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Business and Activity Section 

 
(a) Contract Activity 

No modifications were made to the contract.  

(b) Status Update of Past Quarter Activities 
 
We generated a reasonably large dataset using finite element numerical simulations of ultrasonic 
testing of a steel plate with various crack geometries for our neural network study. One of the 
main research objective is to accurately predict size, location and orientation as three key 
features for an embedded elliptical crack through our combined computational simulations and 
machine learning research. We performed feature extraction for the ultrasonic signals by using 
wavelet packet transform and used these extracted features to train the neural network. Our early 
neural network analysis tool was built in MATLAB. In the last quarter, we developed a crack 
size prediction methodology using neural network. The results from our early research show 
that we are able to achieve very good accuracy in crack size prediction using our newly 
developed methodology combining finite numerical simulation data with a neural network 
algorithm. 
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(c) Cost share activity 
 

Partial support for 1 graduate student tuition were provided by Brown University School of 
Engineering as per the cost share agreement.   

 
(d) Task X: Task Title 

 
1. Background and Objectives in the 2nd Quarter 

 
1.1 Background 

Application of popular ultrasonic non-destructive testing (NDT) technique remains 
challenging for crack characterization in pipelines as data interpretation if performed by 
people, leading to significant uncertainty in accurate crack feature predictions.[1][2] Using 
an automated solution to detect cracks is gaining more attention and has the potential to 
provide significantly more accurate results.[3][4][5] In order to use the full potential of 
automation, or machine learning, there are several underlying problems that need to be 
solved. The leading limitation for ultrasonic testing (UT) is the lack of dataset. Current 
machine learning algorithms often need a substantially large dataset to be trained in order 
to reach reliable accuracy. For example, the benchmark problem in machine learning 
aided pattern recognition uses the Modified National Institute of Standards and 
Technology database (MNIST) which contains 70000 images of hand-written digits in 
total for training, validation and testing. On top of that, each image is normalized to the 
same pixel value for standardization and consistency. Unfortunately a large UT dataset 
from field does not exist due to impracticality and high expense of such an endeavor. 
Another challenge is physically motivated correct feature selection for our neural network 
(NN). It is known that features (or inputs) have significant impact on the accuracy of a 
NN. Due to the high sampling rate of UT, it is not optimum to use the full signal, which 
is over thousands of pairs of time/amplitude data, as inputs to NN. Hence reliable feature 
extraction technique is necessary and crucial in our case. 
 

1.2 Objectives in the 2nd Quarter 
We developed a finite element numerical simulation platform for UT during the first 
quarter. In the recent (second) quarter, our aim was to study and address some of the 
leading limitations that are discussed in the previous background section. First, we aimed 
to generate a standard computational methodology for large number of physically correct 
simulations.  Second, we aimed to study different crack sizes in a systematic way to build 
a numerical simulation based large UT dataset to train our NN. Our third aim was to find 
the best feature selection criterion for crack size detection to train our NN. Lastly, we 
aimed to build and train an early NN in MATLAB to demonstrate accuracy and feasibility 
of our newly developed method. 
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2.  Experimental and Computational Program in the 2nd Quarter 

2.1 Experimental design 

No experimental results to report for the 2nd quarter. 

2.2 Computational setup 

All computations were conducted on an existing workstation desktop (early computations 
are relatively smaller sized).  

We studied finite element based numerical simulation requirements for sound wave 
propagation in steel pipelines. All of our numerical study used an ultrasound wave of 5 
MHz frequency and wavelength of ~1.2 mm, the numerically stability requirement we 
obtained that 10-15 meshes per wavelength provides a stable practical element size.  

A steel plate geometry (which we will refer to as ‘plate’ later on) with width 60 mm and 
thickness 20 mm was used in our simulations. 50 elements in total on the bottom surfaces 
are assumed to be both the ultrasound signal exciter and receiver by monitoring the 
longitudinal wave (common in industry practice) for embedded cracks inside the plate. A 
short 5 mm long ultrasound signal exciter with 5 MHz raised-cosine type waveform was 
applied as boundary condition to one edge of the plate thickness. Profile for this waveform 
is shown in Figure 1. Step size is fixed at 2 × 10%& s which corresponds to a 500 MHz 
sampling rate. Artificial anomalies in the form of elliptical cracks are placed in the plate. 
We conducted dynamic numerical simulations in Abaqus/Explicit and analyzed the 
displacement history profile at the selected point receiver locations. 

Figure 1. 5MHz, 3 period raised-cosine type pulse signal used in the simulations. 
 
 

3. Results and discussion 
As described in the object section, we aim to address three major problems in this quarter, 
namely 

• To generate a large dataset using UT numerical simulations where crack size was 
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systematically varied 
• To search and perform state-of-the-art feature extraction technique 
• To build a small NN for an early study 

 
We will discuss all three problems in the following subsections. 

