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Business and Activity Section 

 

(a) Contract Activity  

 

No contract modification was made or proposed in this quarterly period. No materials were 

purchased during this quarterly period. 

 

(b) Status Update of Past Quarter Activities  

 

In this first quarter of the one-year extension period, we focus on Subtask 3.2 to use machine 

learning algorithms to generate annotated simulation data with reliability/uncertainty analysis. 

 

(c) Cost Share Activity 

 

PI Zhang used his effort as the 20% in-kind cost share to work on the project at the Colorado 

School of Mines. Co-PI Yiming Deng used effort as the 20% in-kind cost share to work on the 

project at the Michigan State University. The cost share was used following the approved 

proposal and no modification was made. 

 

(d) Performed Research 

 

Fatigue Propagation Data Management 

 

The quarter mainly focuses on different defect cases and their propagation study to be 

incorporated to deep learning algorithms. At first the report focuses on the propagation of regular 
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threats. Then the distortion of the magnetic flux due to the presence of defects in all the three 

directions 𝐵𝑥, 𝐵𝑦 & 𝐵𝑧 are captured and then are segmented into various classes b segmentation 

algorithms to be feed into GAN (Generative Adversarial Network) to create fake data as that of 

COMSOL generated data. Then the report shows the simulation of Surface Crack Corrosion 

(SCC) in COMSOL and the FEM mesh generations on stainless-steel sample. Finally, the 

efficacy of GAN in producing fake data as similar to as that of real data taking into account 

various hyperparameters and resolution of the images is portrayed. 

 

Propagation of regular threats 

 

The different complex defect propagation parameters are shown in Table 1. Here the defects are 

grown in a complex manner with defect center varying in each case which makes the design 

more complex to predict the defect growth by deep learning algorithms such as RNN.  

 

Table 1: Different propagation parameters of the growing defects 
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ID Defect Center (mm) Defect parameter (mm) Defect Shape 

1 (0,0) 2 * 2 Rectangular 

2 (0,0) 3 * 3 Rectangular 

3 (0,1) 4 * 4 Rectangular 

4 (1,1) 4 * 5 Rectangular 

5 (1,1.5) 5 * 5.5 Rectangular 

6 (1,2) 6 * 6 Rectangular 

7 (1.5, 3) 7 * 8 Rectangular 

8 (2,4) 10 * 10 Rectangular 

9 (2, 4.5) 11.5 * 13 Rectangular 

10 (3, 4.5) 12 * 14 Rectangular 

11 (3.5, 5) 13 * 15 Rectangular 

12 (3.5, 5) 16 * 18 Rectangular 

 

 

Based on the above table different figures with the growing defects and shifted centers are shown 

below. For defects with ID 1 − 3 defect parameters are modelled based on first three rows of the 

table. ID 4 − 6 follows the propagation based on next three rows of the table and so on. All these 

designs are made in such a way so as to make the growth propagation hard to predict. 
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Figure Error! No text of specified style in document. : Different propagation growth patterns 

for regular defect constructed in COMSOL 

 

Data driven prognostics & diagnostic solutions in this project are likely to underperform due to 

limited data availability while in the real-life scenario, the number of failure data samples is 

insufficient as well. To address this problem, we adopt GAN for generating real-valued data 

which allows training datasets to be augmented so that the number of data samples is increased. 

In contrast to existing data generation techniques which duplicate or randomly generate data, 

GAN can generate new and realistic failure data samples. In the end, we still need to optimize 
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the GAN which utilize the auxiliary information pertaining to the different stages of defect 

propagation.  

 

Application of GAN on MFL data 

 

GAN was introduced in one of the earlier quarters. Here we will focus on the application of 

GAN on our MFL data. Our goal is to produce fake data out of the generator (G) by fooling the 

discriminator (D) as much as we can. However,the fake data has to be very close to the real data 

so that those can be applied to data hungry deep learning algorithms. 

The idea behind GANs is that two networks, a generator G and a discriminator D is competing 

against each other[4]. The generator makes fake data to pass to the discriminator. The 

discriminator also sees real data and predicts if the data it’s received is real or fake. The 

generator is trained to fool the discriminator, it wants to output data that looks as close as 

possible to real data. And the discriminator is trained to figure out which data is real and which is 

fake[1]. What ends up happening is that the generator learns to make data that is 

indistinguishable from real data to the discriminator. 

 

 
 

Figure Error! No text of specified style in document.Schematic of the working procedure of 

GAN[5] 

 

The COMSOL based NDE framework involves the FEM study and hence for defect propagation 

there is mesh and time consumption trade-off. To track very small defects the mesh around the 

defect has to be extremely fine (extra fine) and this leads to more time consumption in simulation 

framework. Hence our objective is to develop a data augmentation framework using GAN so that 

we can develop as much fake data we can by taking into account lesser number of real synthetic 

data [2].  As shown in the figure, generative models learn to capture the statistical distribution of 
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training data, allowing us to synthesize samples from the learned distribution. On top of 

synthesizing new measurements (when experimental data is finalized), we are also interested in 

using the representations that such models learn for tasks such as classification. The 

discriminator network comprises of 4 conv2D layers each of which is followed by leaky relu 

activation and a dropout layer. Then the final output of Conv2D layer is flattened and passed 

trough a dense layer and final passed through a softmax classification. 
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Discussion on GAN 

 

GANs are an emerging technique for both semi-supervised and unsupervised learning. They 

achieve this through implicitly modeling high-dimensional distributions of data. To optimize 

GAN in our project, some metrics should be considered which reflect the diversity as well as 

quality of the outcome fake images. For any metric, a model’s generalization gap is the 

difference between the metric’s value on the true data distribution less its value on the training 

set. As a model changes, classical machine learning theory divides the behavior of the 

generalization gap into two regimes: underfitting and overfitting. Overfitting is when the metric 

is improved on the training set at the expense of its value on the true data distribution. Moreover, 

in the previous literature[6], the performance GAN with different amounts of data being 

investigated regarding 0% to 100% of training data, the gap between the discriminator’s training 

and validation accuracy keeps increasing, suggesting that the discriminator is simply memorizing 

the training images. This happens not only on limited data but also on the large-scale dataset. In 

future study, we should extend GAN framework to the conditional setting by making both the 

generator and the discriminator networks class or label conditional. Conditional GANs have the 

advantage of being able to provide better representations for multimodal data generation. The 

additional information in this project can be interpreted as latent code. This latent code can be 

used to discover object classes in a purely unsupervised fashion, although it is not strictly 

necessary that the latent code be categorical.  
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