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Business and Activity Section 

 

(a) Contract Activity  

 

No contract modification was made or proposed in this quarterly period. No materials were 

purchased during this quarterly period. 

 

(b) Status Update of Past Quarter Activities  

 

(c) Cost Share Activity 

 

PI Zhang used his effort as the 20% in-kind cost share to work on the project at the Colorado 

School of Mines. Co-PI Yiming Deng used effort as the 20% in-kind cost share to work on the 

project at the Michigan State University. The cost share was used following the approved 

proposal and no modification was made. 

 

(d) Performed Research: Developing and Evaluating New Methods for Low-Variance 

Interacting Threats Assessment 

 

1. Progress on Task 3 

 

1.1. Complex Crack/Corrosion Geometry Design 

 

Although defect of regular shape is being extensively studied and presented in the previous 

report, it suffers from the limitation that the overall inspection performance in our simulation is 
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usually “too good” to do reliablity assessment since no topological variance or uncertainty is 

considered. This is a particular problem if the design of corrosion/crack geometry deviate from 

real scenarios. In COMSOL multiphysics, such design has been limited to regular 3D form or 

irregular 2D surface. 

 

 

 
 

Figure 1: Overview of schematic crack design 

 

 

 
(a) (b) 

  

Figure 2: (a) Overview of crack geometry (b) Mesh plot of crack 

 

The MATLAB-COMSOL link provides  a possibility to demonstrate complex design with 

respect to topological irregularities, such as the insertion of zigzag opening at any place on top of 
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or inside the solid material. Topological sensitivity analysis, which originated from the classical 

shape information can be derived if we continue to simplify the model, generating sufficent data. 

Note that there are functions provided by COMSOL that could help us with the physics 

definition are limited. To construct irregular-shaped corrosion/crack geometry, actual values 

should be specified along x and y directions. Sources of crack/corrosion images can be found 

online where intensity value of each pixel could help us with estimating approximate shape. As 

the plot showing the Interpolation function of the imported file. The color bar values represent 

the depth of the crack/corrosion. To get a better representation, the Maximum number of 

knots and tolerance should be chosen wisely. For example, when knots number equals 100, this 

means that the specified area will be divided at most 100 pieces in both x and y directions, thus 

creating limited patches. The more knots that are allowed, the more flexibility is given to adjust 

the patches to the given z expression, thereby improving the chances of achieving a tighter 

relative tolerance. On the other hand, when relative tolerance is setup, the algorithm starts by 

dividing the whole area into a smaller number of patches and then increasing the number of 

patches where the error is large which lead to longer processing time as geometry become more 

complex. 

 

  

(a) Magnetic field 𝐵𝑥 in [T] (b) Magnetic field 𝐵𝑦 in [T] 

  

(c) Magnetic field 𝐵𝑧 in [T] (d) Magnetic field 𝐵𝑛𝑜𝑟𝑚 in [T] 
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1.2. Machine Learning Algorithms for Data Analysis 

 

Here from the simulated data obtained from COMSOL we have extracted features. We have 

analyzed the features to understand the significant ones and at first perform regression to 

estimate the crack width. Here for regression we have considered various methods such as 

multiple linear regression, Polynomial regression, Support vector regression (SVR), Random 

Forest (RF) regression, Decision Tree regression (DT) and Artificial neural network (ANN) 

regression. Then we have evaluated the algorithms by the metrics such as R squared and 

Adjusted R squared metrices. Thus, here the crack width is the dependent variable which 

depends upon the various independent features (here 4). As the data acquisition from MFL 

inspection is not a burdensome method, hence the offline analysis and defect size reconstruction 

requires more sophisticated methods as the full reconstruction of a flaw is rarely possible. Hence 

here the degree of reliability comes into question. As the obtained features are nothing but 

various magnetic field values hence a mapping of magnetic fields onto flaw geometry results in a 

inverse problem. Here regression maps the crack width with different extracted features as the 

problem of mapping the MFL signal onto actual defect size is a regression problem. Different 

types of machine learning are considered and in the learning process the network is set up by 

minimizing the difference between the output of the artificial defects 𝑦𝑝𝑟𝑒𝑑 to their true values 

