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1: Items Completed During this Quarterly Period: 
The following activities have been completed: 

 

Item  Task  Activity/Deliverable Title 

 

Federal 

Cost 

Cost 

Share 

9 1,2,3 5th Quarterly Report 5th Quarterly Report 4,000.00 0.00 

4 3 

Three unsupervised learning strategies (k-means, 

Gaussian Mixture Model, and Hidden Markov 

Random Field) for soil corrosivity clustering. 

Unsupervised 

learning strategies 20,000.00 3,000.00 

6 3 

Two supervised learning strategies (Support Vector 

Machine, Relevance Vector Machine) for defect type 

classification 

Two supervised 

learning strategies 20,000.00 3,000.00 

The title of the table is based on the file Technical and Deliverable Payable Milestone 

 

2: Items Not-Completed During this Quarterly Period: 
Task number 2, extract basic corrosion model parameters started during previous quarters. Part 

of Task 2 will be cover in the following reports.  During the experimental and analysis activities 

we found information that influence the time extension. The following activities will be ready in 

latter reports based on the Technical and Deliverable Payable Milestone 

 

Item 

# 

Task # Activity/Deliverable Title Federal 

Cost 

Cost 

Share 

8 2 

Extract basic corrosion model  and embed into 

the previously developed stochastic corrosion 

rate model framework 

Experiments and 

analyses to bridge 

gaps in prior 

knowledge 

24,000.00 0.00 

10 4 Bayesian regression for corrosion rate model 

calibration 

Bayesian Regression 

analysis 

30,000.00 3,000.00 

 

 

3: Project Financial Tracking during this Quarterly Period: 
 

The table has been updated based on the deliverables and corrected attachment No5 Technical 

and Deliverable Payable Milestone. 

mailto:hcastaneda@tamu.edu
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4:  Project Technical Status – 

The following tasks are included in the project: 

• Task 2: Experiments and analyses to bridge gaps in prior knowledge 

• Task 3: Bayesian machine learning to bridge gaps in uncertainty quantification. 

• Task 4: Finalize and evaluate/validate the model. 

 

During the fifth quarter, the team members from Texas A&M University (TAMU) and the 

University of Dayton (UD) had biweekly meetings and an internal Workshop to discuss, 

characterize, analyze and understand the field/ laboratory results and how we extract information 

to generate and develop new correlations and trends for the prioritization of the survey and 

inspection tools.   

 

The team organized an internal Workshop entitled “Data Driven Integrity Pipeline Management”. 

The outcomes of the workshop will help the PhD students in both TAMU and UD teams with 

different knowledge backgrounds to understand the mathematical tools used to characterize, 

classify and quantify the parameters sensed in the field and measured in the laboratory with respect 

to severity due to corrosion. 

 

This report includes the activities based on the proposed schedule for tasks 2,3 and 4 as follows: 
 

Task 2: Experiments and analyses to bridge gaps in prior knowledge 

 

During this quarter, we performed the proposed experimental matrix (see Table 1) to develop new 

correlations with parameters founded in the field and also in laboratory conditions. The results 

founded in previous quarter helped to initiate new extraction of results that added more data to 

start to build new relationships and expression under control conditions (laboratory). The 

previous parameters included field simulations in the laboratory conditions, this quarter the 

reproducibility, cathodic protection potential, different pH were included with different coating 

failure conditions. The coating used include thicker and more homogeneous layer (the tolerance 

was less than 1 mils in thickness). Three different conditions are considered for the coating 
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anomalies and conditions (i.e., intact) and coded (or related) to deterministic and probabilistic 

modeling by following the corrosion mechanism. The results of the experimental testing have 

been revealed the difference between intact (or no defect), active surface due to a coating defect 

and passive surface with corrosion products layer induced and formed on the defect area.  

