
Details on Hysteretic Property Measurements 

Hysteretic parameters were measured using a Magniscope, an instrument designed 
and used in the Metals Development Lab at Iowa State University. This instrument 
allows "local" measurement of the B-H characteristics for ferromagnetic materials. The 
6-H curve is measured by magnetizing a small volume of the sample, using a yoke. The 
field intensity is measured, with a Hall probe located in the middle of the yoke. The 
probe is oriented to pick up the horizontal component of the field. The flux density is 
measured using a coil wound on the yoke. Parameters such as coercivity, remanence, 
and hysteresis loss are estimated from the 6-H curve. The depth of measurement is 
roughly equivalent to half the distance between the poles of the yoke. A half-inch probe 
was used; the penetration depth was, therefore, approximately 0.25 inch. 

Measurements were made on the surface opposite the defect. The scanning area was 3 
by 3 inches, divided into a 12 by 12 grid, with the defect located in the middle of the 
scanned area. The measurement procedure included demagnetization, registration of a 
single hysteresis loop, and demagnetization again. Care was taken so that the 
orientation of the magnetic field remained constant. Measurements were taken with the 
field oriented in two perpendicular directions. Measurements were also made on a 
circular grid with eight divisions along the circumference and six divisions along the 
radius, resulting in 48 measurement locations. The magnetization field for circular 
measurement was radially oriented. This was done in order to maintain the symmetry of 
the residual stress field. 

The resulting sets of data were processed and are shown below. The data were 
compared with the stress distribution patterns obtained from the structural finite-element 
model discussed earlier. For example, the scan shown in the first figure represents the 
distribution of coercivity (H,) around a defect corresponding to a 30 kip load. The 
second figure shows the calculated residual stresses for the same defect. 

The small variation of coercivity around the metal-loss defect in the first figure is a result 
of measurement and instrumentation error and does not indicate a variation of the 
coercivity of the material. No variation should be expected because the area is free of 
stress. The pattern around the pressed-in gouge exhibits a very large variation, on the 
order of 25 percent. This variation represents the residual stress in the sample due to 
the mechanical damage. The third and fourth figures show the distribution of remanence 
and hysteresis loss around the same defect. Similar results are observed. 

The results suggest that the residual stress can be linked to magnetic parameters, such 
as coercivity, remanence, and hysteresis loss. All of the circular scans showed patterns 
of the shape similar to the expected stress distribution in the test samples. The 
sensitivity of a parameter to residual stress can be estimated from the relative change in 
the observed pattern. Remanence is more sensitive than coercivity, but hysteresis loss 
was most sensitive. 
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Additional Details on Defect Characterization [Hwan9g6, Hwan9971 

Both radial basis and wavelet functions were used to perform three-dimensional defect 
characterization from the MFL signals. These networks were used to predict the shape 
of the defect (either corrosion or mechanical damage) using input parameters taken 
from the MFL signals. Typically, the MFL signal was transformed, for example, by 
converting the signal to its equivalent components in the frequency domain, after which 
6 to 10 features from the transformed signal were chosen as input. 

The radial basis function networks were developed under an earlier project for GRI. The 
wavelet network architecture is similar to that of the radial basis network, however, it 
uses wavelets for functional approximation. Wavelets can be expressed using 

where '4 and 
scaling wavelet functions, and ck and dk specify wavelet transform coefficients. The use 
of wavelets as basis functions provides a simplified training procedure and a trade-off 
between computational complexity and prediction accuracy in defect characterization. 

are known as the "centers" of the wavelet network, @ and Y'denote 

A Gaussian radial basis function was used for scaling, and the Mexican hat wavelet, 
which is related to the second derivative of a Gaussian, was used as the wavelet 
function. The basis function width (one of the parameters describing the function) at the 
finest resolution was chosen in order to cover the full range of input parameters. The 
unknown weights were calculated using a matrix inversion technique. 
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Defect Characterization Using Feedback Neural Networks 

Existing defect characterization schemes are usually incapable of providing an outline 
measure of the accuracy of their prediction results. This section describes a novel 
method for characterizing defects that overcomes this deficiency. The method is based 
on solving the inverse problem (i.e., estimating the defect profile based on information 
contained in a measured signal) using a feedback system. 