𝑦𝑡𝑟𝑢𝑒. For the prediction the signal of an unknown defect is fed into the network and the output 

delivers an estimated defect size. Based on the various metrices discussed later we then evaluate 

the efficacy of different algorithms.  Here we have done random train test split of the samples 

with 20% of the random data in the test set. Thus, if we have 41 data samples then test data 

contains 9 samples and the rest data going to train set. Here 4 features are independent while the 

crack width is the dependent feature to regress.  

 

At first, we have applied regression by multiple linear regression. We have applied multiple 

linear as there are a number of variables upon which the crack width (y) depends. Here y is 

dependent on the features 𝑥1, … , 𝑥4 in a linear fashion. We have used the scikit learn api for 

applying the various regressors. From scikit learn we have imported the LinearRegression model 

and thereby applied regression by randomly portioning the data into train and test set. After 

applying the linear regression, the below table shows how close the predicted values are to the 

true ones. Here the precision is considered up to two places of decimals.  

 

Table 1: Predicted and true defect widths. (dimensions are in mm) 

𝒚𝒑𝒓𝒆𝒅 𝒚𝒕𝒓𝒖𝒆 

6.7 7 

9.04 9 

7.81 7.80 

2.8 2.8 

3.96 4 

8.28 8.2 

7.26 7.4 

4.17 4.2 

9.23 9.2 

 



5 

 

 

Next, we have plotted the result of the true and predicted crack width against different features to 

show how accurate the results are. 

 

 
 

Figure 3: Predicted vs True values against different features 

From the plots we can see the predicted values superimpose on the true values for all the 

features. The summary of the regressor shows the significant features based on the p values and 

the evaluated metrics like R-squared and multiple R-squared for the efficacy. 

 

Call: 

lm(formula = Crack_width ~ ., data = training_set) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-0.12502 -0.05088 -0.01103  0.02207  0.25650  

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)   3.09982    1.62414   1.909 0.066998 .   

ï..Feature_1   1.67992    0.09148  18.364  < 2e-16 *** 

Feature_2     -0.34939    0.16190  -2.158 0.039976 *   

Feature_3      4.80417    1.06924   4.493 0.000119 *** 
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Feature_4    144.94063    5.82169  24.897  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.08787 on 27 degrees of freedom 

Multiple R-squared:  0.9989, Adjusted R-squared:  0.9988  

F-statistic:  6398 on 4 and 27 DF,  p-value: < 2.2e-16 

 

Figure 4: Accuracy and the significant features based on p values 

 

The P value and the significance value tells us the statistical significance of the dependent 

variables on the independent ones. From the significance column in the above figure it is clear 

that the feature 2 does not have so much significance as the other ones and hence do not affect 

the regression as other features and hence it’s a redundant feature and can be omitted. Lower the 

p value more statistically significant that variable is. Feature 2 has significance between 1% and 

5% and thus can be removed.  

 

The metric R squared is given by: 

𝑆𝑆𝑟𝑒𝑠 = ∑(𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑)
2
 

𝑆𝑆𝑡𝑜𝑡 = ∑(𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑎𝑣𝑔)
2
 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
 

 

More the R value is close to 1, more accurate our result is. The accuracy score here is 0.9973 

Next, we have applied polynomial regression on the same data set. To apply polynomial 

regression we have imported the PolynomialFeatures module from scikitlearn and then have 

implemented with degrees of freedom as 8. The below graph shows why the polynomial 

regression model is better than linear regression as it fits the data well. 

