Characterization and Fitness-for-Service of Corroded Cast Iron Pipe

DOT Contract DTPH56-15-T-00006 Final Project WebEx

> June 15, 2018

- > Gas Technology Institute
- > Daniel Ersoy
- > daniel.ersoy@gastechnology.org

Executive Summary

- >This WebEx summarizes the 200-page project final report which provides a Cast Iron (CI) Fitness-For-Service (FFS) model, calculator, and method for operators to characterize and grade graphitic corrosion defects on cast iron natural gas pipe.
- >These deliverables will help operators make monitoring and repair decisions, as well as prioritize their replacement program; leading to improved safety and supply stability.

Project Final Report

>The final report page numbers are referenced on each slide of this presentation to provide the reader the location of more detailed information.

- >All the reference/citations for the WebEx material, tables, and plots can be found in the final report.
- >The final report is located on the DOT/PHMSA Research Page: <u>https://primis.phmsa.dot.gov/matrix/PrjHome.rdm?prj=641</u>

Acknowledgements

>GTI thanks the project sponsor, the Pipeline and Hazardous Materials and Safety Administration, for its financial and program support.

>We also thank the industry members of the project Technical Advisory Panel for their outstanding technical guidance during this effort.

>DOT Project Manager: Chris McLaren.

>GTI Project Team: Daniel Ersoy, Oren Lever, Khalid Farrag, Brian Miller, and Kristine Wiley.

Introduction

>Cast iron piping was installed over a period spanning more than 100 years, leading to a great variability in the material properties. Different manufacturing processes, chemistries, and designs have led to a wide range of material characteristics and performance levels.

>When operators assess their cast iron piping systems and find corrosion, especially graphitic corrosion, they are often left without sound engineering guidance if the corrosion, and resulting wall loss, are an integrity threat or allowable within the design and operational restrictions of the installation.

Approach

>Operators need FFS guidance for cast iron piping that can be consulted when graphitic corrosion defects and wall loss are identified in cast iron piping systems.

>FFS guidance in the form of a remaining factor of safety for cast iron assets provides a go/no-go decision for immediate threat mitigation.

> It will also provide validated engineering guidance to identify and prioritize highest risk piping for replacement programs.

Project Structure

7

Literature Search

- >As part of this project a detailed literature search on cast iron materials was conducted.
- > The report summarizes the history, use, composition, microstructure, mechanical properties, metallurgy, and corrosion characteristics of gray cast iron in general and cast iron used for natural gas distribution systems.
- > The review included a detailed explanation of graphitic corrosion of gray cast irons and the effect of graphitic corrosion on residual pipe strength.
- > A set of field testing and sampling considerations was developed; including a table of standards and methods to obtain mechanical, physical, and chemical properties from in-service pipelines.

Cast Iron History and Graphitic Corrosion Literature Search

Cast Iron General Groupings Literature Search

Metallurgy – Composition of Gray Iron Literature Search

Characterization and Fitness for Service of Corroded Cast Iron Pipe - DOT Contract DTPH56-15-T-00006

11

Gray Cast Iron Microstructure Literature Search

Gray Cast Iron Microstructure Literature Search

Characterization and Fitness for Service of Corroded Cast Iron Pipe - DOT Contract DTPH56-15-T-00006

Metallurgy – Thickness and Cooling Rates of Gray Iron Literature Search

Mechanical Properties Gray Cast Iron Literature Search

Typical Mechanical Properties As-Cast Gray Iron Test Bars (p. 38)

ASTM A 48 class	Tensile strength		Torsional shear strength		Compressive strength	
	MPa	ksi	MPa	ksi	MPa	ksi
20	152	22	179	26	572	83
25	179	26	220	32	669	97
30	214	31	276	40	752	109
35 .	252	36.5	334	48.5	855	124
40	293	42.5	393	57	965	140
50	362	52.5	503	73	1130	164
60	431	62.5	610	88.5	1293	187.5

ASTM	Reversed bending fatigue limit		Transve on test	Hardness,	
A 48 class	MPa	ksi	kN	lbf	НВ
20	69	10	8.23	1850	156
25	79	11.5	9.67	2175	174
30	97	14	11.23	2525	210
35 .	110	16	12.68	2850	212
40	128	18.5	14.12	3175	235
50	148	21.5	16.01	3600	262
60	169	24.5	16.46	3700	302

