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Business and Activity Section 

 
(a) Contract Activity 

Discussion about contract modifications or proposed modifications: 

None 

 

Discussion about materials purchased: 

1. Stereo cameras 

2. Robotic vehicle 

3. LED light panels 

4. PVC pipe 

 

(b) Status Update of Past Quarter Activities 

 

The project kick-off meeting was held via teleconference on October 30th, 2019 to discuss the scope of 

work and expectations of the project. The participants of the meeting include Joshua Arnold 

(PHMSA), Zhongquan Zhou (PHMSA), Dr. Yongming Liu (ASU), Dr. Yang Yu(ASU), Rahul 

Rathnakumar (ASU), and Chinmay Dixit (ASU). A brief presentation was given by ASU to discuss the 

project objectives, methodologies, proposed tasks, timeline, and deliverables, followed by questions and 

comments by PHMSA on the technical approaches and project deliverables. 

 

Student Training Activities 

• Chinmay Dixit (MS student) works on stereo vision algorithm development for pipeline imaging, 

prototype design and preliminary demonstration to test the system in representative pipeline component. 

(Task 1) 

• Utkarsh Pujar (MS student) and Omar Serag (undergrad student) works on assembling a robotic 

vehicle as the carrier for the prototype device. (Task 1) 

• Rahul Rathnakumar (PhD student) works on conducting literature review on AI-based pipeline 

threats detection and explore suitable methods for detection using depth map information. (Task 2) 

 

(c) Cost share activity 

 

All cost share requirements have been satisfied in the past quarter and detailed financial report will be 
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submitted by ASU financial department. 

 

(d) Detailed Description of Work Performed 

 

1. Background and Objectives in the 1st Quarter 

 

Stereo vision uses two or more cameras to extract 3D information by estimating the relative depth of points 

observed in digital images. The principle of stereo vision is illustrated in Fig. 1. In Fig. 1(a), C1 and C2 

represent the optical centers of two cameras; b is the baseline distance between two cameras; P is the object 

point; and P1 and P2 are the projection of point P in the image plane. Points C1, C2, and P form a plane 

known as the epipolar plane. Fig. 1(b) shows a top view of the epipolar plane where f is the focal length. 

Based on similar triangles, we have: 
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where (x,y,z) is the global coordinate of the object point P, and (xl,yl,zl) and (xr,yr,zr) is the coordinate of the 

projection of point P in the left and right image planes, respectively. 

   
                             (a)                                                                                    (b) 

Fig. 1 Principle of stereo vision: (a) epipolar plane; (b) triangulation[1] 

 

Based on the relationships given in Eq. (1), the global coordinate of point P can be calculated as: 
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where the difference ( )l rd x x= −  is known as the disparity. Using Eq. (2), we can determine the depth of 

any scene point and thus construct a depth map of the observed scene. This method of determining depth 

from disparity is called triangulation. Fig. 2 shows an example of the depth map constructed using a stereo 

image pair. In practice, we need to find the corresponding point (xr,yr) in the right image plane for each 

point (xl,yl) in the left image plane in order to compute the disparity. This is known as the stereo 

correspondence problem. The common solutions to this problem can be divided into two categories, i.e., 

correlation-based methods and feature-based methods. The appropriate method for the task of pipeline ILI 

will be selected with the goal of achieving a balance between fast inspection speed and high detection 

accuracy. 

            
                                                 (a)                                                                    (b) 

Fig. 2 Stereo vision and depth map: (a) input stereo image pair; (b) output depth map[1] 
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AI technology offers a variety of tools for image processing and recognition. The recent advances in deep 

learning demonstrate the capability of deep neural networks especially deep convolutional neural networks 

(CNNs) in pattern recognition within images. In this project, a type of deep CNN architecture, which 

specializes in real-time object detection in images, known as the YOLO network [2,3] is used to detect 

pipeline anomalies. YOLO network is a supervised object detection algorithm which first determines 

whether an object exists in the image, classifies the object according to its category, and then localizes the 

object using bounding boxes. The YOLO is implemented as a CNN model and its architecture is shown in 

Fig. 3. 

 
Fig. 3 The architecture of YOLO network[2] 

 

The YOLO network has been widely used to detect common objects in street views such as person, cars, 

traffic lights, etc. For applications to detecting pipeline anomalies such as cracks and pits, the YOLO 

network needs to be trained using labeled data consisting of these anomalies. In the proposed study, we will 

use a popular method in deep learning known as the transfer learning. The idea is that prior to the application 

for pipeline anomaly detection, the YOLO network is pre-trained using a huge volume of image data which 

are not associated with the task of pipeline anomaly detection. The reason for this is that pipeline anomalies 

images are relatively scarce. However, there are large amount of labeled data for other tasks such as 

autonomous driving.  With a large enough training set, the features extracted by the pre-trained network 

can be generalized to other, possibly very different problems, with a far lower number of training examples 

specific to the problem to be solved.  

