

PIPELINES 2017 CONFERENCE

Phoenix, Arizona | August 6 - 9

Wireless Sensor Networks for Health Monitoring of Welded Joints in Onshore Metallic Pipelines

Dr. Zhibin Lin

Dept. of Civil and Environmental Engineering North Dakota State University Hong Pan, Ruisi Ge, Xingyu Wang,

Drs. Jinhui Wang and Na Gong

North Dakota State University

PHMSA Pipeline and Hazardous Materials Safety Administration

NDSU NORTH DAKOTA STATE UNIVERSITY

Acknowledgment

Collaborators

Drs. Dante Battocchi and Xiaoning Qi (NDSU)Drs. Fardad Azarmi, Yechun Wang (NDSU)Dr. An Chen (ISU) Dr. Genda Chen (MST)Drs. Konstantin Sobolev, Habib Tabatabai, Jian Zhao (UWM)

• My students

Dr. Fei Yan (2016), Mohsen Azimi (2017), Qusay Alkaseabeh (2015) Mingli Li, Xingyu Wang, Muhammad Naveed, Ganghyun Hyung

Sponsors

US Department of Transportation-CAAP US Department of Transportation ND DOC Venture

PHMSA Pipeline and Hazardous Materials Safety Administration

ASCE

Outline

- Background and Challenges
- Proposed Concept in Pipeline Safety and Assessment
- Proposed Wireless Sensor Networks
- Data Mining for SHM and Damage Detection
- Summary

1. Background

Pipeline spill and pollutions

http://www.occupy.com/article/20000-barrels-spilled-north-dakota-pipeline-rupture?qt-article_tabs=2

Left: pipeline explosion (West Virginia, 2012) and right: Taiwan, 2014

1. Background

Damage-induced pipeline accidents at North Dakota

Accident	Location	year	Loss
Pipeline spill	Tioga, ND	2014	One gas pipeline exploded and burned
Pipeline spill	Tioga, ND	2013	865,000 gallons (<u>one of the largest to happen onshore in</u>
			U.S. history), over two years still cannot be fully cleaned up
Pipeline spill	Sargent County, ND	2011	Spilling 400 barrels of crude oil
Pipeline spill	Neche, ND	2010	Releasing 3,784 barrels of crude oil
Pipeline spill	Mantador, ND	2004	Nearby residents were evacuated, and a rail line was shut down
Pipeline spill	Barnes County, ND	2003	Releasing 9,000 barrels of propane
Pipeline ruptured	Bottineau, ND	2001	1.1 million US gallons (4,200 m ³) of gasoline burned
Pipeline spill	Harwood, ND	2001	Spilling 40 barrels of fuel oil

Damage-induced pipeline accidents national wide

ASCE

1. Background

Damage/corrosion-induced pipeline

Oil and Natural Gas Pipeline

2011 causes of pipeline failure

https://blog.enerdynamics.com/2013/02/03/naturalgas-pipeline-safety-a-crisis-or-a-manageable-issue/

SCE

http://napipelines.com/prime-connections/

cracks

porosity

Framework of High-Performance System

ASCE

NDDOC funded weldment (on-going)

ASCE

USDOT CAAP funded multifunctional coatings (on-going)

Fig. 1 Internal corrosion: a) localized pits², b) fouling³ and c) wear/erosion⁴

New multifunctional nano-modified coatings

ASCE

Integrated WSN w/ and w/o UAS for Pipeline Monitoring

Applications to other critical large-scale/long-span civil infrastructures

Reliability and Resiliency through Sustainable Design and Construction

SCE

Wireless sensor networks integrated with UAV

NDSU UAV System Lab

https://www.ndsu.edu/pubweb/~nagong/uav.html

Research, Industry, Outreach

-WSN for Long-Distance/Large Scale Monitoring

RF power battery-less wireless system overview

Architecture of the proposed sensor node

Developed wireless devices for networks

-WSN for Long-Distance/Large Scale Monitoring

Network topology for MiWi Pro protocol

Data Collision

Possible data collision

Method for solving data packet collision

-Specific Lab Demonstration

Damage detection (localization and levels)

Damage-induced wave spectrum

Damage-induced wave time history

-Specific Lab Demonstration

Damage detection (localization and levels)

Damage-induced hits (scenario 2)

Hit accumulation (scenario 2)

4. Data Mining for SHM and Damage Detection

* UESI FF

Reliability and Resiliency through Sustainable Design and Construction

SCE

4. Data Mining for SHM and Damage Detection

- Data-driven models: Machine Learning and Optimization

Support Vector Machine

Early-age detection from vast amount of data

3. Data Mining for SHM and Damage Detection- Data-driven models: Machine Learning and Optimization

ASCE

5. Summary

-Pipeline condition assessment techniques

Developed technology will have a **high impact** on pipeline assessment techniques:

- wireless sensor networks (or integrated with UAS technology) has recently demonstrated great potential for full-spectrum SHM
- Data-driven models are robust to rapidly identify the key information from complex sensor data

5. Summary

-Pipeline operation safety

Developed technology will have a **high impact** on pipeline operations and management:

- Timely monitoring and managing performance of pipelines, thereby minimizing pipeline oil spill and damages.
- Improve the quality and safety operation, thus prolonging the useful life span of pipelines.

Thank You!

Zhibin.lin@ndsu.edu

