt 

 
 

Medium Carbon 

M_17_4 [2, 6] 
regress ys_deltaFront : 

 xfcubrt 
 c.xfcubrt#c.mn_5mil 
 c.xfcubrt#c.dNegSqrt 
 oneminusxfcubrt 
 si_5mil 
 n_sqrt 

 
M_17_5 [5, 7] 
regress ys_deltaFront : 

 mn_5mil 
 si_5mil 
 p_5mil 
 n_5mil 
 c.xf#c.dNegSqrt 
 c.xf#c.c_5mil 
 c.xf#c.dNegSqrt#c.mnRecip 
 xp 
 c.xp#(c.c_5mil#c.c_5mil) 
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M_17_6 [5, 8] 
regress ys_deltaFront : 

 p_5mil 
 n_sqrt 
 xf 
 c.xf#c.mn_5mil 
 c.xf#c.dNegSqrt 
 xp  

 
M_17_7 [5, 9] 
regress ys_deltaFront : 

 si_5mil 
 p_5mil 
 n_sqrt 
 xf 
 c.xf#c.mn_5mil 
 c.xf#c.dNegSqrt 
 xp  

 
M_6_7 [10] 
regress ys_deltaFront : 

 xfcubrt 
 c.xfcubrt#c.mn_5mil 
 c.xfcubrt#c.dNegSqrt 
 oneminusxfcubrt 
 si_5mil 
 v_sqrt 
 n_sqrt 

 

Custom Ultimate Tensile Strength Metallurgically Based Models Developed in this Project 

The modeling of the ultimate tensile strength is a much simpler formula from a causal basis.  It is 

highly dependent on manganese and carbon content.  There are only minimal differences between 

all of the models for ultimate tensile, both the custom and the historic models in the literature. 

DAE_2_1 
Custom model 
regress uts_deltaFront : 

 mn_5mil 
 si_5mil 
 c_5mil 
 p_5mil 
 ni_5mil 
 n_5mil 
 dNegSqrt 
 xfcubrt 
 c.xfcubrt#c.n_sqrt 
 c.xfcubrt#c.dNegSqrt 
 c.xf#c.dNegSqrt 
 c.xf#c.n_sqrt 
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DAE_2_2 
Custom model reduced terms (statistically significant only) 
regress uts_deltaFront : 

 mn_5mil 
 si_5mil 
 c_5mil 
 n_5mil 

 
 

 
DAE_2_3 (used with Frontics NDE data) 
Custom model (DAE_2_1 plus categorical and diameter terms) 
regress uts_deltaFront : 

 i.seamless 
 c.diameter_nominal 
 mn_5mil 
 si_5mil 
 c_5mil 

 
 
 

 
DAE_2_4mmt (used with MMT NDE data) same model as DAE_2_3 above 
Used DAE_2_3 and applied to MMT surface 
regress uts_deltaMMT : 

 i.seamless 
 c.diameter_nominal 
 mn_5mil 
 si_5mil 
 c_5mil 
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From the Literature Ultimate Tensile Strength Models 

As noted in the custom model section, there are only minimal differences in the predictions from 

the custom and historical models from the literature. 

Low Carbon 

M_17_8 [2] 
regress uts_deltaFront : 

 mn_5mil 
 si_5mil 
 xp 
 dNegSqrt 

 
M_17_9 [4, 5] 
regress uts_deltaFront : 

 c_5mil 
 mn_5mil 
 si_5mil 
 p_5mil 
 ni_5mil 
 n_5mil 
 dNegSqrt 

 

Medium Carbon 

M_17_11 [5, 7] 
regress uts_deltaFront : 

 mn_5mil 
 si_5mil 
 p_5mil 
 n_5mil 
 c.xf#c.dNegSqrt 
 xf 

 
M_6-12 [11] 
regress uts_deltaFront : 

 c_5mil 
 mn_5mil 
 cr_5mil 
 mo_5mil 
 ni_5mil 
 cu_5mil 
 v_5mil 
 ti_5mil 
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Strength Model: Akaike's and Bayesian information criterion 

The goodness of fit information criterion (IC) are presented in Table 9 with two well-established 

measures: Akaike and Bayesian ICs.  The lower the number, the better the fit. 

Overall, the custom Frontics model fits (DAE1_3 and DAE2_3) exhibited the best fit to the as 

received surface yield and ultimate tensile strength data. 

 

Table 9. Goodness of Fit Information Criterion (IC). 

 

YIELD STRENGTH 

       Model            N   ll(null)  ll(model)      df        AIC        BIC 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
      DAE1_1           70  ‐227.1678  ‐207.6279      11   437.2558   461.9892 
      DAE1_2           70  ‐227.1678  ‐210.4472       7   434.8944   450.6339 
      DAE1_3           70  ‐227.1678  ‐181.7053      15   393.4106    427.138 
   DAE1_4mmt           70  ‐249.3438   ‐211.597      17   457.1941   495.4185 
       M17_1           70  ‐227.1678  ‐215.0362       5   440.0723   451.3148 
       M17_2           70  ‐227.1678  ‐215.3869       5   440.7739   452.0163 
       M17_3           70  ‐227.1678  ‐214.8678       7   443.7357   459.4752 
       M17_4           70  ‐227.1678  ‐213.6304       6   439.2608   452.7518 
       M17_5           70  ‐227.1678  ‐212.7236      10   445.4473   467.9322 
       M17_6           70  ‐227.1678  ‐216.5796       6   445.1591   458.6501 
       M17_7           70  ‐227.1678  ‐212.7666       7   439.5331   455.2726 
        M6_7           70  ‐227.1678  ‐213.1484       7   440.2968   456.0362 
 

ULTIMATE TENSILE STRENGTH 

       Model            N   ll(null)  ll(model)      df        AIC        BIC 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
      DAE2_1           70  ‐192.7823  ‐180.6376      13   387.2752   416.5056 
      DAE2_2           70  ‐192.7823   ‐184.491       5    378.982   390.2244 
      DAE2_3           70  ‐192.7823  ‐181.9819       6   375.9638   389.4548 
   DAE2_4mmt           70  ‐202.1882  ‐184.2985       6    380.597    394.088 
       M17_8           70  ‐192.7823  ‐186.8327       5   383.6654   394.9079 
       M17_9           70  ‐192.7823  ‐183.4155       8    382.831   400.8189 
      M17_11           70  ‐192.7823   ‐183.761       7   381.5219   397.2614 
       M6_12           70  ‐192.7823  ‐187.3027       9   392.6054   412.8418 
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Overview of Strength Distribution Overlays by Technique and Model 

The strength distributions of all seventy pipeline steels are plotted as kernel density overlays in 

Figure 91 to Figure 94.   

The lab full-wall 0.2% offset and 0.5% EUL are plotted with the Frontics and MMT surface yield 

strength values (no model applied) in Figure 91.  As discussed in an earlier chapter, the MMT data 

without a model application is skewed to the right.  The Frontics data is also skewed to the right 

but to a lesser extent.  The possible reasons for this were explained earlier.  Also, note the 

excellent correspondence between the two lab yield strengths as one would expect for the tested 

grades. 

Figure 91. Yield Strength Density Overlays Lab Full-Wall vs. NDE Surface. 

 

Figure 92 is a similar plot for ultimate tensile strength and shows very strong correlation between 

all values across the entire distribution.  The UTS almost does not require a model correction and 

one would expect this from excellent correlations of surface hardness to bulk correlations of UTS 

for ferritic steels.   

Figure 93 is a plot of key importance.  It shows the yield strength distribution across all seventy 

pipeline samples for the lab full-wall vs. the posterior models.  The Frontics causal model DAE1_3 

tracks very closely to the lab tests and maintains a conservative tact from a distribution 

standpoint.  The MMT casual model DAE1_4 is much tighter to the lab testing distribution vs. the 

surface data (alone) that was shown in Figure 91.  This demonstrates the importance of 

incorporating causal modeling into the regression forms vs. straight numerical manipulations and 

methods. 
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Figure 92. Tensile Strength Density Overlays Lab Full-Wall vs. NDE Surface. 

 

 

Figure 93. Yield Strength Density Overlays by Model and/or Technique. 
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The ultimate tensile strength density overlays for the lab full-wall samples and the posterior 

models are shown in Figure 94.  The causal models from both Frontics and MMT show excellent 

correspondence to the lab distributions.  The MMT LRM, BRM, and ANN models have a slight shift 

to the right across the entire distribution. 

 

Figure 94. Tensile Strength Density Overlays by Model and/or Technique. 
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Predicted vs. Actuals for Strength Modeling 

Predicted vs. Actuals Analysis Results and Parameters 

In addition to measuring the goodness of fit and reviewing the strength distributions, the 

descriptive statistical summary of the predicted vs. actuals is presented in Table 10.   

 

Table 10. Predicted vs. Actual Summaries of Custom and Historic Strength Models. 

  Variable          Obs        Mean    Std. dev.       Min        Max 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

 
YIELD STRENGTH (PREDICTED ‐ ACTUAL) 

 
   MMTsurf           70    5.865089    8.763753   ‐6.46122   31.59893 
    FrSurf           70    1.051026    6.255806  ‐14.84624    14.2341 
    MMTLRM           70    1.873716    5.997773  ‐10.76926    18.5156 
  FrDAE1_1           70    2.59e‐08    4.732098  ‐11.20118   12.83836 
  FrDAE1_2           70   ‐2.81e‐07    4.926578  ‐11.87904   13.27007 
  FrDAE1_3           70   ‐4.58e‐09    3.267567   ‐9.54355   6.214282 
   FrM17_1           70   ‐2.64e‐07    5.260369  ‐11.85199   12.47081 
   FrM17_2           70   ‐9.90e‐08    5.286794  ‐12.00762   12.60092 
   FrM17_3           70    7.96e‐08    5.247735   ‐12.1762   11.09503 
   FrM17_4           70   ‐8.34e‐08    5.155783  ‐12.14778   13.08197 
   FrM17_5           70   ‐2.63e‐08    5.089425  ‐11.62083   12.01248 
   FrM17_6           70   ‐1.85e‐07     5.37764  ‐11.82852   11.49874 
   FrM17_7           70   ‐8.47e‐08    5.092547  ‐11.42083   12.63856 
    FrM6_7           70    7.34e‐08      5.1204  ‐11.81877    12.6513 
 DAE1_4mmt           70   ‐2.06e‐08     5.00817   ‐8.40642   11.95433 
 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

 
ULTIMATE TENSILE STRENGTH (PREDICTED ‐ ACTUAL) 

 
MMTsurfUTS           70    1.960932    4.378291  ‐7.803658   14.97856 
 FrSurfUTS           70    .9492044    3.827792   ‐8.73988    12.8939 
 MMTLRMUTS           70    2.395658    3.406963  ‐6.786992   9.602815 
  FrDAE2_1           70   ‐3.54e‐07    3.218106   ‐7.52321   9.438433 
  FrDAE2_2           70    1.23e‐08    3.400224  ‐9.551435   8.877146 
  FrDAE2_3           70    5.85e‐08    3.280505  ‐9.590734   7.389406 
   FrM17_8           70    8.33e‐08    3.515896  ‐8.778169   9.442286 
   FrM17_9           70    3.40e‐07    3.348381  ‐8.718896   9.127207 
  FrM17_11           70   ‐2.60e‐07    3.364948  ‐8.723165   9.135706 
   FrM6_12           70   ‐2.46e‐07    3.539581  ‐10.00585    10.0049 
 DAE2_4mmt           70   ‐4.82e‐07    3.390887  ‐8.836629   6.232567 

 

The difference between the predicted strength minus the lab full-wall strength is the metric and 

the table summarizes the mean, standard deviation, minimum, and maximum of the seventy 

pipeline samples. 
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The surface data from the NDE techniques have positive mean values and up to 31.6 ksi positive 

bias in the case of MMT and 14.2 ksi positive bias for yield strength for Frontics. 

The models provide a significant improvement from the plain surface data.  The best custom 

models for yield strength have an effective mean of zero, meaning that the predicted minus the 

actual average delta (aka bias) is zero.  Additionally, the min/max range in round numbers is 

shifted for MMT from -6 / + 32 ksi (Figure 95) to -8 / +12 ksi (Figure 97). 

The same is true for Frontics which shifts from -15 / +14 ksi (Figure 95) to -10 / + 6 ksi (Figure 97).  

This is a vast improvement for both the HSD and AIS NDE predictions.  The inclusion of the causal 

variables both continuous and categorical improve the models by including weighted (through 

coefficients) terms in the models to account for steel type, seamless, HSLA, etc. 

The table and plots also shows similar but not as dramatic improvements for the ultimate tensile 

strength.  Again, the custom models (based on causal relationships) provide the best fits that 

simultaneously minimize the non-conservative yield and ultimate tensile strength predictions, 

always important from a design basis for a pipeline system.  Note the superior strength delta 

overlays for the causal models in Figure 98. 

 

Predicted vs. Actuals Strength Delta Distribution Overlays by Technique and Model 

The predicted vs. actual  

Figure 95. Yield Strength Delta Density Overlays for NDE Surface Techniques. 

 

 



 

 

Page 106 
 

Figure 96. Tensile Strength Delta Density Overlays for NDE Surface Techniques. 

 

 

Figure 97. Yield Strength Delta Density Overlays for Model Fits. 
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Figure 98. Tensile Strength Delta Density Overlays for Model Fits. 

 

 

 

Strength Trend Comparison by Technique and Preferred Models by Steel Type 

Figure 99 is a plot of yield strength for lab full-wall and the posterior models by steel type.  The 

casual model (DAE1_3) for Frontics does well at matching the distribution of lab yield strengths 

for all steel types.   

The casual model for MMT (DAE1_4) and the MMT LRM model also do well for silicon killed steels 

but are biased or skewed higher for aluminum killed steels slightly.   For semi-killed steels both 

these models are biased/skewed higher and for rimmed/capped steels they are biased/skewed  

lower as compared to the lab full-wall results. 

As discussed earlier, this is presumably due to the outer (near surface) layers of the pipeline steel 

having a higher yield strength in HSLA and non-seamless steels and a lower relative yield strength 

in the same outer layers for rimmed/capped steels for reasons already explained earlier in this 

report. 

The tensile strengths are nearly consistent across all models and steel types since the factors that 

affect the yield strength distribution across the pipe wall do not do the same with the tensile 

strength values. 

Figure 101 and Figure 102 are similar plots but only have two panels: one for welded long seams 

and one for seamless pipe.  The causal model which expressly considers the seam type is closer to 

the lab full-wall yield and tensile distributions than the MMT LRM distribution.  This is discussed 

in more detail in the next sections with distribution plots.  
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Figure 99. Lab Full-Wall and Best LRM Model Yield Strengths by Steel Type. 

 

Figure 100. Lab Full-Wall and Best LRM Model Tensile Strengths by Steel Type. 
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Strengths by Weld Seam Type 

Figure 101. Lab Full-Wall and Best LRM Model Yield Strengths by Long Seam Category. 

 

Figure 102. Lab Full-Wall and Best LRM Model Tensile Strengths by Long Seam Category. 
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5.2 Overall Strength Comparisons of Lab, Surface, and Top 
Models 

Yield Strength General Discussion 

This section is the important comparison of the model performance vs. the lab full-wall strengths 

plotted as a unity plot with 95% confidence and prediction intervals. Figure 103 and Figure 104 are 

plots of the data without the confidence and prediction limits overlaid and are included for 

completeness.  

The discussion below will be focused on the same data but with the intervals overlaid on the data 

in Figure 105 and Figure 106 for yield strength and ultimate tensile strength respectively. 

The best predictions for yield strength were made by the Frontics AIS data with a causal model 

(DAE1_3) applied.  This model is boxed in green in the center panel of Figure 105.  One can see 

that the inner (blue) confidence interval overlaps the unity line for yield strength at a 95% 

confidence level.   

Additionally, the wider prediction intervals (khaki shading) are relatively tight and encompass 95% 

of the seventy pipeline samples.  This is an excellent model and works across all steel types, 

grades, diameters, thicknesses, etc.  

The posterior yield strength models (LRM, BRM, and ANN) were improved upon with a causal 

model (DAE1_4) as far tightness of the predictions toward the unity line.  However, as discussed in 

the report, the inherent baseline surface NDE data has a bias towards non-conservative predictions 

for steels at approximately 50 ksi or higher.  This is evident by the slope of all the MMT posterior 

models, including the causal model.  The models are rotated clockwise about ~50 ksi. 

The MMT technology provides accurate strength data of the material it interrogates, however as 

pointed out in this report, it appears to be more localized towards the outer layers of the pipe 

wall. Conversely, the Frontics technology appears to penetrate deeper into the pipe wall to average 

a yield strength reading over a deeper (into the pipe wall thickness) profile.  This explains the shift 

in the MMT values as described in detail in the earlier sections of this report, especially when 

comparing trends with seamless vs. non-seamless, HSLA vs. non-HSLA pipe, and rimmed/capped 

vs. killed/semi-killed steels and grades. 

Confidence Interval Intersections with Full-Wall Lab Strength Unity Lines 

There are additional ways to present the predicted vs. actual strengths, but the method outlined 

below provides an easy way to see how much the predictions are biased, what direction (high or 

low), and at what confidence – all relative to the full-wall destructive tensile testing. 

A. The confidence interval is the zone where one might say based on the destructive tests vs. the 

model predictions and running a regression of the same, we plot the predicted (dashed line) 

line and the absolute unity (red line).   

B. This allows us to elegantly compare on average (for the confidence interval) and pointwise (for 

the prediction interval) where we are 95% confident that the destructive yield strength would 

fall based on the model predictions applied to the data 
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C. The confidence band then allows us to select (with our selected 95% confidence level) where 

the predicted YS zone (confidence interval) would be equivalent to the lab/destructive value, 

and where on average it would be higher (non-conservative) or lower (overly conservative). 

A detailed discussion of the confidence intervals around the model fits is presented below and 

references Figure 105b. 

1. In Figure 105b, the green vertical line is where the 95% lower confidence level (LCL) is above 

the unity line and the red vertical level is where the 95% model regression upper confidence 

level (UCL) is below the unit line.  When the unity line falls between this upper and lower 

bound we can say the average YS prediction zone is effectively equivalent to the lab/predicted 

interval. 

2. The intercepts between the LCL and UCL are annotated on the x-axis.  This is the most useful 

way to approach this relationship, since one will not know the actual (destructive full wall) YS 

ahead of time, i.e., a priori.   

3. In Figure 105b, if we reference the subplots from 1 to 9 from left to right and top to bottom: 

a. The NDE technology (without other factors/variables) has a regression fit in subplots 2 

and 3.   

b. The models that use causal relations and surface-obtained data including NDE YS 

values, chemistry, grain size, steel type, weld type, etc. are in subplots 4 to 6.   

c. MMT provided their own models in subplots 7 to 9 (factors in those models are 

unknown, only the generic form). 

4. The subplot-by-subplot discussion is below: 

a. Subplot 1 represents two different lab (destructive) full wall tensile tests vs. each 

other.  The two yield strength characterization methods matched well.  One is the 0.2% 

offset method and the other the 0.5% elongation under load method. 

b. Subplot 2 is the surface (no posterior model applied to the Frontics predictions) of the 

95% confidence bands run the entire length of the DOE. One could say the 95% 

prediction zone overlaps the unity line and the prediction is equivalent on average to 

the full/destructive YS value. 

c. Subplot 3 is the surface (no posterior model applied to the MMT predictions) of the 95% 

confidence bands that intersect the unity line from 43.5 to 50 ksi.  

i. To the right of the red line at 50 ksi, the prediction zone is higher than the 

actual destructive YS and therefore could be termed non-conservative.  

ii. To the left of the green line at 43.5 ksi, the prediction zone is lower than the 

actual YS and is conservative or might be termed overly conservative. 

iii. In between the red and green lines, one could say the 95% prediction zone 

overlaps the unity line and the prediction is equivalent on average to the 

full/destructive YS value between these values. 

iv. The explanation of (i) and (ii) hold for subplots 4 to 9 below, i.e., same meaning 

of the lines. 
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d. Subplot 4 was an optional model not used but was discussed in the narrative of the 

report. 

e. Subplot 5 is the optimal causal OLS model applied to the suite of surface data for 

Frontics and the 95% bands overlap the unity line the entire length of the DOE. 

f. Subplot 6 is the optimal causal OLS model applied to the same for MMT and the 95% 

bands overlap the unity line between 47 and 55 ksi. 

g. Subplots 7, 8, and 9 are using the MMT model predictions (from MMT) for their LRM, 

BRM, and ANN and one can see the overlap of the 95% intervals at 41 to 52, 41 to 53, 

and 38 to 52 ksi respectively. 

Ultimate Tensile Strength Discussion 

The ultimate tensile strength comparisons in Figure 106 start out with a tighter and more accurate 

surface to bulk prediction from the raw, un-modeled data for both NDE technologies.  Here we see 

both the Frontics and MMT causal fits provide excellent predictions of bulk ultimate tensile 

strength from the surface data passed through the causal models, DAE2_3 and DAE2_4, 

respectively.  For both Frontics and MMT, the 95% confidence interval overlaps the unity line and 

the prediction interval is particularly tight across the entire strength range. 

Summary 

The NDE technologies from Frontics and MMT are viable for yield and ultimate tensile strength 

predictions and have proven their accuracy and calibrations well across standardized and 

homogeneous materials.  However, the MMT HSD technology might benefit from additional yield 

strength modeling or refinement for pipeline steels that are not isotropic or constant strength 

across the pipewall thickness (depth). 

The MMT technology does well with seamless pipe where the material has been 

normalized/annealed (making it isotropic/homogenous across the pipe wall) but can exhibit a non-

conservative bias when compared to the full-wall results when the outer areas of the wall are 

stronger than the inner or midwall area of the pipe thickness.  Similarly, for rimmed steels the 

opposite can be true since the outer layers can have a lower carbon content and yield strength 

compared to the inner wall of the pipeline cross section.   

As a further check on the findings from Chapters 1 through 5, the next chapter results in similar 

and expanded modeling conclusions, based on numerous and robust advanced data analytics and 

modeling techniques.  
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Unity Plots of Strength Comparisons of Lab, Surface, and Top Models 

 

Figure 103. Yield Strength Comparisons of Lab, Surface, and Top Models. 
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Figure 104. Tensile Strength for Lab, Surface, and Top Models. 
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Unity Plots of Strength Comparisons of Lab, Surface, and Top Models with OLS Confidence Bands 

 

Figure 105. Yield Strength Comparisons of Lab, Surface, and Top Models with CI & PI. 
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Figure 105. Yield Strength Comparisons of Lab, Surface, and Top Models with CI & PI. 

