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Business and Activity Section 

 
(a) Contract Activity 

 

Discussion about contract modifications or proposed modifications: 

None 

 

Discussion about materials purchased: 

1. Intel® RealSense™ L515 LIDAR camera 

2. Drilling set 

 

(b) Status Update of Past Quarter Activities 

 

In this quarter, the research team works on Task 1.1 and Task 2.1 to develop algorithms for estimating 

distance using stereo vision and unsupervised image segmentation using disparity map and color images. 

Experiments were conducted to verify the effectiveness and accuracy of the developed algorithms.  

 

Student Training Activities 

• Sampriti Neog (MS student) works on stereo vision algorithm development for pipeline imaging, 

distance estimation, and preliminary demonstration to test the effectiveness and accuracy of the developed 

algorithm. (Task 1) 

• Rahul Rathnakumar (PhD student) works on developing an unsupervised algorithm for image 

segmentation as a method for preprocessing the image for pipeline defect detection. (Task 2) 

 

(c) Cost Share Activity 

 

All cost share requirements have been satisfied in the past quarter and detailed financial report will be 

submitted by ASU financial department. 

 

(d) Detailed Description of Work Performed 

 

1. Background and Objectives in Q5 (2020) 
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Pipeline anomalies such as fatigue cracks, stress corrosion cracking, corrosion pits, and seam weld defects 

are major threats to the integrity of pipeline systems. The detection and characterization of these pipeline 

anomalies are critical for the safe operation of pipeline infrastructure, which is the objective of this on-

going project. The objective of this project is to develop a vision-based inspection tool using stereo vision 

and AI-enabled computer vision algorithms to address the pipeline anomaly detection and characterization. 

 

Stereo vision uses two or more cameras to extract three-dimensional (3D) information by estimating the 

relative depth of points observed in digital images. The principle of stereo vision is illustrated in Fig. 1. In 

Fig. 1(a), C1 and C2 represent the optical centers of two cameras; b is the baseline distance between two 

cameras; P is the object point; and P1 and P2 are the projection of point P in the image plane. Points C1, 

C2, and P form a plane known as the epipolar plane. Fig. 1(b) shows a top view of the epipolar plane where 

f is the focal length. Based on similar triangles, we have: 

 
l r l r

z x z x b z y y

f x f x f y y

−
= = = =       (1) 

where (x,y,z) is the global coordinate of the object point P, and (xl,yl,zl) and (xr,yr,zr) is the coordinate of the 

projection of point P in the left and right image planes, respectively. 

 

   
                             (a)                                                                                    (b) 

Figure 1: Principle of stereo vision: (a) epipolar plane; (b) triangulation 

 

Based on the relationships given in Eq. (1), the global coordinate of point P can be calculated as: 

( )
l l

l r
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−
                                  (2) 

where the difference ( )l rd x x= −  is known as the disparity. Using Eq. (2), we can determine the depth of 

any scene point and thus construct a depth map of the observed scene. This method of determining depth 

from disparity is called triangulation. In practice, triangulation will be used to find the 3D locations of 

critical points on pipeline defects, from which we can estimate the distances between critical points to 

accurately characterize pipeline defects. 

 

AI-enabled methods for threat detection can serve a key role in risk assessment of structures. Multi-modal 

analysis of a scene gives us multiple sources of information from which we can determine pertinent risks 

and threats. Fusing these sources could potentially give us enhanced assessments of system condition. In 

this report, we discuss a method to fuse multi-modal information sources for scene segmentation. Data 

obtained from multiple sensors can be processed, combined and manipulated in innovative ways to provide 

better predictions. The most commonly used definition of data fusion was proposed by the Joint Directors 

of Laboratories (JDL) workshop: “A multi-level process dealing with the association, correlation, 

combination of data and information from single and multiple sources to achieve refined position, identify 

estimates and complete and timely assessments of situations, threats and their significance.” This is relevant 

for our project as we use depth and color information jointly for making predictions on pipeline condition.  

 

 

The objective of the research in this quarter is to:  
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(1) Perform sensitivity analysis using the D435i and LIDAR camera to determine the accuracy of depth and 

dimensional measurement of the object of interest.   

(2) Analyze the impact of IR dot projector density on the wall by adding two D435i cameras in series.  

(3) Propose a new representation for the depth information stream. 

(4) Update the semantic segmentation architecture to incorporate more recent developments in the computer 

vision field and test whether this brings any new observations and improvements to the results. 

(5) Acquire new data to approximate pitting and cracking defects. 

(6) Use the acquired data to obtain segmentation results using the updated architecture and estimate defect 

dimensions and depth.  

 

2. Task 1: Development of A Novel Multi-Camera Stereo Vision System for Pipeline Inline Inspection 

2.1 Sensitivity Analysis – D435i 

2.1.1 Analyzing the camera parameters for thickness estimation 

In this task, the analysis of camera parameters is performed by estimating the thickness of the object 

from the depth map and plotting the error concerning the parameters. The parameters being analyzed 

are: 

• Exposure (
𝑊

𝑚2
𝑠): the amount of light per unit area reaching the surface of an electronic image sensor. 

• Gain (dB): Amplifies the entire image signal 

• Laser Power (W): Power provided to the IR projector 

• DS_SECOND_PEAK_THRESHOLD: Determines how different the second-highest matches can 

be from the first highest matches for stereo depth computation 

• DS _NEIGHBOR_THRESHOLD: Determines the number of neighboring pixels to be considered 

in the left image which will be compared with the right image for depth computation  

• Disparity Shift (Min-Z and Max-Z change in Pixels): Controls the modification of the Z-min and 

Z-max values for the camera to visualize. 

