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Business and Activity Section 
 
(a) Contract Activity 
No contract modification was made or proposed in this quarterly period.  
 
(b) Status Update of Past Quarter Activities 
In the past quarter, we continued making progress in Task 1, Task 2, and Task 3. In particular, due to 
COVIN-19 the exposure testing in Task 1 had to be paused in the middle of March, and we resumed the 
testing in early June. For Task 2, we exploited different signal processing algorithms to correlate different 
defect features with the non-destructive detection responses. For Task 3, we developed probabilistic burst 
pressure prediction models for pipeline with isolated corrosion defects, and compared the prediction 
performance of the proposed models with the existing prediction models based on the experimental and 
numerical data and reliability analysis. 
 
(c) Cost share activity 
Partial support for one graduate student tuition was provided by The University of Akron as per the cost 
share agreement.  
 
(d) Technical approach 
The goal of this proposed study is to develop probabilistic pipeline performance evaluation framework 
based on multi-modal NDE assisted by physical and mechanical modeling under interactive anomalies. 
This study will utilize the experimental testing and numerical analysis to generate more realistic defect 
shapes and colony profiles, which will be used for characterization and validation of interactive defects 
NDE. Meanwhile, the identified defect profile will be used for the probabilistic defect time-evolution 
model development, which is crucial for reliability evaluation of pipeline performance under interactive 
defects. In addition, probabilistic models of failure pressure of a pipeline containing corrosion and 
cracking-like defects will be developed, achieving predictions that are unbiased with reduced variability 
and considering defect interaction. Specific technical objectives are proposed as follows: 

• Generate realistic corrosion and cracking defect profiles through laboratory testing and 
electrochemical simulation; 

• Establish an expanded NDE framework for interactive anomalies by probabilistic characterization 
of defect profiles; 
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• Establish a comprehensive failure pressure database including corrosion and cracking defects, and 
isolated and colony defects; 

• Develop probabilistic time-evolution models for defect profile quantities based on NDE defect 
characterization; 

• Develop probabilistic failure pressure prediction models incorporating defect interaction;  
• Investigate the impact of various physical quantities and uncertainty sources on pipeline reliability. 

 
To achieve the proposed research objectives described in Section 2, four tasks are developed. 

• Task 1. Realistic defect profiles generation using experiments and COMSOL (Drs. Zhou & Deng) 
Task 1a. Defect configuration in a corrosive environment 
Task 1b. Defect configuration with cracks in a corrosive environment 

• Task 2. NDE framework development and validation for interactive defect detection and state 
characterization in both lab and field environments (Dr. Deng) 

Task 2a. Multi-scale and multi-physics modeling 
Task 2b. NDE system development 
Task 2c. Multi-modal data processing for interactive anomalies 

• Task 3. Probabilistic capacity model development considering interactive anomalies (Dr. Huang) 
Task 3a. Establishment of a failure pressure database  
Task 3b. Probabilistic failure pressure model development  

• Task 4. Probabilistic model development of anomaly time-evolution and reliability evaluation (Dr. 
Huang) 

 
1. Task 1: Realistic defect profiles generation using experiments and COMSOL 
1.1 Background and Objective in the 3rd Quarter 
The objective of Task 1 is to generate realistic corrosion profiles through environmental exposure testing. 
The defect shapes and colony profiles will be used for non-destructive evaluation (NDE) and for the 
probabilistic defect time-evolution model development.  
 
1.2 Research Progress in the 3rd Quarter 
Due to the pandemic of COVID-19, The University of Akron has stopped all the non-essential research 
work. The exposure testing had to be stopped in the middle of March. We got back to our research lab in 
early June, keeping social distance and following the back-to-lab protocol. We are only allowed to have 
one person per 100 ft2 in the lab. The exposure testing resumed on June 15 and is scheduled to run at least 
a month. During the exposure testing, an infinite microscopy characterization and electrochemical 
measurements are conducted. The completed data sets are expected to generate in the next Quarter. 
 
In this Quarter, we have purchased COMSOL Multiphysics with an academic-use license. The whole 
package includes AC/DC module, Corrosion module, Fatigue module, Nonlinear Structural Materials 
module, and Structural Mechanics module. 
 
1.3 Future Work (Next Quarter) 
In the next Quarter, the research team will continue working on Task 1. The realistic corrosion defect 
profile as a function of time is expected to be generated. It will include a defect shape and a corrosion rate. 
Besides, the research team will start on the COMSOL simulation that includes the COMSOL model setup 
and simulation parameter identification.  
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2. Task 2: NDE framework development and validation for interactive defect detection and state 
characterization in both lab and field environments 