 

The objective of the research in the 1st quarter is to: (1) develop stereo vision algorithm that is able to 

generate real-time depth map of the pipeline inner surface; (2) design and assemble of prototype device 

parts including the camera housing module and the robot carrier; (3) conduct preliminary demonstration 

using the developed hardware and software; (4) conduct literature review on AI-based methods for anomaly 

detection and explore suitable methods for pipeline threats detection using depth map information. 

 

2. Task 1: Development of A Novel Multi-Camera Stereo Vision System for Pipeline Inline Inspection 

 

2.1 Stereo Vision Algorithm Development 

 

2.1.1 Stereo Camera Calibration 

In order to extract 3D information using stereo vision described above, we first need to be able to map 3D 

points in the real world to 2D points in an image plane. This mapping can be represented in mathematical 

form as: 

                               [
𝒖
𝒗
𝟏

] = 𝑲[𝑹|𝑻] [

𝑿
𝒀
𝒁
𝟏

]                      (3) 
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𝑲 = [
𝒇𝒙 𝟎 𝒄𝒙
𝟎 𝒇𝒚 𝒄𝒚
𝟎 𝟎 𝟏

] 

where K is the 3-by-3 camera matrix comprised of intrinsic parameters including the focal length and 

principle point; R and T are the 3-by-3rotation matrix and 3-by-1 translation vector (extrinsic parameters), 

respectively; u, v are the coordinates of the 2D points in the image plane, and X, Y, Z is the coordinates of 

the 3D points in real world. The goal of camera calibration is to find the camera parameters including the 

intrinsic and extrinsic parameters that will us to perform the mapping given in Eq. (3). 

 

In this study, we adopt the multiplane calibration method to compute the camera parameters by solving a 

homogeneous system of linear equations. Specifically, this involves placing a chessboard (a single planar 

surface) at multiple views and finding object points of the chessboard, i.e. the edges and corners and each 

square block in the chessboard. Fig. 5 shows the 3D representation the different positions at which the 

chessboard was placed. The procedures for camera calibration are given below. In this study, we used 

available functions from a library of programming functions mainly aimed at real-time computer vision 

known as OpenCV[4] to develop our stereo vision algorithm for 3D reconstruction of pipeline inner surface. 

 
Fig. 5 3D representation of Calibration[5] 

 

Procedures for camera calibration of the camera 

• The set of images taken from each camera were fed to the algorithm. 

• The size of the chess board was given so that it could detect the object points that is the dimension 

of each square and the corner points for the total area of the chessboard. 

• The images were then converted to grayscale and the corners of the chessboard were found. 

• The intrinsic and extrinsic parameters were found using the function 

cv2.calibrateCamera(objectPoints, imagePoints, imageSize[, cameraMatrix[, distCoeffs[, rvecs[, tvecs[, 

flags[, criteria]]]]]]) → retval, cameraMatrix, distCoeffs, rvecs, tvecs (from OpenCV). 

 

The code used to achieve the calibration is given below: 

 

#============================================ 

# Camera calibration 

#============================================ 

#Define size of chessboard target. 
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chessboard_size = (7,5) 

#read images 

calibration_paths = glob.glob('./calibration_images/*') 

#Define arrays to save detected points 

obj_points = [] #3D points in real world space 

img_points = [] #3D points in image plane 

#Prepare grid and points to display 

objp = np.zeros((np.prod(chessboard_size),3),dtype=np.float32) 

objp[:,:2] = np.mgrid[0:chessboard_size[0], 0:chessboard_size[1]].T.reshape(-1,2) 

#Iterate over images to find intrinsic matrix 

for image_path in tqdm(calibration_paths): 

#Load image 

 image = cv2.imread(image_path) 

 gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 

 print("Image loaded, Analizying...") 

 #find chessboard corners 

 ret,corners = cv2.findChessboardCorners(gray_image, chessboard_size, None) 

if ret == True: 

  print("Chessboard detected!") 

  print(image_path) 

  # define criteria for subpixel accuracy 

  criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) 

  # refine corner location (to subpixel accuracy) based on criteria. 

  cv2.cornerSubPix(gray_image, corners, (5, 5), (-1, -1), criteria) 

  obj_points.append(objp) 

  img_points.append(corners) 

# Calibrate camera 

  ret, K, dist, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, gray_image.shape[::-1], None, 

None) 

  # Save parameters into numpy file 

  np.save("./camera_params/ret", ret) 

  np.save("./camera_params/K", K) 

  np.save("./camera_params/dist", dist) 

  np.save("./camera_params/rvecs", rvecs) 

  np.save("./camera_params/tvecs", tvecs) 

 

Using the procedures described above, the parameters of the cameras used in this project were found and 

given below: 

• Distortion coefficients [[-6.04048165e-01, 7.85972333e+00, -5.99917447e-03, 3.84618272e-02,  -

4.24688166e+01]] 

• Rotation vector [[-0.16102839], [-0.41509481], [ 1.33232098]] 

• Translation vector [[ 0.43676107], [-3.56954998], [11.78469181]] 

• The camera matrix was found to be [
514.944 0 251.17

0 493.94811 251.17
0 0 01

] 

 

It should be noted that since we adopted fisheye cameras in order to enable wide angle of view, we need to 

account for the radial and tangential lens distortion to obtain the undistorted images. The distortion 

coefficients given above will be used later to undistort the image. 