• Resolution: The fineness of detail in an image measured in pixels per inch (ppi) 

 
Figure 2: Object of thickness 18 mm thickness used for sensitivity analysis 
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Figure 3: RGB and depth map corresponding to the 3D map 

For performing this experiment, an object of 18-mm thickness and 11-mm radius is placed on a 

relatively flat wall in front of the camera as shown in Figure 2 and 3. 

First, hole filling is performed on the raw depth map from the camera using the built-in pyrealsense 

hole-filling algorithm. Canny edge detection is performed on the image whose thresholding is 

determined using the pixel histogram. After canny edge detection, morphological dilation is performed 

on the edges to ensure continuity. Contour detection is then performed on the dilated image to find the 

boundary points. The boundary points are a discrete set of pixel coordinates, and a curve is generated 

through these points to create the best approximation.  The procedure is shown in Figure 4. 

                                                         
 

                                                                                                                             Dilation 

 

 

                                                
Figure 4: Contour extraction process for thickness estimation 

 

After finding the contour and filling the inside part of the contour with a uniform color opposite from 

the background, the pixels inside the contour are seperated with pixels in the background using the 

color difference. Then the distance from the camera to the object is obtained by calculating the distance 

of the camera from the pixels inside the contour and the distance from the camera to the background 

is obtained by calculating the distance from pixels in the background. Then the erroneous distance for 

each pixel is removed before calculating the average distance (for all the pixels) from the background 

and the object separately. Then the thickness of the object is estimated as: 

 

Canny Edge 

Detection 

 
 
 

Contour 

Extraction                                                                
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𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 − 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑜𝑏𝑗𝑒𝑐𝑡 

                                                    

The thickness estimation is then performed for all camera parameters mentioned above: 

 

I. Error in the thickness estimation with respect to change in Gain 

 

                  
(a)                           (b)                       (c)                           (d) 

 

   
(e)                              (f)  

Figure 5: Contour formation for different Gain (dB): (a) 16; (b) 36; (c) 56; (d) 76; (e) 96; (f) 116 

 
Figure 6: Plot of error in thickness estimation versus camera gain 

Figure 5 shows the resulting object contours and figure 6 shows that we can get the depth 

information with reasonable accuracy in the Gain range of 16-140 dB with a resolution of 848x480. 

 

II. Error in the thickness estimation with respect to change in Exposure 

               
(a)                                 (b)                                   (c) 
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       (d)                                    (e)                                  (f) 

Figure 7: Contour formation for exposure: (a) 0 (b) 500 (c) 1000 (d) 7500 (e) 14500 (f) 16000

 
Figure 8: Plot of Exposure versus error in thickness estimation 

 

As shown in figure 8, the thickness estimation is valid only in the range of 2000 to 16000 with a 

resolution of 848x480 as the plot shows that the error is low in this range. The contour and raw 

depth map below 2000 is as shown in figure 9. This shows that exposure below 2000 may not be 

suitable for thickness estimation. Exposure depends on lighting conditions, and these might vary 

with different lighting conditions, and auto-exposure algorithms are already present in the 

Realsense camera system to calibrate this according to the scene brightness. 

 
Figure 9: Contours and depth map for exposure below 2000 
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The contour formation for exposure between 2000-16000 is shown in figure 10. 

 
Figure 10: Contours and depth map for exposure between 2000-16000  

 

The contour formation for exposure beyond 16000 is plotted in figure 11. This shows that 

exposure beyond 16000 may not be suitable for thickness estimation, especially in bright areas. 

 
Figure 11: Contours and depth map for exposure beyond 16000 

 

III.  Error in the thickness estimation with respect to change in DS second peak threshold 

   
(a)                                            (b)                                           (c) 
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           (d)                                             (e)                                              (f) 

Figure 12: Contour formation for DS second peak threshold: (a) 0  (b) 100  (c) 200  (d) 300  (e) 

400 (f) 500 

 
Figure 13: Plot of DS second peak threshold versus error in thickness estimation 

 

As shown in figure 13, the thickness estimation is accurate in the range from 0 to 1000 under the 

resolution of 848x480. This is also confirmed by the visualizations of depth map in figure 12. 

Unlike exposure and gain, which are heavily influenced by factors such as brightness of the scene, 

the thickness error is very low through the entire range of the second peak threshold. This is 

because the second peak threshold only influences the fill rate of the depth map, that is, the 

number of holes, which affects area computation more than thickness. Another observation is that 

the minimum error in figure 13 does not correspond to that observed in figure 15. This is because 

there are variations in external lighting conditions due to these experiments being conducted in the 

home environment with loose lighting controls in contrast to the controls in the lab. In the future, 

an algorithm will be proposed to automatically recommend parameters based on certain quality 

metrics using unsupervised learning. 

 

IV. Error in the thickness estimation with respect to change in Disparity Shift (Pixels) 

   
(a)                                      (b)                                          (c) 
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       (d)                                        (e)                                           (f) 

Figure 14: Contour formation for Disparity shift: (a) 0 (b)50 (c)100 (d)150 (e) 200 (f)250 

 
Figure 15: Plot of Disparity Shift versus error in thickness estimation 

 

As shown in figures 14 and 15, the thickness estimation is good in the entire range of 0 to 150 

pixels under the resolution of 848x480. However, this setting may cause problems if the camera is 

located far from the pipe surface, in which case a setting of zero is more appropriate. The closer 

the camera gets to the surface, the higher the value of the disparity shift needs to be. 