3.1 Technical approach and result 

One key ingredient to reliable use of a machine learning algorithm is the application of 
adequate training data. We performed a detailed literature search to study the past efforts 
towards creating a dataset for machine learning training. Selected work is summarized in 
Table 1. The feature extraction techniques are also listed here and will be discussed later 
on. 

Table 1. Some previous work summarized 

Reference Feature 
extraction 

Sample 
number 

Size Location Orientation Type 

Sampath 
et al.[6] 

DWT 240 No No No Yes 

Margrave 
et al.[7] 

No 90 No No No Yes 

Veiga et 
al.[8] 

No 50 No No No Yes 

Martin et 
al.[9] 

Manual 
selection 

483 No No No Yes 

Liu et 
al.[10] 

WPT 600 No No No Yes 

 

Note that all the listed works above are experiment based, hence the sample numbers are 
generally small in comparison to the MNIST example. Moreover, it is obvious that all 
listed work focused on classification of crack types rather than geometric properties. It is 
mostly due to the fact that crack type posed a classification problem which is simpler than 
geometric properties such as crack size which requires a regression for a continuous 
output variable and creates additional complexity. Fabrication of embedded cracks can be 
very arduous and expensive which prohibits obtaining large dataset through controlled 
experimentation. 

To address this problem, we conducted a systematic numerical implementation of UT 
simulations. Our current focus is elliptical embedded cracks (most prominent type of 
cracks), but our methodology can easily be generalized to other crack/flaw shape types. 
Five parameters were identified for an elliptical crack and illustrated in Figure 2. 
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Figure 2. Five geometric parameters identified for an elliptical crack 

The location of the crack is characterized by a vector with two parameters 𝑥  and 𝑦 , 
indicating the center of the ellipse. 𝑎 is the short axis of the ellipse, 𝑏 is the long axis of 
the ellipse and they both define the size of the crack. 𝜃 is the angle that long axis made 
with the horizontal direction, used to characterize the orientation. Through the 
implementation of a python script, we were able to submit a parametrized job in Abaqus 
with varying geometric properties. 

For our first study of varying crack size, we fixed four of the parameters and allowed only 
for the long axis b to vary. We assigned, 𝑥 = 0, 𝑦 = 17	𝑚𝑚, 𝑦 = 1	𝑚𝑚, 𝜃 = 0  and 
increased 𝑏 monotonically from 1 mm to 4 mm with 10 microns increment. We generated 
results from a total of 287 simulations. Two plate geometries are shown here in Figure 3 
which represent two limiting cases 𝑏 = 1	𝑚𝑚 and 𝑏 = 4	𝑚𝑚.  

 
Figure 3. Simulated plates with elliptical cracks with long axis b = 1 mm (top) and b = 4 

mm (bottom).  

In addition to varying only the long axis of the ellipse, we also created two additional 
datasets that will be used for future NN training and predictive studies of location and 
orientation. Location is a variable with 𝑦  ranging from 7 mm to 18 mm besides the 
varying long axis 𝑏, and the other one has the angle 𝜃 varying between 0 and 𝜋 with all 
other parameters fixed. The parameters of three datasets are summarized in Table 2. Pulse 
generation and signal collection follows the same procedure as discussed in computation 
setup in section 2.2. 
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Table 2. Summarize of datasets with different parameters, bold numbers indicate a 
range in which the corresponding parameter varies 

 𝒙 (mm) 𝒚 (mm) 𝒂 (mm) 𝒃 (mm) 𝜽 Number of 
simulations 

Dataset 1 
(for size) 

0 17 1 [1, 4] 0 287 

Dataset 2 
(for location 

and size) 

0 [7, 18] 1 [1, 4] 0 958 

Dataset 3 
(for 

orientation) 

0 15 0.5 1.5 [0, 𝝅] 446 

A reliable machine learning algorithm will depend heavily on the selection of physically 
important input features. In signal processing, there are many existing techniques that can 
serve for feature extraction. One of the most traditional technique is the fast Fourier 
transform (FFT) and the FFT coefficients are used as the features. However, due to the 
transient nature and the limited time window of an ultrasonic signal, FFT based features 
are mostly outperformed by wavelet based techniques. Wavelets are different than normal 
waves in the sense that it may be irregular in shape, and normally lasts only for a limited 
period of time. Also, a wavelet can serve as both a deterministic and nondeterministic 
template for analyzing time-varying or nonstationary signals by decomposing the signal 
into a 2D, time-frequency domain.[11] There are many varieties of wavelet based transform 
such as continuous wavelet transform (CWT), discrete wavelet transform (DWT) and 
wavelet packet transform (WPT). We find WPT to be most appropriate state-of-the-art 
technique for our problem. Unlike DWT which loses some resolution on the middle and 
high frequency, WPT is its extension that simultaneously breaks up detail and 
approximate versions and have the same frequency bandwidths in each resolution.[3] 
Previous studies have found that WPT based feature extraction performs better than 
DWT.[12] Hence we selected WPT as our UT signal feature extraction technique. Signal 
decomposition performed by WPT is demonstrated in Figure 4. 