Modulus of Elasticity and Hardness v. Tensile Gray Irons Literature Search

5.8-6.9

6.4-7.8

7.2-8.0

16

14.5-17.2

16.0-20.0

18.8-22.8

20.4-23.5

100-119

110-138

130-157

141-162

35

40

50

60

40-48

44-54

50-55

54-59

Casting Method v. Structure and Strength Literature Search

ASTM Flake Type/Size v. Casting Method (p. 43)

	ASTM flake type ^a			ASTM flake size ^b		
Sample	Inner surface	Center	Outer surface	Inner surface	Center	Outer surface
Pit cast	С	С	С	4	4	4
Spun Cast 1	А	D	D	6	8	7
Spun Cast 2	С	D	D	5	7	8
Spun Cast 3	С	D	D	5	8	8
Spun Cast 4	С	C–D	D	4	5-8	8
Spun Cast 5	С	C–D	D	4	5-8	8

^aIn ASTM A 247 the flake type indicates how the graphite flakes are distributed in the metal matrix. Type A indicates uniformly distributed, apparently randomly oriented flakes; Type C indicates randomly oriented flakes of widely varying sizes and Type D a very fine pattern of flakes surrounding areas without graphite.

^bIn ASTM A 247 the sizes refer to a range of values as measured at $100 \times$ magnification that vary geometrically from 1 to 128 mm. Size 3 corresponds to approximately 16–32 mm at this magnification, Size 4 to 8–16 mm, Size 5 to 4–8 mm, Size 6 to 2–4 mm, Size 7 to 1–2 mm, and Size 8 to 0–1 mm.

Tensile Stress-Strain Relation v. Casting Type (p. 44)

Exhumed Gray Cast Iron Pipe Mechanical Properties Literature Search

Comparison of Mechani	cal Properties of Grav	y Cast Iron Pipes (p. 46)	

Type of cast iron	Reference	Age of pipes	Tensile strength (MPa)	Compressive strength ^c (MPa)	Modulus of rupture (MPa)	Secant elastic modulus (MPa)	Fracture toughness $(MPa\sqrt{m})$
Pit	Rajani et al. (2000)	64-115 years	33-267	n/a	132-378	38,000-168,000	5.7-13.7
Pit & spun	Conlin and Baker (1991)	Out of service pipes	137-212	n/a	n/a	n/a	10.5-15.6
Pit & spun	This study (2002) ^a	50–124 years ^b	47-297	519-1,047	164-349	23,000-150,000	n/a
Spun	Yamamoto et al. (1983)	22-79 years	100-150	n/a	20-250	n/a	n/a
Spun	Caproco Corrosion (1985)	22-28 years	70-217	n/a	n/a	n/a	n/a
Spun	Ma and Yamada (1994)	21-32 years	40-320	n/a	120-320	n/a	n/a
Spun	Rajani et al. (2000)	22-61 years	135-305	n/a	194-445	43,000-159,000	10.3-15.4

^cUltimate strength (as opposed to yield strength). (1 m=3.281 ft, 1 MPa=0.145 ksi.)

Exhumed Pipe Strength with Corrosion and Other Defects

Literature Search

Graphitic Corrosion Literature Search

Graphitic Corrosion Literature Search

De-alloyed Region Around Flakes (p. 54)

21

Effect of Corrosion on Residual Pipe Strength Literature Search

Review of Cast Iron Failure Incidents, Load/Stress Analysis, and Design Codes

>Developed a summary of cast iron failure incidents, as well as associated loads and stresses on cast iron pipes due to external loads and environmental conditions.

- >This included a review of the parameters affecting cast iron corrosion and an analysis of the loads and stresses which the cast iron pipes are subjected to in the field.
- >Additionally, performed a review and summary of design codes for cast iron pipes.