 

 



6  

2.1.2 Stereo Image Rectification 

 

If the optical axes of the two adjacent cameras in the stereo vision system are not aligned to each other, the 

epipolar lines are not parallel in the two image planes. In this case, computing stereo correspondence is a 

2D search problem[6]. In practice, image rectification is usually performed to simplify the stereo 

correspondence problem. Stereo image rectification projects images onto a common image plane which 

makes all the epipolar lines parallel and the corresponding points having the same row coordinates. By 

doing this, computing stereo correspondence is reduced to a 1D search problem. The coordinates in the 

rectified image ul and ur are obtained by rotating the rays about the camera centers, and then applying a 

pinhole projection using the left and right camera matrices Kl and Kr[7]: 

                 𝑢𝑙 = 𝐾𝑙 ∗ (𝑅𝑙̃ ∗ 𝑋𝑙)                                   (4) 

                 𝑢𝑟 = 𝐾𝑟 ∗ (𝑅𝑟̃ ∗ 𝑋𝑟)                                 (5) 

𝐾𝑙 = [
𝑓 0 𝑢𝑜𝑙

0 𝑓 𝑣𝑜𝑙

0 0 1

]             𝐾𝑟 = [
𝑓 0 𝑢𝑜𝑟

0 𝑓 𝑣𝑜𝑟

0 0 1

] 

where 𝑅𝑙̃ and 𝑅𝑙̃ are the rotation matrix used in rectification,  𝑢𝑜𝑙 and 𝑣𝑜𝑙 is the coordinate of the principal 

point in the left image, and 𝑢𝑜𝑟 and 𝑣𝑜𝑟 is the coordinate of the principal point in the right image. 

 

Given below is the code for rectification: 

 

# Rectification of images # 

  def plot_rectified_images(self, feat_mode="SURF"): 

      """Plots rectified images 

          This method computes and plots a rectified version of the two 

          images side by side. 

 

          :param feat_mode: whether to use rich descriptors for feature 

                            matching ("surf") or optic flow ("flow") 

      """ 

      self._extract_keypoints(feat_mode) 

      self._find_fundamental_matrix() 

      self._find_essential_matrix() 

      self._find_camera_matrices_rt() 

 

      R = self.Rt2[:, :3] 

      T = self.Rt2[:, 3] 

      # perform the rectification 

R1, R2, P1, P2, Q, roi1, roi2 = cv2.stereoRectify(self.K,self.d,self.K, self.d,                                               

self.img1.shape[:2],R, T, alpha=1.0) 

      mapx1, mapy1 = cv2.initUndistortRectifyMap(self.K, self.d, 

R1,self.K,self.img1.shape[:2],cv2.CV_32F) 

      mapx2, mapy2 = cv2.initUndistortRectifyMap(self.K, self.d, 

R2,self.K,self.img2.shape[:2],cv2.CV_32F) 

      img_rect1 = cv2.remap(self.img1, mapx1, mapy1, cv2.INTER_LINEAR) 

      img_rect2 = cv2.remap(self.img2, mapx2, mapy2, cv2.INTER_LINEAR) 

 

      # draw the images side by side 

      total_size = (max(img_rect1.shape[0], img_rect2.shape[0]), 

                    img_rect1.shape[1] + img_rect2.shape[1], 3) 

      img = np.zeros(total_size, dtype=np.uint8) 

      img[:img_rect1.shape[0], :img_rect1.shape[1]] = img_rect1 
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      img[:img_rect2.shape[0], img_rect1.shape[1]:] = img_rect2 

 

      # draw horizontal lines every 25 px accross the side by side image 

      for i in range(20, img.shape[0], 25): 

          cv2.line(img, (0, i), (img.shape[1], i), (255, 0, 0)) 

 

      cv2.imshow('imgRectified', img) 

 

Procedures for stereo image rectification: 

• From the above function the rotation vector and translation vector were extracted and stored in 

variable ‘R’ and ‘T’. 

• Each point in the right image and left image was mapped in X and Y coordinates. 

• Each image was undistorted and rectified using the function cv2.initUndistortRectifymap(self.K, 

self.d, R1, self.K,self.img1.shape[:2],cv2.CV_32F) (from OpenCV) where K is the Camera Matrix, d is the 

distorsion coefficents vector, img is the image from each camera, and shape is the points in 2-D space. 

• The rotations used in the rectification, 𝑅𝑙̃ and 𝑅𝑙̃, rotate the cameras’  principal  axes  so  that  they  

are  orthogonal  to  the vector joining the camera centers (i.e. the baseline), and the epipoles in the rectified 

images are horizontally aligned. 