  

 
 

Figure 5: Comparison of linear vs polynomial regression 
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From the above figure it shows that the blue curve (obtained from regression) fits well with the 

red values (true ones) for polynomial regression. The table showing the true and predicted crack 

widths are as follows: 

 

Table 2:  Predicted and true defect widths. (dimensions are in mm) 

𝒚𝒑𝒓𝒆𝒅 𝒚𝒕𝒓𝒖𝒆 

7 7 

9 9 

7.8 7.80 

2.8 2.8 

4 4 

8.2 8.2 

7.4 7.4 

4.2 4.2 

9.2 9.2 

 

Next, we have plotted the predicted vs true values for different features using polynomial 

regression to show how accurate this algorithm is. From the below figures we can see that the 

predicted values superimpose on the true values on all the cases thus making the R score as 0.999 

which is almost 1. 

 

 
 

Figure 6: Predicted vs True values against different features 
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Next, we have implemented Random Forest for regression as it is one of the most powerful and 

accurate regression methodologies for nonlinear problems. However, the number of tress are to 

be chosen wisely. The RandomForestRegressor module is imported from scikit learn and is 

applied with number of estimators as 10. On applying regression on the entire dataset the below 

figure shows the blue line (predicted one) is close to the red (true one) for random forest 

regression. 

 
Figure 7: Random forest regression fitting the data 

The table showing the true and predicted crack widths are as follows: 

 

Table 3:  Predicted and true defect widths. (dimensions are in mm) 

𝒚𝒑𝒓𝒆𝒅 𝒚𝒕𝒓𝒖𝒆 

6.96 7 

8.82 9 

7.64 7.80 

2.84 2.8 

3.76 4 

8.22 8.2 

7.44 7.4 

4.24 4.2 

9.46 9.2 

 

Next, we have plotted the predicted vs true values for different features using random forest 

regression to show how accurate this algorithm is. From the below figures we can see that the 

predicted values are close to the true values not superimpose though, thus making the R score as 

0.9957. 
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Figure 8: Predicted vs True values against different features 

Next, we have implemented Decision Tree for regression. Here the criterion is the mean square 

error (mse) and the DecisonTreeRegressor model is imported from scikit learn. From the below 

figure it is clear that the random forest fits the data well than the decision tree regressor. 

 

 
Figure 9: Decision Tree regression fitting the data 

Next the table showing the true and predicted values are shown below. 
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Table 4:  Predicted and true defect widths. (dimensions are in mm) 

𝒚𝒑𝒓𝒆𝒅 𝒚𝒕𝒓𝒖𝒆 

6.8 7 

8.8 9 

8 7.80 

2.6 2.8 

3.8 4 

8 8.2 

7.2 7.4 

4.4 4.2 

9.4 9.2 

 

Next, we have plotted the predicted vs true values for different features using decision tree 

regression to show how accurate this algorithm is. From the below figures we can see that the 

predicted values are close to the true values not superimpose though, thus making the R score as 

0.9918. 

 

 
 

Figure 10: Predicted vs True values against different features 

Next, we have implemented Support Vector for regression. Here as it is mandatory to perform 

feature scaling before proceeding with the regression hence, we have imported the 
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StandardScalar function to perform standardization. Thus, on the standardized data we have 

perform the regression. Here in SVR we have used radial basis function (rbf) as the kernel.  

The below plot shows the closeness of the predicted values against the true ones for a certain 

feature. 

 

Figure 11:  SVR regression fitting the data 

Next the table showing the true and predicted values are shown below. 

 

Table 5:  Predicted and true defect widths. (dimensions are in mm) 

𝒚𝒑𝒓𝒆𝒅 𝒚𝒕𝒓𝒖𝒆 

7.1 7 

8.85 9 

7.72 7.80 

2.87 2.8 

3.9 4 

8 8.2 

7.49 7.4 

3.88 4.2 

9.08 9.2 

 

 

Next, we have plotted the predicted vs true values for different features using SVR regression to 

show how accurate this algorithm is. From the below figures we can see that the predicted values 

are close to the true values not superimpose though, thus making the R score as 0.9950. 
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Figure 12: Predicted vs True values against different features 

Next, we have implemented Artificial Neural Network (ANN) for regression. We have used 

TensorFlow for implementing the ANN. Like in the below figure our model consists of three 

simple layers with one input layer containing 4 features, then 2 hidden layers with each layer 

containing 6 neurons and finally the output layer containing the regressed crack width as output. 