"Class" by Pressure and Typical Sizes of CI Pipes Cast Iron Failure Assessment

	Fipe 5	izes for <mark>Clas</mark>	s 150 Cast	Iron Pipes	(p. 67)		
Nominal size	CENTRIFUGALLY CAST PIPE ANSI A21.6 • ANSI A21.8 AWWA C106 • AWWA C108			PIT CAST PIPE ANSI A21.2 AWWA C102			
	O.D.	I.D.	THICKNESS	O.D.	I.D.	THICKNES	
		CLASS 150	• 150 PSI •	346 FT. HD.			
3"	3.96	2.29	32	3.80	3.06	.37	
4"	4.80	4.10	.35	4.80	4.00	.40	
6"	6.90	6.14	.38	6.90	6.04	.43	
8"	9.05	8.23	.41	9.05	8.13	.46	
10"	11.10	10.22	.44	11.10	10.02	.54	
12"	13.20	12.24	.48	13.20	12.04	.58	
14"	15.65	14.63	.51	15.65	14.39	.63	
16"	17.80	16.72	.54	17.80	16.44	.68	
18"	19.92	18.76	.58	19.92	18.46	.73	
20"	22.06	20.82	.62	22.06	20.40	.83	
24"	26.32	24.86	.73	26.32	24.46	.93	
30"	32.00	30.30	.85	32.40	30.20	1.10	
36"	38.30	36.42	.94	38.70	36.26	1.22	
42"	44.50	42.40	1.05	45.10	42.40	1.35	
48"	50.80	48.52	1.14	51.40	48.44	1.48	
54"		-	-	57.80	54.54	1.63	

Cast Iron Age Distribution and Percent of Incidents Cast Iron Failure Assessment

PHMSA 2010 – 2015 Significant Incident Analysis Cast Iron Failure Assessment

Northeast Utility Analysis of Corrosion and Soil Samples Cast Iron Failure Assessment - Distributions

Northeast Utility Analysis of Corrosion and Soil Samples Cast Iron Failure Assessment – Comparison of Means and ANOVA

Pipe Stresses Under Internal and External Loads Cast Iron Failure Assessment

Characterization and Fitness for Service of Corroded Cast Iron Pipe - DOT Contract DTPH56-15-T-00006

Dynamic, Pressure, Uplift and Temperature Based Loading Cast Iron Failure Assessment

Characterization and Fitness for Service of Corroded Cast Iron Pipe - DOT Contract DTPH56-15-T-00006

Review of Design Codes for Cast Iron Pipes Cast Iron Failure Assessment

§ 192.275 Cast iron pipe: sealing, clamps, gasket, threaded joints, brazing

§ 192.369 Service lines: Connections to cast iron or ductile iron mains

§ 192.373 Service lines: Cast iron and ductile iron

§ 192.489 Remedial measures: Cast iron and ductile iron pipelines

§ 192.557 Uprating

§ 192.621 Maximum allowable operating pressure: High-pressure distribution systems

§ 192.753 Caulked bell and spigot joints

§ 192.755 Protecting cast-iron pipelines

Field Measurement Method for Cast Iron Corrosion

- >A method for measurement of graphitic corrosion in the field was developed with detailed guidance on measurement of corrosion defects to be used as part of the FFS model input.
- >This included a general set of guidelines for operator to characterize the type and severity of graphitic corrosion on a cast iron pipeline in the field.
- >This will allow the operator to consistently and reliably develop part of the input data needed to run the FFS cast iron model.

Measurement Tools

Characterization of Graphitic Corrosion Severity

Measurement Method - Modified API 579-1/ASME FFS-1 Part 4 Characterization of Graphitic Corrosion Severity

CI FFS Model Development Using Finite Element Analysis, Design of Experiments, & Statistical Regression

>A CI FFS model for graphitic corrosion defects was developed using Finite Element Analysis, Design of Experiments, and Statistical Regression.

>The model can be used to determine the critical defect size and characteristics that could lead to premature piping failure.

35

Overview, Boundaries, and Geometries Finite Element Analysis (FEA) Model and Statistical Analysis

36
Material Properties for Modeling Finite Element Analysis (FEA) Model and Statistical Analysis

Stresses Under Different Loading Conditions – No Defect Finite Element Analysis (FEA) Model and Statistical Analysis

38

Stresses Under Different Loading Conditions – With Defect Finite Element Analysis (FEA) Model and Statistical Analysis

Response Surface Predicted vs. FEA Actuals – No Flaw Finite Element Analysis (FEA) Model and Statistical Analysis

Response Surface Predicted vs. FEA Actuals – Flaw Finite Element Analysis (FEA) Model and Statistical Analysis

Excel Based Calculator and Training Manual

>The results of the model were incorporated into an Excel-based, end-user calculator.