2.1 Background and Objectives in the 3rd Quarter 
Background 
In the previous quarters, we have shown two different FEM models in which guided waves were utilized 
to detect corrosion pits and cracks of varying lengths and depths. Figure 1 shows the two different models 
that were used for this study. Specifically, the axial guided wave model used axial guided waves to detect 
corrosion defects along the length of the surface of the pipe, while the circumferential guided waves were 
used to detect circumferential defects in the circumferential guided wave model. In order to classify and 
characterize the corrosion defects, a dataset was created using the axial model alone. The axial model was 
considered as the first step, as it involves lesser complexity compared to the circumferential guided wave 
model. Once a successful study is established for the axial model, it can be extended to the other model 
with further modifications. The dataset created contained the guided wave responses of healthy samples, 
as well as samples with defects of varying lengths, depths and quantities. The dataset created is discussed 
in further detail in this report. Finally, a simple classifier using Multi-Layer Perceptron Networks (MLP) 
was developed to accurately classify a response from a healthy pipeline or a response from a pipe with 
defects. The accuracy of the developed network was found to be about 95%. 
 

 
Figure 1: (a) Axial guided wave model and (b) circumferential guided wave model for corrosion pits 

 
Objectives in the 3rd Quarter 
There are two objectives in this quarter. One is to determine different types of damage Index (DI) for 
quantifying the corrosion defects using the dataset created. We exploited different signal processing 
algorithms and some of the methods that are used are the Hilbert Transform Analysis (HT), Wavelet 
Transform (WT) and Multi-scale Cross Entropy Analysis (MCSE). In addition, different features of 
corrosion defects that can be potentially used in a feature engineering-based characterization algorithm.  
 
The other objective is to develop an efficient automated defect classification and characterization 
algorithm. As mentioned, in the previous quarter, we used multi-layer perception (MLP) to accurately 
classify defect responses. In this quarter, we make the model more robust by training the network with 
different levels of noise to mimic real world experiments as much as possible. We also propose a 1D 
Convolutional Network (1D-CNN) to predict defect parameters that can effectively characterize corrosion 
pitting. This is in view of developing an overall learning paradigm to develop featured based Machine 
Learning Algorithms and Deep Learning Algorithms, where we can feed in raw sensor data to characterize 
corrosion defects. 
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2.2 Research Progress in the 3rd Quarter 
Dataset 
The dataset consists of 57 healthy responses and 93 defect responses. All the responses are collected from 
the axial guided wave model for corrosion pits. For simplicity, three different configurations have been 
considered. The first configuration is the healthy pipe, which is defect-free. The second configuration has 
one corrosion pit in the pipe, while the third configuration has a colony of two pits in the pipe. The length 
of the corrosion pits varies from 1 mm to 5 mm, while the depth of the pits varies from 5 mm to 20 mm. 
The operating frequency of the model is 25 KHz as mentioned in the previous reports. Figure 2 gives the 
dataset split. 

 
Figure 2: Split of the axial model dataset 

 
In the last quarter, some basic features of the dataset were examined, which is shown in Figure 3. The four 
features shown in Figure 3 could be potentially used as feature vectors in various characterization 
algorithms. In the 3rd quarter, more complex features are added using some signal processing tools. 

 

 

Figure 3: (a) Sample mean (b) sample variance (c) spectral energy and (d) temporal energy spread of 
the dataset 
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Cross Entropy Analysis 
The Cross Sampling Entropy Method (CSamp-En) is mainly used to evaluate the degrees of asynchrony 
and dissimilarity of two time series in the same system [1]. Please note that, the responses collected in the 
dataset are velocity time histories. The CSamp-En method is based on the sampling Entropy method 
(SampEn) [2] with a concept called Approximate Entropy that is basically a measure of the degree of 
irregularity or disorder in a measurement time series. When SampEn is lower, the sequence is more regular; 
the larger SampEn, the more irregular and complex the sequence becomes. SampEn is independent of the 
length of the data record and the algorithm uses the following parameters: threshold (r), sample length (m), 
and signal length (N). The length of the time series has no effect on the analysis results, and the results 
remain relatively consistent.  
 
The analysis step of a CSamp-En algorithm is similar to that in the SampEn analysis method. The 
difference is that the object of SampEn analysis is mainly a single time series signal system, whereas the 
CSamp-En method analyzes two different time series signals to establish a template space for each of the 
two signals. This method basically gives a measure of how similar two time series signals are in terms of 
a similarity number. In the scope of our work, the similarity of different defect responses with respect to 
the healthy signal can be computed, which can be used to define a related Damage Index (DI). The 
procedure of CSamp-En is similar to that of SampEn and can be summarized as follows [3]. 
 