 

Experimental set up   

The performed set of laboratory experiments include the effects of pH and the metallic surface 

condition in the presence of holidays (specifically intact, active and passive state) under different 

levels of cathodic protection. The experimental design performed is presented in Table1. Buffer 

solution (With a buffer solution, pH = 10.6 NaHCO3/Na2CO3 , pH = 3.6 sodium acetate/acetic 

acid) used for the experiments. The passive holiday can be realized by external anodic current via 

potentiostat (Gamry, The Interface 600plus™). NS4 solution with composition (unit: g/L) of KCl: 

0.122, NaHCO3: 0.483, CaCl2. 2H2O: 0.093 and MgSO4.7H2O: 0.131 is used to simulate soil 

conditions. 

 

Sequence of non-destructive techniques electrochemical techniques for meaningful parameters that 

correlates the results or parameters in the field. The methods include: the evolution of on and off 

potential for cathodic protection conditions (under-protection and over protection), The potential 

will be included for DC and AC methods to characterize the elements of the electrochemical cell. 

The experimental set up includes the following parameters: 

Sample Soil 

Composition 

Coatings 

Thickness 

(coal tar 

300B) 

Cathodic 

Protection 

(mV vs. 

CuSO4/Cu) 

Severity based on 

active-passive 

concept 

pH 

API X52 NS4 25 mils -850  Active Holiday 4 

API X52 NS4 25 mils -850 Active Holiday 7 

API X52 NS4 25 mils -850 Active Holiday 10 

API X52 NS4 25 mils -850  Passive Holiday 4 

API X52 NS4 25 mils -850 Passive Holiday 7 

API X52 NS4 25 mils -850 Passive Holiday 10 

API X52 NS4 25 mils -1000 Active Holiday 4 

API X52 NS4 25 mils -1000 Active Holiday 7 

API X52 NS4 25 mils -1000 Active Holiday 10 

API X52 NS4 25 mils -1000 Passive Holiday 4 

API X52 NS4 25 mils -1000 Passive Holiday 7 

API X52 NS4 25 mils -1000 Passive Holiday 10 

Table 1 Experimental design matrix for electrochemical measurements 

The area of the defect included a size is a square with length of 40 cm. The defect size includes 

and area of 0.5 cm * 0.5 cm. Figure 1 shows the different potential conditions, the overprotection 

magnitude and protection magnitude present different potential decay response. The passive state 

of the holiday surface shows different decay and also recovery potential response. The cathodic 

protection potential influences the severity response of the system.  
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Figure 1. Potential on-off for severity classification for different Cathodic protection 

conditions. 

 

Figure 2.  Potential on-off for severity classification for different pH conditions. 
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Potential magnitude to distinguish active and passive states.  

 
The laboratory conditions can be marked in the E-pH diagram (see Figure 3), the severity level can be a 

combination of the three regions shown in the diagram with different passivity conditions. The stable phases 

for the iron diagram are Fe, Fe2+, Fe3O4 and Fe2O3.  
 

 
Figure 3. E-pH diagram for Iron and the stable regions for the experimental testing 

 

 

Different levels for severity 

 

During this quarter the field data was examined based on the master table originated initially. The 

severity can be divided based on the thermodynamics of the iron/soil interface. The severity levels 

can be named as follows: 

 

Severity level Ranking Surface condition Equilibrium followed 

Level 0 Intact Coating No reaction 

Level 1 Holiday/ Fe Fe2+/Fe 

Level 2 Holiday/Fe Fe/ Fe3O4 

Level 3 Holiday/Fe Fe3O4/Fe2O3 

Level 4 Holiday/Fe Fe2+/ Fe3O4 
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During filed conditions we have the collection of indirect data and survey results, previously we 

aligned the information by using the location of each sense magnitude. The close interval survey 

indicates the E on and E off potentials. Different levels of severity were assumed to be classified 

with thermodynamic approach. The critical assumption is the E off conditions were able to capture 

the Cell potential and therefore the metastable surface condition could be assuming to follow the 

thermodynamic conditions at the interface. 

A new classification could be establish based on the calculation and we can validate with the 

experimental results from the laboratory conditions. 