 

(b) Same as Figure 105a but with intersections of the confidence intervals and the unity line annotated with green and red vertical lines. 
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Figure 106. Tensile Strength for Lab, Surface, and Top Models with OLS CI & PI. 
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Chapter 6: Data Analytics Modeling: OLS, BMA, BNM, 
GPM, and MBGPM 

6.1 Summary  
Pipeline infrastructure and its safety are critical for the functioning of the U.S. economy and our 

standard of living. Accurate pipe material strength estimation is critical for the integrity and risk 

assessment of aging pipeline infrastructure systems. Existing techniques focus on the single 

modality deterministic estimation of pipe strength and ignores inhomogeneity and uncertainties. 

A systemic data-driven analytics modeling approach is proposed to accurately estimate the pipe 

yield strength and ultimate strength. This approach uses information fusion of multimodality 

surface measurement, e.g., surface chemical compositions, pipe overview data, hardness, and grain 

size. The study starts with variable selection and model selection by using Bayesian model 

averaging method. Ranking of variables are obtained and the strength estimation is performed by 

using identified most important variables. Model selection using ordinary least-squares linear 

model and quadratic model is done first for future model fusion. Following this, weighted 

parametric model with strong robustness is constructed by Bayesian updating model averaging 

method which shows outstanding regression performance and validation performance. Next, non-

parametric Bayesian network model is applied to encode both continuous and categorical data. 

The flexibility of proposed Bayesian networks model provides easy ways for both prognostic 

(forward) and diagnostic (backward) reasoning. Gaussian process model is introduced to deal with 

possible nonlinear relationships. Uniform approximation and projection method is proposed to 

accomplish low dimensional representation. Manifold-base Gaussian process model is applied in 

two-dimensional Laplace space with dimension reduction.  All the proposed models are evaluated 

using 70-sample pipe dataset and regression performance and validation performance of each 

model are justified. Conclusions from the proposed study are drawn.  The "R" programming 

language/environment source code used to generate regressions and other output for this chapter 

is provided for both Windows and Apple Mac platforms in Appendix D. 

6.2 Introduction 
Pipeline infrastructure is one of the transportation systems for water, sewage, natural gas, 

petroleum, and refined products. Being recognized as one of the safest ways to transport 

flammable materials such as natural gas and petroleum, the United State (US) has become the 

leading nation that constructs the most millage length in the gas pipeline.  There are three types of 

pipeline systems found along the transportation route bringing natural gas from the point of 

production to the point of use. The three main pipeline systems are Gathering Pipeline system, 

Transmission Pipeline system, and Distribution Pipeline System as shown in Figure 107. Gathering 

pipeline system gathers raw natural gas from production wells and transports it to large cross-

country transmission pipelines. Transmission pipeline systems transport natural gas thousands of 

miles from processing facilities across many parts of the continental United States. Natural gas 

distribution pipeline systems can be found in thousands of communities from coast to coast and 

distribute natural gas to homes and businesses through large distribution lines mains and service 
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lines. The latest data by 2017 shows that the US has recorded a total gas distribution main and 

estimated service length of 2,235,880 miles across the nation. For both onshore and offshore line, 

US has total 300,650 miles of Transmission pipeline and 18,357 miles of Gathering pipelines, 

respectively[12].  

 

 

Figure 107. Schematic Diagram of the Gas Pipeline System 

 

The Integrity Verification Process requires the testing for the aging pipe strength and toughness 

estimation and is one of the most critical components for the balance of safety and economy. This 

is one of the research topics in the PHMSA solicitation and is the focus of the proposed study. 

Many existing techniques are available for the pipe strength and toughness estimation, which are 

mainly based on single modality surface mechanical hardness and stress-strain measurements[13, 

14].  Statistical analysis has been done for pipe steels on the mean and scatter of hardness-

inferred strength[15]. One critical gap is that most estimation techniques focus on single 

measurement and did not fully utilize various sources of information from multiple types of 

measurement techniques. In principle, each measurement may contain complementary 

information for the true material strength and an information fusion approach can increase the 

efficiency and accuracy for estimation. Another critical gap is the systematic inclusion of 

uncertainties in the strength estimation. Some known sources of these uncertainties are: 1) 

material intrinsic randomness; 2) material spatial variability; 3) manufacturing and installation 

variability; and 4) operational and environmental conditions. Reduction of the impact of these 

uncertainties to the final strength estimation is critical to enhance the confidence in integrity 

assessment. 

Accurate pipe material strength estimation is critical for the integrity and risk assessment of aging 

pipeline infrastructure systems. In order to measure the mechanical properties of the pipelines, 

nondestructive testing is needed without destroying the serviceability of the pipeline part or 

system. Some indirect methods are proposed through the relationship between the yield/ ultimate 

strength and surface material properties such as chemical composition, volume fraction and 
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hardness. In this project, several models are proposed for both yield strength and ultimate 

strength estimation given pipe surface chemical compositions, overview data, hardness, and grain 

size. This chapter is organized as follows. 

First, variable selection and model selection are conducted by Bayesian model averaging (BMA) 

which illustrates the importance of each variable and potential preferable parametric models for 

pipe strength estimation.  Next, the chosen ordinary least-squares (OLS) models are further 

evaluated with full data regression and split data validation. Following this, in order to deal with 

model uncertainty, Bayesian updating model averaging (BUMA) is proposed to merge single linear 

model and quadratic model together. Besides parametric model construction, there are some non-

parametric modelling methods can be used for pipe strength estimation. Bayesian network model 

(BNM) is applied which encodes continuous variables and categorical variables as well. As for 

potential non-linear relationship among different type of data, Gaussian process model (GPM) is 

introduced. Manifold based Gaussian process (MFGP) model combining Uniform Approximation 

and Projection with Gaussian process is demonstrated for dimension reduction computational 

efficiency improvement.  

6.3 Variable Selection & Model Selection 
Variable and feature selection have become the focus of many studies for which datasets with tens 

or hundreds of thousands of variables are available. The objective of variable selection is three-

fold: improving the prediction performance of the predictors, providing faster and more cost-

effective predictors, and providing a better understanding of the underlying process that 

generated the data[16]. Model uncertainty is a problem that arises frequently in applied statistics 

which tries to explain the variation of the response variable and determine whether the model is 

robust enough to deal with additional explanatory variables or perturbations of the data. Bayesian 

model averaging (BMA) has become a popular alternative to model selection. 

Bayesian model averaging addresses model uncertainty in a canonical regression problem. 
Suppose a linear model structure, with 𝑦 being the dependent variable, 𝛼ఊ a constant, 𝛽ఊ the 

coefficients, and 𝜀 a normal independent and identically distributed error term with variance 𝜎ଶ: 

 𝑦 ൌ  𝛼ఊ   𝑋ఊ𝛽ఊ  𝜀,        𝜀~𝑁ሺ0,𝜎ଶ𝐼ሻ. ( 1 ) 

A problem arises when there are many potential explanatory variables in a matrix 𝑋: Which 
variables 𝑋ఊ ∈ ሼ𝑋ሽ should be included in the model? And how important are they? The direct 

approach to do inference on a single linear model that includes all variables is inefficient or even 

infeasible with limited number of observations. 

BMA tackles the problem by estimating models for all possible combinations of ሼ𝑋ሽ and 

constructing a weighted average over all of them. If 𝑋 contains 𝐾 potential variables, this means  

2 variable combinations and thus 2 models. The model weights for this averaging stem from 

posterior model probabilities that arise from Bayes’ theorem: 

 𝑝൫𝑀ఊห𝑦,𝑋൯ ൌ  
ቀ𝑦ቚ𝑀ఊ,𝑋 ቁ൫ெം൯

൫𝑦ห𝑋൯ ൌ  
ቀ𝑦ቚ𝑀ఊ ,𝑋 ቁ൫ெം൯

∑ ൫𝑦ห𝑀௦,𝑋 ൯మ಼
ೞసభ ሺெೞሻ

. ( 2 ) 
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Hence, 𝑝ሺ𝑦|𝑋ሻ denotes the integrated likelihood which is constant over all models. Therefore, the 
posterior model probability (PMP) is proportional to the integrated likelihood of model 𝑀ఊ and its 

prior model probability 𝑝൫𝑀ఊ൯. By re-normalization of the product, one can infer the model 

weighted posterior distribution for any estimator 𝜃 of the coefficient 𝛽ఊ: 

 𝑝ሺ𝜃|𝑦,𝑋ሻ ൌ   ∑ 𝑝൫𝜃ห𝑀ఊ ,𝑦,𝑋൯ଶ಼
ఊୀଵ

ቀ𝑀ఊቚ𝑦,𝑋ቁ൫ெം൯

∑ ൫𝑀௦ห𝑦,𝑋൯మ಼
ೞసభ ሺெೞሻ

. ( 3 ) 

The model prior 𝑝൫𝑀ఊ൯ has to be assumed by the researcher and should reflect prior beliefs. A 

popular choice is to set a uniform prior probability for each model 𝑝൫𝑀ఊ൯ ∝ 1 to represent the lack 

of prior knowledge. 

With a small number of variables, it is straightforward to enumerate all potential variable 

combinations to obtain posterior results. For a larger number of covariates, this becomes more 

time consuming. In such a case, Markov-Chain Monte Carlo (MCMC) sampling is usually to 

approximate the posterior distribution. BMA mostly relies on the Metropolis-Hastings algorithm, 

which “walks” through the model space as follows: At step 𝑖, the sampler stands at a certain 
“current” model 𝑀 with PMP 𝑝ሺ𝑀|𝑦,𝑋ሻ. In step 𝑖  1 a candidate model 𝑀 is proposed. The 

sampler switches from the current model to model 𝑀  with probability 𝑝,: 

 𝑝, ൌ 𝑚𝑖𝑛 ቀ1, 𝑝൫𝑀ห𝑦,𝑋൯/𝑝ሺ𝑀|𝑦,𝑋ሻቁ. ( 4 ) 

In case model 𝑀 is rejected, the sampler moves to the next step and proposes a new model 𝑀 

against 𝑀. In case model 𝑀 is accepted, it becomes the current model and has to survive against 

further models in the next step. In this manner, the number of times each model is kept will 

converge to the distribution of posterior model probabilities 𝑝ሺ𝑀|𝑦,𝑋ሻ. 

There are several R packages available to solve variable selection and model selection following 

the major steps described above. For example, the BMS (Bayesian model sampling) package using R 

implements Bayesian model averaging for linear regression models. With the BMS package, users 

are allowed to specify their own model priors and offers a possibility of subjective inference by 

setting “prior inclusion probabilities” according to the researcher’s beliefs. Furthermore, graphical 

analysis of results is provided by numerous built-in plot functions of posterior densities, 

predictive densities, and graphical illustrations to compare results under different prior settings. 

Another choice for model selection in linear regression is Bayesian adaptive sampling (BAS) 

package, that samples models without replacement from the space of models. For problems that 

permit enumeration of all models, BAS is guaranteed to enumerate the model space in 2 

iterations[18].  

In this study, we used BAS package to do the variable selection and model selection. We used 70-

sample full dataset with 22 variables included in the initial selection step which are LAB SPECTRO 

5 mil surface chemical compositions, 5 mil pearlite (𝑃𝐿), pipe overview data nominal diameter (𝑁𝐷) 

and wall thickness (𝑊𝑇), rockwell hardness at the outer diameter (𝐻𝑜𝑑) and 5 mil grain size (𝐺𝑆, 

𝐺𝑆ଵ/ଶ, 𝐺𝑆ିଵ/ଶ). The variable indexes are shown in Table 11. For yield strength estimation, the 

response 𝑦 would be the difference between Lab Full Wall 0.2% offset yield strength (𝑌𝑆௧) and the 

yield strength got from surface techniques (𝑌𝑆௦) which can be written as 𝑦 ൌ 𝑌𝑆௧ െ  𝑌𝑆௦. Similarly, 

for ultimate strength estimation, the delta term 𝑦 ൌ 𝑈𝑇𝑆௧ െ  𝑈𝑇𝑆௦. By doing variable selection and 
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model selection, variable posterior inclusion probability (PIP) ranks are achieved as well as several 

linear models and quadratic models are selected for further investigations. 

 

Table 11. Variables Used for Yield Strength and Ultimate Strength Estimation 

Index 1 2 3 4 5 6 7 8 9 10 11 
Variable C Mn P S Al Cr Cu Mo Nb Ni Si 

Index 12 13 14 15 16 17 18 19 20 21 22 
Variable Ti V B N PL Hod GS GSsqrt GSsqrtneg ND WT 

 

Yield Strength 

Linear model 

22 variables are used in BMA approach with Frontics yield strength baseline, the response here is 

the delta term 𝑦 ൌ 𝑌𝑆௧ െ  𝑌𝑆௦. The PIP for all the input variables and the rank list of linear terms are 

shown in Table 12, which indicate the importance of each variable in terms of using linear model. 

It should be noted that the response here is the delta term instead of the benchmark yield 

strength Thus, it is not safe to say the variable with the highest PIP would still be the most useful 

in predicting yield strength directly. The delta term is to modify the yield strength got from 

surface techniques (𝑌𝑆௦). By doing this, the predictive Yield strength can be calculated. 

Furthermore, Top 20 best linear models are shown in Figure 108, where each column is a single 

linear model and 19 rows indicate 18 input variables and an intercept term, where colored cell 

means that the variable in such row is included in the model in corresponding column. And more 

specific properties of these 20 linear models are shown in Table 13. where “1” means included and 

“0” means not included intuitively, BF is Bayesian factor, “PostProbs” is posterior model 

probabilities, “R2” is R square, and Dim is the dimension of linear models.  

As can be seen in Table 12. the top 5 variables are 𝑁𝐷, 𝑁, 𝑁𝑏, 𝑀𝑜 and 𝑀𝑛 from the variable 

selection results which means they are more useful to predict the yield strength delta term. The 

top 5 variables are having relative high PIP. However, they are not necessarily to be included in the 

best linear model. To find the best yield strength linear model, we still need to look at the model 

selection part. Posterior model probability (PMP) and R square (R2) are two chosen criterions for 

regression model selection. BMA approach naturally selects the best model with the largest PMP 

like model M1 in yellow shaded column. Nevertheless, in regarding to inevitable model 

uncertainties, another model M8 in blue shaded column with the largest R square among top 20 

yield strength linear model has been selected as well for further comparison.  Considering higher 

PMP and larger R2 at the same time will guarantee better model performance. The results of using 

MMT yield strength baseline are shown in Table 14, Figure 109 and Table 15. The top 5 variables 

are 𝑁𝐷, 𝑆, 𝑁, 𝐶𝑢 and 𝑀𝑜. M1 with highest PMP, and M8 with largest R2. 
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Table 12. Rank of Variables for Yield Strength Linear Model (Frontics) 

Rank 1 2 3 4 5 6 7 8 
Variable ND N Nb Mo Mn GSsqrtneg Si GSsqrt 

PIP 1.000 0.980 0.897 0.780 0.384 0.325 0.301 0.293 
Rank 9 10 11 12 13 14 15 16 

Variable GS PL C Hod Ti S P V 
PIP 0.280 0.263 0.263 0.222 0.194 0.192 0.163 0.153 

Rank 17 18 19 20 21 22   
Variable Cr Al Ni WT Cu B   

PIP 0.141 0.135 0.132 0.131 0.126 0.113   

 

 

 

Figure 108. Top 20 Yield Strength Linear Models (Frontics) 
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Table 13. Properties of Top 20 Yield Strength Linear Models (Frontics) 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 
Intercept 1 1 1 1 1 1 1 1 1 1 

C 0 0 0 0 0 0 0 0 0 0 
Mn 1 0 0 0 0 0 0 1 1 1 
P 0 0 0 0 0 0 0 0 0 0 
S 0 0 0 0 0 0 0 0 0 0 
Al 0 0 0 0 0 0 0 0 0 0 
Cr 0 0 0 0 0 0 0 0 0 0 
Cu 0 0 0 0 0 0 0 0 0 0 
Mo 1 1 1 1 1 0 1 1 1 0 
Nb 1 1 1 1 1 1 1 1 1 1 
Ni 0 0 0 0 0 0 0 0 0 0 
Si 0 0 0 0 0 0 0 0 1 0 
Ti 0 0 0 0 0 0 0 0 0 0 
V 0 0 0 0 0 0 0 0 0 0 
B 0 0 0 0 0 0 0 0 0 0 
N 1 1 1 1 1 1 1 1 1 1 

PL 0 0 0 0 0 0 0 0 0 0 
Hod 0 0 1 0 0 0 0 0 0 0 
GS 0 0 0 0 0 0 1 0 0 0 

GSsqrt 0 0 0 0 1 0 0 0 0 0 
GSsqrtneg 0 0 0 1 0 0 0 1 0 0 

ND 1 1 1 1 1 1 1 1 1 1 
WT 0 0 0 0 0 0 0 0 0 0 
BF 1 0.716 0.631 0.468 0.394 0.381 0.364 0.250 0.236 0.224 

PostProbs 0.015 0.011 0.010 0.007 0.006 0.006 0.005 0.004 0.004 0.003 
R2 0.580 0.550 0.575 0.571 0.569 0.513 0.568 0.589 0.588 0.535 
dim 6 5 6 6 6 4 6 7 7 5 

 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 
Intercept 1 1 1 1 1 1 1 1 1 1 

C 0 0 0 0 0 0 0 1 0 1 
Mn 1 1 1 0 1 0 1 1 1 1 
P 0 0 0 0 0 0 0 0 0 0 
S 0 0 0 0 0 0 0 0 0 0 
Al 0 0 0 0 0 0 0 0 0 0 
Cr 0 0 0 0 0 0 0 0 0 0 
Cu 0 0 0 0 0 0 0 0 1 0 
Mo 1 1 1 1 1 1 1 1 1 1 
Nb 1 1 1 1 1 1 1 1 1 1 
Ni 0 0 0 0 0 0 0 0 0 0 
Si 0 0 0 0 0 0 0 0 0 0 
Ti 0 0 0 0 1 1 0 0 0 0 
V 0 0 0 1 0 0 0 0 0 0 
B 0 0 0 0 0 0 0 0 0 0 
N 1 1 1 1 1 1 1 1 1 1 

PL 0 0 0 0 0 0 1 1 0 0 
Hod 0 0 1 0 0 0 0 0 0 0 
GS 0 1 0 0 0 0 0 0 0 0 

GSsqrt 1 0 0 0 0 0 0 0 0 0 
GSsqrtneg 0 0 0 0 0 0 0 0 0 0 

ND 1 1 1 1 1 1 1 1 1 1 
WT 0 0 0 0 0 0 0 0 0 0 
BF 0.215 0.202 0.187 0.159 0.160 0.154 0.146 0.146 0.158 0.146 

PostProbs 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 
R2 0.587 0.586 0.586 0.558 0.584 0.557 0.583 0.583 0.584 0.583 
dim 6 8 9 8 8 8 7 8 9 9 
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Table 14. Rank of Variables for Yield Strength Linear Model (MMT) 

Rank 1 2 3 4 5 6 7 8 
Variable ND S N Cu Mo PL C B 

PIP 1.000 0.416 0.309 0.305 0.275 0.250 0.249 0.228 
Rank 9 10 11 12 13 14 15 16 

Variable V GS WT Si GSsqrt GSsqrtneg Cr Ti 
PIP 0.183 0.171 0.168 0.166 0.165 0.156 0.135 0.135 

Rank 17 18 19 20 21 22   
Variable Ni P Nb Mn Al Hod   

PIP 0.130 0.130 0.127 0.122 0.120 0.118   

 

 

 

Figure 109. Top 20 Yield Strength Linear Models (MMT) 
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Table 15. Properties of Top 20 Yield Strength Linear Models (MMT) 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 
Intercept 1 1 1 1 1 1 1 1 1 1 

C 0 0 0 0 0 0 0 0 0 0 
Mn 0 0 0 0 0 0 0 0 0 0 
P 0 0 0 0 0 0 0 0 0 0 
S 0 0 1 1 0 0 0 1 0 0 
Al 0 0 0 0 0 0 0 0 0 0 
Cr 0 0 0 0 0 0 0 0 0 0 
Cu 0 0 0 1 0 0 1 1 0 0 
Mo 0 0 0 0 1 0 0 1 1 0 
Nb 0 0 0 0 0 0 0 0 0 0 
Ni 0 0 0 0 0 0 0 0 0 0 
Si 0 0 0 0 0 0 0 0 0 0 
Ti 0 0 0 0 0 0 0 0 0 0 
V 0 0 0 0 0 0 0 0 0 0 
B 0 0 0 0 0 1 0 0 0 0 
N 0 1 0 0 0 0 0 0 1 0 

PL 0 0 0 0 0 0 0 0 0 0 
Hod 0 0 0 0 0 0 0 0 0 0 
GS 0 0 0 0 0 0 0 0 0 0 

GSsqrt 0 0 0 0 0 0 0 0 0 0 
GSsqrtneg 0 0 0 0 0 0 0 0 0 0 

ND 1 1 1 1 1 1 1 1 1 1 
WT 0 0 0 0 0 0 0 0 0 1 
BF 1 0.716 0.631 0.468 0.394 0.381 0.364 0.250 0.236 0.224 

PostProbs 0.015 0.011 0.010 0.007 0.006 0.006 0.005 0.004 0.004 0.003 
R2 0.580 0.550 0.575 0.571 0.569 0.513 0.568 0.589 0.588 0.535 
dim 2 3 3 4 3 3 3 5 4 3 

 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 
Intercept 1 1 1 1 1 1 1 1 1 1 

C 0 0 0 1 1 0 0 0 0 0 
Mn 0 0 0 0 0 0 0 0 0 0 
P 0 0 0 0 0 0 0 0 0 0 
S 0 1 0 1 1 1 1 1 0 1 
Al 0 0 0 0 0 0 0 0 0 0 
Cr 0 0 0 0 0 0 0 0 0 0 
Cu 0 0 0 0 0 0 0 0 1 0 
Mo 0 0 0 0 0 1 0 0 0 0 
Nb 0 0 0 0 0 0 0 0 0 0 
Ni 0 0 0 0 0 0 0 0 0 0 
Si 0 0 0 0 0 0 0 0 0 0 
Ti 0 0 0 0 0 0 0 0 0 0 
V 0 0 1 0 0 0 0 1 0 0 
B 1 0 0 0 0 0 0 0 0 0 
N 1 1 0 0 0 0 0 0 1 0 

PL 0 0 0 0 1 0 1 0 0 0 
Hod 0 0 0 0 0 0 0 0 0 0 
GS 0 0 0 0 0 0 0 0 0 0 

GSsqrt 0 0 0 0 0 0 0 0 0 0 
GSsqrtneg 0 0 0 0 0 0 0 0 0 0 

ND 1 1 1 1 1 1 1 1 1 1 
WT 0 0 0 0 0 0 0 0 0 1 
BF 0.215 0.202 0.187 0.159 0.160 0.154 0.146 0.146 0.158 0.146 

PostProbs 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 
R2 0.587 0.586 0.586 0.558 0.584 0.557 0.583 0.583 0.584 0.583 
dim 4 4 3 4 5 4 4 4 4 4 
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Quadratic model 

In order to do the variable selection and model selection for yield strength quadratic model, we 

use the top 5 variables (𝑁𝐷, 𝑁, 𝑁𝑏, 𝑀𝑜 and 𝑀𝑛) to do the expansion. Then we got 20 expanded 

variables including the original 5 linear terms, 5 power terms and 10 interactive terms as shown in 

Table 16. Following the same procedures as we did in previous subsection, the rank list of 

variables for yield strength quadratic modelling is achieved in Table 17, as well as top 20 best 

quadratic models shown in Figure 110. In Table 18, model M1 with the highest PMP and model 

M13 with largest R2 and lower dimension are selected for further validation in the next section. 