>A user's training manual was developed with a set of examples to facilitate implementation of the FFS model with the end user (Appendix B)

>Examples of the calculator use will be shown in the next section that summarizes model first-pass validation with field failure data.

First-Pass Validation of CI FFS Model with Field Failure Data and Uncertainty Analysis/Effects of Input Variation

- >A first-pass validation of the FFS model was completed through the analysis of select cast iron field failures.
- >The failure data was compared against the FFS model results under the same parameters.
- >Analyzed the effect of input uncertainty on the model results.
- >This was done through Monte Carlo simulations that allowed the inclusion of measurement uncertainty for input variables such as diameter, thickness, material strength, corrosion defect geometry, etc.

Case 1 – Corrosion Effects

First Pass Validation of Model with Field Failure Data

Incide			Model Output (p. 2	Change of F.S. with Pipe Class					
		Inputs:	Inputs: Pipe Dimensions						(p. 142)
		Parameter	Units	Description	Value	Minimum	Maximum		
		class		Material class (tensile strength)	40	10	60		
		D	in	Pipe outer diameter	6	4.8	13.2		
		span	ft	Pipe span	12	12	18		
	t		Pipe wall thickness (if known)		< If a val	ue is entered h			
Pipe Characteristics	t.pred	in	Pipe wall thickness predicted by OD	0.413					
Pipe material Pipe diameter (inch)	NA 6			Corrosion Flaw Dimensions					
Internal Pressure		Parameter	Parameter Units Description Value Minimum Maximum						
(psi)	5 5			Maximum corrosion flaw depth	0.33	0.021	0.330		
Crossing	No	flaw.l		Maximum corrosion flaw length (along pipe axis)	4	0.157	4.723	0.8	
Depth of Cover (inch)	54	flaw.w	in	Maximum corrosion flaw width (around circumference)	4	0.942	9.236	0.8	
Installation year	1928		Operating Canditions					9.0	
Location	Class 3		Operating Conditions Parameter Units Description			Minimum	7	9.0 af	
	Class 5	Parameter		Description Pressure	Value 5	Minimum 0	끡	ofs	
Incident	Detroit, MI	T.max		Maximum buried operating temperature	75	0			
City, State	-	T.min		Minimum buried operating temperature	55	-		Factor	
Incident Year	Oct 2011			initian barled operating temperature				<u>۵</u> 0.2	
Damage Width	2 holes at bottom of pipes about <u>4 inch</u> diam.			Soil and Traffic Loads					
Damage Length		Parameter	Units	Description	Value	7		0	
Cause	External Graphitic Localized Corrosion	soil.type		Soil type	Gravel/Base			0	10 20 30 40 50
Consequences	Pipe rupture, fatality, release of gas	soil.weight	pcf	Soil wet weight per cubic foot	153			U	
•		soil.weight.user		Soil weight per cubic foot, user defined		< If a val	ue is entered h		Cast Iron Class
		soil.depth	ft	Soil depth	4.5	-			
		traffic.type		Traffic type (road,rail,none)	None 💌	·			
		Outputs:							
				Pipe stresses with corrosion defect		_			
		Parameter	Units		Value	_			
		UTS		Material class (tensile strength)	40	-			
		P1.max		Maximum resolved tensile stress	56.9	-			
		SF.corroded	ratio	Tensile strength safety factor	0.70				

Case 2 – Corrosion and Crossing Effects First Pass Validation of Model with Field Failure Data