The activation used in the hidden layers is relu. 

 

 
 

Figure 13:Model of the designed ANN 

Now since it is a regression problem, hence for output we don’t have to use any activation. 

Otherwise if it’s a classification problem, then either we have to use softmax (for multi class) or 

sigmoid (for binary classification) activation functions. For back propagation we are using adam 
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optimizer with mean square error as the performance metric. We have run it for 4000 epochs 

with a batch size of 32 as our model is a simple one with each epoch taking only 31𝜇𝑠. Below 

figure shows how the loss has converged with the passage of each epoch. 

 

 
Figure 14: Loss vs epochs 

Next the table shows the true and predicted values as obtained for the test set after training by the 

ANN. 

 

Table 6:  Predicted and true defect widths. (dimensions are in mm) 

𝒚𝒑𝒓𝒆𝒅 𝒚𝒕𝒓𝒖𝒆 

7.18 7 

8.99 9 

8.07 7.80 

2.81 2.8 

4.02 4 

8.37 8.2 

7.78 7.4 

4.23 4.2 

9.15 9.2 

 

Next, we have plotted the predicted vs true values for different features using ANN regression to 

show how accurate this algorithm is. From the below figures we can see that the predicted values 

are close to the true values not superimpose though, thus making the R score as 0.9936. 
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Figure 15:  Predicted vs True values against different features 

 

 
 

The above figure shows the bar plot of Rsquare against various regression models. Here the data 

in the training set was only 32 and in the test set was only 9. As ANN is a data hungry network 
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hence it needs lots of data. In future we will provide lots of data from the simulations obtained 

from COMSOL and feed into these models. 

  

Classification into defect and non-defect classes: Here for classification we have 58 features 

and 200 samples. The train test split is done in a random way such that the train class contains 

150 samples and test set 50 samples. Here 5 mm crack size is considered as the threshold by 

observing various literatures. Hence, we have to classify the defects here into two classes: ones 

above the 5 mm as defects and the rest as non-defects. Here for classification we have considered 

various datasets 1> the dataset not contaminated with noise. 2> dataset having SNR as 3> dataset 

containing SNR as i.e highly contaminated with noise. Classification is done by various machine 

learning algorithms Logistic Regression, SVM with linear and rbf kernel, Decision Tree, 

Random Forest and Naïve Bayes classifiers where we have applied those classifiers on the 

original dataset as well as the dataset obtained after obtaining PCA(Principal component 

analysis).  

 

By applying the XGBoost gradient boosting library the important features are shown in below 

figure based on F score which shows the below three features carrying most information. 

 
Figure 16: Features importance based on F score 

 

Description of conducted analysis: As stated before here three type of datasets are considered 

to test the classification results. The PCA is used as the dimension reduction technique and 

thereby 5PC and 10PC directions are used as extracted features for two different datasets. The 

LDA is also used here as a dimension reduction technique. Different classifiers are then 

implemented on the dimension reduced data (5PCs and 10PCs) and the original data. In k-

Nearest Neighbor, the number of neighbors is allowed to vary, and the optimal value ok k is 

thereby chosen based on its performance on the test dataset. Then SVM, RF, Bayesian, decision 

tree, logistic regression classifiers are applied on the training dataset. The error rate and the 

performance metric are thereby evaluated on the test data set. 
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At first, we have used Logistic regression as the classifier. Only one out of 50 has been 

misclassified as the data is noiseless here. The error-rate is given as: 

 

errorrate =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 − ∑ 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

 

Hence by applying logistic regression the error-rate is 0.02 and the confusion matrix is obtained 

as:  

 

Confusion matrix by LR=   

 

 

 

PCA is then implemented to reduce the dimension of data. The below figure shows the PCA 

based 2-dimensional dataset with red as (class 0) and dark green as (class 1).  