 

V. Error in the thickness estimation with respect to change in DS neighbor threshold 

   
(a)                                      (b)                                            (c) 

   
                    (d)                                        (e)                                             (f) 

Figure 16: Contour formation for DS neighbor threshold: (a) 0 (b) 50 (c) 100 (d) 150 (e) 200 (f) 

250 
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Figure 17: Plot of DS neighbor threshold versus error in thickness 

 

As shown in figures 16 and 17, the optimal range of DS neighbor threshold for thickness 

estimation is from 0 to 1000 under the resolution of 848x480. 

. 

VI. Error in the thickness estimation with respect to change in laser power 

    
(a)                                              (b)                                                (c) 

   
                                   (d)                                           (e)                                           (f) 

Figure 18: Contour formation for laser power (W): (a) 0 (b) 50 (c) 100 (d) 150 (e) 200 (f) 250 

 

 
Figure 19: Plot of Laser versus error in thickness 

 

As shown in figure 18 and 19, the change in laser power does not seem to have a major impact on 

the depth map quality and thickness estimation accuracy. 
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VII. Error in the thickness estimation with respect to change in resolution 

 

Table 1: Error in thickness estimation versus Resolution 

Resolution Error in thickness Pixel length in 

mm 

640x360 -11% 0.5963 

848x480 -7.5% 0.4472 

1280x720 -8.02% 0.3003 

 

Table 1 shows that the resolution has an insignificant effect on the thickness estimation of the 

object used for experiment but it affects the pixel length. It should be noted that the thickness of 

the object is 18 mm, which is above the minimum depth detectable by the camera. Therefore, 

changing the resolution does not have a major effect on the thickness.  In addition, in the 

resolution of 1280x720, the disparity shift needs to be above 20 to get proper information of the 

object depth.  

 

VIII. Error in the thickness estimation of an object of small thickness 

 
Figure 20: 3-D visualization of a 5 mm thickness coin 

 
Figure 21: 3-D visualization of a coin of a thickness of 1.75 mm 

Figure 20 shows the 3D reconstruction of the scene for the object of 5-mm thickness and Figure 

21 shows the 3D reconstruction of the scene for the object of 1.75-mm thickness. The surface 

reconstruction is obtained by using the point cloud generated by the depth frame aligned with the 

RGB camera frame. Then, the RGB texture is applied to the point cloud instead of the depth 

texture. The 5-mm thick object was created by stacking multiple coins on top of each other for this 

experiment. For thickness estimation of an object of 5-mm thickness and 24-mm diameter, the 

depth visualization is adjusted according to the distance of the object from the camera. Then 

contour analysis was performed on the raw depth map as shown in Figure 22. The error was found 

to be around 22% under the resolution of 848x480. The error in the thickness of an object of 24-

mm diameter and 1.74-mm thickness was found to be 18.85%. The results are shown in Figure 23. 
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Figure 22: Contour extraction from the depth map for the object of 5 mm thickness 

 
Figure 23: Contour extraction from the depth map for the object of 1.74 mm thickness 

 

IX. Error in the thickness estimation of an object of a small area 

        
Figure 24: 3-D RGB and depth map for the object of 8-mm diameter 

 

An object of 15-mm thickness and 8-mm diameter was difficult to process with our contour 

algorithm, so we chose to get the depth information from the Intel RealSense viewer which is used 

to visualize the raw depth map directly from the Camera as shown in Figure 24. In this case, we 

are able to accurately estimate the thickness. It should be mentioned that the manual measurement 

of the depth using the RealSense viewer meant that the number of significant figures that the depth 

could be computed to was at the millimeter scale. Secondly, it is important to note that the shape 

of the object was not captured, and only one sample that indicated a deformation in the surface 

corresponding to the location of the object was taken.  
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Figure 25: 3-D RGB and depth map for the object of 7.5-mm diameter 

 

An object of 21-mm thickness and 7.5-mm diameter was difficult to process with our contour 

algorithm, so we chose to get the depth information from the Intel RealSense viewer which is used 

to visualize the raw depth map directly from the Camera as shown in Figure 25. The error was 

found to be -9.1%. 

 

A summary of the sensitivity analysis conducted is given below: 
Parameters Optimal parameter 

range 

Note 

Gain 16-55 dB Affects mostly the shape of the 

object beyond 55 dB 

Laser power 0-350   

Exposure 2000-18000 Highly dependent on lightning 

conditions 

Disparity Shift 0-125 pixels Affects mostly shape of the 

objects beyond 125 pixels 

DS neighbor Threshold 0-1000  

DS second peak Threshold 0-600 Affects mostly shape of the 

objects beyond 600 

 

 

2.2 Testing of a Lidar Camera for defect detection 

2.2.1. Background 

 Intel RealSense Lidar Camera L515 is a Lidar Camera good for depth sensing in a small form factor. 

It has an IR Laser, MEMS, IR sensor, RGB camera, display processing ASIC. The MEMS is used 

to project the IR laser beam over the entire Field-Of-View (FOV). The reflected IR beam is sensed 

by the IR photodiode sensor which is processed by the display processing ASIC to produce depth 

points thus giving an accurate distance estimate of the objects in the scene. A point cloud is 

generated from the combination of depth points. It has an RGB camera to capture images in RGB 

format and IMU to track its motion and orientation. The architecture is shown in Figure 26. 
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Figure 26: Physical architecture of L515[1] 

      The main advantage of this camera is that it can capture depth points in a short exposure time of less 

than 100ns which helps in capturing objects in fast motion without blur. It can capture over 23 

million depth points per second with its ASIC. It also consumes less than 3.5 W. Physically, it is 

very small with a diameter of only 61 mm and 26 mm in height. It weighs only 100g. Thus, it is 

easy to use for depth sensing and integrating with other modules such as a phone or tablet or a robot.  