Incident Data (p. 143)			Model Output (p. 14	Change of F.S. with Pipe C		
		Inputs:	Pipe Dimensions		and Crossing Type	
		Parameter	Units Description	Value Minimum Maximum	(p. 144)	
		class	ksi Material class (tensile strength)	20 10 60		
		D	in Pipe outer diameter	12 4.8 13.2		
		span	ft Pipe span	12 12 18		
		t	in Pipe wall thickness (if known)	< If a value is entered h		
Pipe Characteristics		t.pred	in Pipe wall thickness predicted by OD	0.513		
Pipe material	ASA A21.1		Corrosion Flaw Dimensions		2.2	
Pipe diameter (inch)	12	Parameter	Units Description	Value Minimum Maximum	2	
Internal Pressure, MOP (psi)	25	flaw.d	in Maximum corrosion flaw depth	0.5 0.026 0.411	1.8	
Crossing	No	flaw.l	in Maximum corrosion flaw length (along pipe axis)	2.5 0.248 7.446	1.6	
Depth of Cover (inch)	48	flaw.w	in Maximum corrosion flaw width (around circumference)	6.5 1.885 18.473		
Installation year	1961				1.4 J.2	
Location	Class 3		Operating Conditions		5 1 6	
Incident Characteristics		Parameter	Units Description	Value Minimum	j 0.8	
City, State	Saint Louis, MO	Р	psig Pressure	25 0	0.6 Highway Crossing	
Incident Year	2012	T.max	°F Maximum buried operating temperature	75	0.4	
Damage Width (inch)	2.5	T.min	°F Minimum buried operating temperature	55	0.2 • No Highway Crossing	
Damage Length (inch)	6.5		Call and Tan file Lands		0	
Cause	External Graphitic Localized Corrosion	Parameter	Soil and Traffic Loads Units Description	Value	0 10 20 30 40	
Consequences	Shut down, ignition, evacuation, no explosion	soil.type	Soil type	Gravel/Base	Cast Iron Class	
		soil.weight	pcf Soil wet weight per cubic foot	153		
		soil.weight.user	pcf Soil weight per cubic foot, user defined	< If a value is entered h		
		soil.depth	ft Soil depth	4		
		traffic.type	Traffic type (road,rail,none)	Highway 🔽		
		Outputs:				
		outputs.	Pipe stresses with corrosion defect			
		Parameter	Units Description	Value		
		UTS	ksi Material class (tensile strength)	20		
		P1.max	ksi Maximum resolved tensile stress	22.5		
		SF.corroded	ratio Tensile strength safety factor	0.89		

Case 5 – Frost Heave with Corrosion Effects First Pass Validation of Model with Field Failure Data

Incident	Data (p. 149)		Model Output (p.	150)		Change of F.S. with Pipe Class
		Inputs:	Pipe Dimensions			and Corrosion Severity
		Down other	Units Description	Value	Minimum Maximum	
		Parameter	ksi Material class (tensile strength)	20	Minimum Maximum 10 60	(p. 151)
		D	in Pipe outer diameter	4	4.8 13.2	(p. 101)
		span	ft Pipe span	12	12 18	
		t	in Pipe wall thickness (if known)		< If a value is entered h	
		t.pred	in Pipe wall thickness predicted by OD	0.401		
			Corrosion Flaw Dimensions			2.4
		Parameter	Units Description	Value	Minimum Maximum	2.4
		flaw.d	in Maximum corrosion flaw depth	0	0.020 0.320	
Dina Characteristics		flaw.l	in Maximum corrosion flaw length (along pipe axis)	0	0.127 3.797	2 No-Corrosion
Pipe Characteristics Pipe material	NA	flaw.w	in Maximum corrosion flaw width (around circumference)	0	0.628 6.158	
Pipe material Pipe diameter (inch)	4					Min. Corrosion
nternal Pressure, MOP (psi)	5		Operating Conditions			1.6 1.2 0.8 0.8 0.8
rossing	No	Parameter	Units Description	Value	Minimum	al a
epth of Cover (inch)	48	P	psig Pressure	35	0	V)
istallation year	1930	T.max	°F Maximum buried operating temperature	75	_	ō 1.2
ocation	Class 3	T.min	°F Minimum buried operating temperature	25		
ncident Characteristics	01035.0					ti internet
City, State	Detroit, MI	-	Soil and Traffic Loads		-	₽ 0.8 © ~
ncident Year	March 2011	Parameter	Units Description	Value	-	
amage Width (inch)	NA	soil.type soil.weight	Soil type pcf Soil wet weight per cubic foot	Sand/Silt 127		
amage Length (inch)	NA	soil.weight.user	pcf Soil weight per cubic foot, user defined	127	< If a value is entered h	0.4
Cause	Circumferential crack due to frost heave	soil.depth	ft Soil depth	3	< ij u vulue is entered ii	
Consequences	Explosion	traffic.type	Traffic type (road,rail,none)	Highway 🔻		0 10 20 30 40 5
						Cast Iron Class
		Outputs:				
			Pipe stresses with corrosion defect		-	
		Parameter	Units Description	Value	_	
		UTS	ksi Material class (tensile strength)	20	-	
		P1.max	ksi Maximum resolved tensile stress	23.6	-	
		SF.corroded	ratio Tensile strength safety factor	0.85	_	
			Pipe stresses with no defect		_	
		Parameter	Units Description	Value		
		UTS	ksi Material class (tensile strength)	20	_	
		P1.max.flawless	ksi Maximum resolved radial stress, without flaw	17.4	_	
		SF.flawless	ratio Tensile strength safety factor of flawless pipe ksi Hoop stress due to internal pressure (Barlow's Formula)	1.15 0.17		
		P.hoop				