 

Figure 4. WPT decomposition. Left panel: level 3 tree decomposition schematic; right 
panel: original signal, denoted by tree node (0,0) 
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As illustrated in Figure 4, a level 3 decomposition breaks down the original signal into 8 
pieces. More generally, a level n of decomposition breaks down the signal into 29 sub-
signals or resolutions. In each resolution, we have approximately 𝑚/29 sampling points 
where 𝑚 is the original sampling number. Here we define the sampling number to be 

sampling	number	𝑚 =	
𝑡𝑖𝑚𝑒	𝑜𝑓	𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛	𝑡

𝑠𝑡𝑒𝑝	𝑠𝑖𝑧𝑒	∆𝑡  

 

All sampling points in each resolution have corresponding WPT coefficients 𝑑T,UV , where 
k is the number of the point,  j is the current level and i is the node number. The coefficients 
are determined by the set of orthonormal wavelets we use as the base wavelets. The 
number of WPT coefficient is roughly the same as sampling number which is over 5000 
in our case. Hence we define two quantities only for the nodes in the bottom level: 

𝐸𝑛𝑒𝑟𝑔𝑦: 𝐸U = 	Z [𝑑\,UV ]
^

V
 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦: 𝑆U = 	Z [𝑑\,UV ]
^
𝑙𝑜𝑔[[𝑑\,UV ]^]

V
 

where b stands for the bottom level. This reduced our number of features to 29, where n 
is the level of decomposition. These two quantities will be the features that go into our 
NN. 

We used MALTAB’s deep learning toolbox to build our neural network. For a faster 
training process, we started with a simple three-layer structure: one input layer, one hidden 
layer and one output layer. We selected ‘Levenberg-Marquardt backpropagation’ function 
as our training function. Dataset 1 was selected and divided into training, validation and 
testing data. We performed NN regression for our two selected features which are energy 
and entropy. The performances are shown in Figure 5. Note that the performance will be 
different each time we run our NN since the split of training, validation and testing data 
is random. We have selected two typical performances to be shown here. 

Two features have similar outputs, with energy feature having slightly less error 
comparing to entropy. It can be seen that for dataset 1 in which the crack size varies, the 
mean squared error converges very quickly and validation stops at only 15 epochs using 
energy feature and 20 epochs for entropy, which is a very good NN performance. The 
error histograms on the right plot the absolute error which has a unit of millimeter. It also 
reveals that the prediction peaks very near to the middle and represents very small error. 
Figures 6 and 7 show the regression plots for the two features. 
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Figure 5. MATLAB NN performance using ‘energy’ feature (top) and ‘entropy’ feature 
(bottom). (a) and (c): MSE vs. epoch, (b) and (d): Error histogram 

 

Again the results are very similar for the two types of features. For all three types of data 
we reached R values surpassing 0.999, and these results are very promising. The 
individual circles in the plot represents real data (long axis value 𝑏) and the straight line 
represents the output fit by our NN. It is seen that when the long axis 𝑏 is small, there 
exists some error in the prediction. However, when 𝑏  is roughly above 1.5 mm, the 
prediction from our NN matches extremely well with the real crack size data. 
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Figure 6. MATLAB NN regression (prediction vs. data) plot using energy feature 

 
 

3.2 Discussion 

In the recent quarter, we successfully completed three important studies including building 
datasets for various crack geometries, feature extraction and performing an early NN training 
and its prediction ability studies. We have independently generated three datasets regarding 
three important geometric properties of an embedded elliptical crack, i.e. the size, location 
and orientation. They contain over a thousand different crack cases which would have been 
impractical to create from an experimental approach point of view. Out of these three crack 
features, we studied crack size in the current quarter. We identified the most suitable feature 
extraction technique WPT for our algorithm and implemented it in MATLAB. We selected 
‘energy’ and ‘entropy’ as the input features. Lastly we used MATLAB deep learning toolbox 
and use a three layer NN to characterize crack size variation using dataset 1. This preliminary 



10  

result proves that our NN is capable of characterizing crack size, independent of any other 
variables. We compared the performance of energy input and entropy input, and both gave 
promising results regarding crack size prediction. 

 

 
Figure 7. MATLAB NN regression (prediction vs. data) plot using entropy feature 

 

4. Future work 

We have demonstrated a NN capable of predicting crack size when it is perfectly horizontal. 
In the future, we will investigate and study cracks with combined geometric properties 
(including location and orientation of the crack) and several more comprehensive datasets 
will be built. Also, for our early studies, we have used a one hidden layer “shallow” NN. As 
the geometries of the cracks become more complicated, we  study multiple layer NN and 
adapt the neurons in each layer and other NN parameters to achieve most accurate anomaly 
and interacting anomaly predictions.  
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