 
Figure 17:  PCA based reduced 2-dimensional data set with colors red (label 1), and dark green 

(label 2) 

Next in the bar plot, the contribution of different features in the first 2 major PC directions are 

shown. In the first PC direction, most features have a positive effect. But for the next PC 

direction, the positive and negative contributions look balanced. 

 

 0th label 1st label 

0Th label 23 0 

1st   label 1 26 
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Figure 18: Bar plot showing the contributions of different features in the first 2 major PC 

directions. 

Next we have applied KNN (K-Nearest Neighbor) classifier on both the original and reduced 

dataset. 

 

The below figure shows the test error when the number of neighbors (k) is varied. From the 

below figure it is evident that changing value of k has no effect on the test error as it already 

minimized. On the original data set applying knn with number of neighbors as 1 gives the error 

rate as 0.02 whereas applying the same on the 5PC and 10 PC directions give error rate as 0. 
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Figure 19: Test error vs the number of neighbors 

 

Confusion matrix by KNN on original data set = 

 

 0th label 1st label 

0Th label 23 0 

1st   label 1 26 

 

Next, we have applied SVM using both linear and rbf kernel for classification. We have 

allowed the cost parameter of the SVM to vary between 0.5 to 5. However, the below figure 

shows that the training error and test error for all the cost parameters for this dataset is the least. 

Hence there is no effect of cost parameter in this dataset, as this dataset is already overfit due to 

the absence of noise. 
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Figure 20: SVM against different cost functions. 

The error rate here is 0.02 and the confusion matrix is same as given by:  

  

 0th label 1st label 

0Th label 23 0 

1st   label 1 26 

 

Next by applying Decision Tree, Random Forest, Naïve Bayes we achieved the error rate as 0 

and the confusion matrix as:  

 

 0th label 1st label 

0Th label 23 0 

1st   label 0 27 

 

 

Next on the noisy dataset we have applied the classification. Here we have classified into three 

groups: crack size of width ranging from 1 to 3 mm as benign or class 0, crack size of width 4 to 

6 mm as class 1 or can be detrimental, crack size above 6 mm as class 2 or need immediate 

attention. 

 

As before at first, we have applied Logistic regression for classification into three classes. Here 

we obtained an error rate of 0.12. The confusion matrix obtained is: 

 

 0th class 1st class 2nd class 

0th class 14 0 0 

1st class 6 8 0 

2nd class 0 0 22 
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The same error rate and confusion matrix is obtained by applying Naïve Bayes classification. 

PCA is then implemented to reduce the dimension of data. The below figure shows the PCA 

based 2-dimensional dataset with red as (class 0) and dark green as (class 1) and yellow as (class 

2). From the below plot it is evident that there is substantial overlap between the classes 

particularly in lower dimensions. Hence, it is better to take a large number of principal 

component (PC) directions instead of 2 or 3 PCs. 

 

 
Figure 21: PCA based reduced 2-dimensional data set with colors red (label 1), dark green 

(label 2) and yellow (label3) 

Next, we have applied KNN (K-Nearest Neighbor) classifier on both the original and reduced 

dataset. 

 

The below figure shows the test error when the number of neighbors (k) is varied. Below figure 

shows applying KNN on original dataset gives a minimum test error of 0.02, whereas for the 

reduced datasets obtained by 5 PC and 10 PC the test error is always 0. 
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Figure 22: Test error vs the number of neighbors 

Hence by applying KNN on the original dataset the error rate is 0.02 and the confusion matrix is: 

 

 0th class 1st class 2nd class 

0th class 14 0 0 

1st class 1 16 0 

2nd class 0 0 19 

 

Next, we have applied SVM using both linear and rbf kernel for classification. We have 

allowed the cost parameter of the SVM to vary between 0.5 to 5. From the figure it is clear that 

at cost parameter at 2, the minimum classification error of 0.8 is obtained on the original dataset. 
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Figure 23: cost function in SVM 

 

Thus, by applying SVM the error rate in classification is 0.08 with confusion matrix as: 

 

 0th class 1st class 2nd class 

0th class 10 0 0 

1st class 4 17 0 

2nd class 0 0 19 

 

Similarly, by applying Random forest we have achieved an error rate of 0.8, whereas by applying 

decision tree the error rate increase to 0.12. 