The results of using MMT yield strength baseline are shown in Table 19, Table 20, Figure 111 and 

Table 21. 

Table 16. Variables Used for Yield Strength Quadratic Model (Frontics) 

Index 1 2 3 4 5 6 7 8 9 10 
Variable ND N Nb Mo Mn ND2 N2 Nb2 Mo2 Mn2 

Index 11 12 13 14 15 16 17 18 19 20 
Variable NDN NDNb NDMo NDMn NNb NMo NMn NbMo NbMn MoMn 

 

Table 17. Rank of Variables for Yield Strength Quadratic Model (Frontics) 

Rank 1 2 3 4 5 6 7 8 9 10 
Variable N N2 ND NDN Mo2 NNb NbMo Mo NbMn NMo 

PIP 0.9991 0.9810 0.8984 0.8016 0.6109 0.5488 0.5001 0.4974 0.4846 0.4770 
Rank 11 12 13 14 15 16 17 18 19 20 

Variable Mn MoMn Nb NMn NDMo Mn2 ND2 NDMn Nb2 NDNb 
PIP 0.3715 0.3320 0.3277 0.3060 0.2753 0.2492 0.1945 0.1897 0.1881 0.1664 

 

 

Figure 110. Top 20 Yield Strength Quadratic Models (Frontics) 
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Table 18. Properties of Top 20 Yield Strength Quadratic Models (Frontics) 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 
Intercept 1 1 1 1 1 1 1 1 1 1 

ND 1 1 1 1 1 1 1 1 1 1 
N 1 1 1 1 1 1 1 1 1 1 

Nb 0 0 0 0 0 0 0 0 0 0 
Mo 1 1 1 1 1 1 1 1 1 1 
Mn 0 0 0 0 0 0 0 0 0 0 
ND2 0 0 0 0 0 0 0 0 0 0 
N2 1 1 1 1 1 1 1 1 1 1 

Nb2 0 0 0 0 0 0 0 0 0 0 
Mo2 1 1 1 1 1 1 1 1 1 1 
Mn2 0 0 0 0 0 0 0 0 0 0 
NDN 1 1 1 1 1 1 1 1 1 1 

NDNb 0 0 0 0 0 0 0 0 0 0 
NDMo 0 0 0 0 0 0 0 0 0 0 
NDMn 0 0 0 0 0 0 0 0 0 0 
NNb 0 0 1 0 1 0 1 1 1 0 
NMo 1 0 0 0 1 1 1 0 1 1 
NMn 0 0 0 0 0 0 0 0 1 1 
NbMo 1 1 1 0 0 0 1 0 0 0 
NbMn 1 1 1 1 1 1 1 1 1 1 
MoMn 0 0 0 0 0 0 0 0 0 0 

BF 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.509 0.509 
PostProbs 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 

R2 0.699 0.699 0.699 0.699 0.699 0.699 0.699 0.699 0.711 0.711 
dim 10 9 10 8 10 9 11 9 11 10 

 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 
Intercept 1 1 1 1 1 1 1 1 1 1 

ND 1 1 1 1 1 1 1 1 1 1 
N 1 1 1 1 1 1 1 1 1 1 

Nb 0 0 0 0 0 0 0 0 0 0 
Mo 1 1 1 1 1 0 1 1 1 0 
Mn 0 1 1 0 1 0 1 0 0 0 
ND2 0 0 0 0 0 0 0 0 0 0 
N2 1 1 1 1 1 1 1 1 1 1 

Nb2 0 0 0 0 0 0 0 0 0 0 
Mo2 1 1 1 1 1 0 1 1 1 0 
Mn2 0 0 0 0 0 0 0 0 0 0 
NDN 1 1 1 1 1 1 1 1 1 1 

NDNb 0 0 0 0 0 0 0 0 0 0 
NDMo 0 0 0 0 0 0 0 0 0 0 
NDMn 0 0 0 0 0 0 0 0 0 0 
NNb 1 0 0 0 1 0 1 1 0 1 
NMo 1 0 0 0 0 0 0 0 1 0 
NMn 1 0 0 1 0 0 0 1 1 0 
NbMo 1 1 0 1 0 1 1 1 1 0 
NbMn 1 1 1 1 1 1 1 1 1 1 
MoMn 0 0 0 0 0 0 0 0 0 0 

BF 0.509 0.510 0.510 0.509 0.510 0.506 0.510 0.509 0.509 0.506 
PostProbs 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 

R2 0.711 0.711 0.711 0.711 0.711 0.654 0.711 0.711 0.711 0.654 
dim 12 10 9 10 10 7 11 11 11 7 
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Table 19. Variables Used for Yield Strength Quadratic Model (MMT) 

Index 1 2 3 4 5 6 7 8 9 10 
Variable ND S N Cu Mo ND2 S2 N2 Cu2 Mo2 

Index 11 12 13 14 15 16 17 18 19 20 
Variable NDS NDN NDCu NDMo SN SCu SMo NCu NMo CuMo 

 

Table 20. Rank of Variables for Yield Strength Quadratic Model (MMT) 

Rank 1 2 3 4 5 6 7 8 9 10 
Variable S S2 ND NMo NDCu SN ND2 NCu Cu2 N2 

PIP 0.6706 0.5727 0.5071 0.4637 0.4517 0.4448 0.4407 0.3783 0.3702 0.3667 
Rank 11 12 13 14 15 16 17 18 19 20 

Variable Mo2 N NDS Cu NDMo SMo Mo SCu CuMo NDN 
PIP 0.3450 0.3433 0.3427 0.2995 0.2421 0.2373 0.2198 0.2103 0.1786 0.1675 

 

 

Figure 111. Top 20 Yield Strength Quadratic Models (MMT) 
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Table 21. Properties of Top 20 Yield Strength Quadratic Models (MMT) 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 
Intercept 1 1 1 1 1 1 1 1 1 1 

ND 1 1 1 1 1 1 1 1 0 0 
S 1 1 1 1 1 1 1 1 1 1 
N 0 0 0 0 0 0 0 0 0 0 

Cu 0 0 0 0 0 0 0 0 0 0 
Mo 0 0 0 0 0 0 1 1 0 0 
ND2 0 0 0 0 0 0 0 0 1 1 
S2 1 1 1 1 1 1 1 1 1 1 
N2 0 0 0 0 0 0 0 0 0 0 

Cu2 0 0 0 0 0 0 0 0 0 0 
Mo2 0 1 0 1 0 0 0 0 0 1 
NDS 0 0 0 0 0 0 0 0 0 0 
NDN 0 0 0 0 0 0 0 0 0 0 

NDCu 1 1 1 1 1 1 1 1 1 1 
NDMo 0 0 1 0 0 0 0 0 0 0 

SN 0 0 0 0 0 0 0 0 0 0 
SCu 0 0 0 0 0 0 0 0 0 0 
SMo 0 0 0 0 1 1 0 0 0 0 
NCu 0 0 0 0 0 0 0 0 0 0 
NMo 0 1 0 0 1 0 1 0 0 0 

CuMo 0 0 0 0 0 0 0 0 0 0 
BF 1 0.632 0.655 0.632 0.580 0.580 0.454 0.454 0.419 0.339 

PostProbs 0.003 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 
R2 0.627 0.644 0.645 0.644 0.643 0.643 0.641 0.641 0.618 0.638 
dim 8 8 8 9 9 9 8 9 8 9 

 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 
Intercept 1 1 1 1 1 1 1 1 1 1 

ND 0 0 0 1 1 0 1 0 0 1 
S 1 1 1 1 1 0 1 0 1 0 
N 0 0 0 0 0 0 0 0 0 0 

Cu 0 0 0 0 0 0 0 0 0 0 
Mo 0 0 0 0 0 0 0 0 1 0 
ND2 1 1 1 0 0 1 0 1 1 0 
S2 1 1 1 1 0 0 1 0 1 0 
N2 0 0 0 0 0 0 0 0 0 0 

Cu2 0 0 0 0 0 0 0 0 0 0 
Mo2 0 0 1 0 0 1 0 1 0 1 
NDS 0 0 0 0 0 0 0 0 0 0 
NDN 0 0 0 0 0 0 0 0 0 0 

NDCu 1 1 1 1 1 0 1 0 1 0 
NDMo 0 0 0 0 1 0 0 0 0 0 

SN 0 0 0 0 0 1 1 1 0 1 
SCu 0 0 0 0 0 0 0 0 0 0 
SMo 1 1 0 0 0 0 0 0 0 0 
NCu 0 0 0 0 0 1 0 1 0 1 
NMo 0 1 1 1 0 1 0 0 0 1 

CuMo 0 0 0 0 0 0 0 0 0 0 
BF 0.384 0.384 0.339 0.331 0.283 0.232 0.256 0.232 0.247 0.219 

PostProbs 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
R2 0.639 0.639 0.638 0.638 0.613 0.611 0.635 0.611 0.635 0.610 
dim 6 7 7 6 5 6 6 5 6 6 
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Ultimate Strength 

Linear model 

Similarly, we used 22 variables in Table 11 as inputs for variable selection and model selection of 

ultimate strength. The rank list of variables in terms of ultimate strength linear model is achieved 

in Table 22. Top 20 best models are shown in Figure 112. Again, we selected model M1 with the 

highest PMP and model M5 with largest R2 among top 20 models. And all the detail information is 

shown in Table 23. The results of using MMT yield strength baseline are shown in Table 24, Figure 

113 and Table 25. 

Table 22. Rank of Variables for Ultimate Strength Linear Model (Frontics) 

Rank 1 2 3 4 5 6 7 8 
Variable ND PL C S Si N Ni Cr 

PIP 0.676 0.446 0.446 0.422 0.365 0.289 0.208 0.205 
Rank 9 10 11 12 13 14 15 16 

Variable WT Mn GSsqrtneg GSsqrt GS B Cu Ti 
PIP 0.196 0.188 0.173 0.169 0.168 0.166 0.153 0.151 

Rank 17 18 19 20 21 22   
Variable Al Hod Nb P V Mo   

PIP 0.134 0.131 0.129 0.127 0.124 0.115   

 

 

Figure 112. Top 20 Ultimate Strength Linear Models (Frontics) 

 



 

 

Page 132 
 

Table 23. Properties of Top 20 Ultimate Strength Linear Models (Frontics) 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 
Intercept 1 1 1 1 1 1 1 1 1 1 

C 1 1 0 0 0 0 0 0 0 0 
Mn 0 0 0 0 0 0 0 0 0 0 
P 0 0 0 0 0 0 0 0 0 0 
S 0 0 0 1 1 1 0 0 1 0 
Al 0 0 0 0 0 0 0 0 0 0 
Cr 0 0 0 0 0 1 0 0 0 0 
Cu 0 0 0 0 0 0 0 0 0 0 
Mo 0 0 0 0 0 0 0 0 0 0 
Nb 0 0 0 0 0 0 0 0 0 0 
Ni 0 0 0 0 1 0 0 0 0 0 
Si 0 0 0 0 0 0 1 0 1 1 
Ti 0 0 0 0 0 0 0 0 0 0 
V 0 0 0 0 0 0 0 0 0 0 
B 0 0 0 0 0 0 0 0 0 0 
N 0 0 0 0 0 0 0 0 0 0 

PL 0 1 1 0 0 0 0 0 0 1 
Hod 0 0 0 0 0 0 0 0 0 0 
GS 0 0 0 0 0 0 0 0 0 0 

GSsqrt 0 0 0 0 0 0 0 0 0 0 
GSsqrtneg 0 0 0 0 0 0 0 0 0 0 

ND 1 1 1 1 1 1 1 1 0 1 
WT 0 0 0 0 0 0 0 0 0 0 
BF 1 1.000 1.000 0.764 0.714 0.663 0.547 0.524 0.403 0.402 

PostProbs 0.004 0.004 0.004 0.003 0.003 0.003 0.002 0.002 0.002 0.002 
R2 0.181 0.181 0.181 0.175 0.222 0.220 0.167 0.114 0.160 0.209 
dim 3 4 3 3 4 4 3 2 3 4 

 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 
Intercept 1 1 1 1 1 1 1 1 1 1 

C 0 1 1 1 1 0 1 0 0 1 
Mn 0 0 0 0 0 0 0 0 0 0 
P 0 0 0 0 0 0 0 0 0 0 
S 1 1 0 0 1 0 0 0 1 0 
Al 0 0 0 0 0 0 0 0 0 0 
Cr 0 0 0 0 0 0 0 0 0 0 
Cu 0 0 0 0 0 0 0 0 0 0 
Mo 0 0 0 0 0 0 0 0 0 0 
Nb 0 0 0 0 0 0 0 0 0 0 
Ni 0 0 0 0 0 0 0 0 1 0 
Si 0 0 1 1 0 1 1 1 0 1 
Ti 0 0 0 0 0 0 0 0 0 0 
V 0 0 0 0 0 0 0 0 0 0 
B 0 0 0 0 0 0 0 0 0 0 
N 0 0 0 0 0 0 1 1 0 1 

PL 1 0 1 0 1 0 1 1 0 0 
Hod 0 0 0 0 0 0 0 0 0 0 
GS 0 0 0 0 0 0 0 0 0 0 

GSsqrt 0 0 0 0 0 0 0 0 0 0 
GSsqrtneg 0 0 0 0 0 0 0 0 0 0 

ND 1 1 1 1 1 0 0 0 0 0 
WT 0 0 0 0 0 0 0 0 0 0 
BF 0.391 0.391 0.402 0.402 0.391 0.399 0.392 0.392 0.373 0.392 

PostProbs 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 
R2 0.209 0.209 0.209 0.209 0.209 0.107 0.209 0.209 0.158 0.209 
dim 4 4 5 4 5 2 5 4 3 4 
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Table 24. Rank of Variables for Ultimate Strength Linear Model (MMT) 

Rank 1 2 3 4 5 6 7 8 
Variable N Ti PL C V B Nb P 

PIP 0.985 0.661 0.550 0.546 0.481 0.361 0.325 0.320 
Rank 9 10 11 12 13 14 15 16 

Variable GS GSsqrt GSsqrtneg Si Cu ND S Mn 
PIP 0.302 0.298 0.282 0.281 0.279 0.272 0.239 0.204 

Rank 17 18 19 20 21 22   
Variable Ni WT Hod Al Cr Mo   

PIP 0.187 0.178 0.145 0.132 0.123 0.119   

 

 

Figure 113. Top 20 Ultimate Strength Linear Models (MMT) 
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Table 25. Properties of Top 20 Ultimate Strength Linear Models (MMT) 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 
Intercept 1 1 1 1 1 1 1 1 1 1 

C 0 0 0 0 1 1 1 1 0 1 
Mn 0 0 0 0 0 0 0 0 0 0 
P 0 0 0 0 0 0 0 0 0 0 
S 0 0 0 0 0 0 0 0 0 0 
Al 0 0 0 0 0 0 0 0 0 0 
Cr 0 0 0 0 0 0 0 0 0 0 
Cu 0 0 0 0 0 0 0 0 0 0 
Mo 0 0 0 0 0 0 0 0 0 0 
Nb 1 1 0 0 0 0 0 0 0 0 
Ni 0 0 0 0 0 0 0 0 0 0 
Si 0 0 0 0 0 0 0 0 0 0 
Ti 1 1 0 0 0 0 1 0 1 1 
V 0 0 0 0 0 0 0 0 0 0 
B 0 1 0 0 0 0 0 0 0 0 
N 1 1 1 1 1 1 1 1 1 1 

PL 0 0 1 1 1 1 1 0 1 1 
Hod 0 0 0 0 0 0 0 0 0 0 
GS 0 0 1 0 1 0 0 1 0 1 

GSsqrt 0 0 0 1 0 1 1 0 1 0 
GSsqrtneg 0 0 0 0 0 0 0 0 0 0 

ND 0 0 0 0 0 0 0 0 0 0 
WT 0 0 0 0 0 0 0 0 0 0 
BF 1 0.769 0.705 0.714 0.705 0.714 0.659 0.705 0.659 0.693 

PostProbs 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
R2 0.372 0.404 0.365 0.366 0.365 0.366 0.402 0.365 0.402 0.402 
dim 4 5 4 4 5 5 6 4 5 6 

 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 
Intercept 1 1 1 1 1 1 1 1 1 1 

C 1 1 1 0 1 0 1 1 0 1 
Mn 0 0 0 0 0 0 0 0 0 0 
P 0 0 0 0 0 0 0 0 0 0 
S 0 0 0 0 0 0 0 0 0 0 
Al 0 0 0 0 0 0 0 0 0 0 
Cr 0 0 0 0 0 0 0 0 0 0 
Cu 0 0 0 0 0 0 0 0 0 0 
Mo 0 0 0 0 0 0 0 0 0 0 
Nb 0 0 0 0 0 0 0 0 1 0 
Ni 0 0 0 0 0 0 0 0 0 0 
Si 0 0 0 0 0 0 0 0 0 1 
Ti 0 0 1 0 0 1 1 1 1 0 
V 0 0 0 0 0 0 0 1 0 1 
B 0 0 0 0 0 0 0 0 0 0 
N 1 1 1 1 1 1 1 1 1 1 

PL 0 1 0 1 0 1 0 0 1 0 
Hod 0 0 0 0 0 0 0 0 0 0 
GS 0 0 1 0 0 1 0 1 0 0 

GSsqrt 1 0 0 0 0 0 1 0 0 1 
GSsqrtneg 0 1 0 1 1 0 0 0 0 0 

ND 0 0 0 0 0 0 0 0 0 0 
WT 0 0 0 0 0 0 0 0 0 0 
BF 0.714 0.699 0.693 0.699 0.699 0.693 0.659 0.553 0.575 0.565 

PostProbs 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
R2 0.366 0.365 0.402 0.365 0.365 0.402 0.402 0.434 0.399 0.434 
dim 1 1 1 1 1 1 1 1 1 1 
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Quadratic model 

Top 5 variables (𝑁𝐷, 𝑃𝐿, 𝐶, 𝑆 and 𝑆𝑖) in Table 22 are expanded to 20 variables for ultimate strength 

quadratic variable selection and model selection as shown in Table 26. The rank list of variables in 

terms of ultimate strength quadratic model is achieved in Table 27. Top 20 best models are shown 

in Figure 114. Model M1 with the highest PMP and model M9 with largest R2 among top 20 

quadratic models are selected in Table 28. Note that all the R2s of ultimate strength linear models 

and quadratic models are relatively small, i.e., less than 0.3 which infers an obvious randomness of 

ultimate strength delta term. This randomness can be partially explained by linear model and 

quadratic model. The results of using MMT yield strength baseline are shown in Table 29, Table 

30, Figure 115 and Table 31. 

Table 26. Variables Used for Ultimate Strength Quadratic Model (Frontics) 

Index 1 2 3 4 5 6 7 8 9 10 
Variable ND PL C S Si ND2 PL2 C2 S2 Si2 

Index 11 12 13 14 15 16 17 18 19 20 
Variable NDPL NDC NDS NDSi PLC PLS PLSi CS CSi SSi 

 

Table 27. Rank of Variables for Ultimate Strength Quadratic Model (Frontics) 

Rank 1 2 3 4 5 6 7 8 9 10 
Variable ND NDS ND2 S PL C NDC NDPL PL2 C2 

PIP 0.400 0.320 0.316 0.296 0.293 0.292 0.258 0.247 0.242 0.242 
Rank 11 12 13 14 15 16 17 18 19 20 

Variable PLC S2 CS PLS CSi NDSi PLSi SSi Si Si2 
PIP 0.241 0.235 0.223 0.222 0.207 0.206 0.206 0.192 0.191 0.163 

 

 

Figure 114. Top 20 Ultimate Strength Quadratic Models (Frontics) 
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Table 28. Properties of Top 20 Ultimate Strength Quadratic Models (Frontics) 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 
Intercept 1 1 1 1 1 1 1 1 1 1 

ND 1 0 0 0 1 1 1 0 1 0 
PL 0 0 0 0 0 0 0 0 0 0 
C 0 0 0 0 0 0 0 0 0 0 
S 0 0 1 0 0 0 0 0 1 1 
Si 0 0 0 0 0 0 0 0 0 0 

ND2 0 1 0 0 0 0 0 0 0 1 
PL2 0 0 0 0 0 0 0 0 0 0 
C2 0 0 0 0 0 0 0 0 0 0 
S2 0 0 1 0 0 0 0 0 1 1 
Si2 0 0 0 0 0 0 0 0 0 0 

NDPL 0 0 0 0 0 1 1 1 0 0 
NDC 0 0 0 0 1 1 0 1 0 0 
NDS 1 1 0 0 0 0 0 0 0 0 
NDSi 0 0 0 1 0 0 0 0 0 0 
PLC 0 0 0 0 0 0 0 0 0 0 
PLS 0 0 0 0 0 0 0 0 0 0 
PLSi 0 0 0 0 0 0 0 0 0 0 
CS 0 0 0 0 0 0 0 0 0 0 
CSi 0 0 0 0 0 0 0 0 0 0 
SSi 0 0 0 0 0 0 0 0 0 0 
BF 1 0.787 0.651 0.636 0.465 0.465 0.465 0.465 0.373 0.334 

PostProbs 0.004 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.001 
R2 0.220 0.214 0.210 0.160 0.202 0.202 0.202 0.202 0.245 0.242 
dim 3 3 3 2 3 4 3 3 4 4 

 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 
Intercept 1 1 1 1 1 1 1 1 1 1 

ND 1 1 1 1 0 0 0 0 0 0 
PL 0 0 0 0 0 0 0 0 0 0 
C 0 0 0 0 0 0 0 0 0 0 
S 0 0 0 0 0 0 0 0 0 0 
Si 0 0 0 0 0 0 0 0 0 0 

ND2 0 0 0 0 1 1 0 1 1 0 
PL2 1 0 0 0 0 0 0 0 0 0 
C2 0 1 0 0 0 0 0 0 0 0 
S2 0 0 1 0 0 0 0 0 0 0 
Si2 0 0 0 0 0 0 0 0 0 0 