        

The camera performs best at 250mm to 9000mm distance (0.25 to 9 m). It can measure 30 FPS 

Depth at a resolution of 1024x768 and 30 FPS color at a resolution of 1920x1080. It has a FOV of 

70°x55°. 

 

2.2.2 Effect of distance on Thickness estimation 

 This experiment was carried out by placing the Lidar Camera at some distance from the circular 

object of 18-mm thickness which is attached to a flat wall. Then we calculated the average error in 

thickness estimation by using the same contour estimation method used before for 10 frames to 

remove the temporal noise effect from the calculations. All the camera parameters are kept 

unchanged. 

 
Figure 27: Thickness estimation for the object of thickness 18 mm using Lidar Camera 

 

As shown in Figure 27, the shape of the object can be clearly visualized. But the average error of 

thickness estimation is given as follows: 
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Table 2: Error in thickness versus distance from the camera 

 

 

 

 

 

 

 

 

Table 2 shows that the Lidar camera gives better thickness estimation when the object is placed at 

a larger distance from the camera. This analysis was performed at a resolution of 1024x768. 

 

2.2.3. Thickness estimation of a small object 

 The above analysis was repeated for an object of 50-mm thickness and 24-mm diameter as shown 

in Figure 28. 

 
Figure 28: Thickness estimation for the object of thickness 50 mm using Lidar Camera 

 

The actual thickness of the object (purple colored object) being visible in the above image is 50 

mm. As we can see from the above image that the shape of the object is a circle which is clearly 

visible in the depth map. The error of thickness estimation is around 20% at 322 mm camera 

distance from the background. 

 

2.3 A new representation for the depth stream 

Depth maps provide the distance information from the camera to the surface of interest. However, additional 

geometric cues are embedded implicitly in this representation. [2] uses the depth information to compute 

additional data for the neural network, which explicitly provides geometry cues. These geometry cues 

include the Height above ground (H), Horizontal Disparity (H) and Angle with gravity (A). This 

representation is known as the HHA representation and has been used in [3], [4]. For our problem, we 

propose an alternative representational scheme, the DNC (Depth-Normal-Curvature) representation. This 

is a 6-channel representation compressed into 3 channels using 1x1 convolutions, as proposed below in 

figure 29.  

Distance from the camera (mm) Average error for 10 frames 

311 -10% 

297 -20% 

249.2 -25% 

198 -26.3% 

155 -38.91% 
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Figure 29: Proposed DNC representation and its transformation into 3 channels 

 

The surface normal is a 3-channel image, one for each component of the normal vector. The curvature 

consists of the mean and gaussian curvatures, which can be computed from the principal curvatures of a 

point in a surface.  

 

Curvatures provide a measure of how “curved” a surface is and can therefore be very useful to characterize 

defects in pipelines. The depth information obtained from the stereo-camera contains the curvature 

information implicitly. The pipe curvature is modeled by the depth map, and the goal of the investigation 

is to find out whether transforming this curvature information such that the defect is mapped onto an 

equivalent flat plate would improve defect localization performance. MSU used a least-squares fit of a 

cylinder to accomplish this task. But this approach is sensitive to the location of the camera and can 

introduce errors in the downstream. Instead, if the depth map information is augmented with geometric 

information, it may help detect weaker defect features. 

 

Computation of surface normals and curvatures: 

The depth map consists of data in the form of 𝑍 = ℎ(𝑋, 𝑌) where (𝑥, 𝑦) belongs to an open set 𝑈 ⊂ 𝑅2. 

The surface form of the map is: 

𝜂(𝑋, 𝑌) = (𝑋, 𝑌, ℎ(𝑋, 𝑌)), (𝑋, 𝑌) ⊂ 𝑈 

The normals are computed on this surface using the first derivative information as follows: 

 

The gaussian and mean curvatures 𝐾 𝑎𝑛𝑑 𝐻of the surface are computed using the fundamental coefficients 

of a surface. These are obtained by using the first and second derivative information of the surface as 

follows: 

𝐷𝑖𝜂 = [
𝜕𝑋𝑗

𝜕𝑥𝑖
,

𝜕𝑌

𝜕𝑥𝑖
,

𝜕𝑍

𝜕𝑥𝑖
] 

𝐷𝑖𝑖𝜂 = [
𝜕2𝑋𝑗

𝜕𝑥𝑖
2 ,

𝜕2𝑌

𝜕𝑥𝑖
2 ,

𝜕2𝑍

𝜕𝑥𝑖
2] 

𝐷𝑖𝑗𝜂 = [
𝜕2𝑋𝑗

𝜕𝑥𝑖𝑥𝑗
,

𝜕2𝑌

𝜕𝑥𝑖𝑥𝑗
,

𝜕2𝑍

𝜕𝑥𝑖𝑥𝑗
] 

 

𝑛(𝑋, 𝑌, 𝑍) =
𝐷𝑥𝜂 × 𝐷𝑦𝜂 

|𝐷𝑥𝜂 × 𝐷𝑦𝜂|
 

 

𝐸 = 𝐷𝑥𝜂. 𝐷𝑥𝜂 ;  𝐹 =  𝐷𝑥𝜂. 𝐷𝑦𝜂 ;  𝐺 = 𝐷𝑦𝜂. 𝐷𝑦𝜂 

𝐿 = 𝐷𝑥𝑥𝜂. 𝑛(𝑋, 𝑌, 𝑍) ;  𝑀 =  𝐷𝑥𝑦𝜂. 𝑛(𝑋, 𝑌, 𝑍) ; 𝑁 =  𝐷𝑦𝑦𝜂. 𝑛(𝑋, 𝑌, 𝑍) 

𝐾 =
(𝐿𝑁 − 𝑀2)

𝐸𝐺 − 𝐹2
 



17  

𝐻 =
𝐿𝐺 + 𝑁𝐸 − 2𝐹𝑀

2(𝐸𝐺 − 𝐹2)
 

Here 𝐸, 𝐹, 𝐺, 𝐿, 𝑀, 𝑁 are the fundamental coefficients (first and second kind) of the surface based on a 

differential geometric formulation. 𝑛(𝑋, 𝑌, 𝑍) is the point cloud normal vector field. H and K are the mean 

and gaussian curvature scalar fields respectively. 𝜂 is the point cloud. 