 

Finally, we have plotted all the error rates obtained from both the datasets by various classifiers. 

From the bar plot it is evident that with the increase in classes and noise in data the error rate 

increases. 
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Figure 24: Bar plot showing error rate for various classifiers and various design of datasets 

 

2. Progress on Task 4 

 

2.1. Overview 

 

This task focuses on developing a deep graph learning model for predictive interacting threat 

assessment. Predication is critical for pipeline operators to estimate threat evolution and the trend 

of pipeline integrity and perform necessary early intervention in order to prevent disastrous 

failures. Prediction typically requires the modeling and integration of a history of temporal data 

(e.g., conventionally, through trending). Recently, deep learning has shown significant potential 

for time series prediction. Especially, the notable success of deep spatial temporal graph neural 

network (ST-GNN) as proven their capability on many time-dependent predictions tasks. ST-

GNN is a class of artificial neural network where connections between units form a directed 

graph along a sequence to encode dynamic temporal behavior for a time sequence. Although ST-

GNN could be a great solution for predicting an individual pipe threat, they are unable to predict 

interacting threats, due to their lack of the capability to model the interactions between 

interacting threats 

 

A key novelty in this project is a deep graph learning model that systematically embeds a 

spatiotemporal graph representation under ST-GNN framework to provide the new predictive 

ability to prognose interacting threats. Our approach adopts a graph to model the interaction 

between the interacting threats. To incorporate time and model the evolution of the interacting 

threats, a spatiotemporal graph is adopted, where the nodes of the graph represent the pipe 

threats, and the edges represent their spatiotemporal relationships. Then, based on the 

spatiotemporal structure of the graph, a ST-GNN is automatically constructed to perform 
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predictive assessment (e.g., to predict the Probability of Failure (POF) and Remaining Useful 

Life (RUL)).  

 

Figure 25 shows our deep graph learning representation for interacting threat prediction, where 

an example of the interacting threat prediction problem is shown at the bottom, its 

spatiotemporal graph representation is shown at the top. 

 

 
 

Figure 25: Our deep graph learning representation for interacting threat prediction 

 

Given the spatial temporal graph representation of interacting threat prediction, we employ ST-

GNN to do spatial temporal convolution with the representations, the ST-GNN model is shown 

in Figure 26. The overall process includes three steps, including spatial graph convolution, 

temporal graph convolution and the fusion of both spatial-temporal convolutions. 

 

 
 

Figure 26: Spatial-temporal GNN convolution 
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2.2. Approach Details 

 

2.2.1 Modeling Interacting Threats with Graphs 

 

We model the interaction of threats at a time point as a spatial graph, where each node models a 

threat, and an edge connecting two nodes models the relationship of the pair of threats (e.g., their 

geometrical distance and/or relative orientation). Then, this spatial graph is unrolled in time to 

model the temporal evolution of these interacting threats, resulting in a spatiotemporal graph. 

The spatiotemporal graph can be denoted as 𝒢 = (𝒱, ℰ𝑆, ℰ𝑇), in which the spatial graph (𝒱, ℰ𝑆) 

unrolls over time through edges ℰ𝑇. Figure 27 illustrates an example of using a spatiotemporal 

graph to model the interacting threats consisting of two corrosion threats and a crack. In the 

unrolled spatiotemporal graph, the nodes at a given time step 𝑡 are connected with an undirected 

spatial edge 𝑒 to model the threat interaction, and the nodes at adjacent time steps are connected 

with an undirected temporal edge to model threat evolution. 