Let us define two time series signals:	{𝑋$} = {𝑥(, 𝑥*, … 𝑥$,… . 𝑥-} and .𝑌01 = {𝑦(, 𝑦*, … 𝑦0, … . 𝑦-}. Both 
the time series signals are of the same length N. The two signals are then divided into templates of size m: 
𝑢4(𝑖) = {𝑥$, 𝑥$8(, … . 𝑥$849(}						1 ≤ 𝑖 ≤ 𝑁 −𝑚 + 1      (1) 
𝑣4(𝑗) = .𝑦0, 𝑦08(, ………… . 𝑦0849(1				1 ≤ 𝑗 ≤ 𝑁 −𝑚 + 1     (2) 
A similarity number between um(i) and vm(j) is defined as nim(r), and can be expressed as: 
𝑛$4(𝑟) = ∑ 𝑑[𝑢4(𝑖), 𝑣4(𝑗)]-94

0H(          (3) 
where, the maximum distance 𝑑[𝑢4(𝑖), 𝑣4(𝑗)] between the two template spaces um(i) and vm(j) is defined 
as: 
𝑑[𝑢4(𝑖), 𝑣4(𝑗)] = max{|𝑥(𝑖 + 𝑘) − 𝑦(𝑗 + 𝑘)|}							 0 ≤ 𝑘 ≤ 𝑚 − 1    (4) 
𝑑[𝑢4(𝑖), 𝑣4(𝑗)] ≤ 𝑟						1 ≤ 𝑗 ≤ 𝑁 −𝑚         (5) 
 
When the distance between the two samples is smaller than the threshold, r, the two samples are considered 
similar; conversely, when the distance between the two samples exceeds r, the two samples are considered 
dissimilar. The threshold r can be chosen manually by the user. Through the use of different templates for 
similarity comparison and the calculation of the number of templates that exhibit the conditions of 
similarity, the number of similar samples in the ith template to those in the entire template space can be 
obtained. The similarity probability of the ith template can be calculated as: 
𝑈$4(𝑟)(𝑣||𝑢) =

PQ
R(S)

(-94)
          (6) 

The average probability of similarity for template m can then be obtained as: 
𝑈4(𝑟)(𝑣||𝑢) = (

-94
∑ 𝑈$4(𝑟)(𝑣||𝑢)-94
$H(          (7) 

 
The degree of dissimilarity resulting from the division of the two time-series by m points represents the 
degree of synchronization between the two template spaces. Finally, the sample space is composed of the 
sample of length m + 1, and the average similarity probability is calculated. The formula for calculating 
CSamp-En is expressed as: 
𝐶𝑆V(𝑚, 𝑟, 𝑁) = −ln	 YZ

R[\(S)(]||^)
ZR(S)(]||^)

_         (8) 
 
In this investigation, the changes of both final CSamp-En and the similarity number nim(r) are studied for 
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different corrosion configurations and different corrosion pit depth. The parameters used in this study are 
listed in Table 1. 

Table 1: Parameters for CSamp-En 
Signal length, N 1038 

Template length, m 4 
Threshold (based on healthy response), r 0 

 
A DI based on the mean of the similarity numbers for different configurations is defined. The variation in 
the DI for different configurations is plotted in Figure 4, while the DI for different defect depths is plotted 
in Figure 5. From Figure 4, it is observed that there is a direct relationship between number of pits and DI. 
As the number of pits increase in the colony, the absolute DI value increases, as shown in Figure 4. For 
defect depth, the DI value does increase for a defect depth of 5mm and 10 mm, but the DI values for defect 
depths of 15mm and 20mm are similar to that of 10mm. The increasing DI values basically indicate that 
the responses of a particular group are more dissimilar to the healthy response. This can be directly related 
to a conclusion that has the samples corresponding to the particular group are relatively more damaged. 
For example, the samples with 5 mm defect depths have a smaller DI value compared to samples with 10 
mm defect depths. This basically suggests that samples with 10 mm defect depths are more damaged, 
which is truth. A similar study is also conducted for changing the defect length (i.e. corrosion pit length).  
 

 
Figure 4: Normalized similarity number nim(r) vs number of pits 

 

 
Figure 5: Normalized similarity number nim(r) vs defect depth 
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When using the CSamp-En analysis, we were able to extract a DI that shows a direct relationship to the 
number of pits. However, the results are not as promising for different defect depths. Nevertheless, overall 
the algorithm presented above provides a valuable feature engineering tool. 
 
Hilbert Transform Analysis 
Hilbert Transform (HT) is one of the most commonly used signal processing tools to study time signals. 
Implementing a HT enables us to create an analytic signal based on some original real-valued signal. HT 
gives the instantaneous amplitude of a signal, and it can be used to find the envelope of harmonic signals, 
which exactly is the nature of the response in our dataset. HT is mathematically described below for a 
signal u(t): 
𝐻(𝑢(𝑡)) = (

b ∫
^(d)
d9e

𝑑𝜏g
9g            (9) 

 
Similar to how MSCE is studied as a potential DI, HTs of three different configurations (i.e., healthy, 
single pit and colony of pits) are computed. The results are shown in Figure 6. The two peaks (i.e., Peak I 
and Peak II) shown in Figure 6(a) are basically due to the two reflections seen in the raw signal (see 
previous quarter reports). The two reflections are the S0 wavemode, and a combination of A0 and reflected 
S0 wavemodes. As shown in Figure 6, one can observe that though the S0 peak (i.e., Peak I) has little 
difference for different configurations, the second peak (i.e., Peak II) shifts slightly to the right with 
increasing number of pits in the colony. The increase is in the order of 0.1-0.2 ms (as shown in Figure 
6(b)), which is significant considering the scale which we work with.  
 