Solution techniques for inverse problems can be divided into two broad categories: 
phenomenological and non-phenomenological. Phenomenological approaches typically 
employ a forward model that simulates the underlying physical process to solve the 
inverse problem; examples of forward models include finite-element and finite-difference 
methods. 
Non- 
phenomeno 
log ica I 
typically 
use signal 
processing 
techniques. 

When a 
phenomeno 
logical 
model is 
used in a 
feed back 
confi g u ra t io 
n (shown at 
right), an 
initial 
estimate of 

Experimental I h p u t  Signal 

Forward a Model 

Desired Defect 
Profile 

No 

proftl e 

Phenomenological Approach to Solving Inverse Problems 
_" -_I__ --I___-- _________._ - _l___l -̂__I-_- 

the defect profile is input into the forward model. The output of the model is the 
theoretical signal corresponding to the estimated defect profile. This signal is then 
compared to an experimentally measured signal. If the prediction error is less than 
some preset threshold, the initial solution is assumed to be the desired defect profile. 
On the other hand, a higher error indicates the need for further refinement of the 
solution (defect profile). This process is carried out in an iterative manner until a 
satisfactory solution is reached. Feedback systems are inherently less sensitive to 
noise, and therefore, likely to offer more accurate results. 

The second class of approaches, which is non-phenomenological in nature, attempts to 
solve the inverse problem using signal processing techniques. Typical approaches 
include calibration methods and neural-networks-based techniques. In the case of the 
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latter, the problem is formulated as a function-approximation problem and the 
underlying function mapping is "learned" by a neural network. 

Methods utilizing these approaches have been reported extensively in the l i t e r a t ~ r e . ~ ~ " ~ ~  

techniques are open loop in nature and are capable of providing confidence measures 
relating to accuracy only during the training phase. 

owever, these methods have certain drawbacks. Neural-network-based Hoole91, Hwang971 H 

A novel method of solving the inverse problem was developed in this project The 
following links describe the alternative method for characterizing defects, which 
incorporates the strengths of both phenomenological and non-phenomenological 
techniques. The technique is capable of incremental learning, provides an online 
measure for accuracy of the defect estimate, and is computationally efficient. 

Feedback neural network scheme for defect 
Initial results of applying the algorithm to MFL signals 
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Schematic of Feedback Neural Network Approach (Prediction Mode) 

Inverse problems in nondestructive evaluations involve the estimation of defect profiles 
in materials. Estimating defect profiles can be formulated as a function-approximation 
problem and the solution obtained using artificial neural networks. In order to retain the 
advantages of phenomenological and non-phenomenological solution techniques, and 
to overcome the disadvantages of phenomenological methods, a feedback neural 
network scheme was developed for solving the inverse problem. 

The feedback neural network approach is shown at right. Two neural networks are used 
in a feedback configuration. The forward network predicts the signal corresponding to a 
defect profile while the inverse network predicts a profile given an inspection signal. The 
forward network provides a reference for comparing the defect profile predicted by the 
inverse neural network. 
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Feedback Neural Network Algorithm 

Approach to Solving the Inverse Problem 

The overall approach to solving the inverse problem is shown here. The input signal, f ,  
from a defect of unknown profile is input to the characterization neural network (inverse 
neural network or INN) to obtain an estimate of the profile This estimate is then input 
into the forward neural network (FNN) to get the corresponding prediction of the MFL 
signal for that estimate of the profile. If the estimated defect profile is close to the true 
profile, the measured MFL signal and the predicted signal from the forward network will 
be similar to each other. This is the basis of the feedback neural network scheme. 

The following links provide details on the forward network, the inverse network, and the 
methodology used to optimize the network system: 

The Forward Network 
The Inverse Network 
0 p t i m iza t i o n 
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Forward Network 

m 
X 

0 
Wavelet Basis Function Neural Network 

Since the forward neural network serves as a "standard' for measuring the performance of the 
feedback neural network scheme, it must be capable of accurately estimating the signal obtained 
from a variety of defect profiles. A wavelet basis function neural network is used for 
implementing the forward network. The structure of a wavelet basis function network is shown 
at right. The wavelet basis function neural network uses a multi-resolution function 
a p p r ~ x i r n a t i o n . ~ ~ ~ ~ ~ ~ ~  given by 

k=l  j=l k=l 

The networks use a single hidden layer with sets of function nodes depending on the number of 
resolutions. A family of wavelets is used as the basis functions and the network is fully 
interconnected. Training of wavelet basis function neural networks involves determining the 
weights connecting the hidden layer nodes to the output layer nodes as well as the centers and 
spreads of the basis functions. Centers of the scaling functions at the coarse (or first) resolution 
are determined by using a K-means clustering algorithm while the centers of the wavelet 
functions at higher (or finer) resolutions are computed using a dyadic grid. The spreads of these 
functions are set proportional to the cluster sizes. The interconnection weights are then computed 
using a matrix inversion step. The network used in this study employs Mexican hat functions as 
the wavelet and a Gaussian function is employed as the scaling function. 