NDPL 0 0 0 0 0 0 0 0 1 0 
NDC 0 0 0 0 0 0 0 1 0 0 
NDS 1 1 1 1 0 0 0 0 0 0 
NDSi 0 0 0 0 0 0 1 0 0 1 
PLC 0 0 0 1 0 0 0 0 0 0 
PLS 0 0 0 0 1 0 0 0 0 1 
PLSi 0 0 0 0 0 0 0 0 0 0 
CS 0 0 0 0 0 1 1 0 0 0 
CSi 0 0 0 0 0 0 0 0 0 0 
SSi 0 0 0 0 0 0 0 0 0 0 
BF 0.300 0.294 0.291 0.297 0.283 0.295 0.275 0.266 0.289 0.264 

PostProbs 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
R2 0.240 0.239 0.239 0.240 0.191 0.192 0.190 0.190 0.191 0.189 
dim 4 4 4 4 3 3 3 3 3 3 
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Table 29. Variables Used for Ultimate Strength Quadratic Model (MMT) 

Index 1 2 3 4 5 6 7 8 9 10 
Variable N Ti PL C V N2 Ti2 PL2 C2 V2 

Index 11 12 13 14 15 16 17 18 19 20 
Variable NTi NPL NC NV TiPL TiC TiV PLC PLV CV 

 

Table 30. Rank of Variables for Ultimate Strength Quadratic Model (MMT) 

Rank 1 2 3 4 5 6 7 8 9 10 
Variable Ti Ti2 V TiV NTi V2 N N2 PL C 

PIP 0.635 0.547 0.511 0.502 0.500 0.471 0.442 0.435 0.390 0.390 
Rank 11 12 13 14 15 16 17 18 19 20 

Variable NC NPL CV PLV NV PLC C2 PL2 TiC TiPL 
PIP 0.373 0.356 0.322 0.320 0.317 0.306 0.305 0.304 0.302 0.285 

 

 

Figure 115. Top 20 Ultimate Strength Quadratic Models (MMT) 
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Table 31. Properties of Top 20 Ultimate Strength Quadratic Models (MMT) 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 
Intercept 1 1 1 1 1 1 1 1 1 1 

N 0 0 0 0 0 0 0 0 0 0 
Ti 0 1 1 1 1 1 1 1 1 0 
PL 0 0 0 0 0 0 0 0 0 0 
C 0 0 0 0 0 0 0 0 0 0 
V 0 1 1 0 0 1 0 1 0 0 

N2 0 0 0 0 0 0 0 0 0 0 
Ti2 1 1 1 1 0 1 0 0 1 1 
PL2 0 0 0 0 0 0 0 0 0 0 
C2 0 0 0 0 0 0 0 0 0 0 
V2 0 1 1 0 0 1 0 1 0 0 
NTi 0 0 1 0 1 1 1 1 1 0 
NPL 1 0 0 1 1 0 0 0 0 0 
NC 0 1 1 0 0 1 1 1 1 1 
NV 0 1 0 0 0 0 0 1 0 0 

TiPL 0 0 0 0 0 0 0 0 0 0 
TiC 0 0 0 0 0 0 0 0 0 0 
TiV 0 1 1 0 0 0 0 1 1 0 
PLC 0 0 0 0 0 0 0 0 0 0 
PLV 0 0 0 0 0 0 0 0 0 0 
CV 0 0 0 0 0 0 0 0 0 0 
BF 0.989 1.000 1.000 0.929 0.929 1.000 0.930 1.000 0.930 0.997 

PostProbs 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 
R2 0.329 0.406 0.406 0.328 0.328 0.406 0.328 0.406 0.328 0.329 
dim 3 8 8 4 4 7 4 8 6 3 

 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 
Intercept 1 1 1 1 1 1 1 1 1 1 

N 0 0 0 0 0 0 0 0 0 0 
Ti 1 1 0 0 1 1 1 0 0 1 
PL 0 0 0 0 0 0 0 0 0 0 
C 0 0 0 0 0 0 0 0 0 0 
V 1 0 0 1 1 0 1 0 0 1 

N2 0 0 0 0 0 0 0 0 0 0 
Ti2 0 1 1 1 1 0 1 1 1 0 
PL2 0 0 0 0 0 0 0 0 0 0 
C2 0 0 0 0 0 0 0 0 0 0 
V2 1 0 0 1 1 0 1 0 0 1 
NTi 1 0 0 1 1 0 1 0 1 0 
NPL 0 1 0 0 0 0 1 1 0 0 
NC 1 0 1 1 1 1 0 0 1 1 
NV 1 0 0 0 1 0 1 0 0 0 

TiPL 0 0 0 0 0 0 0 0 0 0 
TiC 0 0 0 0 0 0 0 0 0 0 
TiV 0 1 1 0 1 1 0 1 0 0 
PLC 0 0 0 0 0 0 0 0 0 0 
PLV 0 0 0 0 0 0 0 0 0 0 
CV 0 0 0 0 0 0 0 0 0 0 
BF 1.000 0.929 0.997 0.936 1.000 0.930 0.905 0.989 0.997 1.000 

PostProbs 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 
R2 0.406 0.328 0.329 0.405 0.406 0.328 0.404 0.329 0.329 0.406 
dim 7 5 4 6 9 4 8 4 4 5 
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Discussion and Conclusion 

In this section, Bayesian variable section and model selection are conducted with the BAS package. 

For both yield strength and ultimate strength, variable ranking is obtained to explain the 

importance of such variables in linear models and quadratic models as well. In consideration of 

model uncertainties, two reasonable models are selected for further investigation in each case. 

One is the model with the highest posterior model probability, and the other is the model with the 

largest R square. The regression performance and predictive performance will be evaluated 

comprehensively in the next section. 

6.4 Ordinary Least Square Model  
Ordinary least-squares (OLS) model is one of the most popular statistical techniques used in the 

social sciences. It is used to predict values of a continuous response variable using one or more 

explanatory variables and can also identify the strength of the relationships between inputs and 

responses[19]. OLS chooses the parameters of a linear function of a set of explanatory variables by 

the principle of least squares: minimizing the sum of the squares of the differences between the 

observed dependent variable in the given dataset and those predicted by the linear function. 

Geometrically, this is seen as the sum of the squared distances, parallel to the axis of the 

dependent variable, between each data point in the set and the corresponding point on the 

regression surface—the smaller the differences, the better the model fits the data. The resulting 

estimator can be expressed by a simple formula, especially in the case of a simple linear 

regression, in which there is a single regressor on the right side of the regression equation. The 

OLS estimator is identical to the maximum likelihood estimator (MLE) under the normality 

assumption for the error terms. From the properties of MLE, we can infer that the OLS estimator is 

asymptotically efficient if the normality assumption is satisfied [20]. 

Suppose the data consists of n observations ሼ𝑦 , 𝑥ሽୀଵ
 . Each observation 𝑖 includes a scalar 

response 𝑦 and a column vector 𝑥 of values of 𝑝 parameters (regressors) 𝑥 for 𝑗 ൌ 1,⋯ ,𝑝. In a 

linear regression model, the response variable, 𝑦, is a linear function of the regressors: 

 𝑦  ൌ  𝛽ଵ𝑥ଵ  𝛽ଶ𝑥ଶ  ⋯ 𝛽𝑥  𝜀, ( 5 ) 

or in vector form, 

 𝑦 ൌ  𝒙
்𝜷  𝜀, ( 6 ) 

where 𝒙𝒊 is a column vector of the ith observations of all the explanatory variables. 𝛽 is a 𝑝 ൈ 1 

vector of unknown parameters. The scalars 𝜀 represent unobserved random errors, which 

accounts for influences upon the responses 𝑦 from sources other than the explanators 𝒙𝒊. This 

model can also be written in matrix notation as  

 𝒚 ൌ 𝑋𝜷  𝜺, ( 7 ) 

where 𝒚 and 𝜺 are 𝑛 ൈ 1 vectors of the values of the response variable and the errors for the 

various observations, and X is an 𝑛 ൈ 𝑝 matrix of regressors, also sometimes called the design 

matrix, whose row 𝑖 is 𝒙
் and contains the ith observations on all the explanatory variables. As a 

rule, the constant term is always included in the set of regressors X, by taking 𝑥ଵ ൌ 1 for all 𝑖 ൌ

1,⋯ ,𝑛. The coefficient 𝛽ଵ corresponding to this regressor is called the intercept. 
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Regressors do not have to be independent: there can be any desired relationship between the 

regressors. For instance, we might suspect the response depends linearly both on a value and its 

square. In this case we would include one regressor whose value is just the square of another 

regressor. Thus, the model would be quadratic in the second regressor, which can be called as 

quadratic model although the model is still linear in the parameters 𝛽. 

In this section, OLS linear model and quadratic model are applied to predict pipeline yield strength 

and ultimate strength given 70 pipe samples with 18 features including surface identities and pipe 

overview data. All the continuous variables used in linear models for both yield strength and 

ultimate strength are shown in Table. Twenty continuous variables used in quadratic models for 

yield strength estimation are used in Table which including linear terms, power terms and 

interactive terms. Similarly, 20 continuous variables applied to quadratic models for ultimate 

strength as shown in Table.  Lab full wall 0.2% offset yield strength and ultimate strength are 

treated as benchmarks to evaluate both regression performance and predictive performance for 

each model.  

Yield Strength Estimation 

Linear model 

Full Data Regression 

From previous model selection section, based on Frontics yield strength baselines, there are two 

linear models have been selected for yield strength estimation. One is the linear model with the 

largest posterior (ASU_F_LM1_YS), the other one is with the largest R square (ASU_F_LM2_YS) 

among the top 20 best linear models. These two linear models have greater potential to achieve 

better performance than other models. To start with model performance evaluation, full 70-

sample dataset is used to address the regression performance. All the predictive values are 

compared to the Lab Full Wall 0.2% Offset yield strength which can be seen as the benchmark. 

Comparison results are shown in Figure 116 – Figure 119. The results of using MMT yield strength 

baseline are shown in Figure 120 - Figure 123. Numerical comparison of regression performance is 

shown in Table 32. From the result, the linear model ASU_F_LM2_YS has smaller RMSE than 

ASU_F_LM1_YS. This indicate that ASU_F_LM2_YS would achieve better regression performance. 

Statistical analysis of the difference between the predicted and the observed is shown in Table 33.  
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Figure 116. Unit Plot of Lab 0.2% Offset vs. 
ASU_F_LM1_YS 

 

Figure 117. Unit Plot of Lab 0.2% Offset vs. 
ASU_F_LM2_YS 

 

 

Figure 118. Boxplot of Lab 0.2% Offset vs. 
ASU_F_LM1_YS 

 

Figure 119. Boxplot of Lab 0.2% offset vs. 
ASU_F_LM2_YS 
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Figure 120. Unit Plot of Lab 0.2% Offset vs. 
ASU_M_LM1_YS 

 

Figure 121. Unit Plot of Lab 0.2% Offset vs. 
ASU_M_LM2_YS 

 

 

Figure 122. Boxplot of Lab 0.2% Offset vs. 
ASU_M_LM1_YS 

 

Figure 123. Boxplot of Lab 0.2% offset vs. 
ASU_M_LM2_YS 

 

Table 32. Properties of Yield Strength Linear Model (Frontics & MMT) 

 ASU_F_LM1_YS ASU_F_LM2_YS ASU_M_LM1_YS ASU_M_LM2_YS 

R2_Delta 0.5802 0.5889 0.5144 0.5799 
adj_R2_Delta 0.5474 0.5498 0.5072 0.5541 
R2_YS/UTS 0.7270 0.7326 0.3799 0.4635 

adj_R2_YS/UTS 0.7056 0.7072 0.3708 0.4305 
RMSE_Delta 4.0244 3.9823 6.0630 5.6390 

RMSE_YS/UTS 4.0235 3.9814 6.0634 5.6397 
BIC 423.32 426.10 463.71 466.30 
AIC 407.58 408.11 456.96 452.81 

𝝌𝟐 ൌ
ሺ𝒐𝒊 െ  𝒆𝒊ሻ𝟐

𝒆𝒊

𝟕𝟎

𝒊ୀ𝟏

 23.03 22.00 48.58 41.58 

Log Likelihood -180.7334 -196.0552 -225.4803 -220.4054 
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Table 33. Predicted vs. Actual STATs for All Obs. (Yield Strength Linear Model) 

 Obs Mean Std. Dev Min Max 

ASU_F_LM1_YS 70 -1.70E-04 4.0529 -6.9499 12.7852 
ASU_ F_LM2_YS 70 -1.69E-04 4.0105 -7.0247 11.8946 
ASU_M_LM1_YS 70 -5.29E-03 6.1079 -14.9869 10.0456 
ASU_ M_LM2_YS 70 -5.29E-03 5.6811 -13.7486 11.6824 

 

Split Data Validation  

Hold-out cross validation is applied to model validation. We randomly draw 5 test samples from 

the full dataset, and 65 samples would be left automatically to be the training set. Next, use the 

65-sample training set do the parametric learning. The following step is delta term prediction for 

the 5 test samples. Recall that we treat the yield strength got from surface techniques 𝑌𝑆௦ as the 

baseline of predictive values. Thus, sum up the predictive delta and corresponding 𝑌𝑆௦ will lead to 

final predictive yield strength. After 500 iterations, we got averaged RMSE for delta term and yield 

strength as well. The results are shown in the Table 34 below. It is easy to find that ASU_ 

F_LM1_YS has relatively small RMSEs which pretty match to the regression performance 

comparison. 

 

Table 34. Performance Comparison of Yield Strength Linear Model (Frontics & MMT) 

 AvgRMSE.Delta AvgRMSE.YS 
ASU_F_LM1_YS 4.2444 4.1732 
ASU_ F_LM2_YS 4.3273 4.2911 
ASU_M_LM1_YS 5.9965 6.0794 
ASU_ M_LM2_YS 5.9372 5.9485 

 

Quadratic model 

Full Data Regression 

In previous section, the largest posterior quadratic model (ASU_F_QM1_YS) and the largest R 

square model (ASU_F_QM2_YS) are selected out. The procedures of doing quadratic model 

regression are exactly the same as linear model regression except the variables used here not only 

included linear terms but also power terms and interactive terms. Compare predictive values with 

benchmark delta and benchmark yield strength, the unit plots and boxplots are shown in Figure 

124 - Figure 127. The results of using MMT yield strength baseline are shown in Figure 128 - Figure 

131. As can be seen in Table 35, the RMSEs of using ASU_F_QM1_YS quadratic model and 

ASU_F_QM2_YS quadratic model are 3.4051and 3.3372 respectively. So, it is fair to say 

ASU_F_QM2_YS with smaller RMSE has better performance regarding to full data ultimate strength 

regression. Statistical analysis of the difference between the predicted and the observed is shown 

in Table 36. 
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Figure 124. Unit Plot of Lab 0.2% Offset vs. 
ASU_F_QM1_YS 

 

Figure 125. Unit Plot of Lab 0.2% Offset vs. 
ASU_F_QM2_YS 

 

 

Figure 126. Boxplot of Lab 0.2% Offset vs. 
ASU_F_QM1_YS 

 

Figure 127. Boxplot of Lab 0.2% offset vs. 
ASU_F_QM2_YS 
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Figure 128. Unit Plot of Lab 0.2% Offset vs. 
ASU_M_QM1_YS 

 

Figure 129. Unit Plot of Lab 0.2% Offset vs. 
ASU_M_QM2_YS 

 

 

Figure 130. Boxplot of Lab 0.2% Offset vs. 
ASU_M_QM1_YS 

 

Figure 131. Boxplot of Lab 0.2% offset vs. 
ASU_M_QM2_YS 
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Table 35. Properties of Yield Strength Quadratic Model (Frontics & MMT) 

 ASU_F_QM1_YS ASU_F_QM2_YS ASU_M_QM1_YS ASU_M_QM2_YS 

R2_Delta 0.6994 0.7112 0.6269 0.6446 
adj_R2_Delta 0.6543 0.6734 0.6039 0.6168 
R2_YS/UTS 0.8044 0.8122 0.5239 0.5463 

adj_R2_YS/UTS 0.7751 0.7875 0.4946 0.5108 
RMSE_Delta 3.4056 3.3378 5.3142 5.1867 

RMSE_YS/UTS 3.4051 3.3372 5.3132 5.1866 
BIC 416.94 409.88 458.00 458.84 
AIC 392.21 387.39 444.51 443.10 

𝝌𝟐 ൌ
ሺ𝒐𝒊 െ  𝒆𝒊ሻ𝟐

𝒆𝒊

𝟕𝟎

𝒊ୀ𝟏

 17.16 16.20 36.87 34.83 

Log Likelihood -185.1048 -183.6972 -216.253 -214.5519 

Table 36. Predicted vs. Actual STATs for All Obs. (Yield Strength Quadratic Model) 

 Obs Mean Std. Dev Min Max 

ASU_F_QM1_YS 70 -1.69E-04 3.4298 -7.6571 8.5254 
ASU_ F_QM2_YS 70 -1.69E-04 3.3614 -8.0537 9.2141 
ASU_M_QM1_YS 70 -5.29E-03 5.3521 -14.9512 11.6132 
ASU_ M_QM2_YS 70 -5.29E-03 5.2246 -14.6021 12.2812 

 

Split Data Validation  

Similarly, the 70-sample dataset used for yield strength linear model validation has been split into 

training set and test set for 500 times. After 500 iterations, we got averaged RMSEs of both 

predictive delta term and predictive yield strength for quadratic models above. The comparison 

results are shown in Table 37. The RMSEs of ASU_QM2_YS are smaller than it of ASU_QM1_YS. And 

the models of Frontics baseline are all better than ones with MMT baseline. 

Table 37. Performance Comparison of Yield Strength Quadratic Model (Frontics & MMT) 

 AvgRMSE.Delta AvgRMSE.YS 
ASU_F_QM1_YS 3.8648 3.8192 
ASU_ F_QM2_YS 3.6333 3.5914 
ASU_M_QM1_YS 5.5362 5.5683 
ASU_ M_QM2_YS 5.4421 5.4494 

 

Ultimate Strength Estimation 

Linear model 

Full Data Regression 

For ultimate strength estimation, we just follow the same ways as did for yield strength. 

ASU_F_LM1_UTS with the largest posterior and ASU_F_LM2_UTS with the largest R square were 

chosen among the top 20 best linear model for ultimate strength to evaluate model performance 

further. Comparison results between predictive value and Lab Full Wall 0.2% offset ultimate 

strength (benchmark) are shown in from Figure 132 to Figure 135. The results of using MMT yield 
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strength baseline are shown in Figure 136 - Figure 139. Numerical results can be read in Table 38. 

ASU_F_LM2_UTS linear model with the smallest RMSE shows the best regression performance. 

Statistical analysis of the difference between the predicted and the observed is shown in Table 39.  

 

 

Figure 132. Unit Plot of Lab 0.2% Offset vs. 
ASU_F_LM1_UTS 

 

Figure 133. Unit Plot of Lab 0.2% Offset vs. 
ASU_F_LM2_UTS 

 

 

Figure 134. Boxplot of Lab 0.2% Offset vs. 
ASU_F_LM1_UTS 

 

Figure 135. Boxplot of Lab 0.2% offset vs. 
ASU_F_LM2_UTS 
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Figure 136. Unit Plot of Lab 0.2% Offset vs. 
ASU_M_LM1_UTS 

 

Figure 137. Unit Plot of Lab 0.2% Offset vs. 
ASU_M_LM2_UTS 

 

 

Figure 138. Boxplot of Lab 0.2% Offset vs. 
ASU_M_LM1_UTS 

 

Figure 139. Boxplot of Lab 0.2% offset vs. 
ASU_M_LM2_UTS 

 

Table 38. Properties of Ultimate Strength Linear Model (Frontics & MMT) 

 ASU_F_LM1_UTS ASU_F_LM2_ UTS ASU_M_LM1_ UTS ASU_M_LM2_ UTS 

R2_Delta 0.1812 0.2220 0.3716 0.4343 
adj_R2_Delta 0.1692 0.1866 0.3623 0.3901 
R2_YS/UTS 0.7719 0.7832 0.7716 0.7941 

adj_R2_YS/UTS 0.7685 0.7734 0.7682 0.7780 
RMSE_Delta 3.4386 3.3519 3.4462 3.2698 

RMSE_YS/UTS 3.4385 3.3519 3.4407 3.2665 
BIC 388.55 389.23 393.11 394.25 
AIC 379.56 377.99 381.87 378.51 

𝝌𝟐 ൌ
ሺ𝒐𝒊 െ  𝒆𝒊ሻ𝟐

𝒆𝒊

𝟕𝟎

𝒊ୀ𝟏

 11.61 11.02 11.62 10.67 

Log Likelihood -185.7799 -183.9931 -185.9 ‐182.2558 
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Table 39. Predicted vs. Actual STATs for All Obs. (Ultimate Strength Linear Model) 

 Obs Mean Std. Dev Min Max 

ASU_F_LM1_UTS 70 -2.64E-05 3.4633 -8.5363 9.5370 
ASU_ F_LM2_UTS 70 -2.63E-05 3.3761 -7.1641 8.8400 
ASU_M_LM1_UTS 70 -7.96E-03 3.4656 -6.5668 10.0843 
ASU_ M_LM2_UTS 70 -7.96E-03 3.2901 -8.3577 7.5372 

 

Split Data Validation  

To analyze the linear models for ultimate strength more comprehensively, again we did data 

splitting for 500 iterations with 65-sample training set and 5-sample test set for each time. And 

the predictive performance of these selected linear models is evaluated by comparing averaged 

RMSE as shown in the Table 40. ASU_LM1_UTS performed the best with the smallest RMSE 3.3593.  