 

Table 2 presents a new column that is severity due to thermodynamic condition originated from the 

Eoff potential. This new column will be correlated with the experimental testing, the experimental 

testing will extract the conditions based on the surface and the potential response. Also, there are 

functions that will be used to distinguish the severity from the indirect and survey methods. 

 

 
Table 2. Master file aligned with ROW properties, ILI results, indirect results, survey parameters 

and severity column condition. 

Task 3: Bayesian machine learning to bridge the gaps in uncertainty quantification. 

In the last quarterly report, the pipeline along the right-of-way has been divided into segments 

with unified length (100 meter) and each pipeline segment was linked with the nearby soil survey 

data, large scale vegetation and precipitation data, indirect inspection data (DCVG and CIPS), and 

in-line inspection data. After a thorough investigation of feature selection and dimension 

reduction, clustering analysis has been performed to extract homogeneous pipeline sections with 

similar soil environments. Once the entire pipeline has been segmented into regions of similar soil 

corrosivity, for each cluster, the next step is to develop a classifier to determine the defect types 

using pipeline indirect inspection data so that it can be applied to real-world practices in a cost-

effective manner. In this project, existing data from Close Interval Potential Survey (CIPS) and 

Direct Current Voltage Gradient (DCVG) along with in-line inspection is used for supervised 

classification. The former two datasets are predictors and the severity assessments from in-line 

inspection are considered as responses. 

 

Supervised learning is a machine learning process where an algorithm is implemented to train a 

model in terms of finding a mapping that connects training data input and output. In the current 

context, the indirect inspection data is used to classify defects. DCVG aims at locating defects in 

the pipeline coating. Voltage gradients are measured by a single operator using two reference 

electrodes in contact with the soil at a constant distance. While this technique is accurate in 

locating defect, it lacks the capability of predicting the defect severity. The results from DCVG 

along with ILI is used to determine abnormal points along the right of way. CIPS is a 

complimentary technique used along with DCVG to evaluate the criteria for adequate cathodic 

Potencial 

Redox (mV) Eh pH CO3 ( mmol L-1) HCO3 ( mmol L-1)

Cl ( mmol L-

1)

SO4 ( mmol L-

1) ON OFF/Ecell
E Protection -850mV Severity

0 725.39 0.252 -362 -162 5.454 0.516 4.902 8.25 0.090096
-0.6641 -0.5819 Lower Level 2

0 725.39 0.252 -362 -162 5.454 0.516 4.902 8.25 0.090096
-0.6641 -0.5819 Lower Level 2

0 725.39 0.252 -362 -162 5.454 0.516 4.902 8.25 0.090096
-0.6641 -0.5819 Lower Level 2

0.01 725.39 0.252 -362 -162 5.454 0.516 4.902 8.25 0.090096
-0.6641 -0.5819 Lower Level 2

0.01 725.39 0.252 -362 -162 5.454 0.516 4.902 8.25 0.090096
-0.6641 -0.5819 Lower Level 2

0.56 725.39 0.252 -362 -162 5.454 0.516 4.902 8.25 0.090096
-0.6641 -0.5819 Lower Level 2

0.66 725.39 0.252 -362 -162 5.454 0.516 4.902 8.25 0.090096
-0.6641 -0.5819 Lower Level 2

0.66 725.39 0.252 -362 -162 5.454 0.516 4.902 8.25 0.090096
-0.6641 -0.5819 Lower Level 2

0.9 725.39 0.252 -362 -162 5.454 0.516 4.902 8.25 0.090096
-0.6641 -0.5819 Lower Level 2

1.4 725.39 0.252 -362 -162 5.454 0.516 4.902 8.25 0.090096
-0.6714 -0.5909 Lower Level 2

2.03 725.39 0.252 -362 -162 5.454 0.516 4.902 8.25 0.090096
-0.6356 -0.5556 Lower Level 2
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protection (CP). and identify local deficiencies in the system. As per requirement NACE standard 

recommendations a value more negative than –850 mV while less negative than -1.2V pipe-to-

soil potential would be adequate to prevent significant corrosion. Regions with polarized pipe-to-

soil potentials more negative than -1.2V are regions of cathodic overprotection. Over protection 

causes acceleration of coating degradation and the possibility of hydrogen induced cracking. 