On to information on the Inverse Network. 
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Radial Basis Function Neural Network 

The Inverse Network 

A radial basis function neural network is used as an inverse network for characterizing 
the defect profiles. The radial basis function is a three-layer function approximation 
network, as shown at right. The structure of the network is similar to that of a wavelet 
basis function neural network. The difference lies in the fact that the radial basis 
function uses a single set of basis functions (the scaling functions in the wavelet basis 
function neural network). The training algorithm for the radial basis function is similar to 
that of the wavelet basis function neural network with the centers of the basis functions 
determined by using a clustering algorithm. The spread of each basis function is 
proportional to the cluster size. Alternatively, it may be set to some common constant 
value for all bases. The output interconnection weights are then determined by a matrix 
inversion step. 

On to information on optimization of the networks. 
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Optimization 

Once the inverse network is trained, the parameters need to be optimized. This process 
is referred to as the training mode. The goal of the optimization procedure is to minimize 
the error due to the inverse radial basis function network. Let Df be the error between 
the actual MFL signal and the prediction of the forward network in the feedback 
configuration. In order for Dfto be zero, the characterization network must be an exact 
inverse of the forward network. While the functional form of the forward network can be 
derived easily, obtaining its inverse analytically is difficult. This is because the output of 
the forward network is a function of the number and location of their respective basis 
function centers in each network. The inverse is, therefore, estimated numerically. 
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Inverse Neural Network Optimization 

An adaptive scheme is used to estimate the inverse of the forward network as shown 
above. This "inverse network" is used as the characterization network. The algorithm 
uses gradient descent in combination with simulated annealing to optimize the inverse 
network parameters. The algorithm is shown at right, and the derivation of the network 
parameter update equations is shown below. As shown in the flowchart, the defect 
profile is input to the forward network. The output of the forward network (the predicted 
signal) is input to the inverse network. The defect profile predicted by the inverse 
network is compared to the true profile and the error is used to update the inverse 
network parameters. This occurs only if the error after the update is less than the error 
before the update. In case the error increases, the update is retained with a probability p 
that decreases as the number of iterations increases. This probabilistic update rule is 
used to escape from local minima, which the gradient descent rule is susceptible to get 
trapped in. 

Let E = the error at the output of the inverse network, 

wu = interconnection weight from node j in the hidden layer to node k in the output layer 

ci = center of the jth basis function (at node j in the hidden layer) 

22 1 



Sj = spread of the fh basis function 

f = the signal 

= (dl 1d21...1 dki . .*  d ~ )  be the desired output of the radial basis function network 

d= ldl oLj2 I . . . '  dka. -dn )be the actual output of the radial basis function network 

Then, the error E can be defined as 

k = l  

where dk is given by 

and the basis function is chosen to be a Gaussian function: 

Substituting the second two equations into the first equation and taking the derivative 
with respect to the weights ww, we have 

Similarly, the derivative of the error with respect to the other two parameters (Cj and Sj) 

can be computed as follows: 
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The derivatives are then 
update equations for the 
following equations. 

substituted into the gradient descent equation to Gzrive the 
three parameters. These expressions are given by the 

Once the characterization network is trained and optimized, the two networks are 
connected in the feedback configuration shown earlier. The characterization network 
can then be used for predicting flaw profiles using signals obtained from defects of 
unknown shape and size. 

Back to information on feedback neural network approach. 
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Initial Results of Applying the Feedback Neural Network 
Algorithm to MFL Signals 
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The feedback neural network algorithm developed in this program was tested with 
calculated MFL data. The data were generated using a two-dimensional finite-element 
model having a 100x1 00-element mesh. A wavelet basis function neural network was 
used as the forward network, while a radial basis function network was used as the 
inverse network for characterization. The wavelet basis function network used three 
resolution levels with six centers at the coarsest resolution, with the centers at other 
resolutions computed using a dyadic grid. The radial basis function used 150 basis 
functions in its hidden layer. 