 

 
 

Figure 27: Spatiotemporal graph for interacting threat modeling 

 

2.2.2 Problem Formulation 

 

Given a spatiotemporal graph, with the feature vectors associated with the nodes 𝑥𝑣
𝑡  and edges  

𝑥𝑒
𝑡  as the input, the goal is to predict values of the output nodes  𝑦𝑣

𝑡 at each time step 𝑡. In 

interacting threat prediction, the node features can be the learned representation vectors and/or 

threat characterization results (from Task 3), and the edge features can be the geometrical 

distance and/or relative orientation; the output nodes can be POF. The value of the output nodes  

𝑦𝑣
𝑡 is determined by both the nodes and their interactions in all the history.  

 

Formally, given 𝐗𝐭 = {𝐗𝐯
𝐭 , 𝐗𝐞

𝐭 } where 𝐗𝐯
𝐭 = [𝒙𝒗𝟏

𝒕 , 𝒙𝒗𝟐
𝒕 , … , 𝒙𝒗𝒏

𝒕 ] and  𝐗𝐞
𝐭 = [𝒙𝒆𝟏

𝒕 , 𝒙𝒆𝟐
𝒕 , … , 𝒙𝒆𝒎

𝒕 ], 
where N is the number of nodes and m is the number of edges, t is the time step, we aim to 

predict POF or RUL of nodes represented by 𝐘𝐯
𝐭 = [𝒚𝟏

𝒕 , 𝒚𝟐
𝒕 , … , 𝒚𝒏

𝒕 ]. Our spatial temporal 

prediction model is formulated as P(𝐘𝐭+𝐤|𝐗𝐭, 𝐗𝐭−𝟏, … , 𝐗𝟏), where k denotes k time steps in the 

future. 

 

In order to predict POF of interacting threats denoted as nodes, we design the spatial-temporal 

graph neural network as shown in Figure 28. 
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Figure 28: The architecture of the spatial-temporal graph neural network 

 

Different time series: wince different times of evolution of interacting threats may have 

different influence POF, we use three different time sequences Xh, 𝑋𝑑, 𝑋𝑤 for the prediction, 

where 𝑋ℎ = {𝐗𝐭−𝐓𝐡 , … , 𝐗𝐭−𝟏, 𝐗𝐭} denoting a segment of one hour historical time series directly 

adjacent to the predicting time. Similarly, 𝑋𝑑 = {𝐗𝐭−𝐓𝒅 , … , 𝐗𝐭−𝟏, 𝐗𝐭} and 𝑋𝑤 =
{𝐗𝐭−𝐓𝐰 , … , 𝐗𝐭−𝟏, 𝐗𝐭} denote one day and one week historical time series directly adjacent to the 

predicting time. 

 

SAtt and Tatt: we also apply attention mechanism in our model to capture the dynamic spatial 

and temporal correlations on interacting threats. In spatial dimension, the interacting threats of 

different locations have influence among each other and the mutual influence is variant, we use 

an attention mechanism to adaptively capture the correlations between nodes in the spatial 

dimension. Formally, the spatial attention matrix Sh for Xh is defined as follows: 

 

𝐒𝐡 = 𝐕 𝛔((𝐗𝐡
(𝐫−𝟏)

𝐖𝟏)𝐖𝟐(𝐗𝐡
(𝐫−𝟏)

𝐖𝟑)
𝐓

+ 𝐛𝐬) 

 

where 𝐗𝐡
(𝐫−𝟏)

 denotes the r-th spatial-temporal block in the network (Figure 4, ST block), 𝛔 

denotes the sigmoid activation function that is used to add nonlinearity into the model and 

𝐕, 𝐖𝟏, 𝐖𝟐, 𝐖𝟑, 𝐛𝐬 are all learnable parameters. In order to normalize the attention matrix 𝐒𝐡, we 

further apply SoftMax function to ensure each row in 𝐒𝐡 adding up to 1. Like 𝐒𝒅 and 𝐒𝒘. 
The attention matrix 𝐒𝐡 is dynamically computed according to the current input of this layer. The 

value of an element 𝐒𝐢,𝐣 in 𝐒𝐡 semantically represents the correlation strength between node i and 

node j.  
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In temporal dimension, there exist correlations between the interacting threats in different time 

slices, and the correlations are also varying in different situations. Similar to the spatial 

dimension, we formulate the temporal attention matrix as follows: 

 

𝐄𝐡 = 𝐙 𝛔((𝐗𝐡
(𝐫−𝟏)

𝐔𝟏)𝑼𝟐(𝐗𝐡
(𝐫−𝟏)

𝐔𝟑)
𝐓

+ 𝐛𝐞) 

 

where 𝐙, 𝐔𝟏, 𝐔𝟐, 𝐔𝟑, 𝐛𝐞 are all learnable parameters. 