• Once the images were rectified they were stored in variable img_rect1 and img_rect2 

 

2.1.3 Disparity Map Generation 

 

In disparity map generation the depth between the objects is seen in terms of pixel density. In our experiment, 

the function cv2.stereoSGBM from OpenCV will give values to each pixel that it sees and the difference in 

the depth will be the disparity found by these pixels. Depth information was computed from a pair of stereo 

images by first computing the distance in pixels between the location of a feature in one image and its 

location in the other image. The reason for this is that pixels with larger disparities are closer to the camera, 

and pixels with smaller disparities are farther from the camera. Essentially, we’ll be taking a small region 

of pixels in the right image, and searching for the closest matching region of pixels in the left image. When 

searching the right image, we’ll start at the same coordinates and search the left and right up to some 

maximum distance. This search is conducted in one dimension to save time thanks to the rectification 

performed before. After stereo correspondence is determined, the disparity between each pixel can be 

computed and the disparity map is generated. 

 

Given below is the code for real-tim disparity map generation: 

# Disparity Generation # 

    # Create a VideoCapture object and read from input file 

    # If the input is the camera, pass 0 instead of the video file name 

  cap1 = cv2.VideoCapture(1) 

  cap2 = cv2.VideoCapture(2) 

 

    # Check if camera opened successfully 

  if (cap1.isOpened() == False | cap2.isOpened() == False): 

   print("Error opening video stream or file") 

 

    # Read until video is completed 

  while (1): 

    # Capture frame-by-frame 

    ret1, imgL = cap1.read() 
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    ret2, imgR = cap2.read() 

 

    if (ret1 == True & ret2 == True): 

        window_size = 8 

        left_matcher = cv2.StereoSGBM_create( 

            minDisparity=0, 

            numDisparities=256,  # max_disp has to be dividable by 16 f. E. HH 192, 256 

            blockSize=8, 

            P1=8 * 3 * window_size ** 2, 

            P2=16 * 3 * window_size ** 2, 

            disp12MaxDiff=1, 

            uniquenessRatio=15, 

            speckleWindowSize=200, 

            speckleRange=2, 

            preFilterCap=63, 

            mode=cv2.STEREO_SGBM_MODE_SGBM_3WAY 

        ) 

 

        right_matcher = cv2.ximgproc.createRightMatcher(left_matcher) 

 

        # FILTER Parameters 

        lmbda = 90000 

        sigma = 1.2 

        visual_multiplier = 1.5 

 

        wls_filter = cv2.ximgproc.createDisparityWLSFilter(matcher_left=left_matcher) 

        wls_filter.setLambda(lmbda) 

        wls_filter.setSigmaColor(sigma) 

 

        print('computing disparity...') 

displ=left_matcher.compute(imgL,imgR)#.astype(np.float32)/16 

        dispr=right_matcher.compute(imgR,imgL)#.astype(np.float32)/16 

        displ = np.int32(displ) 

        dispr = np.int32(dispr) 

filteredImg=wls_filter.filter(displ,imgL,imgR,dispr)#important to put "imgL" here!!! 

 

filteredImg = cv2.normalize(src=filteredImg, dst=filteredImg,beta=0,alpha=255, 

norm_type=cv2.NORM_MINMAX); 

        filteredImg = np.uint8(filteredImg) 

        ret, thresh1 = cv2.threshold(filteredImg, 255, 255, cv2.THRESH_BINARY) 

 

        # Display the resulting frame 

        cv2.imshow('Disparity Map', filteredImg) 

        # cv2.imshow('Frame1',thresh1) 

        # cv2.imshow('Frame2',imgR) 

        # Press Q on keyboard to  exit 

        if cv2.waitKey(1) & 0xFF == ord('q'): 

            break 

 

      

# Break the loop 
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    else: 

        break 

cap1.release() 

cap2.release() 

cv2.destroyAllWindows 

 

Procedure for Disparity Map Generation: 

• A constant video frame by frame is first recorded. 

• Then each pixel is given a value which is depth value. 

• The two images are generated one from left camera and the other from the right. 

• By using the function cv2.stereoSGBM_create from OpenCV, the frames are projected onto each 

other and then the disparity is computed for each frame. 

 

2.2 Hardware Prototyping and Demonstration 

 

2.2.1 Design of Camera Housing Module 

 

The camera housing module designed will be used to host three pairs of stereo cameras. The camera board 

each were 10cm x 2.6cm each. The camera bed where the cameras were to be placed was designed according 

to this requirement of area to accommodate them. The field of view of the camera is 180 degrees and the 

angle at which the cameras were placed was to be calculated. Since the field of view of the camera was 

180⁰, we place it at an optimal angle so that it would cover a major portion of the pipe inner surface. To 

accommodate this, the cameras are placed at 37.5⁰ with respect to the inner surface of the pipe. The reason 

for this was that we need to stitch the images obtained from each pair of stereo cameras and each pair of 

stereo camera needs to cover at least 120⁰. To be on the safe side, we increase the field of view covered to 

facilitate the image stitching in the future. We also have to cover the region directly perpendicular to the 

camera on the pipe surface, thus we chose an angle higher than 120⁰ which was 142.5⁰. The designed 

camera housing module is shown in Fig. 6 along with its dimensions given. 