A total of 218 pairs of defect profiles and MFL signals were used in the training set, and 
22 signals were used for testing. There was no overlap between the two data sets. The 
entire data set included defect widths from 1" to 7" with 0.4" increments. At each width, 
fifteen different depths (from 15% deep to 85% deep at 5% increments) were included. 
The 22 test signals were picked at random out of these defects and were not included in 
the training database. 

Results 

The above figure shows typical results of training the forward network (clicking on the 
figure will display more results). The solid line shows the true signal while the dotted line 
shows the neural network prediction. These plots indicate that the forward network is 
capable of predicting the signal with little error. 
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A typical prediction result is shown above. In the top figure, the solid blue line shows the 
true signal. This is the initial signal that is used as input into the radial basis function 
network, which has not been optimized. The initial prediction using the true signal is 
input is shown as the black dot-dash line in the lower figure. The initial prediction is then 
input to the forward network. Its output is shown as the black dot-dash line in the upper 
figure. 

Results obtained after optimization of the inverse network are also shown as the red 
dashed lines. Similar results obtained by analyzing signals from defects of other 
geometries are shown for Signal #I 3 and Signal #14. 

These results indicate that the optimization process improves the prediction results. In 
addition, the use of a forward network in a feedback configuration provides a measure 
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of the error in the characterization: the error in the defect profile prediction is 
approximately proportional to the error in the signal prediction. 
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Background on Stress Corrosion Cracking 

Stress-corrosion cracking (SCC) results from the combined action of stress, a cracking 
(electrochemical) environment, and temperature to cause cracks to initiate and grow in 
a susceptible line-pipe steel. Individual cracks are generally oriented perpendicular to 
the maximum stress and parallel to the pipe axis. Groups of cracks usually occur in 
what is known as a “colony.” In extreme cases, these colonies may be several feet long 
and extend nearly around the circumference. 

SCC colonies are considered sparse if the cracks are far apart in the circumferential 
direction and dense if the cracks are circumferentially close together. Individual cracks 
can range from shallow to deep. Many cracks in the middle of dense colonies have a 
depth less than ten percent of the wail thickness. In sparse colonies and in some dense 
colonies, the cracks can grow in a stable manner until they reach nearly through the 
wall. These deeper cracks are of primary concern in inspections to evaluate pipeline 
integrity. 

______I 

Stress Corrosion Cracking - -- ----____^ --__- -- 
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As nearby cracks grow, individual cracks can coalescence or join to form a single, larger 
crack. If the coalesced crack is long enough, it can rupture. The consequences of a 
rupture are usually more severe than those of a leak. As a result, long deep cracks, and 
deep cracks that are close enough to coalesce into a crack that is long enough to 
rupture, are of primary concern when inspecting pipeline. 

Two forms of SCC have been encountered: high pH and low pH. The surfaces of most 
low and high-pH stress-corrosion cracks are not smooth but irregular. High-pH stress- 
corrosion cracks are typically intergranular (with a cracking path along the grain 
boundaries of the material), with essentially little or no separation or opening between 
the crack faces. Low-pH cracks are often transgranular, where the fracture surfaces are 
smoother than intergranular fracture surfaces, but they are not as smooth as fatigue 
cracks. Also, both forms of cracking can branch as cracks grow through the wall 
thickness. 
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Additional Impact of Cracks on Inspection Requirements 

c 

c 

c 

The severity or criticality of a set of stress-corrosion cracks is most strongly a function of 
the length, depth, and spacing between individual cracks. Crack length and depth, along 
with stress level and pipe toughness, determine whether an individual crack will fracture 
or fail unstably. Spacing between cracks determines whether one or more cracks will 
coalesce before or during a failure. The nucleation and growth of stress-corrosion 
cracks are becoming better understood, and models for predicting crack criticality are in 
development. However, detailed predictions are not yet feasible. The following 
discussion focuses on the likelihood of near-term failure as a primary criterion for 
determining which cracks should be found. 

Years of pipeline operating experience have demonstrated that small imperFections (for 
example, small regions of corrosion metal loss) cause only a small reduction in failure 
pressure. If the imperfections do not grow, they do not significantly threaten the integrity 
or serviceability of a pipeline. Consequently, in developing guidelines for acceptable 
corrosion loss during the 1960s and 1970s, the pipeline industry defined a hydrotest to 
the specified minimum yield (or design) strength as a fundamental requirement for 
pipeline safety. An acceptable imperfection was defined as one that could pass such a 
hydrotest. A defect was taken as one that would not survive a hydrotest of 100 percent 
of the pipe's yield stress. 