 

GCN+Conv: the spatial-temporal attention module let the network automatically pay relatively 

more attention on valuable information. The input adjusted by the attention mechanism is fed 

into the spatial-temporal convolution module, whose structure is presented in figure 2. The 

spatial-temporal convolution module proposed here consists of a graph convolution in the spatial 

dimension, capturing spatial dependencies from neighborhood and a convolution along the 

temporal dimension, exploiting temporal dependencies from nearby times. In spatial 

convolution, we use spectral graph convolution to extract structural features of spatial graph, 

which is defined as follows: 

 

gθ ∗𝐺  x = gθ(𝑳)𝑥 = gθ(𝑼𝝀𝑼𝑻)𝑥 =  Ugθ(𝝀)𝑼𝑻𝑥 

 

Where ∗𝐺 denotes a graph convolution operation, 𝑔𝜃 denotes a convolutional kernel function, L 

is the Laplacian matrix that is defined as𝐋 = 𝐃 − 𝐀 =  𝑼𝝀𝑼𝑻 with degree matrix D and adjacent 

matrix A, a diagonal matrix 𝝀, and 𝑼 being the Fourier basis obtained from eigenvalue 

decomposition.  

 

After the graph convolution operations having captured neighboring information for each node 

on the graph in the spatial dimension, a standard convolution layer in the temporal dimension is 

further stacked to update the signal of a node by merging the information at the neighboring time 

slice. Take the operation on the rth layer in the recent component as an example: 

 

Xℎ
(𝑟)

= 𝑅𝑒𝐿𝑈(Φ ∗ (ReLU(gθ ∗𝐺  x))) 

 

where ∗ denotes a standard convolution operation, Φ is the parameters of the temporal dimension 

convolution kernel, and the activation function is ReLU. 

 

FC: denotes fully connected layer. A fully connected layer is appended to make sure the output 

of each component has the same dimension and shape with the prediction target. The final fully 

connected layer uses ReLU as the activation function. 

 

Fusion: the fusion stage is used to combine the outputs obtained from three sub-network for 𝐗𝐡, 

𝐗𝐝, 𝐗𝐰. The definition is as follows: 

 

𝒀̂ = 𝐖𝐡 ∘ 𝒀𝒉 + 𝐖𝐝 ∘ 𝒀𝒅 + 𝐖𝐰 ∘ 𝒀𝒘 

 

Where 𝐖𝐡, 𝐖𝐝, 𝐖𝐰 are learnable parameters and ∘ denotes element-wise production. 
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Loss: the loss function is defined as ||𝐘 − 𝒀̂||
𝟐

𝟐

, where 𝒀̂ is the prediction obtained from our 

model and 𝐘 denotes the ground truth of POF.  

 

By optimizing the above spatial-temporal graph neural network with the loss function, we could 

learn the parameters in a supervised fashion using data with ground truth. Then using the model 

to predict POF for interacting threats, with each element in 𝒀̂ = [𝒚𝟏̂, 𝒚𝟐̂, … , 𝒚𝒏̂] denotes the 

failure pressure at the position of each threat. 

 

3. Summary and Future Work 

 

In this report and the previous report, we started working on Task 3.2 (Reliability analysis based 

on deep learning) and Task 4.2 (temporal model learning). In the next quarter, MSU will focus 

on developing deep learning methods for thereat analysis and reliability analysis. Mines will 

implement interactive threat modeling based on spatiotemporal deep learning. Mines and MSU 

will also collaboratively wrap up the project in the next quarter. 

 