Figure 4 shows plot of CIPS on-off potential in each cluster with the level of CP protection along 

with metal loss points and Figure 5 gives the distribution of metal loss in each CP protected 

regions. From the figure we see that there is metal loss in each of the three regions and Figure 5 

shows that in most clusters there is more metal loss in regions with CP. This proves that there are 

other factors that hinders CP and aids corrosion. 

 

Figure 4: CIPS on-off potential per cluster 

 
Figure 5: Density distribution of metal loss in each CP regions per cluster 
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It has been shown that the application of CP polarizes steel in the electronegative direction, while 

raising the pH at the interface at the same time leading to the formation of passive layer. CIPS 

measurement of potential more positive than CP protection criteria in these regions does not 

necessarily indicate corrosion. In unaerated environments, the steel polarized potential is directly 

dependent on the interfacial pH produced by CP. Hence, pH level is an important feature in 

detecting defects with CP criteria. Figure 6 shows the metal loss with pH severity. According to 

literature severity 3 corresponds to a pH between 6.0-8.0 and 4 corresponds to pH less than 6.0. 

 

Metal loss with pH per cluster 

 
Figure 6: Density distribution of metal loss according to pH severity per cluster, severity 3 

corresponds to a pH between 6.0-8.0 and 4 corresponds to pH less than 6.0. 

Similarly, as soil resistivity increases the on potential becomes more positive indicating CP 

protection of pipeline has decreased. This is due to reduction in the amount of current that can 

reach the pipeline at higher soil resistivity. The difference in on off potential yields a dip at 

locations of coating defects. This dip becomes smaller as soil resistivity increases. Hence high 

soil resistivities may hide the presence of a coating flaw. A poorly designed CP may cause 

structural damage and stray current is an important indicator. Stray currents are currents flowing 

in the soil from external sources and these are also influenced by soil resistivity. Failure between 

coating and steel pipe is pipeline disbondement. This leads to the formation of crevice and 

corrosion. Cl− concentration and acidification are observed at the bottom of the disbonded region. 

pH at bottom of the disbonded coating reduced gradually. Cl− are usually prone to diffuse into the 

bottom of corrosion pits or crevice or crack tip with a similar mechanism to pitting or crevice 

corrosion. Based on literature the CIPS measurements, along with soil pH, Cl−, resistivity and 

pipe resistance is used as input features for supervised classification of abnormal data points into 

coating defect and metal loss defects. 

 

Some of the most widely used classification techniques are K-nearest neighbor (KNN), random 

forest, Naive Bayes and support vector machines (SVM). A major problem in data mining of real-

world problems is class imbalance. Imbalanced data is where there is a significant difference 

between the class prior rates, the probability a particular data belongs to a particular class. The 
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most prevalent class is called the majority class, while the rarest class is called the minority class. 

For traditional classification models classifying imbalance data is a great challenge and often 

provide sub optimal classification results. The main difficulties with class imbalance are, 

 

• Small sample size: The number of minority class samples are insufficient to train the 

classifier resulting in poor generalization and possible data overfitting. 

• Small disjuncts: In some cases, the minority class may be represented by a number of sub 

concept and may affect classification performance. 

• Class overlapping: Class overlapping between minority and majority classes deteriorates the 

total classification accuracy. As the minority class is under-represented in the data set, it is 

more likely underrepresented in the overlapping region. 

 

Literature shows that random forest classifier performs well in dealing with datasets having large 

class imbalance. A random forest is a classifier consisting of a collection of trees structured 

classifiers {h(x,Θk),k = 1,..} where the {Θk} are independently and identically distributed random 

vectors and each tree casts a unit vote for the most popular class at input x. These tree voting 

procedures are collectively defined as random forests. There are two basic strategies for 

addressing imbalanced data that are data preprocessing and cost-sensitive learning. In 

preprocessing a resampling approach in which the training data are modified to produce a 

balanced data distribution that allow classifiers to perform in a similar standard. Cost- sensitive 

learning can be incorporated both at the data level and at the algorithmic level by assuming higher 

costs for the misclassification of minority class samples with respect to majority class samples. 