Table 40. Performance Comparison of Ultimate Strength Linear Model (Frontics & MMT) 

 AvgRMSE.Delta AvgRMSE.YS 
ASU_F_LM1_UTS 3.3592 3.3593 
ASU_ F_LM2_UTS 3.4261 3.4262 
ASU_M_LM1_UTS 3.4523 3.4471 
ASU_ M_LM2_UTS 3.4129 3.4088 

 

Quadratic model 

Full Data Regression 

Besides linear model analysis, it is necessary to evaluate the quadratic models as well which got in 

Section. The quadratic model ASU_F_QM1_UTS has the largest posterior is compared to the 

quadratic model ASU_F_QM2_UTS.  Comparison results between predictive value and Lab Full Wall 

0.2% offset ultimate strength (benchmark) are shown in from Figure 140 to Figure 143. The results 

of using MMT yield strength baseline are shown in Figure 144 - Figure 147. And numerical results 

are shown in Table 41. ASU_F_QM2_UTS and ASU_M_QM2_UTS are both doing well. Statistical 

analysis of the difference between the predicted and the observed is shown in Table 42. 
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Figure 140. Unit Plot of Lab 0.2% Offset vs. 
ASU_F_QM1_UTS 

 

Figure 141. Unit Plot of Lab 0.2% Offset vs. 
ASU_F_QM2_UTS 

 

 

Figure 142. Boxplot of Lab 0.2% Offset vs. 
ASU_F_QM1_UTS 

 

Figure 143. Boxplot of Lab 0.2% offset vs. 
ASU_F_M2_UTS 
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Figure 144. Unit Plot of Lab 0.2% Offset vs. 
ASU_M_QM1_UTS 

 

Figure 145. Unit Plot of Lab 0.2% Offset vs. 
ASU_M_QM2_UTS 

 

 

Figure 146. Boxplot of Lab 0.2% Offset vs. 
ASU_M_QM1_UTS 

 

Figure 147. Boxplot of Lab 0.2% offset vs. 
ASU_M_QM2_UTS 
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Table 41. Properties of Ultimate Strength Quadratic Model (Frontics & MMT) 

 ASU_F_QM1_UTS ASU_F_QM2_ UTS ASU_M_QM1_ UTS ASU_M_QM2_ UTS 

R2_Delta 0.2196  0.2445  0.3289  0.4241 
adj_R2_Delta 0.1963  0.2102  0.3089  0.3591 
R2_YS/UTS 0.7825  0.7895  0.7561  0.7908 

adj_R2_YS/UTS 0.7760  0.7799  0.7489  0.7672 
RMSE_Delta 3.3570  3.3029  3.5612  3.2991 

RMSE_YS/UTS 3.3572  3.3032  3.5551  3.2929 
BIC 385.19  387.17  393.46  404.00 
AIC 376.20  375.92  384.46  383.76 

𝝌𝟐 ൌ
ሺ𝒐𝒊 െ  𝒆𝒊ሻ𝟐

𝒆𝒊

𝟕𝟎

𝒊ୀ𝟏

 11.18  10.79  12.38  10.75 

Log Likelihood ‐184.0996  ‐182.9622  ‐188.2316  ‐182.8801 

 

Table 42. Predicted vs. Actual STATs for All Obs. (Ultimate Strength Quadratic Model) 

 Obs Mean Std. Dev Min Max 

ASU_F_QM1_UTS 70 -1.69E-04 3.4298 -7.6571 8.5254 
ASU_ F_QM2_UTS 70 -1.69E-04 3.3614 -8.0537 9.2141 
ASU_M_QM1_UTS 70 -5.29E-03 5.3521 -14.9512 11.6132 
ASU_ M_QM2_UTS 70 -5.29E-03 5.2246 -14.6021 12.2812 

 

Split Data Validation  

500 times data splitting are carried out evaluate the quadratic model predictive performance with 

the same training and test size. The averaged RMSEs are shown in the Table 43. The quadratic 

model ASU_F_QM1_UTS shows the best predictive performance among these four models which is 

different from the conclusion got from regression cases. In other words, although the model 

ASU_M_QM2_UTS did well in regression, it is not reliable in predicting ultimate strength. 

Table 43. Performance Comparison of UTS Quadratic Model (Frontics & MMT) 

 AvgRMSE.Delta AvgRMSE.YS 
ASU_F_QM1_UTS 3.2585 3.2587 
ASU_ F_QM2_UTS 3.2760 3.2763 
ASU_M_QM1_UTS 3.4949 3.4888 
ASU_ M_QM2_UTS 4.2897 4.2841 
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Discussion and Conclusion 

All the OLS models including linear models and quadratic models are chosen from model selection 

in the previous section. If the model uncertainties in Bayesian model averaging process is 

considered, it’s not safe to say that the model with the largest posterior would perform the best. 

That’s why we additionally selected the model with the largest R square among the top 20 models 

in each scenario. By comparing RMSEs, we can conclude that the models with the largest R square 

are slightly better than those with the largest posterior. However, the model selection approach 

based on Bayesian model averaging is very important. Larger model posterior could guarantee 

good regression performance and predictive performance. That would contribute to narrow down 

the scale of selection for OLS models.  

 

6.5 Bayesian Updating Model Averaging 
Bayesian Updating Model Averaging (BUMA) is an extension of the usual Bayesian inference 

methods in which one does not only include parameter uncertainty through the prior distribution, 

but also include model uncertainty using Bayes’ theorem and therefore allowing for allow for 

direct model selection, combined estimation, and prediction[21]. The predictions of pipeline yield 

strength under realistic service conditions include various uncertainties. Those uncertainties come 

from material property, manufacturing process, model choice, model parameters, mechanism 

modeling, measurement data, as well as numerical evaluations[22]. For a specific model, the 

associated model parameters also have statistical uncertainties introduced by regression analysis 

with experimental data. The justification of using a particular model depends on the actual 

problem. One approach to justify using one model is to update the initial belief on that model 

using measurement data from experiments. Bayesian updating is one of the most commonly used 

methods[23]. The model determination can be made based on the results of Bayes factors in a 

hypothesis testing context[24]. Comparing with typical Bayesian model averaging (BMA), BUMA not 

only can deal with both parametric linear model and non-parametric model. Each model is treated 

as a black box and the initial belief of model prior is updated by training set which would lead to 

averaged posterior model probability. 

The probabilistic inference is usually associated with a specific model 𝑀 and it is conditional on 

the assumption that the model is the correct one which can fully describe the physical 

phenomenon. However, when the mechanism is not exactly clear, multiple models may be 

available to simplify the actual complicated mechanism. The joint distribution of an event 𝑋 and 

model 𝑀 with a 𝑛 dimensional parameter or hyperparameter can be expressed as  

 𝑝ሺ𝑋,𝑀ሻ ൌ 𝑃ሺ𝑀ሻ𝑝ሺ𝑋|𝑀ሻ, ( 8 ) 

where 𝑘 ∈ Κ is the model index, 𝑃ሺ𝑀ሻ is the prior probability assigned to model 𝑀, and 𝑝ሺ𝑋|𝑀ሻ is 

the conditional probability distribution of event 𝑋 given model 𝑀. Notice that we treat each model 

as a black box which simplified the uncertainties of model parameters. According to Bayes 

theorem, the total probability of event 𝑋 as 

 𝑃ሺ𝑋ሻ ൌ ∑ 𝑃ሺ𝑀ሻ∈௷ 𝑃ሺ𝑋|𝑀ሻ, ( 9 ) 
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where  𝑃ሺ𝑋|𝑀ሻ is the global likelihood for model 𝑀. And the posterior probability of model 𝑀 

reads 

 𝑃ሺ𝑀|𝑋ሻ ൌ ሺெೖሻሺ|ெೖሻ

ሺሻ
. ( 10 ) 

Suppose every response 𝑌 is distributed to a normal distribution with mean 𝑦 and standard 

deviation 𝜎. 𝑦 is true value or the benchmark. Then, the likelihood of each 𝑌 given input 𝑋, model 

𝑀 and 𝜎 is written as  

 𝑃ሺ𝑌|𝑋 ,𝑀 ,𝜎ሻ ൌ ଵ

√ଶగఙ
𝑒𝑥𝑝 ቀെ

ሺ௬ିሻమ

ଶఙమ
ቁ. ( 11 ) 

According to the above equation, the posterior is proportional to prior times likelihood, 

 𝑃ሺ𝑀|𝑋 ,𝑌 ,𝜎ሻ ∝ 𝑃ሺ𝑀ሻ ∙  𝑃ሺ𝑌|𝑋 ,𝑀 ,𝜎ሻ. ( 12 ) 

Without any clear information about the mechanism, we applied uniform priors to the three 

models which means at the beginning the priors of each model are exactly the same, 

 𝑃ሺ𝑀ଵሻ ൌ  𝑃ሺ𝑀ଶሻ ൌ ⋯ ൌ  𝑃ሺ𝑀ሻ ൌ
ଵ


. ( 13 ) 

Then a weight is added to each model and got a global weighted model as follow, 

 𝑀௪௧ௗ ൌ  ∑ 𝑤 ∙ 𝑀∈௷ . ( 14 ) 

where 𝑤 equals to posterior model probability, and ∑ 𝑤∈ஂ ൌ 1. 

From previous section, there are total four models have been selected for both yield strength and 

ultimate strength which including two linear models and two quadratic models. In this section, 
Model priors would be initiated as 𝑃ሺ𝑀ଵሻ ൌ  𝑃ሺ𝑀ଶሻ ൌ  𝑃൫𝑀ଵ൯ ൌ 𝑃൫𝑀ଶ൯ ൌ 1 4⁄ . By utilizing Bayesian 

updating model averaging, four models are merged together to be an averaged model. The 

performance of the averaged model would be evaluated with full data and split data as well. 

Yield Strength Estimation 

Full Data Regression 

A weighted model for yield strength estimation is merged by two linear models and two quadratic 

models. First, we used full 70-sample dataset to train there four models and got the records of all 

the predictive yield strength. Then, likelihoods are calculated with predictive yield strength and 

benchmark yield strength. Since posterior model probability is proportional to model prior times 

likelihood, we can retrain the weighted model. To be more specific, given initial uniform prior, 

posterior would be calculated after plugging in likelihoods of first sample of each model. Next, the 

new posteriors can be seen as new priors for next iteration. Following the same procedure, the 

posteriors would be updated for 70 times and the final posteriors show the preference of each 

model.  We called the final posteriors as weights for each model which used to construct the 

weighted model. Variables and trained weighs for each model are shown in Table 44.  

According to equation ( 14 ), predictive delta term and yield strength of the weighted model can be 

calculated. All the predictive values are compared to the Lab Full Wall 0.2% Offset yield strength as 

shown in Figure 148 - Figure 151. As can be seen in Table 44, ASU_F_QM2_YS has the largest 
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weight among the four single models. As for using MMT yield strength baseline, ASU_M_QM2_YS 

has the largest weight as shown in Table 45. More detailed numerical comparisons are read in 

Table 46 and Table 47. From the results, the best OLS models ASU_ F_QM2_YS has smaller RMSE 

than the weighted model, but the weighted model ASU_F_BUMA_YS has narrower range of residue. 

And ASU_F_BUMA_YS is much better than ASU_M_BUMA_YS. 

 

Table 44. Variables and Weighs for Each Yield Strength OLS model (Frontics) 

Model Variables Weight 
ASU_F_LM1_YS (𝑴𝑳𝟏) Mn, Mo, Nb, N, ND 0.00055 
ASU_ F_LM2_YS (𝑴𝑳𝟐) Mn, Mo, Nb, N, GSsqrtneg, ND 0.00089 
ASU_ F_QM1_YS (𝑴𝒒𝟏) ND, N, Mo, N2, Mo2, NDN, NMo, NbMo, NbMn 0.34444 
ASU_ F_QM2_YS (𝑴𝒒𝟐) ND, N, Mo, Mn, N2, Mo2, NDN, NbMn 0.65412 

 

Table 45. Variables and Weighs for Each Yield Strength OLS model (MMT) 

Model Variables Weight 
ASU_M_LM1_YS (𝑴𝑳𝟏) ND 8.697e-07 
ASU_ M_LM2_YS (𝑴𝑳𝟐) S, Cu, Mo, ND 8.998e-04 
ASU_ M_QM1_YS (𝑴𝒒𝟏) ND, S, S2, NDCu 0.13446 
ASU_ M_QM2_YS (𝑴𝒒𝟐) ND, S, S2, NDCu, NDMo 0.86464 

 

 

Figure 148. Unit Plot of Lab 0.2% Offset vs. 
ASU_F_BUMA_YS 

 

Figure 149. Unit Plot of Lab 0.2% Offset vs. 
ASU_M_BUMA_YS 
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Figure 150. Boxplot of Lab 0.2% Offset vs. 
ASU_F_BUMA_YS 

 

Figure 151. Boxplot of Lab 0.2% offset vs. 
ASU_M_BUMA_YS 

 

Table 46. Yield Strength Bayesian Weighted Model vs. OLS Model (Frontics & MMT) 

 ASU_F_QM2_YS ASU_F_BUMA_YS ASU_M_QM2_YS ASU_M_ BUMA _ YS 

R2_Delta 0.7112 0.7101 0.6446 0.6282 
adj_R2_Delta 0.6734 0.6490 0.6168 0.5862 
R2_YS/UTS 0.8122 0.8114 0.5463 0.5255 

adj_R2_YS/UTS 0.7875 0.7717 0.5108 0.4720 
RMSE_Delta 3.3378 3.3444 5.1867 5.3048 

RMSE_YS/UTS 3.3372 3.3439 5.1866 5.3038 

𝝌𝟐 ൌ
ሺ𝒐𝒊 െ  𝒆𝒊ሻ𝟐

𝒆𝒊

𝟕𝟎

𝒊ୀ𝟏

 16.20 16.37 34.83 36.73 

 

Table 47. Predicted vs. Actual STATs for All Obs. (YS Bayesian Weighted vs. OLS Model) 

 Obs Mean Std. Dev Min Max 

ASU_ F_QM2_YS 70 -1.69E-04 3.3614 -8.0537 9.2141 
ASU_F_BUMA_YS 70 -1.70E-04 3.3681 -7.7592 8.9813 
ASU_ M_QM2_UTS 70 -5.29E-03 5.2246 -14.6021 12.2812 
ASU_ M_BUMA_YS 70 -5.29E-03 5.3427 -14.9366 11.6382 

 

Split Data Validation  

Hold-out cross validation is applied to model validation. We randomly draw 5 test samples from 

the full dataset, and 65 samples would be left automatically to be the training set. Similar to what 

we did in the regression part, the performance of single model is evaluated first. 500 iterations are 

carried out for validation and the number of the largest posterior for each model is counted.  The 

results are shown in Table 48. ASU_F_QM2_YS did the best in four groups of validation. And 

ASU_F_LM2_YS always did the worst. It is safe to say that ASU_F_QM2_YS got better performance 

among these four single models while it is not the dominant one. Now, it is more valuable to check 



 

 

Page 157 
 

the performance of the weighted model. The comparison results are shown in Table 49. In this 

case, ASU_F_QM2_YS has the smallest RMSE 3.5914. While it is worth noting that the weighed 

model ASU_F_BUMA_YS has the second smallest RMSE 3.6766 which performed better than 

ASU_F_QM1_YS. The predictive performance of the weighted model is very close to 

ASU_F_QM2_YS. Similarly, the results of using MMT yield strength baseline are shown in Table 50 

and Table 51. When comparing the predictive performance of two yield strength weighted models, 

ASU_F_BUMA_UTS is much better than ASU_M_BUMA_UTS. 

Table 48. Performance of Yield Strength OLS Models (Frontics) 

 Group 1 Group 2 Group 3 Group 4 
ASU_F_LM1_YS 88 92 93 94 
ASU_F_LM2_YS 69 63 60 68 
ASU_F_QM1_YS 106 98 110 122 
ASU_F_QM2_YS 237 247 237 216 

 

Table 49. Performance of Yield Strength Weighted Model and OLS Models (Frontics) 

 AvgRMSE.Delta AvgRMSE.YS 
ASU_F_LM1_YS 4.2444 4.1732 
ASU_F_LM2_YS 4.3273 4.2911 
ASU_F_QM1_YS 3.8648 3.8192 
ASU_F_QM2_YS 3.6333 3.5914 

ASU_F_BUMA_YS 3.6463 3.6766 

 

Table 50. Performance of Yield Strength OLS Models (MMT) 

 Group 1 Group 2 Group 3 Group 4 
ASU_F_LM1_YS 145 125 126 115 
ASU_F_LM2_YS 80 88 74 96 
ASU_F_QM1_YS 116 129 121 122 
ASU_F_QM2_YS 159 158 179 167 

 

Table 51. Performance of Yield Strength Weighted Model and OLS Models (MMT) 

 AvgRMSE.Delta AvgRMSE.YS 
ASU_F_LM1_YS 5.9965 6.0794 
ASU_F_LM2_YS 5.9372 5.9485 
ASU_F_QM1_YS 5.5362 5.5683 
ASU_F_QM2_YS 5.4421 5.4494 

ASU_F_BUMA_YS 5.4093 5.4740 
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Ultimate Strength Estimation 

Full Data Regression 

Variables and final trained weighs for each chosen ultimate strength models are shown in Table 52 

and Table 53. The quadratic model ASU_F_QM2_UTS has the largest weight 0.46911. When using 

MMT ultimate strength baseline, ASU_F_QM2_UTS has the largest weight 0.48948. Predictive delta 

term and ultimate strength of the weighted model are calculated, and 70 predictive values are 

compared to the Lab Full Wall 0.2% Offset ultimate strength as shown in the unit plot Figure 152 - 

Figure 155. More detailed numerical comparisons are read in Table 54 and Table 55. From the 

results, the weighted model ASU_M_BUMA_UTS has the smallest RMSE 3.1405 which indicates the 

best regression performance. However, the performance of the weighted model ASU_F_BUMA_UTS 

is almost the same as ASU_M_BUMA_UTS when compare them with respected to the range of 

residue.  

Table 52. Variables and Weighs for Each Ultimate Strength OLS model (Frontics) 

Model Variables Weight 
ASU_F_LM1_UTS (𝑴𝑳𝟏) C, ND 0.13085 
ASU_ F_LM2_ UTS (𝑴𝑳𝟐) S, N, ND 0.11657 
ASU_ F_QM1_ UTS (𝑴𝒒𝟏) ND, NDS 0.28347 
ASU_ F_QM2_ UTS (𝑴𝒒𝟐) ND, S, S2 0.46911 

 

Table 53. Variables and Weighs for Each Ultimate Strength OLS model (MMT) 

Model Variables Weight 
ASU_M_LM1_ UTS (𝑴𝑳𝟏) ND 0.09534 
ASU_ M_LM2_ UTS (𝑴𝑳𝟐) S, Cu, Mo, ND 0.48948 
ASU_ M_QM1_ UTS (𝑴𝒒𝟏) ND, S, S2, NDCu 0.03109 
ASU_ M_QM2_ UTS (𝑴𝒒𝟐) ND, S, S2, NDCu, NDMo 0.38409 

 

 

Figure 152. Unit Plot of Lab 0.2% Offset vs. 
ASU_F_BUMA_UTS 

 

Figure 153. Unit Plot of Lab 0.2% Offset vs. 
ASU_M_BUMA_UTS 
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Figure 154. Boxplot of Lab 0.2% Offset vs. 
ASU_F_BUMA_UTS 

 

Figure 155. Boxplot of Lab 0.2% offset vs. 
ASU_M_BUMA_UTS 

 

Table 54. Bayesian Ultimate Strength Weighted Model vs. OLS Model (Frontics & MMT) 

 ASU_F_QM2_UTS ASU_F_BUMA_UTS ASU_M_LM2_UTS ASU_M_ BUMA _UTS 

R2_Delta 0.2445 0.2457 0.4343 0.4765 
adj_R2_Delta 0.2102 0.1738 0.3901 0.3549 
R2_YS/UTS 0.7895 0.7898 0.7941 0.8097 

adj_R2_YS/UTS 0.7799 0.7698 0.7780 0.7655 
RMSE_Delta 3.3029 3.3004 3.2698 3.1454 

RMSE_YS/UTS 3.3032 3.3006 3.2665 3.1405 

𝝌𝟐 ൌ
ሺ𝒐𝒊 െ  𝒆𝒊ሻ𝟐

𝒆𝒊

𝟕𝟎

𝒊ୀ𝟏

 10.79 10.77 10.67 
  

9.80 
 

 

Table 55. Predicted vs. Actual STATs for All Obs. (UTS Bayesian Weighted vs. OLS Model) 

 Obs Mean Std. Dev Min Max 

ASU_ F_QM2_UTS 70 -1.69E-04 3.3614 -8.0537 9.2141 
ASU_F_BUMA_UTS 70 -2.67E-05 3.3245 -7.9688 8.5147 
ASU_M_LM1_UTS 70 -7.96E-03 3.4656 -6.5668 10.0843 

ASU_ M_BUMA_UTS 70 -7.96E-03 3.1632 -7.5973 8.7915 

 

Split Data Validation  

500 times split data iterations with 65 training sample and 5 test sample are carried out for four 

groups of validation. And the number of the largest posterior for each model are counted.  The 

results are shown in Table 56. ASU_F_LM2_UTS always did the worst while the linear model 

ASU_F_LM1_UTS did the best in four groups of validation. However, there is no single OLS model 

shows the dominant performance. Hence it is necessary to compare the performance of the 

weighted model with those four single models. The comparison results are shown in Table 57. In 

this case, by comparing averaged RMSEs, the quadratic model ASU_F_QM1_UTS has the best 
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predictive performance with the smallest RMSE 3.2587 followed by another quadratic model 

ASU_F_QM1_UTS and the weighted model ASU_F_BUMA_UTS. The results of using MMT ultimate 

strength baseline are shown in Table 58 and Table 59. ASU_M_LM2_UTS has the smallest averaged 

RMSE and the weighted model ASU_M_BUMA_UTS is the second best. When comparing the 

predictive performance of two weighted models, ASU_F_BUMA_UTS is better with smaller RMSE. 

Table 56. Validation of Ultimate Strength OLS Models (Frontics) 

 Group 1 Group 2 Group 3 Group 4 
ASU_F_LM1_UTS 167 159 160 165 
ASU_F_LM2_UTS 47 67 59 73 
ASU_F_QM1_UTS 127 119 128 106 
ASU_F_QM2_UTS 159 155 153 156 

 

Table 57. Validation of Ultimate Strength Weighted Model and OLS Models (Frontics) 

 AvgRMSE.Delta AvgRMSE.YS 
ASU_F_LM1_UTS 3.3592 3.3593 
ASU_F_LM2_UTS 3.4261 3.4262 
ASU_F_QM1_UTS 3.2585 3.2587 
ASU_F_QM2_UTS 3.2760 3.2763 

ASU_F_BUMA_UTS 3.2864 3.3393 

 

Table 58. Performance of Ultimate Strength OLS Models (MMT) 

 Group 1 Group 2 Group 3 Group 4 
ASU_M_LM1_UTS 156 142 154 136 
ASU_M_LM2_UTS 197 185 177 198 
ASU_M_QM1_UTS 68 94 94 75 
ASU_M_QM2_UTS 79 79 75 91 

 

Table 59. Performance of Ultimate Strength Weighted Model and OLS Models (MMT) 

 AvgRMSE.Delta AvgRMSE.YS 
ASU_M_LM1_UTS 3.4523 3.4471 
ASU_M_LM2_UTS 3.4129 3.4088 
ASU_M_QM1_UTS 3.4949 3.4888 
ASU_M_QM2_UTS 4.2897 4.2841 

ASU_M_BUMA_UTS 3.4376 3.4344 

 

  



 

 

Page 161 
 

Discussion and Conclusion 

For single parametric linear model and quadratic model, different datasets or training set may lead 

to different performance even dealing with the same problem. The weighted model constructed by 

Bayesian updating model averaging can tackle model uncertainties and data perturbation well. In 

regarding to RMSE comparison, the performance of the weighted model may not be the best all the 

time. But it is always very close to the best performance among the chosen models. In addition, 

weighted models are proven to effectively narrow down the range of residue which is more 

valuable in terms of predicting both yield strength and ultimate strength. What’s more, Bayesian 

updating model averaging can not only deal with parametric model, but also has great potential to 

encode non-parametric model which may lead to a more robust weighted model. 