In recent work, Battelle developed a comprehensive failure criterion for individual stress- 
corrosion cracks in a program sponsored by the Pipeline Research Committee. This 
criterion is more accurate than and represents a significant improvement over corrosion 
flaw severity criteria used by the pipeline industry. 

Stress-corrosion cracks cannot be considered independently, though, because their 
ultimate failure may involve coalescence of several cracks. If two (or more) cracks 
coalesce, the resulting crack length increases. As a result, the coalescence of several 
cracks that could each survive a high-pressure hydrotest could result in a single crack 
that would be on the verge of failure at typical operating pressure. As a result, basing 
inspection requirements on failure at high pressure alone, without considering the 
likelihood of coalescence, could lead to nonconservative results if nearby cracks 
coalesce. Accounting for the likelihood of coalescence increases the emphasis on 
shorter, deep cracks in setting inspection requirements. 
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Details on the SLlC Systems 

In the 1980s and early 199Os, Southwest Research Institute (SwRI) developed two 
inspection techniques to overcome problems associated with sizing near-surface axial 
cracks from the outside surface of a pipe. The SwRl techniques are referred to by the 
acronym SLIC, which stands for simultaneous use of shear and longitudinal waves to 
inspect and characterize flaws. 

The SLIC-30 module is designed to enhance the ability of an ultrasonic examiner to 
estimate small crack depths. Two transducers are used, one to transmit a wave and one 
to receive. The first transmits a nearly perpendicular (70 degree) longitudinal 
(compression) beam that is directed at the crack face. This beam generates a set of 
longitudinal waves that are nearly parallel to the crack from both the surface and the 
crack tip. A second, low-beam ( I O  degree) transducer measures these secondary 
pulses. 

The SLIC-50 system is designed to overcome shoe noise and surface reverberation that 
can mask the weak diffracted signals from the bottom of a shallow crack. Unlike the 
SLIC-30 system, the SLIC-50 system receives both longitudinal and shear waves. This 
feature allows the system to measure crack depth regardless of the separation between 
the transducer and the crack. 

The SLIC-50 system operates by transmitting an interrogating wave, and then sensing a 
pair of associated diffracted signals (a doublet, for short) from the crack tips in the 
through-wall direction. A unique feature of the SLIC-50 system is that the distance 
between the doublet signals is practically independent of the position of the sensor. 
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General Theory of Velocity-Induced Remote Fields 

Conventional pipeline inspection tools generate axially oriented magnetic fields, which 
are sensitive to the presence of circumferential cracks. The inspection tool is insensitive 
to SCC, though, because they are oriented largely in the axial direction. A possible 
alternative is to utilize the fields associated with the circumferential currents generated 
in the pipe wall by the movement of the magnetizer relative to the pipe wall. 

The most general governing equation describing the physics underlying the motion of a 
pig in a pipe with a defect is: 

ax 
0- 

Where the term 
time-varying magnetic field caused by the changing spatial relation between the defect 
and magnetizer. In the case of a defect-free pipe, this term is zero. The term A 
represents the currents induced by the velocity of the magnetizer relative to the pipe 
wall. 

at represents the defect-induced current density resulting from the 

Since the motion of the tool inside the pipe is along the pipe axis, the motional electro- 
magnetic force due to the 0 xB term is negligible between the poles of the magnet. 
However, at the poles, the radially oriented magnetic fields generate a significant 
amount of circumferentially directed currents in the pipe. The intersection of these 
motion-induced currents with axial cracks results in a perturbation of the current 
distribution. 

The fields associated with the perturbation currents carry information related to the axial 
cracks. In general, the fields and resulting currents are large close to the magnetizer, 
making the measurement of small perturbation fields difficult. So, in this work, we 
considered the current perturbation in the remote field region of the magnetizer. 
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Details on Finite-Element Modeling of Velocity-Induced Remote 
Fields [Yaw981 

Modeling of the interaction between axial cracks and circumferential currents is a 
significant challenge in terms of computation time and memory requirements. The 
challenges arise due to nonlinearity of material properties, the size of the cracks relative 
to that of the magnetizer, and the time stepping involved in modeling velocity effects. 
The approach used here to surmount these difficulties was to decompose the overall 
task into three simpler subtasks that can be performed sequentially: 

e Step 1 : Calculate velocity induced currents JO in a defect-free pipe wall due to 