 

 -Calculations  

Side of the triangle = 15 cm (to accommodate area of camera 10 x 2.6 cm^2) 

Surface area of camera bed = 10 x 2.6 cms^2 

Surface Area of LED bed= 15 x 2 cm^2 

α (angle for camera bed) = 180⁰-142.5⁰ (field of view required for image stitching) = 37.5⁰ 

 
Fig. 6 Camera housing module 

Camera Bed 
LED bed 
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2.2.2 Robot Carrier Development 

 

For the robot carrier, we selected a commercial eight degrees of freedom (DOF) vehicle robot with 8-Axis 

RC robotic arm. The specification for this robot carrier is given below: 

 

Y100 Tank chassis parameters: 

• Name: New Y-100 Tank Chassis 

• Main body: aluminum alloy 

• Surface: sandblasting oxidation 

• Track: engineering plastics 

• Color: Silver 

• Size: 300*240*122mm (length * width * height) 

• Weight: 1.16kg 

• Motor: 9V 150rpm with encoder motor 

 

9V 150rpm with encoder motor: 

• Working voltage: 9V 

• Output rate: 150±10% rpm 

• Load current: 200mA (Max) 

• Stall current: 4500 mA (max) 

• Stalling torque: 9.5kg NaN 

• Load speed: 100±10% rpm 

• Load torque: 3000gNaN 

• Load current: 1200mA (Max) 

• Encode parameters: 2 pulses / circle 

• Sensor operating voltage: 3-5V 

 

Robotic arm parameters: 

• Mechanical arm body material: aluminum alloy 

• Weight: 0.82kg (including servo weight) 

• Color: silver 

• Servo optional: MG996R metal gear large servo 

• Features: The mechanical arm can be equipped with a mechanical gripper, the weight of the grip is 

about 500g; the base of the robot arm can be rotated 360 degrees. 

 

MG996R servo parameters: 

• Name: MG996R 

• Net weight: 55 g 

• Size: 40.7*19.7*42.9 mm 

• Pulling force: 9.4 kg/cm (4.8 V), 11 kg/cm (6 V) 

• Reaction rate: 0.17 sec / 60 degree (4.8 V), 0.14 sec / 60 degree (6 V) 

• Working voltage: 4.8-7.2 V 

• Working temperature: 0°C-55°C 

• Gear form: metal gear 

• Working dead zone: 5 us (microseconds) 

 

Assembly of Tank 

1. Bearing wheel installation 

The materials required to assemble the bearing wheel are M3*8 screw, 17 mm copper hex spacers, M2 

screw, bearings, wheel discs, and stainless-steel connector.  
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2. Driving wheel installation 

For driving wheel, the required materials are 28 mm copper hex screws, M3*8 screw, stainless-steel 

connector, jackscrew, geared wheel discs, aluminium alloy coupling, and M4*16 screw. 

 

3. Tank Chassis installation 

To assemble the Tank Chassis, the required materials include 9V 150 rpm encoder motor, LED lights, tracks, 

chassis panels, power cable, M3*12 screw, M3 nut, M3*10 screw are necessary for assembly of tank. 

 

Fig. 7 shows the assembled tank chassis of the robot carrier. There are a total of ten bearing wheels and two 

driving wheels for this model. The track is installed and since the tracks are individually connected with 

needles, the length can be adjusted according to the needs. 

 

 
Fig. 7 Vehicle Tank Assembly 

 

Assembly of Robot arm  

The robot arm consists of a rotating base, left and right swing arm, a rocking arm, a control board. Fig. 8 

shows the assembled robotic arm of the robot carrier. 

 

1. Rotating Base 

The materials required are M4*11 double pass coupling, M4*6 flat head screws, M3*8 inner hexagon 

screw, M3 nut, tray bearing, single pass coupling, 25T disc metal horns, and steering gear. 

 

2. Left and Right Swing Arm 

M3*8 inner hexagon screws, 25T metal horn, M4*6 screws, pendulum frame, M3*5 screws, steering 

gear, left and right frames are assembled together. And this assembly is installed on the rotating base. 

 

3. Rocking arm 

M3*8 inner hexagon screws, U bracket, 25T metal horn, M3*8 flat head screw, steering gear, M4*6 

screws, steering gear bracket, swing fixing bracket, rocking fixing bracket, U shaped support frame, 

connecting rod are installed together according to the manual. This assembled part is installed to the 

previously connected servo arm with rotating base. 

 

4. Control Board 

The control board tray bracket is attached to the rotating base. Materials required are M3*8 screws, M3*6 

screws, steering gear bracket. Bearing is attached to steering gear bracket along with a steering gear.  

 

5. Metal claw 
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The assembly of the claw is divided into 3 parts, which are claw arm 1, claw arm 2, and base of claw. The 

parts include servo motor MG995, 25T metal horn, M3*8 hexagon screw, M3 nut, single pass couplings, 

M3*6 flat head screw, M3*12 screw, and bearings.  

 

 
Fig. 8 Robot arm assembly 

 

The robotic arm and the tank are then assembled together, and the final product is shown in Fig. 9. 