HTs of the signals from different defect depths are also computed and the results are shown in Figure 7. 
Similar to Figure 6, there is no distinct different among the HT responses at Peak I, but the second peak 
certainly shows a difference between the responses from a damaged pipeline and a healthy response. 
Therefore, Hilbert Transform is another valuable tool to compute a feature that distinguishes different 
configurations and defect depths. A DI based on the HT can be easily defined to quantify the corrosion 
defects, which is part of the work planned for the future. 

 

 
Figure 6: (a) HT responses for increasing number of pits and (b) a zoomed-in version of Peak II 

 

I 
II 

II 
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Figure 7: (a) HT responses for increasing defect depth and (b) a zoomed-in version of Peak II 
 
Multi-Layer Perception Classifier Network 
In this Quarter, we also tried to improve the robustness of the MLP based classifier network presented last 
quarter. For a quick recap, Figure 8 shows the architecture of the network that was used. Figure 9 shows 
the results when the trained model was used to predict on the unseen responses. For the dataset we defined 
above with well-labeled responses, the classification accuracy is defined as the fraction of correct 
predictions over the total number of predictions. The accuracy of this particular network was about 95%, 
which means that the MLP network performs really well.  
 
 

 
Figure 8: Multi-Layer Perceptron network for defect response classification 

 
In order to simulate a real-world experiment environment, additive white Gaussian noise (AWGN) of 
different Signal to Noise Ratio (SNR) levels are added to the training dataset. The model is then trained, 
and predicted on the unseen examples. For this analysis, three different SNR levels of 5, 10 and 20 are 
considered. The signal with a SNR level of 5 has the highest noise content, while the signal with a SNR 
level of 20 has the least noise content. Figure 10 shows a signal without noise, and a signal with an 
artificially added noise of SNR 5. As shown in Figure 10, a signal with SNR 5 is highly distorted with 
noise, and training on such data is tricky and challenging. However, training with such high-level noises 
can make a model more robust and more generic in nature. As expected, the performance of the MLP drops 
as noise is added. Figure 11 shows the performance of the model when it is trained on a dataset with a 
SNR level of 20. Though the accuracy drops to 93%, the model still correctly classifies healthy and 
defective responses according to its true ground class as is visible from the confusion chart. 
 

I II 

II 
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Figure 9: (a) Prediction results for the MLP network and (b) confusion plot for the predicted results  
 

 

Figure 10: (a) Pure raw signal and (b) signal with additive white Gaussian noise (AWGN) added at SNR 5 
 
 

 
Figure 11: (a) Prediction results for the MLP network trained with a dataset with SNR 20 (b) 

confusion plot for the predicted results 
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Similarly, when the noise level is increased by maintaining a SNR level of 10, the performance further 
drops to 91% accuracy. Though it classifies the responses accurately, the absolute values the MLP is 
predicting for a defect are further away from 1, as is visible from Figure 12. For a SNR level of 5, the 
accuracy further drops to 89%, and the network now falsely classifies a healthy response as a defective 
response as seen in Figure 13. But despite this error, the MLP network correctly classifies all defective 
responses correctly. Though this is not the best scenario, it is acceptable as when it comes to nondestructive 
evaluation, it is sometime acceptable to falsely classify healthy signals as long as defective signals are 
classified correctly. Thus, we are able to attain very good performance at SNR levels of 10 and 20, and 
acceptable performance at a SNR level of 5. 
 

 

 
1D-Convolutional Neural Network 
The classifier network has been optimized by training it with signals added with different noise levels, 

Figure 12: (a) Prediction results for the MLP network trained with a dataset with SNR 10 (b) 
confusion plot for the predicted results 

 

Figure 13: (a) Prediction results for the MLP network trained with a dataset with SNR 5 (b) 
confusion plot for the predicted results 
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thereby making the network robust and reliable. The next step is to develop 1D Convolutional Neural 
Network (1D-CNN) to help characterize the corrosion defects. 1D-CNN is known to extract inherent 
features from long time series data. Extensive research has gone into using CNNs for defect localization 
and characterization in composites in the last few years. In the 1D-CNN network proposed in this study, 
the input will be the velocity time histories obtained, and the output will be the defect parameters such as 
defect depth, defect length, and number of corrosion defects in the pipe. One of the reasons for adopting 
1D-CNN is that it trains faster than recurrent neural networks.  
 