Step 2: Model an axial crack by applying a current - 

axial motion of the magnetizer inside the pipe. @Step 1 Graphic) - 
e at the nodes i defining the 

Step 3: Use results obtained in Step 2 to solve for the perturbation fields that can 

- 
crack and compute total perturbation current Jp.  @Step 2 Graphic) 

then be measured with an induction coil. Details associated with each step are 
provided below. ( tiifstep 3 Graphic) 

0 

Step 7. Calculation of Velocity Induced Currents 

In the first step, a defect-free pipe with a magnetizer moving at a fixed velocity is 
modeled. The velocity induced current in the defect free pipe wall is calculated using the 
Leisman-Frind method. The axial distribution of currents on (1) the inner surface, (2) 
middle of pipe wall, and (3) outer surface of the pipe wall show that in the vicinity of the 
magnetizer, the current decays from the inside to the outside diameter of the pipe. The 
motion of the magnetizer at a fixed velocity, therefore, results in a current distribution 
that varies with each time step. The current is used as the source term in step 2, which 
models a section of the pipe wall in the remote field region. EDetails of Step 1. 

Step 2. Calculation of Perturbation Current by the Presence of a Crack 

In step 2, a tight crack of zero volume is introduced in the remote field region of the 
pipe. The basic assumption in this step is linearity of constitutive relations in the remote 
field region. That is, the total current in the presence of a crack is the sum of the 
background current in the defect-free pipe and the perturbation current introduced by 
the crack. Using this approach and ignoring the defect induced current term in the 
equation, we apply Neumann boundary conditions at the nodes to determine the 
perturbation currents to a first approximation. RDetails of Step 2. 

Step 3. Calculation of Current Perturbation Fields 

In the third step, the three-dimensional governing equation in terms of the vector 
magnetic potential is used to calculate the first approximation of the magnetic fields 
induced by the perturbation currents. This potential is then used to determine the 
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defect-induced term that was ignored in the previous steps by iterating until 
convergence is obtained. The final solution is then used to calculate the associated flux 
density. 

The motion of the tool is modeled by implementing steps 2 and 3 for each position of 
the defect relative to the inspection tool and the sensor coil. The induced voltage in 
sensor coil is then computed as a function of position. EDetails of Step 3. 

Example 

The inspection eometry used in the implementation of the finite-element model is 

fields. This defect-free geometry is axisymmetric and, hence, a two-dimensional model 
was used in implementing step 1 to calculate the velocity-induced currents in each time 
step. In steps 2 and 3, the boxed section around the axial crack was modeled in three 
dimensions using the source currents obtained in step 1, 

shown below. a Example of three-dimensional simulation of velocity-induced remote 

direction of tool motion (5 mls) 

OD t 

single-turn coil 

(2 45cm x 6.25cm) 
8 -7r -7 - 

d ; x  i .- n 

1-30 cm- 

Example geometry 
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The resulting defect signals were calculated in terms of the voltage induced in a single 
turn coil by the axial component of the perturbation fields. The voltage signal as a 
function of the depth is shown below. The peak signals occur at the crack edges. 
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Step 2 Graphic 
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Step 3 Graphic 
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More Details on Finite-Element Modeling of Velocity-Induced 
Remote Fields 

Details of Step 7 

In the first step, a defect-free pipe with a magnetizer moving at a fixed velocity is 

modeled. The velocity induced current 
the Leisman-Frind method: 

A 

the defect-free pipe wall is calculated using 

The motion induced current distribution in a defect-free pipe wall at a velocity of 5 m/s is 
shown below. The distribution of axial currents on (1) the inner surface, (2) middle of 
pipe wall, and outer (3) surface of the pipe wall show that in the vicinity of the 
magnetizer, the current decays from the inside to the outside diameter of the pipe. The 
motion of the magnetizer at a fixed velocity, therefore, results in a current distribution 
that varies with each time step. The current - JOis used as the source term in step 2, 
which models a section of the pipe wall in the remote field region. 

6 
x 10 

Motion induced current distribution 
in pipe wall (velocity=5.0 m/s) 
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Details of Step 2 

In the second step, a tight crack of zero volume 'defect is introduced in the remote field 
region of the pipe. The basic assumption in this step is linearity of constitutive relations 
in the remote field region. That is, the total current in the presence of a crack is the 
sum of the background current J O  in the defect-free pipe and the perturbation anomalous 

current JP introduced by the crack: 

d 

where 'La is the complement of '&a. The total current is given by: 

On we have 

where V is the electric scalar potential. 