 

 
Fig. 9 Assembled robot carrier 

 

2.2.3 Preliminary Demonstration 

 

For this quarter, a preliminary demonstration was done to see whether we are able to generate a clear depth 

map which will be used to highlight different features in the inner surface of the pipe using the developed 

the stereo vision algorithm and prototype device. For this purpose, some artificial defects were simulated 
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inside of a representative pipe component and the developed device is used to generate a depth map of the 

inner surface of the pipe. This depth map will help us locate irregularities on the surface such as cracks and 

corrosion pits.  

 

a) Hardware used: 

1) Fish-eye Stereo Camera (Fig. 10): 

Specifications:  

   Performance: 1920x1080 MJPEG@30fps       S/N Ratio: 39db 

   Sensor: AR0330            Dynamic range: 72.4db 

   Pixel Size: 5.07um X 3.38um 

   Lens Parameter: M12 fisheye lens 

   Board size: 86x23 mm 

   Mini illumination: 0.1lux 

   Sensitivity: 2.0 v/lux-sec @550nm 

   Voltage: DC5V 

   Current: 220mA-280mA 

 
    Fig. 10 Fisheye Stereo Camera[8] 

 

2) 3-D Printed Camera Housing Module (Fig. 11) 

The camera housing module designed above was manufactured using a 3D printer. For the purpose of 

demonstration, the camera housing module carried one pair of fisheye cameras. Each side of the module 

has two slopes: one for keeping the camera and the other for attaching the LED lights. Fig. 11 shows the 

printed camera housing module with one pair of fisheye stereo cameras installed. 

 

 
Fig. 11 Camera Housing Module 

mailto:2.0v/lux-sec@550nm
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b) Experiment setup: 

For the purpose of demonstration, the camera housing module was elevated to the axis center of the pipe 

and a ruler was placed at the end which was to be observed to show different contours. The surface also 

had an irregularity to simulate what rust would look like. This was done to demonstrate that the depth-map 

generated could identify both contour types, i.e. the crack propagating inwards and rust protruding outwards. 

Fig. 12 shows the experimental setup. 

 
Fig. 12 Experimental Setup 

 

Results: 

Once the setup was complete, the stereo vision code developed before was run and the results were 

generated. The original image of the pipe taken before the depth map is shown in Fig. 13. This shows the 

two types of contours i.e. the ruler and the surface irregularity. It should be noted that this image is distorted 

around the edges as a fisheye camera was used. 

Camera Housing Module 

LED light 

Stereo camera pair 

Ruler 

Irregularity 
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Fig. 13 Preliminary Image 

 

The depth map was generated and shown in Fig. 14. It can be seen that the contours of the ruler and two 

surface irregularities can be clearly seen from the depth map. The ruler was placed to simulated protruding 

irregularities in the pipe and its edges worked as cracks to show the depth in the cracks. The other 

irregularity shown worked as simulated rust in the pipe. In addition, it can be seen that the depth map 

generated is sensitive to the lighting condition. In this experiment, the LED lights are not placed on the 

prototype device but in future experiment, the LED light panels will be attached to the prototype to enable 

better light conditions and thus a clearer depth map.   

 
Fig. 14 Generated depth map 

Ruler placed 

Simulated Irregularity 

Other End 

of pipe 

Ruler  

Simulated 

Irregularities 
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3. Task 2: AI-enabled Anomaly Detection and Physics-based Damage Prognostics for Pipeline 

Integrity Management 

 

3.1 Neural Networks for Threat Detection 

 

Neural Networks (NNs) have shown great promise in the field of object detection and segmentation. Typical 

Deep Neural Network architectures have parameters to the order of ~107 and need enough training data to 

tune these parameters for the task at hand. This section describes relevant ideas surrounding Deep Neural 

Networks in the context of threat detection in pipelines.  

 

3.1.1 Convolutional Neural Networks 

 

Image data consists of a matrix of pixels and are high-dimensional. Learning from this high dimensional 

representation requires either feature engineering to reduce the dimensionality of the dataset to a form useful 

for the task at hand, or to find a computational method that can learn directly from this high-dimensional 

representation. Convolutional Neural Networks (CNN) are a special type of neural network that can learn 

to extract features, detect objects, segment objects and perform a myriad of other tasks. Convolutional 

networks leverage the convolution operation, which is an element-wise dot product between an image or a 

part of it, with an equal-sized kernel as the window, which consists of the weights to be learned using 

backpropagation. 

 

3.1.2 Configuring Neural Networks for Learning Tasks 

 

Convolutional Neural Networks can be configured for a variety of learning tasks, including, but not limited 

to, object detection and image classification. The task that the network is designed to perform depends 

primarily on the optimization objective specified by the designer of the network, and the form of the training 

data presented to the network. Fully supervised image classification tasks, for instance, form a category of 

tasks for CNNs, and are fed raw image examples of each class to be detected, and the optimization objective 

consists of a simple cross-entropy loss. The objective to be optimized is simple and the data structures that 

the network uses to trained upon is straight-forward. Object detection and segmentation, on the other hand, 

have more complex objective functions. Multiple fully-supervised methods have become popular in the 

literature, with fast, single-pass methods like YOLO[2] providing real-time performance, and region-based 

methods like R-CNN, Fast R-CNN, Faster R-CNN and Mask R-CNN[9–12] providing slightly better 

detection metrics at the expense of real-time computational performance in general object detection tasks.  