Sparse connections and parameter sharing are two important ideas in CNN, whereas, in a fully connected 
network (FCN), every neuron interacts with every other neuron [3]. CNN helps to reduce the number of 
learnable parameters, which eventually saves memory and decreases the training time. CNNs are also very 
robust to external influences, and generally have been shown to perform well even when there is low level 
noise in the data. 1D-CNN works similar to a traditional CNN/2D-CNN, the only difference is that the 
inputs, kernels and feature maps are all in one dimension. Figure 14 shows the framework of the proposed 
1D-CNN model. Please note the CNNs are data hungry, and with a current dataset of size 150 samples, it 
is incredibly hard to attain acceptable performance. Therefore, the current model shown is being fine-tuned 
using the small dataset, while simultaneously more data is being created using data augmentation 
techniques along with FEM simulations to populate the dataset. The results of this network are planned to 
be presented in the next quarter. 
 

 
Figure 14: Architecture of the proposed 1D-CNN 

 
2.3 Conclusions 
In this quarter, different defect features were established to be used in an overall learning paradigm that 
leverages the best of Machine Learning based feature engineering algorithms, and Deep Learning based 
Convolutional Neural Networks (CNNs). A Multi Cross Entropy Analysis (MCEA) was conducted, and a 
Damage Index (DI) based on the similarity number was established to quantify the defect depths, and the 
number of corrosion defects. Also, Hilbert Transform (HT) analysis was conducted to establish another 
feature of interest. The multi-layer perception (MLP) classifier developed last quarter was further 
improved by training based on the data with different noise levels. It was seen that even at very high noise 
levels (such as SNR of 5), the performance of the networks was acceptable. Furthermore, a 1D-CNN 
network was proposed for characterization of corrosion defects, which currently is being fine-tuned. 
 
2.4 Future Work (Next Quarter) 
In the next Quarter, we plan to complete the characterization of corrosion pits by training a 1D-CNN 
network proposed above. Along with this, a feature-based machine learning algorithm will be developed 
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to characterize corrosion pits. The features studied till now will be used as inputs to these networks. A 
comparative study between Machine Learning and Deep Learning methods will be undertaken, with a view 
of creating an overall learning paradigm for the characterization and classification of corrosion pits in 
pipelines. On the experimental side, experiments will be undertaken with setups similar to the ones that 
have been simulated. Experimental data can validate the learning models and also be potentially used to 
further train the models. 
 
3. Task 3. Probabilistic capacity model development considering interactive anomalies 
3.1 Background and Objectives in the 3rd Quarter 
Background 
The inaccurate prediction of failure pressure capacity is one of the critical issues in risk management of 
pipeline systems, as it can impede the ability to achieve a target margin of safety. The burst failure 
mechanisms for corrosion and cracking defects are fundamentally different, and even more complex for 
interactive anomalies. With corrosion, the burst failure is a ductile failure due to plastic collapse; with 
cracking defect, the failure includes ductile failure (similar to corrosion) and brittle failure due to fracture. 
For a colony of closely spaced defects, the residual strength of a pipeline becomes much lower than an 
isolated defect due to the interaction among the adjacent defects.  
 
The limitations of existing work regarding the failure pressure predictions include the following: (1) 
numerous models are available, but no model is universally accepted; (2) the majority of the models were 
developed based on the concept of a factor of safety, thus, these models are deterministic and cannot be 
directly used in reliability analysis; and (3) numerous studies have shown that these models provide over-
conservative predictions for both corrosion and cracking-like defects, and the bias needs to be quantified 
and corrected. This Task 3 is aimed to address the limitations mentioned above, and it includes two 
subtasks: 

• Task 3a. Establishment of a failure pressure database  
• Task 3b. Probabilistic failure pressure model development 

 
Objectives in the 3rd Quarter 
The overall objective for Task 3a is to establish a database for three groups: isolated and colony of 
corrosion defects, isolated and colony of crack-like defects, and colony of corrosion and crack-like defects. 
The overall objective for Task 3b is to develop probabilistic failure pressure models for a pipeline with 
corrosion anomalies, crack-type anomalies, and interactive anomalies with different types. 
 
The objectives for Task 3 in the 3rd quarter are (1) to develop probabilistic burst pressure prediction models 
for pipeline with isolated corrosion defects and (2) to evaluate the prediction performance of the proposed 
models. 
 
3.2 Research Progress in the 3rd Quarter 
Proposed prediction models 
Based on the established database for pipelines with isolated corrosion defects, three probabilistic 
prediction models of failure pressure are developed corresponding to three levels of yield strength, sy, in 
order to reduce model errors. The three levels of yield strength are Level 1 - low strength (sy = [262 433] 
MPa), Level 2 - moderate strength (sy = (433 508] MPa), and Level 3 - high strength (sy = (508 802] 
MPa). For all three levels, the probabilistic failure pressure models follow the same formulation as: 

𝑌 = 𝜃i +j 𝜃$𝑦k$
4

$H(
+ 𝜎𝜀 (10) 

where Y = predicted failure pressure or a suitable transformation; θi = model parameters; 𝑦k$ = deterministic 
prediction from the existing prediction model Pi; and σε = model error in which σ is the standard deviation, 
assumed to be constant and ε is the standard normal random variable (normality assumption). When 
considering all the existing prediction models in Eq. (10) (i.e., m = 24), the model is a full model. Since 
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not all the terms contribute the model prediction, a model selection procedure is adopted to eliminate the 
ones that do not contribute statistically significantly. Note that the formulation of all the 24 existing 
models, Pi (i = 1…24) can be found in the 2nd Quarterly Report, and i refers to the second index of the 
model number in the 2nd Quarterly Report. 
 