Effect of Input Uncertainty on Model Output First Pass Validation of Model with Field Failure Data

Input Variable	Units	Min/Max Bounds of Measurement
Pipe Tensile Strength (Class)	KSI	+/- 10%
Pipe Outer Diameter (OD)	Inches	+/- 1%
Flaw Depth (Flaw D)	Inches	+/- 5%
Flaw Length (Flaw L)	Inches	+/- 5%
Flaw Width (Flaw W)	Inches	+/- 5%
Burial Depth (Soil D)	Feet	+/- 10%

Input Variable Uncertainty Bounds (p. 153)

Summary of Simulation Results (p. 154)

Failure Case #1 40 6 12 0.33 4.0 4.0 4.5 3.95% 3.60% 0.70 Failure Case #5 20 4 12 0.020 0.127 0.628 3 1.76% 1.88% 0.85 Example #1 30 10 18 0.25 4 8 6 4.26% 5.13% 1.06
Example #1 30 10 18 0.25 4 8 6 4.26% 5.13% 1.06
Example #2 20 6 12 0.05 1 4 6 4.38% 5.15% 1.17
Example #3 50 8 18 0.2 1 5 6 4.26% 4.03% 1.14

Comprehensive, Testing-Based Validation Program Subtitle

- >The report summarizes the basis and specific recommendations for a comprehensive, testing-based validation program for the developed FFS model.
- >The program considers and lists gray iron materials testing specifications, consensus standards for mechanical testing, currently available (new) gray cast iron materials, vintage piping samples to consider, and how many testing replicates are recommended for each material type.

Gray Iron Test Specifications (p. 159) Physical Testing Validation Program Concept

Specification	Year	Class	UTS	Modulus of Rupture	Comments	
AWWA Cast Iron Pipe Specification	1908	NA	20 ksi	NA	UTS by tensile bar	
ASA A21.1 Cast Iron Pit Cast Pipe	1939	NA	11 ksi	40 ksi	UTS by burst test	
ASA A21.7 Cast Iron Centrifugally Cast Pipe	1952	NA	18 ksi	40 ksi	UTS by burst test	
ANSI/AWWA C101 Thickness Design of Cast Iron Pipe	1957	NA	21 ksi	45 ksi		
ASTM A74 Standard Specification for Cast Iron Soil Pipe and Fittings	2016	NA	21 ksi	NA		
ASTM A48 Standard Specification for Gray Iron Castings	2016	class 20 class 25 class 30 class 35 class 40 class 45 class 50 class 55 class 60	20 ksi 25 ksi 30 ksi 35 ksi 40 ksi 45 ksi 50 ksi 55 ksi 60 ksi	NA	Specimens Machined from Cast test Bars	

Gray Iron Mechanical Tests (p. 160) Physical Testing Validation Program Concept

Standards Organization	Test Type	Specification	Test Specimen approx dimensions	Comments	
ASTM	Compression Test	E-9 Standard Test Methods of Compression Testing	1" x 0.5"dia.	Standard ASTM compression specimens, demanding requirem prepara	ents for test fixturing, specimen
ANSI-AWWA	Talbot Strip Test of Modulus of Rupture	ANSI C106 Gray Iron Pipe Centrifugally Cast Pipe	10.5" x 0.5" x pipe wall thickness longitudinal from pipe specimen, parallel machined sides	4 point bend test, 10" between supports, loads applied at two points 3.33" in from supports.	Modulus of Rupture R = Wl/td ² where W is the breaking load, / is the span between supports, t is the wall thickness and d is the machined width.
ANSI-AWWA	Pipe Ring Test for Modulus of Rupture	· ·	for pipe <u><</u> 12" ring length = 1/2 the nominal dia., for pipe sizes <u>></u> 14", 10.5" ring length	3 edge ring compression test, U- channel in bottom hardwood block, single top hardwood block. This test is designed to produce longitudinal cracks.	R = 0.954(W(d+t)/bt ²) where R is modulus of rupture, W is the breaking load, d is the inside diameter, t= thickness and b= ring length.
ASTM	Bend Test	A438 Standard Test Method for Transverse Testing Of Gray Cast Iron	15" x 1" round bar	3 point bend test with tables that allow estimates of UTS base the breaking load of a test bar.	
ASTM	Tensile Test	A74 Standard Specification for Cast Iron Soil Pipe and Fittings , ASTM A48 and E8	4" long, 0.5" dia. in gauge length	Standard tensile test per ASTM A4 from ca	
N/A	Strip Flexure Test	4 point bend test	120mm x 10mm x WT strip samples	Bend test used by Belmonte et al . data and Weibull mode	
N/A	Longitudinal Bend test	4 point bend test	1.4 m pipe specimen	Pipe bend test used by Seica <i>et al</i> failur	