 

Our work with 2-D imaging has focused heavily on developing new weakly supervised methods for threat 

detection. Fully supervised networks need lots of training images with bounding boxes or segmentation 

ground truths, which is expensive to create. Weak supervision, on the other hand, relies on weak or partial 

labels for training. A formal framework for training with partial labels could look like the following: 

Consider having a training data set T with n-instances, and m<n of those instances has labels.  

                          𝑇 = {(𝑥1, 𝑦1) … (𝑥𝑚, 𝑦𝑚), (𝑥𝑚+1), … , (𝑥𝑛, 𝑦𝑛)}                              (6) 

 

To learn a mapping from this dataset, semi-supervised learning methods can be used. Weakly supervised 

learning instead leverages weak labels for training. These labels are often cheaper and faster to create, and 

this enables us to create large, weakly-labelled datasets for training models. Method development and 

modifications for a weakly-supervised learning model could be at the level of the algorithm architecture or 

at the level of the algorithmic components, such as optimization objective functions and data 

transformations.  
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The previous section presents in detail, a modification of a fully supervised pipeline into a weakly-

supervised pipeline. We developed a region-based method for weakly-supervised detection of cracks. In 

the case of object detection, instead of providing training data with bounding boxes, we provide only 

textures of what we want the algorithm to find. The objective function for optimization depends on the 

weakly-supervised method used. 

 

3.1.3 Implementation of CNNs for Learning to Detect Cracks in Pipelines 

 

 
Fig. 15 Overview of implementation of the crack detection method 

The above illustration summarizes the implementation of a weakly-supervised learning methodology. The 

method generalizes well to new lighting conditions and varying textures. The detection method involves 

defining a crack semantically, using a region extraction method to choose regions that have the highest 

likelihood of containing cracks, and then proceed to classify these patches. The method essentially reduces 

the search space for objects using an edge detector to act as a region proposal, and then serially classifies 

the edges as either belonging to a crack or not. A dataset of crack and non-crack images was procured, and 

a CNN classifier was trained upon it.  

 

The edge detector that was used to extract edge pixels from the raw image was the Canny edge detector⁠. 

This is a simple, fast, 2-parameter algorithm that works based on neighboring pixel gradients to yield a 

binary image of edges. Contours are then extracted from the representation after dilation is performed on 

the image. Dilation operates on a binary image by increasing the thickness of the extracted contours, 

removing disparate noisy edge pixels. The extracted contours are usually very large in number and are 

closely clustered with neighboring contours as disjoint pixel groups, however small, is considered a separate 

contour. Processing all such regions will be computationally inefficient, and a fast-agglomerative clustering 

scheme was used to group neighboring clusters together, as described below.  

 

The set of contours obtained using the edge detector are disjoint, noisy and have high variance in contour 

area and length. Agglomerative clustering methods have been applied for discrete optimization tasks and 

for obtaining statistical metrics for numerical data. These methods do not require the number of clusters to 

Region Proposal 
Program for Cracks

•Region proposals for 
the weakly-
supervised method is 
obtained by using 
the Canny edge 
detector for cracks.

Hierarchical 
Agglomerative 
clustering of proposals

•A bottom-up 
clustering of 
proposals using 
distance criterion.

Serially classify each 
proposal using CNN

•A trained-CNN using 
texture examples of 
cracks is used to 
classify the incoming 
proposals from the 
image.
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be prespecified, but the clusters emerge as a result of the distance metric used to form them. In this case, it 

is natural to use the L2-distance between contour centroids as the distance metric. Consider a set of S 

contours with centroids [cxi, cyi]. We first create a symmetric distance matrix d where dij=dji using the 

contour centroids.  

                                     𝑑𝜖𝑅𝑆𝑥𝑆 𝑤ℎ𝑒𝑟𝑒𝑑𝑖𝑖 = 0 ∧ 𝑑𝑖𝑗 = 𝑑𝑗𝑖∀𝑥, 𝑦𝜖𝑆                (7) 

where d is the distance matrix, and S is the set of contours. 

 

The algorithm works by combining contours in a bottom-up fashion, first starting with the closest set of 

contours using the distance matrix, and progressively combining these contours until the matrix has no 

entries below the distance threshold parameter, using the single linkage formula, the simplest bottom-up 

method to combine clusters. The algorithm works at approximately O(N2) and the number of initial contours 

is usually below 500 per image.  

 

The contour set obtained from the hierarchical agglomerative clustering algorithm is used as the region 

proposal for the Convolutional Neural Network. The network used in our studies was the Inception v3 

network, however, any other architecture could be substituted with this. The network with pretrained 

weights from the ImageNet database was used for training the network. Earlier layers in the CNN learn to 

recognize lower-level features such as edges and basic geometric shapes using pretraining, thereby reducing 

the data requirement when fine-tuning with the relevant dataset for the crack detection application. The 

trained network learns representations for crack and good regions, using textures as shown in the figure.  