 

6.6 Bayesian Network Model 
Bayesian networks are part of a branch of statistical tools called advanced graphical models that 

can describe probabilistic relationships between variables[25]. A Bayesian network consists of two 

parts: a qualitative part in the form of a directed graph, and a quantitative part, in the form of 

conditional probability tables[26]. In a Bayesian network an important restriction is that the 

directed graph must be acyclic, in which the edges must not create loops or cycles within the 

network[27]. 

It is often assumed that the directed edges in Bayesian network represent causal relationships. The 

probability theory is not intrinsically able to express causality, so edge directions are not 

necessarily indicative of causal effects[28]. However, it can also be argued that there is a case for 

the usage of the term ‘causal’ for edges in manually constructed Bayesian networks, as they are 

usually designed to represent the prior understanding of the causal structure. These manually 

constructed Bayesian networks are usually sparse and their interpretation is clear and 

meaningful[29]. 

Bayesian networks are attractive for probabilistic reasoning because their structure allows them to 

be decomposed for efficient calculation of the joint distribution in typically sparse networks in 

practice. The flexible nature of Bayesian networks makes it ideal for the complex engineering 

problems. Bayesian networks can also carry out probabilistic inference easily and efficiently for 

each specific failure outcome by considering the variables involved, rather than updating the 

whole model[30]. Another significant benefit of Bayesian Networks is that they allow for the 

conditional dependencies or causal interactions between variables to be visualized. This provides 

an intuitive way of observing the relationships allowing stakeholders to make informed decisions 

in response to different hazard scenarios. 

The first step of a Bayesian network construction is structure identification which is extremely 

important. The initial structure learning process can be performed by using structure-learning 

algorithms that use optimization methods to attempt to identify the relationships from the data to 

maximize likelihood or minimize measures such as the Bayesian Information Criterion (BIC), or 

can be guided manually using domain knowledge. In other words, there are typical two ways to 
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derive the Bayesian network structure with given data: an automated learning method and a 

guided method utilizing literature and expert knowledge. 

In the guided method, the data and knowledge are collected and used to build the structure of the 

Bayesian network worked in parallel. An approach similar to the one introduced by Babovic[31] 

was utilized to incorporate domain knowledge, where the Bayesian Network was constrained 

before combining with raw data. The domain knowledge consisted of information from experts 

and prior information available from historical data. However, in real world applications, previous 

expert knowledges may not be applicable to different scenarios and the causal relationships 

between variables are hard to obtain. Thus, the automated learning method comes up to solve 

these issues.  

The automated learning method is based on several optimization algorithm. The hill-climbing 

algorithm is the most used one which is a score-based technique that starts with an empty 

network structure of all variables, then proceeds by adding, removing, and reversing edges 

between nodes to maximize the goodness of fit of the model. The score for the goodness of fit in 

bnlearn package utilized the log-likelihood loss, which is the negated expected log likelihood; 

hence, the lower the score the better the fit[32, 33]. The structure of the Bayesian network was 

final when the score could no longer be improved.  

In this section, automated learning Bayesian networks are constructed to predict pipeline yield 

strength and ultimate strength given 70 pipe samples with 23 features including surface identities 

and pipe overview data.  All the variables used as inputs for the Bayesian network learning are 

shown in Table 60. For both yield strength and ultimate strength estimation, two different 

networks are obtained accordingly to analyze the model performance. One is a single Bayesian 

network and another is an averaged Bayesian network updated by iterations. Generally, there are 4 

major streps to construct Bayesian network models. 1) Preprocessing and exploratory data 

analysis; 2) Learning the structure of a Bayesian network; 3) Learning the parameters of a Bayesian 

network; 4) Using the network as a regression or predictive model; Results and comparisons are 

shown in following subsections. 

Table 60. Variables Used in Bayesian Network Models 

Index 1 2 3 4 5 6 7 8 9 10 11 12 
Variable C Mn P S Al Cr Cu Mo Nb Ni Si Ti 

Index 13 14 15 16 17 18 19 20 21 22 23  
Variable V B N PL Hod GS GSsqrt GSsqrtneg ND WT ST  

 

Yield Strength Estimation 

Full Data Regression 

Note that the 𝑦 nodes in all the following Bayesian networks are the Delta terms which equal to the 

difference between full wall tensile data and surface indentation results. Here, 𝑦 ൌ  𝑌𝑆௧ െ  𝑌𝑆௦ 

where 𝑌𝑆௦ can be seen as the baseline of responses. The single Bayesian network is shown in Figure 

174. 
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However, the quality of the single network crucially depends on whether variables are normally 

distributed and on whether the relationships that link them are linear. It is not clear that is the 

case for all of them in the current investigation. We also do not know about which arcs represent 

strong relationships, in which they are resistant to perturbations of the data. Fortunately, the 

averaged Bayesian network can address both issues at the same time as show in Figure 156. The 

main approach of averaged Bayesian network is to resample the data using bootstrap and to learn 

a separate network from each bootstrap sample. The method will check how often each possible 

arc appears in the networks and eventually construct a consensus network with the arcs that 

appear more frequently. Also, the threshold can be customized that will be used to decide whether 

an arc is strong enough to be included in the consensus network. The regression and comparison 

results are showing as below. 

In the single Bayesian network of yield strength regression, the delta item 𝑦 has five parent nodes 

which are 𝑁𝐷, 𝑀𝑜, 𝑁, 𝑁𝑏 and 𝑀𝑛. Besides these directed edges from surface identities and pipe 

overview variables to the delta node. There are also edges between surface identities and pipe 

overview variables. These relationships are helpful to get better understanding of the entire causal 

structure which leads to more eligible reliability pipe strength analysis. The bootstrap step of 

training the averaged Bayesian network is essentially based on the single network. While in the 

averaged Bayesian network, four nodes including 𝑁𝐷, 𝑀𝑜, 𝑁 and 𝑁𝑏 are the parent nodes of 𝑦. The 

difference between the single network and the averaged network is caused by model uncertainties. 

The power of the averaged Bayesian network is to show strong and weak relationship explicitly 

and visually among the variables, and also to improve the robustness of the Bayesian network 

model. As can be seen in Figure 157, 𝑁𝐷, 𝑁 and 𝑁𝑏 have stronger relationship directed to the delta 

node 𝑦 than 𝑀𝑜.  

Both the single Bayesian network and the averaged Bayesian network are used as regression 

models for yield strength estimation. Predictive values for each sample are compared to Lab full 

wall 0.2% offset yield strength, and comparison results are shown in Figure 158 – Figure 161. As 

for using MMT yield strength baseline, single Bayesian network and weighted Bayesian network 

model are shown in Figure 162 and Figure 163. Comparing to benchmark yield strength as shown 

in Figure 164 - Figure 167. Numerical results of regression performance are shown in Table 61 and 

Table 62, including R square, adjust R square root mean square error (RMSE), chi-squared value 

and range of residue. From the results, the performance of these Bayesian networks is quite 

similar to OLS linear models in terms of comparing RMSEs while with larger residue ranges. 
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Figure 156. Single Bayesian network (ASU_F_BN1_YS) 

 

 

Figure 157. Averaged Bayesian network (ASU_F_BN2_YS) 
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Figure 158. Unit Plot of Lab 0.2% Offset vs. 
ASU_F_BN1_YS 

 

Figure 159. Unit Plot of Lab 0.2% Offset vs. 
ASU_F_BN2_YS 

 

 

Figure 160. Boxplot of Lab 0.2% Offset vs. 
ASU_F_BN1_YS 

 

Figure 161. Boxplot of Lab 0.2% offset vs. 
ASU_F_BN2_YS 
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Figure 162. Single Bayesian network (ASU_M_BN1_YS) 

 

 

Figure 163. Averaged Bayesian network (ASU_M_BN2_YS) 
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Figure 164. Unit Plot of Lab 0.2% Offset vs. 
ASU_M_BN1_YS 

 

Figure 165. Unit Plot of Lab 0.2% Offset vs. 
ASU_M_BN2_YS 

 

 

Figure 166. Boxplot of Lab 0.2% Offset vs. 
ASU_M_BN1_YS 

 

Figure 167. Boxplot of Lab 0.2% offset vs. 
ASU_M_BN2_YS 

 

Table 61. Properties of Yield Strength Bayesian Network (Frontics & MMT) 

 ASU_F_BN1_YS ASU_F_BN2_YS ASU_M_BN1_YS ASU_M_BN2_YS 

R2_Delta 0.5802 0.5496 0.5144 0.5395 
adj_R2_Delta 0.5474 0.5219 0.5072 0.5257 
R2_YS/UTS 0.7270 0.7070 0.3799 0.4119 

adj_R2_YS/UTS 0.7056 0.6890 0.3708 0.3944 
RMSE_Delta 4.0244 4.1683 6.0630 5.9042 

RMSE_YS/UTS 4.0235 4.1676 6.0634 5.9048 

𝝌𝟐 ൌ
ሺ𝒐𝒊 െ  𝒆𝒊ሻ𝟐

𝒆𝒊

𝟕𝟎

𝒊ୀ𝟏

 23.03 25.21 48.58 46.16 
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Table 62. Predicted vs. Actual STATs for All Obs. (Yield Strength Bayesian Network) 

 Obs Mean Std. Dev Min Max 

ASU_F_BN1_YS 70 -1.70E-04 4.0529 -6.9499 12.7852 
ASU_ F_ BN2_YS 70 -1.69E-04 4.1981 -8.4076 12.0304 
ASU_M_BN1_YS 70 -5.29E-03 6.1079 -14.9869 10.0456 
ASU_M_BN2_YS 70 -5.29E-03 5.9481 -14.2204 11.4708 

 

Split Data Validation  

To evaluate the performance of two networks further, we split the 70-sample dataset into training 

and test parts. 5 samples were randomly selected from the dataset to be a testing set, and the rest 

65 samples would work as the training set correspondingly.  Parametric learning is done with the 

training set, and then using the 5 test samples to do validation. After 500 iterations, the general 

predictive performance of the single Bayesian network and the averaged Bayesian network are 

shown in Table 63. For predictive performance with the 70-sample dataset, the single Bayesian 

network is slightly better than the averaged Bayesian network. It’s reasonable that when we carry 

out model averaging, the performance of averaged model usually approximates the best model 

instead of being the best. However, the averaged model is much better to deal with perturbations 

of the data, which means when having different dataset, the single network would have poorer 

performance while the averaged network would still be usable. 

Table 63. Performance Comparison of Yield Strength BN Models (Frontics & MMT) 

 AvgRMSE.Delta AvgRMSE.YS 
ASU_F_BN1_YS 4.2809 4.2802 
ASU_ F_BN2_YS 4.3181 4.3176 
ASU_M_BN1_YS 5.9155 5.9155 
ASU_ M_BN2_YS 5.9708 5.9689 

 

Ultimate Strength Estimation 

Full Data Regression 

Following the same procedure in yield strength estimation, we used the full data to do the 

regression first. A single Bayesian network and an averaged Bayesian network for ultimate 

strength are achieved as shown in Figure 168 and Figure 169 respectively. In the single network, 

𝑁𝐷, and 𝐶 are the parent nodes of delta term 𝑦. In the averaged network, 𝑦 has three parent nodes 

𝑁𝐷, 𝑆 and 𝐶 . However, the relationships between 𝑆, 𝐶 and 𝑦 are not strong. Predictive values for 

each sample are compared to Lab full wall 0.2% offset ultimate strength, and comparison results 

are shown in Figure 170 – Figure 173. On the other hand, with MMT ultimate strength baseline, A 

single Bayesian network and an averaged Bayesian network are constructed in Figure 174 and 

Figure 175. In the single Bayesian network, the delta term has three parent nodes 𝑇𝑖, 𝑁𝑏 and 𝑁 

which are the same in the averaged Bayesian network model. 

Numerical results of regression performance are shown in Table 64  and Table 65. As for ultimate 

strength full data regression, the performance of averaged networks is similar to the single 
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networks. By comparing the range of residue, it can be concluded that ultimate strength Bayesian 

network models with Frontics baseline are better than with MMT baseline. 

 

Figure 168. Single Bayesian network (ASU_F_BN1_UTS) 
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Figure 169. Averaged Bayesian network (ASU_F_BN2_UTS) 

 

 

Figure 170. Unit Plot of Lab 0.2% Offset vs. 
ASU_F_BN1_UTS 

 

Figure 171. Unit Plot of Lab 0.2% Offset vs. 
ASU_F_BN2_UTS 
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Figure 172. Boxplot of Lab 0.2% Offset vs. 
ASU_F_BN1_UTS 

 

Figure 173. Boxplot of Lab 0.2% offset vs. 
ASU_F_BN2_UTS 

 

 

Figure 174. Single Bayesian network (ASU_M_BN1_UTS) 
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Figure 175. Averaged Bayesian network (ASU_M_BN2_UTS) 

 

 

Figure 176. Unit Plot of Lab 0.2% Offset vs. 
ASU_M_BN1_UTS 

 

Figure 177. Unit Plot of Lab 0.2% Offset vs. 
ASU_M_BN2_UTS 
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Figure 178. Boxplot of Lab 0.2% Offset vs. 
ASU_M_BN1_UTS 

 

Figure 179. Boxplot of Lab 0.2% offset vs. 
ASU_M_BN2_UTS 

 

Table 64. Properties of Ultimate Strength Bayesian Network (Frontics & MMT) 

 ASU_F_BN1_UTS ASU_F_BN2_UTS ASU_M_BN1_UTS ASU_M_BN2_UTS 

R2_Delta 0.1812 0.2085 0.3716 0.3716 
adj_R2_Delta 0.1568 0.1725 0.3430 0.3430 
R2_YS/UTS 0.7719 0.7795 0.7716 0.7716 

adj_R2_YS/UTS 0.7651 0.7694 0.7612 0.7612 
RMSE_Delta 3.4386 3.3809 3.4462 3.4462 

RMSE_YS/UTS 3.4385 3.3809 3.4407 3.4407 

𝝌𝟐 ൌ
ሺ𝒐𝒊 െ  𝒆𝒊ሻ𝟐

𝒆𝒊

𝟕𝟎

𝒊ୀ𝟏

 11.61 11.26 11.62 11.62 

 

Table 65. Predicted vs. Actual STATs for All Obs. (Ultimate Strength Bayesian Network) 

 Obs Mean Std. Dev Min Max 

ASU_F_BN1_UTS 70 -2.64E-05 3.4633 -8.5363 9.5370 
ASU_ F_ BN2_UTS 70 -2.57E-05 3.4053 -8.2337 9.1392 
ASU_M_BN1_UTS 70 -7.96E-03 3.4656 -6.5668 10.0843 
ASU_M_BN2_UTS 70 -7.96E-03 3.4656 -6.5668 10.0843 

 

Split Data Validation  

To validate the predictive performance of above two Bayesian networks, again we draw the 5 test 

samples from the entire dataset and the rest 65 samples as training set for each iteration. The 

general results for 500 iterations are shown in the Table 66. For Frontics ultimate strength 

baseline, the predictive performance of the averaged Bayesian network model ASU_ F_BN2_UTS is 

slightly better than the single one ASU_F_BN1_UTS. For MMT baseline, the single Bayesian network 
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ASU_M_BN1_UTS shows better performance than ASU_ M_BN2_UTS although they have the same 

regression performance. 

Table 66. Validation Performance Comparison of UTS BN Models (Frontics & MMT) 

 AvgRMSE.Delta AvgRMSE.YS 
ASU_F_BN1_UTS 3.3731 3.3729 
ASU_ F_BN2_UTS 3.3576 3.3577 
ASU_M_BN1_UTS 3.4467 3.4420 
ASU_ M_BN2_UTS 3.5321 3.5274 

 

Discussion and Conclusion 

In this section, the automated learning Bayesian network with both continuous and categorical 

variables are applied to yield strength and ultimate strength estimation. Single Bayesian networks 

and averaged Bayesian networks are constructed with full 70-sample dataset which including 

surface identities data and pipe overview data. By doing this, the regression performance of all the 

networks are achieved as well. 5 test data Hold-out cross validations with 500 iterations are used 

to evaluate the predictive performance of each network. For both yield strength estimation and 

ultimate strength estimation, the performance of single Bayesian network and averaged Bayesian 

network are quite similar. In general speaking, the Bayesian network models with Frontics baseline 

are performed better than those with MMT baseline. Note that all the results got by using Bayesian 

network are comparable to the results from linear models in previous section. However, the 

relationships between all the variables can be expressed explicitly by using the automated learning 

Bayesian network without doing the variable selection and the model selection. In addition, the 

averaged Bayesian network has nature abilities to deal with perturbations of the data which is very 

impressive. 

 

 

  



 

 

Page 175 
 

6.7 Gaussian Process Model 
Gaussian process regression has its basis in Bayesian probability theory[34].  The most used 

Gaussian process is a non-parametric model, we do not have to worry about whether it is possible 

for the model to fit the data. Even when a lot of observations have been added, there may still be 

some flexibility left in the functions[35]. If more datapoints were added one would see the mean 

function adjust itself to pass through these points, and that the posterior uncertainty would 

reduce close to the observations. However, non-parametric models rely on local neighborhood 

training data to make predictions, thus they perform poorly when applied to regions of the state 

space that are not densely covered by the training dataset. This problem becomes particularly 

critical as the state space grows[36]. Since some input variables in our research are obtained 

surface indentation techniques which are very expensive, so it is not possible to get plenty of 

datapoints to cover the entire sate space. While the parametric approach can capture a great deal 

of prior knowledge that does not need to be learned from data. It quite necessary to combine the 

benefits of parametric and non-parametric approaches. Then the semi-parametric Gaussian 

Process seems like a better option which can combines the interpretability of parametric models 

with the accuracy of non-parametric models. That means considering the parametric models for 

the mean function, and the Gaussian Process just has to model the residual errors[37]. 

A Gaussian Process (GP) defines a prior over functions, which can be converted into a posterior 

over functions once we have some observed data. In other words, it defines a distribution over the 

function’s values at a finite, but arbitrary, set of points, say 𝒙𝟏, … ,𝒙𝑵. A GP assumes that 
𝑝൫𝑓ሺ𝒙𝟏ሻ, . . . , 𝑓ሺ𝒙𝑵ሻ൯ is jointly Gaussian, with mean 𝝁ሺ𝒙ሻ and covariance ∑ሺ𝒙ሻ given by ∑ ൌ 𝑘ሺ𝒙𝒊,𝒙𝒋ሻ , 

where k us a positive definite kernel function. In our research, we use GPs for regression. Let the 

prior on the regression function to be a GP, denoted by 

 𝑓ሺ𝒙ሻ ~ 𝐺𝑃൫𝑚ሺ𝒙ሻ,𝑘ሺ𝒙,𝒙ᇱሻ൯, ( 15 ) 

where m(x) is the mean function and 𝑘ሺ𝑥, 𝑥′ሻ is the kernel or covariance function, i.e., 

 𝑚ሺ𝒙ሻ ൌ  𝛦ሾ𝑓ሺ𝑥ሻሿ, ( 16 ) 

 𝑘ሺ𝒙,𝒙ᇱሻ ൌ  𝛦ൣ൫𝑓ሺ𝒙ሻ െ 𝑚ሺ𝒙ሻ൯൫𝑓ሺ𝒙ᇱሻ െ 𝑚ሺ𝒙ᇱሻ൯൧. ( 17 ) 

For any finite set of points, this process defines a joint Gaussian: 

 𝑝ሺ𝐟|𝐗ሻ ൌ  𝛮ሺ𝐟|𝝁,𝐊ሻ, ( 18 ) 

where 𝐾 ൌ 𝑘ሺ𝑥 , 𝑥ሻ and 𝝁 ൌ ൫𝑚ሺ𝑥ଵሻ, … ,𝑚ሺ𝑥ேሻ൯. 

Note that it is common to use a mean function of 𝑚ሺ𝒙ሻ ൌ  0, since the GP is flexible enough to 

model the mean arbitrarily well. Suppose we have a training set 𝐷 ൌ ሼሺ𝑥 , 𝑓ሻ, 𝑖 ൌ 1 ∶ 𝑁ሽ, where 𝑓 ൌ

𝑓ሺ𝑥ሻ is the noise-free observation of the function evaluated at 𝑥. Given a test set 𝐗∗ of size 𝑁∗  ൈ  𝐷, 

we want to predict the function outputs 𝐟∗. By definition of the GP, the joint distribution has the 

following form 

 ൬
𝐟
𝐟∗
൰  ~ 𝛮ቆቀ

𝝁
𝝁∗
ቁ  , ൬

𝐊 𝐊∗

𝐊∗
𝑻 𝐊∗∗

൰ቇ, ( 19 ) 
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where 𝐊 ൌ kሺ𝐗, 𝐗ሻ is 𝑁 ൈ 𝑁, 𝐊∗ ൌ kሺ𝐗, 𝐗∗ሻ is 𝑁 ൈ 𝑁∗, and 𝐊∗∗ ൌ kሺ𝐗∗, 𝐗∗ሻ is 𝑁∗ ൈ 𝑁∗. By the standard 

rules for conditioning Gaussians, the posterior has the following form 

 𝑝ሺ𝐟∗|𝐗∗,𝐗, 𝐟ሻ ൌ  𝛮ሺ𝐟∗|𝝁∗,𝚺∗ሻ, ( 20 ) 

 𝝁∗ ൌ  𝝁ሺ𝑿∗ሻ   𝑲∗
𝑻 𝑲ି𝟏൫𝐟 െ  𝝁ሺ𝐗ሻ൯, ( 21 ) 

 𝚺∗ ൌ  𝐊∗∗ െ  𝐊∗
𝑻𝐊ି𝟏𝐊∗, ( 22 ) 

Sometimes it is useful to use a parametric model such as a linear model for the mean of the 

process, as follows: 

 𝑓ሺ𝐱ሻ ൌ  𝛽்𝜙ሺ𝐱ሻ  𝑟ሺ𝐱ሻ, ( 23 ) 

where 𝑟ሺ𝐱ሻ ~ GP൫0, 𝑘ሺ𝐱, 𝐱′ሻ൯ models the residuals. This combines a parametric and a non-parametric 

model which is known as a semi-parametric Gaussian Process model. If we assume 𝛽 ∼ 𝑁ሺ𝑏,𝐵ሻ, we 

can integrate these parameters out to get a new GP: 

 𝑝ሺ𝐟∗|𝐗∗,𝐗, 𝐲ሻ ൌ  𝛮൫𝐟∗ഥ , covሾ𝑓∗ሿ൯, ( 24 ) 

 𝐟∗ഥ ൌ  Φ∗
்�̅�   𝐊∗

்𝐊௬
ିଵ൫𝑦 െ  𝚽�̅�൯, ( 25 ) 

 �̅� ൌ  ൫𝚽்𝐊௬
ିଵ𝚽   𝐁ିଵ൯

ିଵ
൫𝚽𝐊௬

ିଵ𝒚   𝐁ିଵ𝐛൯, ( 26 ) 

 covሾ𝑓∗ሿ ൌ  𝐊∗∗ െ  𝐊∗
𝑻𝐊𝒚

ିଵ𝐊∗  𝐑൫𝐁ିଵ   𝚽𝐊௬
ିଵ𝚽்൯

ିଵ
𝐑, ( 27 ) 

 𝐑 ൌ  𝚽∗ െ  𝚽𝐊௬
ିଵ൫𝑦 െ  𝚽�̅�൯. ( 28 ) 

The predictive mean is the output of the linear model plus a correction term due to the GP, and 

the predive covariance is the usual GP covariance plus an extra term due to the uncertainty in β. 