Model Development 
Figure 15 shows the performance comparisons of the 24 existing prediction models at the three levels of 
sy, where the crosses refer to µres (mean of residuals), the horizontal lines refer to µres ± sres (standard 
deviation of residuals), and solid dots are the MSE (mean squared error) values. As shown in Figure 15, 
the performance of the existing models changes with different levels of yield strength. Therefore, to reduce 
the model error, the proposed models are developed for the three levels of yield strength leading to three 
models adopting the full model as shown in Eq. (10). Each model is assessed based on the data in the 
corresponding level. In particular, randomly selected 80% of the data (or called training data) from the 
established database reported in the 2nd Quarterly Report is used for the model development, while rest of 
the data (i.e., 20% of the data) is used later for validation purposes. 
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(a) Residuals – Level 1 

 
(b) Residuals – Level 2 

 
(c) Residuals – Level 3 

 
(d) MSE – All Levels 

� Level 1 ▫ Level 2 ° Level 3 
Figure 15: Comparison of residual and MSE of each model for three levels of σy 
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With the full model, an all possible subset model selection procedure is used to reduce the model size to 
determine the final formulation [4]. For a full model with a model size of 24, the size of the reduced model 
varies from 1 to 23. In all possible subset model selection, all possible combinations of predictors are 
evaluated for each model size (or subset) and the best model from that subset is identified. Then the best 
models from all the subsets are compared to determine the final model.  
 
To compare the model performance, this study uses three statistics measures: Akaike Information Criterion 
(AIC), Bayesian Information Criterion (BIC), and standard deviation of model error (s). Both AIC and 
BIC measures how well the model fits the data through log likelihood, log(L), with the consideration of 
the number of predictors used in the model, trading off the complexity of the model formulation with its 
accuracy. These two measures are calculated as below: 
𝐴𝐶𝐼 = 2𝑘 − 2 log(𝐿) (11) 
𝐵𝐶𝐼 = 2 log(𝑛)𝑘 − 2 log(𝐿) (12) 

where k = number of estimated parameters in the model, and n = number of data points. The less value of 
AIC or BIC is, the better performance the model has. The standard deviation of model errors, s, only 
measures the model accuracy; and the lower s is, the better the model is. 
 
For each subset (i.e., the possible models with the same model size), all the statistics measures advocate 
the same model as the best model. However, when comparing all the best models from all the subsets, 
these three statistics measures may suggest different models to be the most desirable one. Then engineering 
judgement has to be applied. Note that since in Eq. (10) each predictor is actually an existing deterministic 
model that may involve complex formulation already; thus, using number of predictors in the model as the 
measure of the model complexity in AIC and BIC oversimplified in this case. Consequently, the final 
model is determined by using engineering judgement for the complexity of the formula and using s for 
the accuracy in this study. 
 
Probabilistic models 
Regardless the yielding strength level, it is found that when model size goes up to 3 or more, s decreases 
insignificantly from model size of 2. This indicates that it is not beneficial to choose a model with model 
size larger than 2. 
 
Table 2 compares the model accuracy of model sizes 1 and 2 in terms of model error, s for three levels of 
yield strength of pipeline. As expected, s value of model size 2 is smaller the one for model size 1; 
however, when such decrease becomes marginally, increasing model size is not beneficial. Then, the final 
model is decided if increasing the model size does not result in substantial decrease in s. For instance, for 
Level 2, s value decreases from model size 1 to model size 2 by 7%; however, the improvement is not 
significant enough to make it worth the complexity of adding more parameters from the additional existing 
model formula.  
 

Table 2. Model selection 

Yield strength level Model 
size 

Existing models 
selected in Eq. (1) σ 

Level 1 1 P24 2.0139 
2 P9, P15 1.8781 

Level 2 1 P5 1.1995 
2 P1, P5 1.1149 

Level 3 1 P16 1.6998 
2 P7, P18 1.5132 
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Table 3 shows the final model formula of the three proposed models for the three yield strength levels, and 
the model parameter statistics. The existing models selected in the proposal formula are summarized 
below: 
 
Phan et al. Modified NG-18 (referring to P9 in this report and G1-9 in the 2nd Quarterly Report) 

𝑦ku =
2𝑡𝜎^
𝐷 w

1 − 0.92126z𝑑𝑡{

1 − 0.92126z𝑑𝑡{𝑀
9(
} (13) 

𝑀 = ~1+ 0.06361�
𝑙*

𝐷𝑡�
�
*.�����

 (13a) 