 

Demonstration: 

Example 1: Smooth Flat Plate 

A smooth flat plate was created with a (1000x1000) grid with z = 1 as shown in figure 30. The normals 

were calculated to be (0,0,1) across the entire grid, which is accurate. The curvatures, both mean and 

gaussian, are zero as well, which indicates that the computation is correct for the flat plate.  

 

 

  
Figure 30: Normals and Curvatures for an idealized flat plate 

 

Example 2: Smooth cylinder section 
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Figure 31: Normals and curvatures for a smooth cylinder section 

A cylinder section was created using a (1000x1000) grid, with a 120-degree field of view as shown in figure 

31. The mean curvature was calculated to be -1, and the gaussian curvature was calculated to be 0. The X-

direction normal was found to be zero, with non-zero values for the Y and Z component.  

 

Example 3: Rough cylinder section 

A rough cylinder section was simulated by construction of a smooth cylinder and superimposing a spatially 

varying noise function as follows: 

𝑍 = 𝑍 + 𝑁(0, |𝑁(0,0.025) ∗ sin (𝑋)|) 

This produces a noisy cylinder with variable variance that is also a function of X, as shown in figure 32. 

The results show that there are spikes in curvature where there is noise. The X-normal component 

demonstrates that the noise increases as the X coordinate increases, with the value approaching 0 (similar 

to the smooth case) as X goes to 0.  
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Figure 32: Normals and curvatures for a noisy cylinder section 

Future work will consider using real world data from the D435 camera to obtain these representations and 

validate their usefulness. 

 

2.4 Detection and 3D reconstruction of pitting defects 

Until the previous quarter, the reporting only considered protrusion defects on two types of surfaces: Flat 

and curved. In this quarter, hole defects were explored by drilling a small hole of width 4mm and depth 

15mm on a wall. This was a test to simulate pitting. The camera was set to a resolution of (1280x720) and 

a disparity shift of 120, to ensure the best quality image at this resolution and distance from the surface. 

Another change made to the settings was to set the depth units to 1e-5 from 1e-3 (m), to better resolve the 

small indentation in the wall relative to the average depth of the background. The defect was observed and 

the measured width was 3 mm and the detected depth was 2 mm. The reconstruction of the defect along 

with the depth map is shown in figure 33. As the defect width is very small, and the matching algorithm 

cannot determine with confidence the depth of these localized defect regions, which makes accurate depth 

detection very difficult in this case. Increasing the size of the defect improves accuracy as shown by the 

sensitivity analysis. 

  
Figure 33: (Left) 3D reconstruction of a hole and a protrusion defect (Right) Depth map of the scene 
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Additionally, more images were acquired from the D435i system on the pipe sample by drilling into it and 

causing pitting-like formations on the pipe. These localized defect regions were detected by the camera and 

the 3D reconstruction demonstrates that the current system can detect these pitting defects, as shown in 

Table 3. The pitting defects are characterized by calculating their approximate area from the point cloud as 

described in algorithm 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1: Defect Area Estimation 

Input: Point-cloud array [𝑥𝑖, . 𝑦𝑖 , 𝑧𝑖], ground-truth 

image [hereby referred to as “mask”] 

Output: Area 

Function calculate_area(pointCloud, mask) 

1. Compute contours from mask 

2. Sort contours by area 

3. Select contour corresponding to pit defect 

4. Use contour coordinates to extract 

corresponding point cloud points 

5. Compute convex hull of selected points. 

Convex hull orders the points anti-clockwise. 

6. Compute area using convex hull 

Return area 



21  

Table 3: Images and reconstruction samples from the newly acquired pipe sample dataset 
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2.5 Surface roughness profile – Signal vs Noise at high resolution 

An interesting observation while capturing the images at the (1280x720) pixel resolution and depth unit 1e-

5 was that the images captured by the depth sensor showed patterns similar to the ones found on the wall 

as shown in figure 35. To confirm whether this pattern was indeed the surface roughness profile, or it was 

the sensor noise, a comparative analysis was performed between the rough wall and a baseline smooth wall. 

Three images were captured using the camera at a distance away from the surface pointing perpendicular 

to it, approximately with the same camera settings. Aggressive temporal smoothing was performed to 

average out temporally varying noise signals with large temporal filters. The stabilized image was analyzed 

using a histogram of depth values. The spatial domain is inspected using the depth histogram, and this 

would directly provide the distribution of depth information. The smooth image and roughness-level 1 

image distributions show minimal differences between the two cases. Therefore, we can conclude that the 

detection of surface roughness from depth maps at the levels indicated by the middle image in figure 35 

will be unreliable. However, at a higher degree of roughness in the millimeter scale and above, it can be 

detected, as shown by the histogram on the far right in figure 36. Further analysis on whether a noise 

signature can be extracted for the image in the middle will be done as part of future work. 