Adopting a cost sensitive learning by assigning a weight to each class, with the minority class 

given larger weight the random forest classifier can be made to perform better for imbalanced 

dataset. Hence, in this project, random forest classifier was used to classify defects as metal loss 

and coating defects. More details regarding the model validations are shown in the report of Task 

4 below. 

 

 

Task 4: Finalize and evaluate/validate the model. 
One appropriate metric that could be used to measure the performance of classification over 

imbalanced datasets is the Receiver Operating Characteristic (ROC) curve. In this curve the 

tradeoff between the benefits (True Positive rate) and costs (False Positive rate) can be visualized 

and acknowledges the fact that the capacity of any classifier cannot increase the number of true 

positives without also increasing the false positives. The Area Under the ROC Curve (AUC) 

corresponds to the probability of correctly identifying which of the two stimuli is noise and which 

is signal plus noise. The ROC-AUC score is the area under the ROC curve. The precision score 

explains what proportion of positive identifications was actually correct. The measures of the 

quality of classification can be further analyzed using confusion matrix, which records correctly 

and incorrectly recognized examples for each class. Hence precision, ROC-AUC score and 

confusion matrix are used as evaluation matrices for classier performance. The entire abnormal 

dataset was divided into training and testing sets. The training sets was used to do a cross 

validation of the classification model and the testing dataset was used to do a blind test of the 

model. In order to compare the performance other than random forest classifier, support vector 

machine and relevance vector machine were tested on the dataset. Figure 7, 8 shows the 

performance of the three classifiers using cross validation. Figure 9 shows the confusion matrix of 

the random forest classier in cross validation. Figures 10, 11 and 12 are the results of blind 

validation on testing dataset. Comparing all results, we see random forest gives a stable 

performance in all cluster groups compared to SVM and RVM. The results of classification will 
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be further investigated using the results from laboratory tests, which will give us a deeper 

understanding of other underlying factors. 

 

Figure 7: Cross Validation results: Precision 

 

Figure 8: Cross Validation results: ROC-AOC score 
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 Figure 9: Random Forest Confusion Matrix 

 
 Figure 10: Validation results: Precision 
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Figure 11: Validation results: ROC-AOC 

 
Figure 12: Validation results: Confusion Matrix 

 

5: Project Schedule –  
The project is on-schedule as originally-proposed. 

During the following quarter, the team will perform the analysis of the experimental 

results, the correlations between field measurements and parameters founded in 

laboratory conditions to extract the information required for the machine learning method.  

 

6. Publication 

On December 31st, 2020, the peer review paper entitled: Global and Local parameters 

characterizing and modeling External Corrosion for Steel Underground Pipelines: A 



Date of Report: 5th Quarterly Report – Prepared by Homero Castaneda, TEES 

 Hui Wang, U. Dayton 

 Page 13 
   

review of Critical Factors was submitted to the Journal of pipeline science and 

engineering. 

 

On December 16th, 2020, the final version of the peer reviewed conference paper entitled: 

Mapping Indication Severity Using Bayesian Machine Learning from Indirect 

Inspection Data By Considering The Impact Of Soil Corrosivity was submitted to the 

NACE CORROSION 2021 waiting for the final approval. 

 

Observations: The experimental analysis for task 2 still is underway due to a 

delayed influenced by the COVID-19 circumstances.  

 

In the following month, we will combine the new findings from Task 2 with the supervised 

classification model developed in Task 3. To be more specific, the E-pH diagram and the 

semi-empirical models developed from Task 2 will be used as the governing law and 

integrated into the supervised learning model and the performance will be compared with 

that from the random forest. 

 

We also will extract the laboratory information to build the tables that can be used for the 

machine learning methodology.  

 