Using this approach and ignoring defect induced currents, joaa, we apply Neumann 
boundary conditions at the defect nodes i: 

av T O  - = -  
a n i  TIi 

2 -  The solution of the governing Laplace Equation 

the perturbation currents JP in the pipe wall section due to an axial crack. 

- *gives to a first approximation, 
d 

Details of Step 3 

In the third step, the three-dimensional governing equation in terms of the vector 
magnetic potential is used to calculate the first approximation of the magnetic fields 
induced by the perturbation currents. This potential is then used to determine the defect 
contribution to the current that was ignored in the previous step by iterating until 
convergence is obtained. The final solution is then used to calculate the associated flux 
density. 
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The governing equation for this step in terms of the vector magnetic potential is the 
three-dimensional equation 

1 vx-vxx F =?p 

- 
where Jp is the current distribution obtained in step 2. The solution of this equation is 
the first approximation of A. The solution is substituted in the earlier equation in the 

term jwaA to correct the value of JO, and steps 2 and 3 are iterated until convergence is 
obtained. The final solution 
g = v x X  

d d 

is used for computing the associated flux density 

As an example, the axial component of the field (B,) obtained in step 3 is plotted below. 
Note that the figure corresponds to the axial field component at one position of the 
magnetizer relative to the crack. 

I 

I 

I A 

i 

m 

Axial component of magnetic field 

. -  

The motion of the tool is modeled by implementing steps 2 and 3 for each position of 
the defect relative to the inspection tool and the sensor coil. This results in values @ i of 
the total flux linking the coil at each position j .  The induced voltage in sensor coil is then 
computed as a function of position: 
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where Vi is the signal due to axial component of current perturbation fields and N is 
number of turns of coil. 
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Example of Th ree -D i me ns i ona I Sim u la t i o n of Velocity -1 n d uced 
Remote Fields 

i 
1 
i 
I direction of tool motion (5  m/s) 

I 
OD 

I 

I 

(2.45cm x 6.25cm) 

30 cm- 

The voltage signal as a function of the depth of a crack whose length is 8 cm is shown 
below. The peaks occur at the crack edges. 
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Induced voltage in a single-turn coil 
for different defect depths 

The peak-to-peak values plotted as a function of flaw depth show an exponential 
variation: 
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Overview of Remote-Field Eddycurrent Techniques 

In prior work for the Pipeline Research Committee, the remote-field eddy-current 
technique was successfully used to detect a variety of defects and material conditions in 
large-diameter pipeline steels. Limitations of this technique were also identified. In this 
project, we investigated methods to address these limitations by improving the 
sensitivity of the technique and increasing the inspection speed. 

Traditional remote-field eddy-current techniques use low-frequency exciters, which 
limits the maximum speed at which inspection equipment can travel. Typically, these 
speeds have been less than one mile per hour, which severely limits the potential uses 
on in-line inspection equipment. Detecting SCC depends on the strengths of the eddy 
currents, which in turn, depend on the electrical conductivity and magnetic permeability 
of the pipe material. 

A schematic of the remote-field eddy-current technique is shown below. An exciter, 
which is sized to nearly the same diameter as the inside diameter of the pipe, is driven 
with a low-frequency sinusoidal current. A srnali magnetic field sensor is positioned 
some distance away. One portion of the magnetic field generated by the exciter travels 
down the inside of the pipe, with the field directly coupled to the sensor. A second 
portion of the alternating magnetic field propagates through the material of the pipe, 
inducing eddy currents as it goes. Once the magnetic field penetrates the outside wall of 
the pipe, it spreads along the surface of the pipe and re-enters the pipe, again inducing 
eddy currents to flow in the pipe material. This second path is referred to as the remote 
path. 

. .  . . . . . . ... . . . .. .. . . ...... . .. . .. . .. .. . . . . .,. . . . . . .... ... . . 

Remote (far) Field Coupling 
I 1 

1 Remote-field eddy-current concept 

The total magnetic field and eddy current flow at any point is the combination of directly 
coupled and remotely coupled fields. The key to remote-field eddy-current testing is to 
choose a sensor position where the remotely coupled field is large compared with a 
directly coupled field. This is possible because the directly coupled field decays at a 
faster rate. 