  

          
Figure 35: (Left) Smooth Surface (Middle) Roughness Level 1 (Right) Roughness Level 2 : Top row: 

RGB Images, Bottom Row: Depth maps in white to black scale - Whiter shades are closer. The dramatic 

contrast occurs because the range has been limited to the minimum and maximum depth values to 

highlight differences in depth. The camera was placed directly perpendicular to the surface and this was 

verified by ensuring that the depth did not vary substantially. 

 

 
Figure 36: Histogram: (Left) Smooth Surface (Middle) Roughness Level 1 (Right) Roughness Level 2 

 

2.6 Effect of adding two cameras in series 

The resolution of the defect was shown to improve with the increase in camera resolution from 848x480 

pixels to 1280x720 pixels, along with a higher sensor noise profile, in sections 2.4 and 2.5. To further 

attempt an improvement in the reconstruction, adding one more camera in series with the original camera 

was proposed. The D435i system is an “active-stereo” system, that uses a combination of color imaging 

and an IR dot pattern to perform stereo matching, and the dot patterns provide additional texture onto 
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texture-less scenes and these patterns are not visible. The color sensor detects these patterns and are 

substantial only in the case of high laser power. An increase in dot pattern density was expected to improve 

the matching quality by providing even more density of textures for the matching algorithm, however, no 

significant differences were observed. Another possible improvement for the matching algorithm could be 

to reduce the size of the IR dots. This would mean that we can have smaller dots, with a denser pattern. We 

have not tested this yet, as it would require an external IR dot projector to be installed. This may be 

incorporated as part of future work. 

 

3. Task 2: Integrating the Data Acquired from the Camera system with the Fully Convolutional 

Fusion Network 

3.1 Neural network architecture 

In the previous quarter, the network used for semantic segmentation was a Fully Convolutional neural 

network with a pretrained VGG backbone, as shown in figure 37.  

 
Figure 37: Previous neural network architecture with VGG-16 and Deconvolutional upsampling 

 

In this quarter, the VGG backbone is replaced with a ResNet backbone [5], [6]. The ResNet architecture 

consists of a modular structure, with the number of parameters being controlled by varying the number of 

modules, and the structure of each module. ResNet-18 is the smallest available pretrained network, and we 

use this for our dataset.  The ResNet-18 module consists of a dual path encoder architecture, with one path 

for the depth and the other for the RGB image. This is in keeping with the previous work, where multiple 

fusion blocks are used at different points of the architecture to ensure that the RGB and depth information 

are combined. The processing after the ResNet backbone produces an intermediate encoder output. This 

output is used to compute an attention map. Each fusion block output is then fed to an Atrous Spatial 

Pyramid Pooling (ASPP) layer, after which the deconvolution layers from the previous quarter are replaced 

with an up-sampling operation to reduce the number of weights. The difference in adding the 

deconvolutional layers is discussed as well in the results section. Figure 38 shows a summary of the baseline 

architecture.  

 
Figure 38: Baseline architecture with a ResNet backbone for this quarter’s experiments  
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Resnet Architecture 

Neural networks can be considered universal function approximators. Given enough parameters and data, 

a neural network can, in theory, fit any continuous function in 𝑅𝑛. In practice, a single layer network overfits 

to the training data, and this led to the need for deeper networks. Compared to earlier CNNs which had less 

than 10 layers in total, deeper networks such as the VGG network architecture resulted in better 

performance. However, this improvement in performance reached its limits when the number of layers 

reached the order of 100, where the well-studied vanishing gradient problem comes into the picture. This 

is a performance reduction caused by information-loss, rather than overfitting. Backpropagation does not 

handle very deep networks well, and a solution was proposed by He et al. in [5], [6]. Neural networks 

approximate functions based on the training data. Deeper networks with more layers can approximate a 

different class of functions as compared to shallow networks. A key problem in designing deep neural 

networks is that one does not know how many layers are needed to get to the right function class. Adding 

new layers changes the representations learned in an unpredictable fashion. Residual networks work by 

adding a so-called “skip connection” from one layer to another, deeper layer, as shown in figure 39 (a), 

resulting in a nested representation of functions. Each residual block performs an “identity mapping”. The 

output of a layer 𝐿𝑘 is fed into the input of layer 𝐿𝑘+𝑖 as an additive component to the output from layer 

𝐿𝑘+𝑖−1, as shown in figure 39 (b) Further discussion on identity mappings, residual networks and their 

mathematical properties are described in [5]. 

 

(a) 

 

(b) [5] 

Figure 39: Residual network learning structure: (a) General structure of ResNet blocks (b) Residual 

connection and Identity mapping in a ResNet block 

Atrous Spatial Pyramid Pooling (ASPP) 

The repeated application of convolution and pooling layers in a deep neural network reduces the 

dimensionality of the input data. Very deep networks often end up with a low dimensional representation 

that does not contain any fine-grained information. One way to preserve fine grained information in deeper 

layers is to have a convolution layer that does not dramatically reduce the size of the features. Having larger 

filters will introduce more parameters, so this will not be efficient for very deep networks. The solution 

proposed by [7] is the ASPP layer, consisting of “dilated convolutions”. Each filter has a size determined 
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by the “rate” parameter and the kernel size. The rate parameter tells us about the internal padding of the 

filter and increasing the rate parameter will result in a larger filter with more internal zero padding. This 

not only helps improve the size of the feature maps, but also enables capturing features at different fields 

of view (FOV). Highly accurate localization is achieved using small FOV and spatial context is improved 

with larger FOV. The ASPP formulation is shown in figure 40. 