Yield Strength Estimation 

Full Data Regression 

From previous variable selection section, with Frontics baseline, the top 3 variables for using yield 

strength linear model are 𝑁𝐷, 𝑁 and 𝑁𝑏. As for MMT baseline, the top 3 variables are 𝑁𝐷, 𝑆 and 𝑁. 

In this subsection, we applied gaussian process with these three variables to do yield strength full 

data regression. In consideration of the limited data size we have, a linear trend is added to the GP 

model which can be seen as a semi gaussian process model. Compare with the Lab Full Wall 0.2% 

benchmark yield strength 𝑌𝑆௧, 70 predictive yield strength of using three-dimensional GP model 

are shown in Figure 180 - Figure 183. Numerical regression performance is shown in Table 67 and 

Table 68. From the result, the RMSEs of the GP models are much larger than the models we used in 

previous sections. 
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Figure 180. Unit Plot of Lab 0.2% Offset vs. 
ASU_F_GP_YS 

 

Figure 181. Unit Plot of Lab 0.2% Offset vs. 
ASU_M_GP_YS 

 

 

Figure 182. Boxplot of Lab 0.2% Offset vs. 
ASU_F_GP_YS 

 

Figure 183. Boxplot of Lab 0.2% offset vs. 
ASU_M_GP_YS 
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Table 67. Properties of Yield Strength GP Model (Frontics & MMT) 

 ASU_F_GP_YS ASU_M_GP_YS 

R2_Delta 0.2249 0.5472 
adj_R2_Delta 0.1897 0.5266 
R2_YS/UTS 0.4957 0.4218 

adj_R2_YS/UTS 0.4728 0.3955 
RMSE_Delta 5.4682 5.8543 

RMSE_YS/UTS 5.4681 5.8550 

𝝌𝟐 ൌ
ሺ𝒐𝒊 െ  𝒆𝒊ሻ𝟐

𝒆𝒊

𝟕𝟎

𝒊ୀ𝟏

 39.30 45.37 

 

Table 68. Predicted vs. Actual STATs for All Obs. (Yield Strength GP Model) 

 Obs Mean Std. Dev Min Max 

ASU_F_GP_YS 70 -2.23E-04 5.5075 -9.2502 13.9659 
ASU_ M_GP_YS 70 -5.45E-03 5.8981 -13.5168 10.8967 

 

Split Data Validation  

To evaluate the performance of the GP model further, 500 times hold-out cross validation has 

been done. Following the same procedures as we did for all the parametric model, the dataset is 

split into 65-sample training set and 5-sample test set. All the predictive values are compared to 

benchmark yield strength 𝑌𝑆௧. The averaged RMSEs for 500 iterations are shown in Table 69. With 

less training sample, the performance of GP model is getting even worse. 

Table 69. Validation Performance of Yield Strength GP Model (Frontics & MMT) 

 AvgRMSE.Delta AvgRMSE.YS 
ASU_F_GP_YS 6.3216 6.3220 
ASU_M_GP_YS 6.0545 6.0548 

 

Ultimate Strength Estimation 

Full Data Regression 

In previous variable selection section, with Frontics baseline, the top 3 variables for using ultimate 

strength linear model are 𝑁𝐷, 𝑃𝐿, 𝐶. As for MMT baseline, the top 3 variables are 𝑁, 𝑇𝑖 and 𝑃𝐿. Just 

following the same procedures, we applied gaussian process with these three variables to do 

ultimate strength full data regression. Compare with the Lab Full Wall 0.2% benchmark ultimate 

strength 𝑈𝑇𝑆௧, 70 predictive ultimate strength of using three-dimensional GP model are shown in 

Figure 184 - Figure 187. Numerical regression performance is shown in Table 70 and Table 71. 

From the result, the GP model ASU_M_GP_UTS is better with smaller RMSE and narrower range of 

residue. However, it is still not plausible compared to the models we constructed before. 
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Figure 184. Unit Plot of Lab 0.2% Offset vs. 
ASU_F_GP_UTS 

 

Figure 185. Unit Plot of Lab 0.2% Offset vs. 
ASU_M_GP_UTS 

 

 

Figure 186. Boxplot of Lab 0.2% Offset vs. 
ASU_F_GP_UTS 

 

Figure 187. Boxplot of Lab 0.2% offset vs. 
ASU_M_GP UTS 

 

Table 70. Properties of Ultimate Strength GP Model (Frontics & MMT) 

 ASU_F_GP_UTS ASU_M_GP_UTS 

R2_Delta 0.2301 0.0329 
adj_R2_Delta 0.1951 -0.0111 
R2_YS/UTS 0.7855 0.7305 

adj_R2_YS/UTS 0.7757 0.7182 
RMSE_Delta 3.3343 3.7371 

RMSE_YS/UTS 3.3345 3.7376 

𝝌𝟐 ൌ
ሺ𝒐𝒊 െ  𝒆𝒊ሻ𝟐

𝒆𝒊

𝟕𝟎

𝒊ୀ𝟏

 13.96 11.11 
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Table 71. Predicted vs. Actual STATs for All Obs. (Ultimate Strength GP Model) 

 Obs Mean Std. Dev Min Max 

ASU_F_GP_UTS 70 -3.69E-05 3.7646 -10.9794 10.0936 
ASU_ M_GP_UTS 70 -5.17E-05 3.3585 -6.9063 8.5094 

 

Split Data Validation  

Similar to yield strength estimation, ultimate strength GP model also evaluated by 500 times hold-

out cross validation. The averaged RMSEs are shown in Table 72. The RMSEs of these two GP 

models are relatively large.  

Table 72. Validation Performance of Ultimate Strength GP Model (Frontics & MMT) 

 AvgRMSE.Delta AvgRMSE.UTS 
ASU_F_GP_UTS 6.3216 6.3220 
ASU_M_GP_UTS 6.0545 6.0548 

 

Discussion and Conclusion 

Although GP model is flexible enough, the performance of strength estimation for pipes is not 

plausible. There are two major reasons for the poor performance. One is that the randomness of 

the delta terms for both yield strength and ultimate strength is obvious. GP model is not good at 

dealing with the problems lack of pattern. The other reason would be the limited sample size. A 

larger dataset is extremely essential for training a non-parametric model like GP. As we can see 

from the results above, all the validation results are worse than the regression ones because of 

less training data. In other words, the performance of GP modeling would be getting worse when 

the dimension of GP model goes up with unchanged training set or the training set becomes 

smaller with unchanged dimensions. However, the GP modeling has a great potential to achieve 

better predictive performance and as long as having more training data which need to be 

evaluated in the future. 
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6.8 Manifold-Based Gaussian Process Model 
Aging pipe data involve 18 features. A critical challenge is the curse-of-dimensionality to analyze 

this type of high dimensional data by using most existing methods. In other words, the amount of 

data needed for capturing tendency will increase with dimensions increasing, while the 

performance will exponentially decrease as well. The most efficiency way to avoid curse of 

dimensionality is dimension reduction for this stage. There are several dimension reduction 

techniques available to obtain the low dimensional embedding. Principal Components Analysis 

(PCA) is one of the most popular linear dimension reduction method, which requires all objects are 

statistically independent. t-distributed stochastic neighbor embedding (t-SNE) is the commonly 

used nonlinear dimension reduction method which majorly focus on local structure. Recently, a 

new nonlinear dimensionality reduction technique, called uniform manifold approximation and 

projection (UMAP) was introduced, which claimed to preserve as much of local and more of global 

structure than t-SNE[38, 39]. Therefore, the proposed model for this research is constructed by 

UMAP and Gaussian Process (GP) regression, where UMAP is used to find the low dimensional 

representation of high dimensional pipes’ data and Gaussian Process (GP) regression model is used 

to study the low dimensional data points. The major benefit of using manifold learning-based GP 

regression is to analyze high dimensional/super-high dimensional data from the recognized low-

dimensional pattern. 

Theoretical foundations of Uniform Approximation and Projection (UMAP) include topological data 

analysis and manifold theory. For brief mathematical preliminaries, topology is a branch of 

mathematics focusing on whether certain properties of geometric objects are preserved by 

homeomorphisms or not, where a homeomorphism is a map between two topological spaces that 

is bijective (i.e., one-to-one and onto) and bi-continuous (i.e., with the map itself and its inverse 

both being continuous). A manifold is a topological space that "locally" resembles Euclidean space 

near each point; that is, any point in the space has a neighborhood in the space which is 

homeomorphic to an open ball of a Euclidean space.  

UMAP has three major assumptions about the data: (a) the data is uniformly distributed on 

Riemannian manifold; (b) the Riemannian metric is locally constant; (c) the manifold is locally 

connected[38]. Based on those assumptions, a low dimensional projection can be obtained from 

constructed fuzzy simplicial complex, the obtained low dimensional projection should be 

topological equivalent to the constructed fuzzy simplicial complex based on Nerve Theorem [40]A 

detailed description can be found in in[38]. Here, UMAP is firstly used to find the low dimensional 

representation of high dimensional data in a L2-space. L2 spaces is known as the Lebasque space, 

in which a basic regression can be presented. We assume that the low dimensional patterns of 

high-dimensional data are distributed in this L2-space. For this stage, UMAP can work as both 

supervised learning and unsupervised learning. In the proposed method, supervised features are 

used for dimension reduction. As introduced above, it was claimed that UMAP can preserve as 

much of local and more of global data structure than t-Distributed Stochastic Neighbor (t-SNE) 

method. In other words, the low dimensional embedding calculated by UMAP have more 

topological information than other dimensionality reduction techniques. 
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From previous Gaussian Process Model section, we’ve already knew that the performance of GP 

model is very sensitive to data size and model dimension. Given limited sample size, using 

dimension reduction is the only possible way to improve the performance. Hence in this section, 

UMAP is proposed to accomplish low dimensional representation, and GP modeling would be 

applied in the embedded L2-space that the manifold based Gaussian process model (MFGP) can be 

seen as a two-dimensional GP model. 

Yield Strength Estimation 

Full Data Regression 

There are total 22 variables including surface chemical compositions, pipe overall data, hardness 

and grain size as recalled in Table 11. UMAP is applied first for dimensionality reduction. With 

using both Frontics and MMT baseline, those 22 variables are represented in two-dimensional L2-

space as shown in Figure 188 and Figure 189, where different colors in the plot indicate values of 

the response delta term which equals to the difference between 𝑌𝑆௧ and 𝑌𝑆௦. As can be seen from 

the low dimensional results, the overall trend of responses can be captured by manifold learning. 

Then GP modeling is performed with respect to the L2-space. Both the predictive delta term and 

yield strength of 70 samples are calculated by MFGP modeling and compared to benchmarks. The 

comparison results are show in Figure 190 - Figure 193. Detailed numerical results can be read in 

Table 73 and Table 74. The regression performance of MFGP almost seems to be. In consideration 

of the possibility of overfitting issues, spit data validation should be evaluated further to justify 

the MFGP model comprehensively. 
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Figure 188. Low Dim. Representation in 2D L2-
space for Yield Strength Est. (Frontics) 

 

 

Figure 189. Low Dim. Representation in 2D L2-
space for Yield Strength Est. (MMT) 

 

 

Figure 190. Unit Plot of Lab 0.2% Offset vs. 
ASU_F_MFGP_YS 

 

Figure 191. Unit Plot of Lab 0.2% Offset vs. 
ASU_M_MFGP_YS 
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Figure 192. Boxplot of Lab 0.2% Offset vs. 
ASU_F_MFGP_YS 

 

Figure 193. Boxplot of Lab 0.2% offset vs. 
ASU_M_MFGP YS 

 

Table 73. Properties of Yield Strength MFGP Model (Frontics & MMT) 

 ASU_F_MFGP_YS ASU_M_MFGP_YS 

R2_Delta 0.9035 0.9814 
adj_R2_Delta 0.8583 0.9727 
R2_YS/UTS 0.9372 0.9763 

adj_R2_YS/UTS 0.9078 0.9652 
RMSE_Delta 1.9293 1.1857 

RMSE_YS/UTS 1.9293 1.1858 

𝝌𝟐 ൌ
ሺ𝒐𝒊 െ  𝒆𝒊ሻ𝟐

𝒆𝒊

𝟕𝟎

𝒊ୀ𝟏

 4.67 1.94 

 

Table 74. Predicted vs. Actual STATs for All Obs. (Yield Strength MFGP Model) 

 Obs Mean Std. Dev Min Max 

ASU_F_MFGP_YS 70 -6.00E-03 1.9432 -5.7289 6.0717 
ASU_ M_MFGP_YS 70 -1.55E-02 1.1942 -2.9868 3.9277 

 

Split Data Validation  

As we did many times in previous sections, 500 times hold-out cross validation is used in split 

data validation. The averaged RMSEs of using MFGP are shown in Table 78. From the result, the 

averaged RMSEs of both delta term and yield strength are 6.12 and 6.83 which are much larger 

than regression cases. Compared with the regression results, the performance of MFGP model is 

not desirable in doing split data validation for predicting yield strength.  
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Table 75. Validation Performance of Yield Strength MFGP Model 

 AvgRMSE.Delta AvgRMSE.YS 
ASU_F_MFGP_YS 6.12 6.12 
ASU_M_MFGP_YS 6.83 6.83 

 

Ultimate Strength Estimation 

Full Data Regression 

Similar to yield strength estimation, the regression performance of MFGP model for ultimate 

strength is checked with full 70-sample dataset first. With both Frontics and MMT baseline, the 

original 22 variable are represented in two-dimensional L2-space as shown in Figure 194 and 

Figure 195. Predictive values are compared to benchmark as shown in Figure 196 and Figure 199. 

The numerical comparison results are shown in Table 76 and Table 77. As for ultimate strength 

regression, MFGP did extremely well. 

 

Figure 194. Low Dim. Representation in 2D L2-
space for Ultimate Strength Est. (Frontics) 

 

 

Figure 195. Low Dim. Representation in 2D L2-
space for Ultimate Strength Est. (MMT) 
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Figure 196. Unit Plot of Lab 0.2% Offset vs. 
ASU_F_MFGP_UTS 

 

Figure 197. Unit Plot of Lab 0.2% Offset vs. 
ASU_M_MFGP_UTS 

 

 

Figure 198. Boxplot of Lab 0.2% Offset vs. 
ASU_F_MFGP_UTS 

 

Figure 199. Boxplot of Lab 0.2% offset vs. 
ASU_M_MFGP UTS 

 

Table 76. Properties of Ultimate Strength MFGP Model (Frontics & MMT) 

 ASU_F_MFGP_UTS ASU_M_MFGP_UTS 

R2_Delta 0.8581 0.9818 
adj_R2_Delta 0.7918 0.9733 
R2_YS/UTS 0.9605 0.9934 

adj_R2_YS/UTS 0.9420 0.9903 
RMSE_Delta 1.4312 0.5864 

RMSE_YS/UTS 1.4312 0.5866 

𝝌𝟐 ൌ
ሺ𝒐𝒊 െ  𝒆𝒊ሻ𝟐

𝒆𝒊

𝟕𝟎

𝒊ୀ𝟏

 2.05 0.35 
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Table 77. Predicted vs. Actual STATs for All Obs. (Ultimate Strength MFGP Model) 

 Obs Mean Std. Dev Min Max 

ASU_F_MFGP_UTS 70 -6.00E-03 1.9432 -5.7289 6.0717 
ASU_ M_MFGP_UTS 70 -1.55E-02 1.1942 -2.9868 3.9277 

 

Split Data Validation  

The averaged RMSEs of 500 iterations for ultimate strength split data validation are shown in the 

Table 78. For both delta term and ultimate strength prediction, the RMSEs are the same 6.67 and 

7.05 which is still much larger than it of regression case. Even larger than the pure GP model as we 

investigated in the previous section. 

Table 78. Validation Performance of Ultimate Strength MFGP Model 

 AvgRMSE.Delta AvgRMSE.YS 
ASU_F_MFGP_UTS 6.67 6.67 
ASU_M_MFGP_UTS 7.05 7.05 

 

Discussion and Conclusion 

In this section, given 70 sample dataset, manifold-base Gaussian process (MFGP) is proposed to 

predict both yield strength and ultimate strength of pipes. Based on the results from both full data 

regression and split data validation, the performance of regression is significantly better than 

validation cases in terms of using MFGP. Statistically speaking, the proposed MFGP is not robust 

enough to deal with overfitting issues with relatively small training set. The major reason of this 

problem could be the constructed manifold is far away from the true manifold. In other words, 

off-manifold calibration can be not processed for high-dimensional data with only limited training 

sample. However, MFGP shows high computational efficiency for high-dimensional system that 

would be powerful for engineering application. Furthermore, by integrating UMAP, a non-

deterministic method, with GP modeling, MFGP can partially explain the uncertainty during 

prediction process. 
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6.9 Conclusion 
This report focused on data driven modeling of pipe yield strength and ultimate strength with 

Frontics and MMT baselines. Both parametric models and non-parametric models are proposed. 

Parametric models include ordinary least-squares (OLS) linear models (LM), quadratic models (QM) 

and Bayesian updating averaged model (BUMA).  Taking uncertainties into consideration. All the 

single linear model and quadratic model with the highest posterior model probability or the 

largest R square are chosen from model selection with Bayesian model averaging approach. BUMA 

models are constructed by updating the posteriors of OLS models given uniform model priors. 

Non-parametric models are Bayesian network model (BNM), Gaussian process model (GP) and 

manifold-based Gaussian process model (MFGP). The automated learning Bayesian network model 

with continuous and categorical variables is applied with hill-climbing learning algorithm. GP 

model is introduced to tackle non-linear problems. And MFGP model combines dimension 

reduction with Gaussian process. The performance of all the proposed models are evaluated by 

full data regression and split data validation.  

For yield strength estimation, considering regression performance, validation performance and the 

range of residue at the same time, the model ASU_F_QM1_YS would win the best followed by the 

Bayesian updating averaged model ASU_F_BUMA_YS. ASU_F_BUMA_YS has constantly excellent 

performance which has proven to effectively narrow down the range of residue. Although 

ASU_F_MFGP_YS shows the best performance in yield strength regression, it is not reliable for 

prediction. In regard to ultimate strength estimation, the best model would be ASU_F_QM1_UTS 

followed by ASU_F_QM2_UTS and ASU_F_BUMA_UTS. Note that the Bayesian updating averaged 

models are always closed to have the best performance. It’s not hard to imagine given different 

dataset, the weighted model could achieve better performance since the natural abilities to deal 

with perturbance data.  

In general speaking, Quadratic model with linear terms, power terms and interactive terms 

overperform pure linear model. However, the performance of single OLS model is case by case due 

to the lack of capacities of dealing with uncertainties.  Bayesian updating averaged model would be 

the best preference among these models which integrates uncertainties during modeling process 

which is more robust and reliable. The performance of automated leaning Bayesian network is like 

linear model, and its predictive accuracy depends on whether the input variables are normally 

distributed. While the significant benefit of Bayesian Networks is that they allow for the 

conditional dependencies or causal interactions between variables to be visualized. The flexibility 

of Bayesian networks for both prognostic (forward) and diagnostic (backward) reasoning would be 

valuable for engineering application. The relatively poor performance of GP model and MFGP 

model could be caused by the randomness of delta terms and the limited data size. Having large 

database is the guarantee of better performance of non-parametric models. 
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6.10 Regression Table Summaries 
 

Table 79. Summary of 70 samples Full Dataset Regression Performance (Frontics) 

 
R2_D

elta 

adj_R2_

Delta 

R2_YS/

UTS 

adj_R2_

YS/UTS 

RMSE

_Delta 

RMSE_

YS/UTS 
BIC AIC χ2 Log-likelihood 

ASU_F_LM1_YS 0.5802 0.5474 0.7270 0.7056 4.0244 4.0235 423.32 407.58 23.03 -180.7334 

ASU_F_LM2_YS 0.5889 0.5498 0.7326 0.7072 3.9823 3.9814 426.10 408.11 22.00 -196.0552 

ASU_F_QM1_YS 0.6994 0.6543 0.8044 0.7751 3.4056 3.4051 416.94 392.21 17.16 -185.1048 

ASU_F_QM2_YS 0.7112 0.6734 0.8122 0.7875 3.3378 3.3372 409.88 387.39 16.20 -183.6972 

ASU_F_BUMA_YS 0.7101 0.6490 0.8114 0.7717 3.3444 3.3439   16.37  

ASU_F_BN1_YS 0.5802 0.5474 0.7270 0.7056 4.0244 4.0235   23.03  

ASU_F_BN2_YS 0.5496 0.5219 0.7070 0.6890 4.1683 4.1676   25.21  

ASU_F_GP_YS 0.2249 0.1897 0.4957 0.4728 5.4682 5.4681   39.30  

ASU_F_MFGP_YS 0.9035 0.8583 0.9372 0.9078 1.9293 1.9293   4.67  

           

ASU_F_LM1_UTS 0.1812 0.1692 0.7719 0.7685 3.4386 3.4385 388.55 379.56 11.61 -185.7799 

ASU_F_LM2_UTS 0.2220 0.1866 0.7832 0.7734 3.3519 3.3519 389.23 377.99 11.02 -183.9931 

ASU_F_QM1_UTS 0.2196 0.1963 0.7825 0.7760 3.3570 3.3572 385.19 376.20 11.18 -184.0996 

ASU_F_QM2_UTS 0.2445 0.2102 0.7895 0.7799 3.3029 3.3032 387.17 375.92 10.79 -182.9622 

ASU_F_BMA_UTS 0.2457 0.1738 0.7898 0.7698 3.3004 3.3006   10.77  

ASU_F_BN1_UTS 0.1812 0.1568 0.7719 0.7651 3.4386 3.4385   11.61  

ASU_F_BN2_UTS 0.2085 0.1725 0.7795 0.7694 3.3809 3.3809   11.26  

ASU_F_GP_UTS 0.2301 0.1951 0.7855 0.7757 3.3343 3.3345   13.96  

ASU_F_MFGP_UTS 0.8581 0.7918 0.9605 0.9420 1.4312 1.4312   2.05  
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Table 80. Summary of 70 samples Full Dataset Regression Performance (MMT) 