PCORRC (referring to P15 in this report and G3-15 in the 2nd Quarterly Report) 

𝑦k(� =
2𝑡𝜎^
𝐷

�1 −
𝑑
𝑡 �1 − 𝑒𝑥𝑝 �−0.157

𝑙
�𝑟(𝑡 − 𝑑)

��� (14) 

RSTRENG Effective Area (referring to P5 in this report and G1-5 in the 2nd Quarterly Report) 

𝑦k� =
2𝑡
𝐷
�𝜎� + 69[𝑀𝑃𝑎]� �

1 − 𝐴 𝐴i⁄
1 − (A 𝐴i⁄ )𝑀9(� (15) 

𝑀	 =

⎩
⎪
⎨

⎪
⎧�1 + 0.6275�

𝑙*

𝐷𝑡� − 0.003375�
𝑙*

𝐷𝑡�
*

, 𝑙* 𝐷𝑡⁄ ≤ 50

3.3 + 0.032�
𝑙*

𝐷𝑡�																																							 , 𝑙* 𝐷𝑡⁄ > 50

 (15a) 

Modified PCORRC (referring to P16 in this report and G3-16 in the 2nd Quarterly Report) 

𝑦k(� =
2𝑡(0.9𝜎^)

𝐷
�1 −

𝑑
𝑡 �1 − 𝑒𝑥𝑝 �−0.224

𝑙
�𝑟(𝑡 − 𝑑)

��� (16) 

where D: outside diameter of the pipe, r: outside radius of the pipe, t: wall thickness of the pipe, d: 
maximum depth of the corrosion defect, l: length of the corrosion defect, A: longitudinal area of metal loss, 
Ao: original uncorroded area of length l and thickness t, su: ultimate tensile strength of the pipe material, 
and M: folias or bulging factor. 
 

Table 3. Proposed models with parameter statistics 
Yield 

strength 
level 

Formula 
Model Parameters 

σ  θ0 θ1 θ2 
Mean Std Mean Std Mean Std 

Level 1 θ0 + θ1𝑦ku  + θ2𝑦k(� 0.2768 0.4508 -1.3288 0.2266 2.4006 0.2207 1.8781 
Level 2 θ0 + θ1𝑦k� 2.5728 0.3133 1.0009 0.0237 - - 1.1995 
Level 3 θ0 + θ1𝑦k(� 1.8711 0.4859 1.1597 0.0275 - - 1.6998 
 
Model performance evaluation 
Figure 16 provides the scatter plots of the prediction of the proposed model, 𝑌  vs. the observed data, Y that 
is the 80% data used for the model development. If the prediction is perfect, the dots should line up on the 
1:1 line, shown as the solid line. The dashed lines are the mean ± 1 standard deviation of the model error. 
Figure 16 shows that the dots are evenly scatter around the 1:1 line, indicating that the developed model 
provides the unbiased prediction. The scatter of the dots indicates the accuracy of the model. For example, 
the plot for Level 3 shown in Figure 16(c) shows a larger scatter compared to the other levels shown in 
Figures 16(a) and 16(b).  
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(a) Level 1 

 
(b) Level 2 

 
(c) Level 3 

Figure 16: Scatter plots of the prediction of proposed model vs. the observed data (80% of 
data)   

 
To evaluate the proposed model, Figure 17 shows the scatter plots of the prediction of the proposed model 
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𝑌  vs. the observed data, Y using the validation data (i.e., 20% of the data). The figure displays that the 
majority of the proposed model predictions using the validation data are within the mean ± 1 standard 
deviation of the model error, which validate the proposed model predication. In addition, the scatter plots 
of the prediction of the best existing models are compared with the proposed models in Figure 17. Note 
that the best existing model for each level of yield strength is the one with the lowest MSE value using the 
training data. It is found that the best existing models are P19, P15, and P7 for Level 1, Level 2 and Level 
3, respectively. As shown in Figure 3, the scatter plots of the best existing models also show that the dots 
are evenly scatter around the 1:1 line indicating that the best existing models can provide a certain degree 
of unbiased failure prediction. However, the scatter of the points based on the best existing models are 
slightly larger than the proposed models. This indicates that the proposed model improves the accuracy 
from the existing models. 
 
In addition, Figure 15 also shows the performance of the proposed models at the three levels of sy, 
compared with the existing models. A shown in Figure 15, regardless the levels, the proposed models are 
unbiased and have the lowest MSE. Note that the best existing models (i.e., P19, P15, and P7 corresponding 
to the Levels 1, 2, and 3) are not necessarily selected in the proposed models.  
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(a) Level 1 

 
(b) Level 2 

 
(c) Level 3 

Figure 17: Scatter plots of the prediction of proposed model and best existing model vs. 
the validation data (20% of data) 
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Reliability analysis 
Failure of a pipe generally designates the event that the pipe integrity does not satisfy a specific set of 
functional requirements. Failure can consist of a complicated sequence of unfortunate events such as an 
external impact or loss of pipe integrity. There are different types of failure modes. In engineering design, 
the failure mode distinction is typically made based on different categories of design criteria, which are 
frequently referred to as limit states. The common categories for these limit state functions are 
Serviceability Limit State (SLS), the Ultimate Limit State (ULS) and the Fatigue Limit State (FLS) [5]. 
The probability failure, Pf, can be assessed through conducting the reliability analysis such as Monte Carlo 
simulations and First/Seconds Order Reliability Methods (FORM/SORM).  
 