 

Figure 40: [4] ASPP Layer visualized with various filter sizes: The ASPP block has a pyramidal 

architecture as recommended in [7] 

Fusion Block – Attention layers 

The fusion block was modified from the previous quarter (the older fusion block is shown in figure 41(a) 

to incorporate an additional feature fusion element to see whether this impacts performance on our dataset 

as shown in figure 41(b). This block was taken from the paper [4]. Attention is a concept used frequently 

in the computer vision literature and can be useful to ensure that the network learns to highlight the regions 

of interest better based on the input data and the ground truth. The first sub-module of the fusion block is 

called the “Feature Separation Module”, which [4] demonstrates empirically that it suppresses noisy depth 

features. The second sub-module is the weighted non-linear fusion block, which is essentially the same 

module proposed in the previous quarter. The modification made in this quarter is to make this sub-module 

a convex combination of RGB and depth features by constraining the weights of the respective streams to 

sum to 1 and to always be positive. The combined fusion block is shown in figure 41(b).  

 
(a) 

 
(b) 

Figure 41: (a) Old fusion block (b) Fusion block proposed in this quarter 

Learning rate scheduling policy 
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In previous quarters, we had used a linearly reducing learning rate policy for the neural network. This meant 

that the learning rate was reduced uniformly by a certain amount after a certain number of epochs. As [7] 

have shown, using a poly learning rate policy as shown below yields small improvements to the 

segmentation performance.  

𝐿𝑅 = (1 −
𝑖

𝑛
)

𝛼

 

Here, 𝑛 is the total number of iterations, 𝑖 is the current iteration, and 𝛼 is the learning rate power, set to 

0.9. A lower value of alpha results in a less steep curve. 

 

3.2 Results and discussion 

Dataset: 

The training set consists of the new images acquired from the pipe sample approximating pitting defects. 

The depth map settings were modified in order to be able to detect these localized defects and approximate 

the pitting depth. Some image samples are shown in figure 42. 
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Figure 42: RGB and Depth map pairs for the training set 

 

VGG-16 with new RGB-D Fusion Block  

The first experiment involved using the VGG-16 network with the non-linear fusion block with the Feature 

Separation Part (FSP) preceding the NL-fusion block. The network used the binary cross entropy loss for 

training and the labels were one-hot encoded for comparison in accordance with that format. Two dataset 

sizes were tested, one with 200 samples and the other with 500 samples, to test the effect of increased 

dataset size on performance metrics. The performance metrics used in these studies are the loss, and the 

mean intersection over union (mIU) score. The mIU computes the degree of overlap between the ground 

truth segmentation and the predicted segmentation, and ranges from 0 to 1 with the best value being 1.0: 

𝑚𝐼𝑈 =
|𝐴  ∩  𝐵|

|𝐴 ∪ 𝐵|
 

The one with 500 samples converged faster in around 50 epochs with an mIU of 0.985 and the one with 

200 samples reached an mIU of 0.965 but took twice as many epochs to settle the loss function to a stable 

value, as shown in figure 43 (a). Removing the FSP layer produced negligible reductions in performance 

as shown in  figure 43 (b).  
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(a)  

 
(b)    

Figure 43: Plotting the train loss and IU for: (a) VGG-16 with 200 training samples (b) VGG-16 with 

500 training samples 

 

ResNet-101 with ASPP and Bi-Directional Cross-Modality Fusion [4] 

The baseline case involves using a ResNet-101 network with ASPP attached at the final layer of the encoder 

module as shown in figure 38. There is no deconvolutional upsampling layering, instead replacing them 

with direct interpolation back to the original size. The loss function used was a composite cross-entropy 

loss: 

𝐿(𝑦, 𝑌) = 𝐿𝑝𝑟𝑒𝑑(𝑦𝑝𝑟𝑒𝑑, 𝑌) + 𝜆 ∗ 𝐿𝑎𝑢𝑥(𝑦𝑎𝑢𝑥 , 𝑌) 

𝐿𝑎𝑢𝑥 – loss over the encoder output (A low resolution representation) weighted by 𝜆 = 0.2  

The mIU for this experiment was 0.68 and reached an accuracy of 0.72, as shown in figure 44. 

 
Figure 44: ResNet-101 baseline results plotting the train loss and IU 

 

ResNet-18 with ASPP and Bi-Directional Cross-Modality Fusion 

Another set of experiments was conducted with a lightweight ResNet-18 network. The ASPP layer and the 
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fusion block were kept unchanged from the previous subsection but the backbone was changed from 

ResNet-101 to ResNet-18. The loss functions were varied as well, with the cross-entropy composite loss as 

described in the earlier section being used as the baseline and a new loss composite loss function was 

defined as follows: 

𝐿(𝑦, 𝑌) = 𝐿𝑝𝑟𝑒𝑑(𝑦𝑝𝑟𝑒𝑑,𝑌) + 𝛼 ∗ 𝐿𝐼𝑈(𝑦𝑝𝑟𝑒𝑑, 𝑌) + 𝜆 ∗ 𝐿𝑎𝑢𝑥(𝑦𝑎𝑢𝑥, 𝑌) 

𝐿𝐼𝑈 − 𝐿𝑜𝑣𝑎𝑠𝑧 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑙𝑜𝑠𝑠, 𝛼 − 𝑙𝑜𝑣𝑎𝑠𝑧 𝑓𝑎𝑐𝑡𝑜𝑟 

The Lovasz softmax loss is the same as that described in Q3, but instead of using the loss in isolation, the 

loss was used as a composite with a variable weight 𝛼 that depends on the loss 𝐿𝑝𝑟𝑒𝑑. The value of 𝛼 

increases as 𝐿𝑝𝑟𝑒𝑑 reduces, leading to the use of 𝐿𝐼𝑈 to fine-tune the loss function after 𝐿𝑝𝑟𝑒𝑑 converges. 

