Competitive Academic Agreement Program

Mitigating External Corrosion of Pipelines Through Nano-modified Cement-based Coatings Shiho Kawashima

Assistant Professor of Civil Engineering and Engineering Mechanics
Columbia University, New York, NY
09/15/2015

Main Objective

- Explore the feasibility of a cement-based pipeline coating material that exhibits:
 - Superior hardened and sealing performance, through carbon nanotubes and supplementary cementitious materials
 - Ease of application, through nano-sized attapulgite clays

Project Team & Other Sponsors

- Department of Civil Engineering and Engineering Mechanics (CEEM)
- Shiho Kawashima (Principal Investigator, CEEM)
- Siwei Ma (PhD student, CEEM)
- Yu Xie (M.S. student, CEEM), Alyssa Ramos-Avila (B.S. student, CEEM), YoonJung Jo (H.S. student)

Project Outline

- 1 Materials and Design
- (2) Mechanical and hardening properties
- 3 Permeability/porosity
- 4 Rheological properties
- (5) Conclusions and recommendations

Materials and Design

Additives:

- Highly-purified attapulgite clay (Active Minerals)
- Carbon nano-tubes (Nanocyl)

Binder:

- Ordinary Portland Cement (Separation Technologies)
- Grade 120 Blast Furnace Slag (Lafarge)
- Type F Fly Ash (Separation Technologies)

Attapulgite Nanoclays (ATTs)

- 1.75 μm in length, 3 nm in diameter (average)
- Increases rate of structural rebuilding of fresh concrete mixes
- Applications: slipform casting/paving, reduce rebound of shotcrete
- <u>Pipeline coating:</u> rheological properties of fresh concrete can be tailored by clays to improve application process and improve uniformity

Model slipform paver

Carbon Nanotubes (CNTs)

- 1.5 μm in length, 9.5 nm in diameter (average)
- Increase flexural strength, reduce shrinkage
- <u>Pipeline coating:</u> refine pore structure to reduce permeability; enhance mechanical properties
- Key challenge is dispersion: compare dry form vs aqueous form

Supplementary Cementitious Materials (SCMs)

- Replacement of cement with fly ash and blast furnace slag
- Refine pore structure to improve durability properties through pozzolanic reaction
- Pipeline coating: further refine pore structure to reduce permeability

Mix design

	Cement	Fly Ash	Slag	Surfactant	CNT	Attapulgite Clay
Mix	(% by mass of total binder)			(% addition by mass of binder)		
С	100	0	0	0	0	0
C_0	100	0	0	0.05	0	0
C_CNT	100	0	0	0.05	0.01	0
C_ATT	100	0	0	0.05	0	0.3
C_CNT_ATT	100	0	0	0.05	0.01	0.3
FS_0	50	25	25	0.05	0	0
FS_CNT	50	25	25	0.05	0.01	0
FS_ATT	50	25	25	0.05	0	0.3
FS_CNT_ATT	50	25	25	0.05	0.01	0.3

Project Outline

- 1 Materials and Design
- 2 Hardening and mechanical properties
- 3 Permeability/porosity
- 4 Rheological properties
- (5) Conclusions and recommendations

Method: Isothermal Calorimetry

Figure. TAM Air Isothermal Calorimeter

 The heat flow of a sample measured through isothermal calorimetry provides the rate of cement hydration (exothermic reaction).

Results: Rate of Cement Hydration

- No measurable effect by the CNTS on the hydration kinetics.
- Higher rate of heat generation with higher additions of nanoclay, indicating acceleration in cement hydration (seeding effect).

Method: Mechanical Testing

- Direct tensile strength tests: dogbone-shaped paste samples 1" x 1" tapered cross-section
- Compressive strength tests: 2" x 2" x 2" cubic mortar samples (ASTM C-109)
- 7 and 28 d strength

Figure. Tensile strength setup.

Results: Compressive strength

Figure. Cement mortar systems.

Figure. Cement-fly ash-slag mortar systems.

- Although attapulgite clays (ATT) are added as a rheological modifier, their effect on compressive strength is comparable to or greater than that of the carbon nanotubes (CNTs)
- Due to improved uniformity by ATT; dispersion issue of CNTs

Results: Tensile strength

 In agreement with compressive strength results, the effect of ATT on tensile strength is comparable to or greater than that of CNTs

Figure. 28 day direct tensile strength **C**: cement; **FS**: cement-fly ash-slag

Project Outline

- 1 Materials and Design
- 2 Hardening and mechanical properties
- 3 Permeability/porosity
- 4 Rheological properties
- (5) Conclusions and recommendations

Method: Mass change (direct method)

Void Content =
$$\left[1 - \left(\frac{K \times (A - B)}{\rho_w \times D^2 \times L}\right)\right] \times 100$$

A = dry mass of the specimen

B = submerged mass of the specimen

K = 1,273,240 in SI units or 2,200 in [inch-pound] units

D = average diameter of the specimen

L = average length of the specimen

 ρ_w = density of water

Results: Mass change

Figure. Porosity results of cement mortar with slag replacement.