New Production Gray Iron Materials (p. 161) Physical Testing Validation Program Concept

Configuration	Manufacturer	Product	UTS spec	ASTM A247 Flake type	ASTM A247 Flake size	Matrix	Comments
	Dura-Bar	G2	40 ksi min	A and D	4-6	pearlite, with ferrite/pearlite rim	This grade also produced in trepanned tubes, e.g. 7" OD with 5" ID
Bars and Machined	Dura-Bar	G2S	40 ksi min	A and D	4-6	pearlite, rim 80% pearlite	This grade also produced in trepanned tubes, e.g. 7" OD with 5" ID
Tubes	Dura-Bar	G2P	40 ksi min	A and D	4-6	pearlite, rim 80% pearlite	
	Dura-Bar	G2A	40 ksi min	D	6-8	pearlite	
	Dura-Bar	G1A	25 ksi min	D	6-8	ferrite	Dura-Bar states that this grade is not a stock item but "can be ordered in volume quantities"
New Pipe	Charlotte Pipe	ASTM A74 Cast Iron Soil Pipe	21 ksi min	unspecified	unspecified	unspecified	(n.b. per the mfr's literature the pipes are spun cast, therefore the actual tensile is probably closer to the range of 30 to 40ksi than to 21ksi, see Makar & McDonald 2007)
Pipe Fittings	Charlotte Pipe	ASTM A74 Cast Iron Soil Pipe	21 ksi min	unspecified	unspecified	unspecified	(n.b. per the mfr's literature fittings are cast in static molds this should create a coarser graphite structure and lower UTS than spun cast pipe)

Planned Testing Matrix (p. 163) Physical Testing Validation Program Concept

	TEST REPLICATES										
Material	Form	A48/E8 Tensile	E9 Compression	ASTM A247 Microstructure	4 point bend of longitudinal strip	4 point bend of pipe	3 point ring bearing	Hydrostatic Pressure Test			
	pipe 1	3	3	1	5	1	1				
Vintage Pit Cast Iron Pipe	pipe 2	3	3	1	5	1	1				
	pipe 3	3	3	1				1			
	pipe 4	3	3	1	5	1	1				
Vintage Spun Cast Iron Pipe	pipe 5	3	3	1	5	1	1				
	pipe 6	3	3	1				1			
2018 A74 spun cast soil pipe	as received	5	5	1	15	3	3	1			
(new production)	w. artificial defects				15	3	3				
2018 A74 static cast soil	as received	5	5	1	15	3	3				
pipe fitting (new production)	w. artificial defects				15	3	3				

Appendix Sections

Appendix A – Contains a Field Testing and Sampling Process

Appendix B – Contains a Training Manual for the FFS Excel-Based Calculator

Recommendations / Follow On Work

The Technical Advisory Panel (TAP) suggested:

- Expand the applicability of the calculator solution to include larger diameter pipe, 20 inch and larger, which several of them are currently using.
- Provide a full geo-spatial implementation example showing the solution applied to a cast iron network with rankings for an accelerated mains replacement program.

Based on these suggestions, the project team will augment the FFS solution for the larger diameter cast iron pipes from 14 to 48 inches and provide a geo-spatial example of the FFS solution applied to a pipe network.

These additional features will be distributed by an addendum report and revised calculator by December 31, 2018.

Turning Raw Technology into Practical Solutions

www.gastechnology.org | @gastechnology

gt