The results indicate that adding the Lovasz loss improves the baseline IU of 0.56 with only cross entropy 

to approximately 0.6 after adding Lovasz loss, despite an increase in time to converge, as shown in figures 

45 (a) and (b) respectively.  

 
(a) 

 
(b) 

Figure 45: Plotting the train loss and IU for: (a) ResNet-18 with only cross entropy loss  (b) ResNet-18 

with cross entropy and Lovasz softmax loss 

 

ResNet-18 with ASPP and Transposed Convolutional Decoder 

The next set of experiments involved investigating the effect of adding deconvolutional layers to upsample 

the image instead of using interpolation. Another addition to the network was to add the ASPP block to the 

lower-level feature output in the first ResNet block. The effects were not supported with improved results, 

and both the mIU and the accuracy dropped precipitously. This is an unexpected result, as adding 

deconvolutional layers provides a degree of flexibility to the upsampling process. Long-range contextual 

dependencies are not important to this dataset so ASPP layers do not play an important role here. However, 

more experiments with a larger dataset with more varied classes in various spatial locations in the image 

will demonstrate whether the ASPP layer is indeed effective or has only negligible contributions. The results 

for this set of experiments are shown in figure 46.  
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Figure 46: Plotting the train loss and IU for the case where a deconvolution layer is added to the ResNet-

18 network 

 

Measurement Results with the best network 

The best performance was obtained with the VGG-16 network with the FSP layer preceding the non-linear 

weighted combination. A hold-out image is an unseen image which is out of sample from the augmented 

training set. We use a hold-out image for our tests in this case as the number of samples in our dataset is 

limited. The measurement was conducted with two images, one from within the sample, but with no 

augmentation to make it look slightly different from all the augmented samples in the training set, and the 

second image was the hold-out sample. The results are visualized in figure 47 and tabulated in tables 4 and 

5. The image on the top row of figure 47 shows the hold-out example. The hold-out sample contained a 

pitting defect and two cracking defects. The network was unable to detect the cracking defect but segmented 

the pitting defect out. The within sample result shows that all the defects were detected, as shown in the 

bottom row of figure 47. 

  
(a) 

 
(b) 

Figure 47: Visualization of measurement: (a) (Left) Prediction and (Right) ground truth for hold-out 

sample; (b) (Left) Prediction and (Right) ground truth for sample within the train distribution 
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Table 4: Measurement results for the hold-out case 

Image Defect 

Type 

Measurement Estimated 

(mm/mm2) 

Actual 

(mm/mm2) 

Error 

(%) 

 

Pitting Area 1330 835 37.35 

  Depth 1 ~3 ~200 

 

Table 5: Measurement results for the case within training distribution 

Image Defect 

Type 

Measurement Estimated 

(mm/mm2) 

Actual 

(mm/mm2) 

Error(%) 

 Pitting Area 2603 2375 8.76 

  Depth 0.001 ~2  ~100 

 Cracking- 

1 Root 

Middle  

Length 71.9 78 8.48 

 

 Width 2 1 ~100 

 Cracking 

– 2 Root 

Left 

Length 

 

34.7 37 6.62 

  Width 3 1 ~200 

 Cracking 

–  3  Root 

Right 

Length 50 56 12 

  Width 3 1 ~200 

 

4. Summary and Future Work 

4.1 Task 1 

• Summary of the sensitivity analysis 

Depth camera D435 is suitable in analyzing the depth of even small objects. The Lidar camera 

only works well for larger camera-to-object distance which is not suitable for our application if 

the camera is facing directly to the pipe wall. However, if the camera is facing along the 

longitudinal direction of the pipeline, the Lidar camera can be potentially used for pre-screening 

of pipeline defects. Detailed results of the sensitivity analysis have been reported above. 

• New representation proposed for depth stream: A new curvature and normal vector-based 

representation for the depth stream was proposed. This is termed the DNC representation 

(Depth-Normal-Curvature). The technique to compute these metrics from the depth was 

presented using concepts in differential geometry of surfaces and is demonstrated on sample 

surface data. In the next quarter this will be extended to real pipe data.  

• Pitting Defects images: Pitting defect images on both flat walls and pipes were procured using 

the camera system. Welding defects will be captured in the next quarter if metallic pipes are 

available. 
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• Adding a camera in series and IR dot sizes: The effect of adding one additional camera in 

series with the first camera was studied and found to have minimal effects on surface 

reconstruction. However, it is hypothesized that the reduction of IR dot pattern size will improve 

reconstruction results. This will be tested in future quarters once we procure an external IR dot 

projector. 

• Noise analysis – Preliminary work: The depth maps procured for pitting on the wall showed 

interesting patterns similar to that seen on the wall. To test whether this was indeed the surface 

roughness or the noise, analysis was done on walls with varying degrees of roughness and results 

were reported. In the next quarter, focus will be on identifying if there is a noise signature that 

can be procured from the depth information to detect the presence of surface roughness or if the 

signal is too weak to extract any signature from. 

4.2 Task 2 

In this quarter, several modifications were made to the network architecture with the newly acquired pitting 

data and evaluated if there was any benefit. Lovasz softmax loss along with cross entropy loss used in 

combination improved mean IU scores by approximately 3-5 points. However, the best performing network 

for the dataset currently procured was still the VGG-16 architecture backbone. An addition was made to 

this architecture in the fusion layer using a method that suppresses noisy depth features. In the next quarter, 

features produced by these layers will be visualized to observe if there is any visual difference in various 

fusion blocks that might explain whether the design of the fusion block has a major impact on performance. 

As more data is acquired, the test set results and measurement accuracies will become more reliable.  
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