The probability of failure, Pf, can be written as: 

𝑃¡ = ¢ 𝑓(𝑿)𝑑𝐗
.

¡¦$§^S¨	
©ª4¦$P

 
(17) 

where f(X) is the joint probability density function of a vector of random variables, X. The failure domain 
is formulated using the limit-state function, g(X); thus, failure domain is defined as g(X) £ 0. In this study, 
failure is defined as occurring when the operating pressure of the pipe exceeds the burst pressure of the 
pipe; accordingly, the limit-state function is written as follow: 
𝑔(𝐗) = 𝑃¬ − 𝐷­ (18) 

where Pb is the estimated failure pressure or burst pressure of the corroded pipe, and Dp is the operating 
pressure of the pipe. In practice, engineering adopts reliability index as performance evaluation, and a 
generalized reliability index is defined as [6]: 
𝛽 = Φ9(�1 − 𝑃¡� (19) 

where F refers to cumulative distribution function of standard normal distribution. 
 
The random variables used in the reliability analysis and their distribution information are listed in Table 
4. Note that to have a fair comparison of the proposed models and the best existing models, the model 
errors of the best existing models are evaluated using the available database and are included in the 
reliability analysis. Table 4 indicates that the best existing models are slightly biased and have larger model 
errors compared to the proposed models. 
 

Table 4. Distribution parameters of random variables used in the reliability analysis 
  
  Level 1 Level 2 Level 3 

Random variable Distribu-
tion COV (%) Mean Std Mean Std Mean Std 

Outside diameter of pipe, D (mm) Normal 5 324 16.2 324 16.2 324 16.2 
Nominal wall thickness, t (mm) Normal 5 6 0.3 6 0.3 6 0.3 

Defect depth, d (mm) Normal 5 - - - - - - 
Defect length, l (mm) Normal 5 - - - - - - 

Yield strength, sy (MPa) Normal 3 357 10.71 452 13.56 589 17.67 
Ultimate strength, su (MPa) Normal 3 458 13.74 542 16.26 731 21.93 

Operating Pressure, Dp (MPa) Normal 5 7.61 0.38 9.64 0.48 12.57 0.63 
Model error in the proposed model, 

(σε)p Normal - 0 1.88 0 1.20 0 1.70 

Model error in the best exisiting 
model, (σε)b Normal - 0.90 2.41 0.61 1.42 0.24 1.87 

 
To evaluate the impact of the proposed models on the assessment of corroded pipelines burst pressure, 
Figure 18 compares the reliability index of the proposed models and the best existing models for the three 
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levels of yield strength for various levels of corrosion depths and lengths. As expected, the reliability index 
decreases with the increase of the defect depth on the pipe. The figure also indicates that for long defect 
length l = 350 mm, the reliability index is lower than the one for short defect length l = 100 mm. This 
result shows that both the length and depth of defects have a critical impact on the integrity of pipeline. 
 
In addition, Figure 18 shows that overall the proposed models have a lower reliability index compared to 
the best existing models, indicating that the proposed models are more conservative. For example, for level 
1 Figure 18(a) shows that for a defect depth of 50% of wall thickness and a defect length of 100 mm the 
reliability index of the proposed model and best existing model are about 3.3 and 5.2 respectively. In this 
case, using the best existing model may cause delay of the pipeline maintenance and repair, which may 
lead to unexpected pipeline failure with tremendous consequences (both economically and 
environmentally). However, for Level 2 Figure 18(b) shows that the proposed model can be more 
conservative than the best existing model for a long defect length (l = 350 mm) after the defect depth 
reaches about 35 % of the wall thickness. Furthermore, the rate of reliability decrease based on the 
proposed model is smaller than the best existing models for all three levels. Overall, one can conclude the 
prediction model plays a critical role in determining the reliability performance of corroded pipelines. 
  



 

22 

 
(a) Level 1 

 
(b) Level 2 

 
(c) Level 3 

Figure 18: Defect depth-dependent reliability index based on the proposed models and best existing 
models 

 
3.3 Future Work (Next Quarter) 
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In the next Quarter, the research team will continue working on Task 3. In Task 3a, currently we have 
started collecting the colony defect database from literature review. The FE model will be extended from 
isolated corrosion defect to colony corrosion defect, and additional data from the numerical analysis will 
be generated to be added to the database. In Task 3b, the research team will evaluate the prediction 
performance of existing prediction models based on the collected data. 
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