Shown below is a semi-logarithmic plot of the decays of both the remote and direct field. 
Both decays are exponential and the decay constant for the direct field is nearly four 
times as fast as the remote field. Also, the combined magnetic field is less than the 
direct field in the near field, and it is less than the remote field in the far field. This 
phenomenon is due to the fact that phase difference for the two paths is always greater 

, I I I , I 

0 1 2 3 4 

DISTANCE FROM EXCITOR COIL 
( Pipe Diameters 

l_-ll- 

Relative signal strengths 
-_1-1_11- --_II_-- _11- 

At a distance from the exciter coil that is greater than about three pipe diameters, the 
remote field is larger than the direct couple field, and it constitutes the bulk of the total 
field. By placing a sensitive detector in this region, perturbations in the remote field as a 
result of axial cracks can be detected. 
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De t a i Is on Re rn o t e -F i e I d Eddy -C u r re n t Ex pe r i rn e n t s 

Remote-field eddy-current techniques were investigated using the MFL test bed vehicle 
and various exciter coils and sensors. A sinusoidal current flowing in an exciter coil was 
used to induce currents in the pipe at various background magnetization levels. The test 
bed vehicle supplied the background fields needed to reduce the permeability of the 
pipeline steel. 

Three critical experiments were performed to evaluate the improvements made to 
remote-field eddy-current results using magnetic saturation. They were used to 

0 

0 

0 

Determine the placement of remote-field eddy-current exciter coil 
Detect stress corrosion cracks using exciter coil saturation 
Demonstrate noise reduction with magnetic saturation. 

The results show that the relative permeability pr of the pipe can be reduced from 98 to 
15 using magnetic saturation. This means the signal amplitude at the receiver should be 
nearly 6.5 times ( > 98 / 15) greater with saturation than without. 

Signal amplitude is proportional to the inverse of excitation frequency. The excitation 
frequency, in turn, limits the maximum inspection velocity: the higher the frequency, the 
higher the possible inspection speeds. By decreasing the relative permeability by a 
factor of 6.5, a 20-hertz signal through unsaturated pipe and 130-hertz signal through 
saturated pipe have the same signal level at the receiver. Hence, magnetic saturation 
could be used to help overcome implementation difficulties related to maximum 
inspection speed or signal amplitude. 

The following figure shows a typical signal for a crack acquired at an excitation 
frequency of 100 Hertz. For this test, one sensor was rotated past the crack in the 
circumferential direction. Additional metal, in this case a 3/4-inch steel nut, was used to 
ensure the remote-field signal was being measured. As seen in the figure, the nut was 
placed next to the crack and subsequently on the crack. Placing the nut on the crack 
reduced the amplitude of the crack signal. 
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Remote-field eddy-current results 

The signal levels at 100 Hertz were adequate for defect detection, but additional signal 
amplitude is always helpful. Since saturation at the exciter was useful, we expected that 
saturation at both the exciter and the receiver would provide even better signal levels. 
We attempted to verify this expectation as follows. The TBV magnetizer was used to 
provide magnetization at the exciter coil, and local magnetization was performed at the 
receiver coil by placing magnets on the outside of the pipe. Saturation at the exciter and 
receiver provided increased signal levels over the exciter saturation only, but the 
saturating field at the receiver was not uniform, and the drift in bias signal level masked 
the defect signals. Hence, the tests were not successful. Additional work is needed 
here. 

An interesting result was observed when the receiver magnets were removed from the 
outside of the pipe, and the experiment was repeated with exciter saturation only. The 
noise levels were greatly increased in the regions where the magnets were placed and 
then removed. We hypothesize that the source of the noise was a randomization of the 
magnetic domains caused by the application and removal of the magnets. 
Consequently, aligning the magnetic domains by remagnetizing could reduce the 
background noise levels. To prove the potential this concept, the test bed vehicle was 
pulled through the test sample to realign the magnetic domains, and then the exciter 
saturation experiment was repeated. The signal and noise levels matched previous 
results, demonstrating the increase in noise due to randomized magnetic domains. 
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While the experiments with saturation at both the exciter and receiver coils were not 
successful because of equipment limitations, this technique should further increase the 
excitation frequency enabling. Also, the remote-field eddy-current technique with 
magnetic saturation has potential for detecting other defects in pipelines in addition to 
cracks. 
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