 
R2_D

elta 

adj_R2_

Delta 

R2_YS/

UTS 

adj_R2_

YS/UTS 

RMSE

_Delta 

RMSE_

YS/UTS 
BIC AIC χ2 Log-likelihood 

ASU_M_LM1_YS 0.5144 0.5072 0.3799 0.3708 6.0630 6.0634 463.71 456.96 48.58 -225.4803 

ASU_M_LM2_YS 0.5799 0.5541 0.4635 0.4305 5.6390 5.6397 466.30 452.81 41.58 -220.4054 

ASU_M_QM1_YS 0.6269 0.6039 0.5239 0.4946 5.3142 5.3132 458.00 444.51 36.87 -216.253 

ASU_M_QM2_YS 0.6446 0.6168 0.5463 0.5108 5.1867 5.1866 458.84 443.10 34.83 -214.5519 

ASU_M_BUMA_YS 0.6282 0.5862 0.5255 0.4720 5.3048 5.3038     36.73   

ASU_M_BN1_YS 0.5144 0.5072 0.3799 0.3708 6.0630 6.0634     48.58   

ASU_M_BN2_YS 0.5395 0.5257 0.4119 0.3944 5.9042 5.9048     46.16   

ASU_M_GP_YS 0.5472 0.5266 0.4218 0.3955 5.8543 5.8550     45.37   

ASU_M_MFGP_YS 0.9814 0.9727 0.9763 0.9652 1.1857 1.1858     1.94   

           

ASU_M_LM1_UTS 0.3716 0.3623 0.7716 0.7682 3.4462 3.4407 393.11 381.87 11.62 -185.9341 

ASU_M_LM2_UTS 0.4343 0.3901 0.7941 0.7780 3.2698 3.2665 394.25 378.51 10.67 -182.2558 

ASU_M_QM1_UTS 0.3289 0.3089 0.7561 0.7489 3.5612 3.5551 393.46 384.46 12.38 -188.2316 

ASU_M_QM2_UTS 0.4241 0.3591 0.7908 0.7672 3.2991 3.2929 404.00 383.76 10.75 -182.8801 

ASU_M_BMA_UTS 0.4765 0.3549 0.8097 0.7655 3.1454 3.1405     9.80   

ASU_M_BN1_UTS 0.3716 0.3430 0.7716 0.7612 3.4462 3.4407     11.62   

ASU_M_BN2_UTS 0.3716 0.3430 0.7716 0.7612 3.4462 3.4407     11.62   

ASU_M_GP_UTS 0.0329 -0.0111 0.7305 0.7182 3.7371 3.7376     11.11   

ASU_M_MFGP_UTS 0.9818 0.9733 0.9934 0.9903 0.5864 0.5866     0.35   
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Table 81. Summary of Validation Performance (Frontics) 

  AvgRMSE.Delta AvgRMSE.YS/UTS 
ASU_F_LM1_YS 4.2444 4.1732 
ASU_F_LM2_YS 4.3273 4.2911 
ASU_F_QM1_YS 3.8648 3.8192 
ASU_F_QM2_YS 3.6333 3.5914 

ASU_F_BUMA_YS 3.6463 3.6766 
ASU_F_BN1_YS 4.2809 4.2802 
ASU_F_BN2_YS 4.3181 4.3176 
ASU_F_GP_YS 6.3216 6.3220 

ASU_F_MFGP_YS 6.12 6.12 
   

ASU_F_LM1_UTS 3.3592 3.3593 
ASU_F_LM2_UTS 3.4261 3.4262 
ASU_F_QM1_UTS 3.2585 3.2587 
ASU_F_QM2_UTS 3.2760 3.2763 
ASU_F_BMA_UTS 3.2864 3.3393 
ASU_F_BN1_UTS 3.3731 3.3729 
ASU_F_BN2_UTS 3.3576 3.3577 
ASU_F_GP_UTS 3.8250 3.8254 

ASU_F_MFGP_UTS 6.6700 6.6700 

 
 

Table 82. Summary of Validation Performance (MMT) 

  AvgRMSE.Delta AvgRMSE.YS/UTS 
ASU_M_LM1_YS 5.9965 6.0794 
ASU_M_LM2_YS 5.9372 5.9485 
ASU_M_QM1_YS 5.5362 5.5683 
ASU_M_QM2_YS 5.4421 5.4494 

ASU_M_BUMA_YS 5.4093 5.4740 
ASU_M_BN1_YS 5.9155 5.9155 
ASU_M_BN2_YS 5.9708 5.9689 
ASU_M_GP_YS 6.0545 6.0548 

ASU_M_MFGP_YS 6.8300 6.8300 
   

ASU_M_LM1_UTS 3.4523 3.4471 
ASU_M_LM2_UTS 3.4129 3.4088 
ASU_M_QM1_UTS 3.4949 3.4888 
ASU_M_QM2_UTS 4.2897 4.2841 

ASU_M_BUMA_UTS 3.4376 3.4344 
   

ASU_M_BN1_UTS 3.4467 3.4420 
ASU_M_BN2_UTS 3.5321 3.5274 
ASU_M_GP_UTS 3.9485 3.9487 

ASU_M_MFGP_UTS 7.0500 7.0500 
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Table 83. Summary of Predicted vs. Actual STATs for All Obs. (Frontics) 

Model Obs Mean Std Min Max 
ASU_F_LM1_YS 70 -1.70E-04 4.0529 -6.9499 12.7852 
ASU_F_LM2_YS 70 -1.69E-04 4.0105 -7.0247 11.8946 
ASU_F_QM1_YS 70 -1.69E-04 3.4298 -7.6571 8.5254 
ASU_F_QM2_YS 70 -1.69E-04 3.3614 -8.0537 9.2141 

ASU_F_BUMA_YS 70 -1.70E-04 3.3681 -7.7592 8.9813 
ASU_F_BN1_YS 70 -1.70E-04 4.0529 -6.9499 12.7852 
ASU_F_BN2_YS 70 -1.69E-04 4.1981 -8.4076 12.0304 
ASU_F_GP_YS 70 -2.23E-04 5.5075 -9.2502 13.9659 

ASU_F_MFGP_YS 70 -6.00E-03 1.9432 -5.7289 6.0717 
      

ASU_F_LM1_UTS 70 -2.64E-05 3.4633 -8.5363 9.5370 
ASU_F_LM2_UTS 70 -2.63E-05 3.3761 -7.1641 8.8400 
ASU_F_QM1_UTS 70 -2.63E-05 3.3815 -7.4620 8.7143 
ASU_F_QM2_UTS 70 -2.64E-05 3.3270 -8.2630 8.2132 

ASU_F_BUMA_UTS 70 -2.67E-05 3.3245 -7.9688 8.5147 
ASU_F_BN1_UTS 70 -2.64E-05 3.4633 -8.5363 9.5370 
ASU_F_BN2_UTS 70 -2.57E-05 3.4053 -8.2337 9.1392 
ASU_F_GP_UTS 70 -3.69E-05 3.7646 -10.9794 10.0936 

ASU_F_MFGP_UTS 70 -2.73E-03 1.4415 -6.8812 3.5338 

 

Table 84. Summary of Predicted vs. Actual STATs for All Obs. (MMT) 

Model Obs Mean Std Min Max 
ASU_M_LM1_YS 70 -5.29E-03 6.1079 -14.9869 10.0456 
ASU_M_LM2_YS 70 -5.29E-03 5.6811 -13.7486 11.6824 
ASU_M_QM1_YS 70 -5.29E-03 5.3521 -14.9512 11.6132 
ASU_M_QM2_YS 70 -5.29E-03 5.2246 -14.6021 12.2812 

ASU_M_BUMA_YS 70 -5.29E-03 5.3427 -14.9366 11.6382 
ASU_M_BN1_YS 70 -5.29E-03 6.1079 -14.9869 10.0456 
ASU_M_BN2_YS 70 -5.29E-03 5.9481 -14.2204 11.4708 
ASU_M_GP_YS 70 -5.45E-03 5.8981 -13.5168 10.8967 

ASU_M_MFGP_YS 70 -1.55E-02 1.1942 -2.9868 3.9277 
      

ASU_M_LM1_UTS 70 -7.96E-03 3.4656 -6.5668 10.0843 
ASU_M_LM2_UTS 70 -7.96E-03 3.2901 -8.3577 7.5372 
ASU_M_QM1_UTS 70 -7.96E-03 3.5808 -7.8360 10.5789 
ASU_M_QM2_UTS 70 -7.96E-03 3.3167 -6.8648 10.2522 

ASU_M_BUMA_UTS 70 -7.96E-03 3.1632 -7.5973 8.7915 
ASU_M_BN1_UTS 70 -7.96E-03 3.4656 -6.5668 10.0843 
ASU_M_BN2_UTS 70 -7.96E-03 3.4656 -6.5668 10.0843 
ASU_M_GP_UTS 70 -5.17E-05 3.3585 -6.9063 8.5094 

ASU_M_MFGP_UTS 70 -2.40E-02 0.5903 -2.3811 2.0700 
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PART IV: PROJECT CONCLUSIONS AND 
RECOMMENDATIONS 

Part IV contains:  

 Chapter 7: Conclusions 

 Chapter 8: Recommendations 

 

Chapter 7: Conclusions 

1. The project successfully measured and categorized the mechanical, chemical, and physical 

differences across a broad range of pipe sample walls through methodical full-wall and bulk 

testing as compared to surface-collected physical, mechanical, and chemical NDE testing. 

2. Differences in yield strength between the surface derived values and bulk, full-wall were 

analyzed via a sensitivity study and explained through the changes in surface yield strength 

due to primary steel production processes, seam type and pipe forming process, and steel 

chemistry.  All these factors/variables can be determined from surface testing. 

3. Based on the extensive testing and analysis an ambitious set of modeling tasks were completed 

include causal-based OLS and data analytics-based modeling.  Successful models for yield 

strength and ultimate tensile strength were developed to predict bulk properties from purely 

surface obtained information for yield strength and tensile strength. 

4. The optimum causal models combined with the Frontics AIS technology surface data achieved 

a 95% confidence in yield strength predictions by overlapping the full-wall yield strength from 

lab tests across the entire pipe sample DOE.  The optimal models for the MMT HSD exhibited 

bias in the yield strength for certain pipe configurations related to non-isotropic properties 

across the pipe wall.  The models reduced the bias of the MMT results, but could not 

completely adjust for it particularly at higher yield strengths. 

5. Both NDE technologies optimal models, coupled with the surface data, achieved 95% 

confidence in ultimate tensile strength predictions by overlapping the full-wall ultimate tensile 

strength from lab testing across the entire pipe sample DOE. 

6. Chemistry values were correlated successfully for 15 key elements, and the only significant 

variation of chemical properties across the pipe wall was noted from surface to bulk values for 

carbon and sulfur.  A set of chemical element kernel distributions were developed to estimate 

the magnitude of these differences across the pipe wall based on steel type and other factors. 

7. A supplemental body of detailed toughness testing was completed on over 40% of the pipe 

samples in the DOE and collected and analyzed as a supplemental task of the project.  This 

work will provide invaluable to future NDE technology development aimed at estimating pipe 

toughness through surface nondestructive testing. 
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Chapter 8: Recommendations 

1. The relations, models, and distributions developed under this project can be used to predict 

full-wall yield and ultimate strengths from surface-based NDE technology such as Frontics AIS 

and MMT HSD for seamless pipes.   

2. The Frontics AIS technology also was successful at a 95% confidence for predicting yield 

strength across the entire pipe sample DOE on non-seamless pipes, i.e., pipes with long seam 

welds like ERW, SAW, etc. 

3. Further research is warranted/advised into the promising MMT HSD technology to help reduce 

bias in the full-wall yield strength predictions based on surface readings for non-seamless pipe 

that have variation of yield strength across the pipe thickness cross section.  The current 

models provided by the manufacturer and developed under this project could not remove the 

bias in these measurements, particularly for higher yield strengths.  

4. The relations, models, and distributions developed under this project can be used to predict 

full-wall ultimate tensile strengths from surface-based NDE technology such as Frontics AIS 

and MMT HSD.  Using the causal-based models developed, both technologies achieved a 95% 

confidence for predicting tensile strength across the entire pipe sample DOE, seamless or non-

seamless. 
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PART V: APPENDICES, REFERENCES, AND 
ATTACHMENTS 

Part V contains:  

 Appendices 

 References 

 Attachments 

 

 

Appendices 

Appendix A: External File - Project Master Data Table for 70 Pipeline Samples in Excel  (778KB). 
APPENDIX_A_MASTER_DATA_TABLE_V01.xlsx 

Appendix B: External File - Charpy Toughness and Related Data 30 Pipeline Samples in Excel (195 KB). 
APPENDIX_B_CHARPY_DATA_TABLE_V01.xlsx 

Appendix C: Contained in this report - Causal-Based Regression Output Tables. 

Appendix D: External File - R-Code for Regressions in Chapter 6 in a ZIP file (53 KB). APPENDIX_D_CH6_R-
CODE.zip  
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Appendix A: Project Master Data Table 
 

External File - Project Master Data Table for 70 Pipeline Samples in Excel  (778KB).  

 

Filename: APPENDIX_A_MASTER_DATA_TABLE_V01.xlsx 
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Appendix B: Charpy Toughness and Related Data 
 

External File - Charpy Toughness and Related Data 30 Pipeline Samples in Excel (195 KB).  

 

Filename: APPENDIX_B_CHARPY_DATA_TABLE_V01.xlsx 
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Appendix C: Causal Model Regression Output Tables 

DAE_1_3: Regress Results for Yield Strength Delta Frontics AIS 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
      Source          SS           df       MS      Number of obs   =        70 
‐‐‐‐‐‐‐‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐   F(14, 55)       =     10.47 
       Model     1963.60968        14  140.257834   Prob > F        =    0.0000 
    Residual     736.712842        55   13.394779   R‐squared       =    0.7272 
‐‐‐‐‐‐‐‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐   Adj R‐squared   =    0.6577 
       Total     2700.32252        69   39.135109   Root MSE        =    3.6599 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
            ys_deltaFront    Coefficient  Std. err.      t    P>  t       [95% conf. interval] 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
                steelType    
                KilledSi      ‐.9542302   3.113312    ‐0.31   0.760    ‐7.193446    5.284986 
            RimmedCapped       4.683697   1.881262     2.49   0.016     .9135635     8.45383 
              SemiKilled      ‐2.328979   1.613331    ‐1.44   0.155    ‐5.562166    .9042089 
                  cu_5mil     ‐3.614347   11.58788    ‐0.31   0.756    ‐26.83699    19.60829 
                  mn_5mil       148.406   51.12612     2.90   0.005     45.94696     250.865 
                   p_5mil      90.78431    110.045     0.82   0.413    ‐129.7508    311.3194 
                  si_5mil      .4295721   20.38887     0.02   0.983    ‐40.43063    41.28978 
                   n_sqrt     ‐59.98384   24.70705    ‐2.43   0.018    ‐109.4979    ‐10.4698 
         diameter_nominal     ‐.5015118   .0960278    ‐5.22   0.000    ‐.6939558   ‐.3090678 
   c.xp#c.c_5mil#c.c_5mil     ‐393.9323   286.7953    ‐1.37   0.175    ‐968.6829    180.8182 
       c.nb_5mil#c.c_5mil      1707.823   604.7443     2.82   0.007      495.888    2919.757 
           c.xf#c.mn_5mil      ‐178.619   61.93398    ‐2.88   0.006    ‐302.7375   ‐54.50052 
     c.mn_5mil#c.dNegSqrt     ‐11.89951   3.400048    ‐3.50   0.001    ‐18.71336   ‐5.085658 
c.xf#c.mn_5mil#c.dNegSqrt      14.79267   3.994075     3.70   0.000     6.788363    22.79698 
                    _cons      6.326566    3.54775     1.78   0.080    ‐.7832827    13.43642 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

DAE_1_4mmt regress: Regress Results for Yield Strength Delta MMT HSD 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
      Source          SS           df       MS      Number of obs   =        70 
‐‐‐‐‐‐‐‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐   F(16, 53)       =      6.43 
       Model     3357.80237        16  209.862648   Prob > F        =    0.0000 
    Residual     1730.64202        53  32.6536229   R‐squared       =    0.6599 
‐‐‐‐‐‐‐‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐   Adj R‐squared   =    0.5572 
       Total     5088.44438        69  73.7455707   Root MSE        =    5.7143 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
              ys_deltaMMT    Coefficient  Std. err.      t    P>  t       [95% conf. interval] 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
                KilledSi       6.737072   5.028333     1.34   0.186    ‐3.348488    16.82263 
            RimmedCapped      ‐.0747886   3.112577    ‐0.02   0.981    ‐6.317828    6.168251 
              SemiKilled      ‐1.874652   2.571982    ‐0.73   0.469    ‐7.033394    3.284091 
                Seamless       3.299899   1.907592     1.73   0.089    ‐.5262464    7.126044 
                    HSLA       3.335258   4.687858     0.71   0.480    ‐6.067394    12.73791 
                  cu_5mil     ‐17.05694   18.52519    ‐0.92   0.361    ‐54.21377    20.09989 
                  mn_5mil      105.7867   80.17679     1.32   0.193    ‐55.02754     266.601 
                   p_5mil      78.83774   174.3307     0.45   0.653    ‐270.8253    428.5008 
                  si_5mil     ‐65.75388   34.93962    ‐1.88   0.065    ‐135.8339    4.326129 
                   n_sqrt      13.45917   40.30981     0.33   0.740    ‐67.39207    94.31041 
         diameter_nominal     ‐.8242026   .1564516    ‐5.27   0.000    ‐1.138005   ‐.5104006 
   c.xp#c.c_5mil#c.c_5mil     ‐553.3381    455.354    ‐1.22   0.230    ‐1466.663    359.9864 
       c.nb_5mil#c.c_5mil      ‐639.764   1364.913    ‐0.47   0.641    ‐3377.433    2097.905 
           c.xf#c.mn_5mil     ‐114.2744   97.28292    ‐1.17   0.245    ‐309.3992    80.85046 
     c.mn_5mil#c.dNegSqrt     ‐6.362876   5.368521    ‐1.19   0.241    ‐17.13077    4.405013 
c.xf#c.mn_5mil#c.dNegSqrt      6.793832   6.320528     1.07   0.287    ‐5.883542    19.47121 
                    _cons      4.780465    5.79581     0.82   0.413    ‐6.844458    16.40539 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
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DAE_2_3: Regress Results for Ultimate Tensile Strength Delta Frontics AIS 
 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
      Source |       SS           df       MS      Number of obs   =        70 
‐‐‐‐‐‐‐‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐   F(5, 64)        =      4.63 
       Model |  268.428819         5  53.6857638   Prob > F        =    0.0011 
    Residual |  742.558499        64  11.6024766   R‐squared       =    0.2655 
‐‐‐‐‐‐‐‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐   Adj R‐squared   =    0.2081 
       Total |  1010.98732        69  14.6519901   Root MSE        =    3.4062 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
  uts_deltaFront | Coefficient  Std. err.      t    P>|t|     [95% conf. interval] 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
       Seamless  |   1.897563   .9019652     2.10   0.039       .09568    3.699445 
diameter_nominal |  ‐.1607846   .0770479    ‐2.09   0.041    ‐.3147055   ‐.0068637 
         mn_5mil |   1.809902   1.822556     0.99   0.324    ‐1.831072    5.450877 
         si_5mil |  ‐11.90077   5.986043    ‐1.99   0.051    ‐23.85927    .0577227 
          c_5mil |   15.86179   8.162154     1.94   0.056    ‐.4439844    32.16757 
           _cons |  ‐2.652115   1.844633    ‐1.44   0.155    ‐6.337193    1.032964 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

 

DAE_2_4: Regress Results for Ultimate Tensile Strength Delta MMT HSD 
 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
      Source |       SS           df       MS      Number of obs   =        70 
‐‐‐‐‐‐‐‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐   F(5, 64)        =      8.54 
       Model |  529.320553         5  105.864111   Prob > F        =    0.0000 
    Residual |  793.370157        64  12.3964087   R‐squared       =    0.4002 
‐‐‐‐‐‐‐‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐   Adj R‐squared   =    0.3533 
       Total |  1322.69071        69  19.1694306   Root MSE        =    3.5209 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
    uts_deltaMMT | Coefficient  Std. err.      t    P>|t|     [95% conf. interval] 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐+‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
       Seamless  |   4.460485   .9323144     4.78   0.000     2.597973    6.322997 
diameter_nominal |  ‐.1253978   .0796404    ‐1.57   0.120    ‐.2844978    .0337022 
         mn_5mil |   1.258266   1.883881     0.67   0.507    ‐2.505219    5.021752 
         si_5mil |  ‐9.903803   6.187461    ‐1.60   0.114    ‐22.26468    2.457071 
          c_5mil |   28.02344   8.436792     3.32   0.001     11.16901    44.87787 
           _cons |  ‐6.553776   1.906701    ‐3.44   0.001    ‐10.36285   ‐2.744703 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
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Appendix D: Charpy Toughness and Related Data 
 

External File - R-Code for Regressions in Chapter 6 in a ZIP file (53 KB).  

 

Filename: APPENDIX_D_CH6_R-CODE.zip 
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Attachments 

 

This report contains the following six attachments appended in the following order: 

Attachment #1: Frontics - Measurement of Yield strength, Tensile strength and 
Fracture toughness of API 5L pipe using Instrumented Indentation Testing 

Attachment #2: Frontics - Measurement of Yield strength, Tensile strength and 
Fracture toughness of API 5L pipe using Instrumented Indentation Testing - 
Part II  

Attachment #3: Frontics - Measurement of Yield strength, Tensile strength and 
Fracture toughness of API 5L pipe using Instrumented Indentation Testing - 
Additional Sample  

Attachment #4: Frontics - Measurement of Yield strength, Tensile strength and 
Fracture toughness of API 5L pipe samples using Instrumented Indentation 
Testing - Coupon testing 

Attachment #5: MMT - Procedure Bundle 

Attachment #6: MMT - Final report for nondestructive HSD Testing for 70 
cutout samples 

 

Filenames: 

 Attachment #1 - FARE-190603-1 Part I.pdf (328 pages) 
 Attachment #2 - FARE-190603-1 Part II.pdf (298 pages) 
 Attachment #3 - FARE-190723-1 Part I Appendix 2.pdf (8 pages) 
 Attachment #4 - FARE-201122A.pdf (108 pages) 
 Attachment #5 - 2020MMTProcedureBundle_2021.03.01.pdf (47 pages) 
 Attachment #6 - 2021.02.10-MMTFinalNDEReportForGTI19006.pdf (267 pages) 

 

 

 

 

 

 