 A decrease in porosity was capture, as expected, with increasing slag replacement, but the percent change is very low.

Method: Electrical resistivity

Figure. Schematic of electrical resistivity meter (RCON, Giatec). Uniaxial measurements performed at 1 kHz.

- 2-in cubic samples wet cured for 7 or 28 d, then air dried for 24 h prior to testing.
- Open microstructure will experience high moisture loss; highly percolated microstructure will experience limited moisture loss.
- As water is highly conductive compared to cement matrices, low resistivity is associated with a more percolated microstructure – low permeability – and vice versa.

Results: Electrical Resistivity

29 Days 2861 3000 8 Days 2562 2636 2587 2500 Resistivity (Ω·in) 2000 1500 1320 1334 1256 1126 1000 500 FS_0 FS_CNT FS_CNT_ATT FS_ATT

Figure. Cement mortar systems.

Figure. Cement-fly ash- slag mortar systems.

 Results indicate that ATTs and CNTs can reduce permeability, but effect was not significant.

Safety Administration

Compressive strength and electrical resistivity results

Similar trends: finer pore structure enhances strength and reduces permeability.

Project Outline

- 1 Materials and Design
- 2 Hardening and mechanical properties
- 3 Permeability/porosity
- 4 Rheological properties
- (5) Conclusions and recommendations

Method: Rheology

Figure. Rheological protocol.

Figure. Rotational rheometer (top); Parallel-plate setup (bottom)

1. Apparent viscosity

Figure. Viscosity evolution **C**: cement; **FS**: cement-fly ash-slag

Results: Apparent viscosity

Figure. Apparent viscosity

C: cement; **FS**: cement-fly ash-slag **_CNT**: carbon nanotubes; **_ATT**: clays

- ATTs have little to no effect on viscosity in cement system; decreases viscosity in the ternary system → Flowability during casting
- CNTs (and CNTs+ATTs) have opposing effects → Dispersion issues

2. Yield stress

Figure. Flow curve fitted with Bingham model to obtain yield stress and viscosity.

3. Static cohesion

Figure. Tack test results.

Project Results: Rheological properties

Figure. Static cohesion.

C: cement; FS: cement-fly ash-slag CNT: carbon nanotubes; ATT: clays

- Yield stress and cohesion were found to exhibit similar trend.
- ATTs enhance yield stress and cohesion in both systems → Ability to adhere onto pipeline surface
- CNTs have opposing effects → Dispersion issues

Other Project Results

- 1 PhD student
- 1 MS student, 1 BS student, 1 HS student (independent study for credit, summer internships)
- One technical journal manuscript
 – submitted for review

Safety Administration

^{*} R&D Program performance metrics reported to Congress

Summary of results

Testing wethods	Attapulgite Clay		CNT		S	
Testing methods	Cement	Ternary	Cement	Ternary	Summary	
Compressive strength	1	†	1	_	Attapulgite clays introduce enhancing effects on mechanic and hardening properties that are comparable to or greate than those by CNTs.	
Tensile strength	111	-	_	11		
Isothermal calorimetry	1		_			
Permeability	ţ	ţ	_	1	CNTs and attapulgite clays can reduce permeability, but results indicate that the degree is moderate.	
Apparent viscosity	_	ţ	1	ţ	The effect of attapulgite clays on rheology is positive, as is desirable to keep viscosity low during casting and stati yield stress and cohesion high after placement.	
Yield stress	11111111	111	111	_		
Cohesion	111	11	11	_		

*Note: -: <10%; $\uparrow: 10\%-20\%$; $\uparrow\uparrow: 20\%-30\%$; $\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow: 80\%-90\%$

Summary of results (conti.)

- Ternary (cement-fly ash-slag) systems with attapulgite clays can lead to beneficial properties, i.e. improved processing, permeability, and mechanical strength
- Potential future direction: System explored in the present project can be utilized for a dual coating system – cementbased top coating and polymer-based base coating – using two coating protection technologies to provide a viable solution to significantly increase protective performance and processing while alleviating the disadvantages of a single approach (not a simple superposition of materials and costs)

Future Program Improvements

- Overall great support/feedback from Program and Program Directors
- Longer project periods (> 18 months)
- More information on level of industry acceptance for new and emerging technologies and industry needs (tied to improved description of research areas)
- More opportunities for program awardees to interact with other awardees and attend industry meetings (prior to start date or early on during the project period)

Project Reporting

 Final Reporting and any student poster papers are available from:

https://primis.phmsa.dot.gov/matrix/PrjHome.rdm?prj=510

Safety Administration

THANK YOU!