 

The training set consisted of 1000 images, equally distributed between crack and good texture samples. The 

test set consisted of 80 images, with ground truth segmentations. The performance metrics considered were 

the percentage of pixels the method was able to segment, which is called the pixel coverage, and the number 

of false positive segments in the image. The CNN takes as input region proposals, and outputs only those 

regions that are classified as a crack. The ground truth consists of a binary image, with white pixels 

corresponding to those regions with cracks, and the black pixels corresponding to the background region. 

In the pixel coverage metric, we calculate what proportion of pixels from the ground truth are covered by 

the regions that the network classifies as a crack. The calculations for all metrics are done using the minimal 

area bounding rectangle of the contour. Another metric that is considered is the number of false positive 

contours, and this is calculated as the number of contours that do not cover any ground truth pixel.  
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Fig. 16 Samples of detected contours by the model from the test set. While the three images on the right 

cover all the cracks in the image with hardly any false detection, the two images on the left cover all the 

cracks, but also generate false positives 

 

Metric Value 

Average number of false positive contours 

in the test set 

5.65 

Average pixel coverage wrt ground truth 61.65%  

(a) 

 
(b) 

Fig. 17: (a) Table summarizing the highlights of the metrics used for evaluation on a 1000 image training 

set (b) Pixel coverage histogram for testing on 80 images 

3.2 Depth Information for Enhanced Threat Analysis 

 

Fusing multiple sources of data helps us obtain a more complete picture of all the variables involved in a 

problem. In the case of threat analysis in pipelines using vision-based inspection techniques, depth 

information can potentially provide a new layer of information which can be leveraged for unique insights 

in the condition of pipeline systems. Stereovision algorithms enable us to use multi-camera setup to obtain 

multiple images, that can then be used to compute a disparity map between these images. We can use the 

disparity maps to create a depth map of the objects in the scene. In this section, we review the ways in 

which this additional per-pixel depth data can be used to enhance the data obtained from the 2-D images.  

 

Scene segmentation using both color and depth information makes the process similar to the human visual 

system, where the disparity map from the images obtained from the two eyes is a dimension of information 

for scene recognition. Hierarchical fusion methods such as what is proposed by Caldereo et al. [13] in a 

hierarchical, iterative cooperative region merging scheme as shown in Fig. 18. 
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Fig. 18: Cooperative Region Merging Scheme for Information Fusion of RGB Image and Disparity 

Map[13] 

Let 𝜋 be an image partition, which is a division of the image into non-empty, disjoint sets. Let Π be the set 

of all possible partitions. The set Π is ordered by the refinement order, that is, the number of regions in each 

partition 𝜋𝑖  in Π. Suppose we have a set of partitions, or profile given by 𝜋𝑝 = {𝜋1, … , 𝜋𝑛} a median 

partition of the profile, denoted by 𝜇 is defined as the partition minimizing the function: 

                                            𝑓(𝜋) = ∑ 𝛿(𝜋, 𝜋𝑖)1≤𝑖≤𝑛                                      (8) 

𝜋𝑖𝜖𝜋𝑝 

 

The function 𝛿 is the symmetric difference between the partitions 𝜋 and 𝜋𝑖, that is, the minimum number 

of pixels whose region labels must change for both partitions to be identical. The median partition of the 

profile is defined as: 

                                                    𝜇 = arg min
𝜋

𝑓(𝜋)                                       (9) 

 

The median partition obeys the pareto principle: If 𝜇 is a median partition of the profile 𝜋𝑝: 

                                                      ⋀ 𝜋𝑖 ≤ 𝜇1≤𝑖≤𝑛                                            (10) 

 

i.e., The median partition is coarser than the supremum of all the partitions in the profile.  

The initial conditions for the iterative procedure accept an initial number of regions, which can be set to the 

number of pixels in the color image and the depth image, 𝑁𝑐𝑜𝑙𝑜𝑟
0 = 𝑁𝑐𝑜𝑙𝑜𝑟

𝑀𝐴𝑋  and 𝑁𝑑𝑒𝑝𝑡ℎ
0 = 𝑁𝑑𝑒𝑝𝑡ℎ

𝑀𝐴𝑋  and initial 

partitions 𝜋𝑐𝑜𝑙𝑜𝑟
0  and 𝜋𝑑𝑒𝑝𝑡ℎ

0 . Starting from this initial partition, the region merging step iterates until it 

obtains an output partition using information theoretic Bhattacharya merging criterion[14]. These bottom-

up segmentation approaches are based on information at a local scale.  

 

Region merging algorithms are specified by: i) a merging criterion, defining the cost of merging two regions, 

and ii) a merging order, determining the sequence in which regions are merged. This technique is 

unsupervised and uses statistical measures to make merging decisions. From a statistical standpoint, an 

image can be thought of as a matrix of iid pixel samples that are formed by a 2D-stochastic process. For a 

grey-level image, the samples can take a value from X = {0, 1,...,255}. The empirical distribution 𝑃𝑥 is 

defined as the relative proportion of occurrences of each value of X.  

𝑃𝑥(𝑎) =
𝑁(𝑎|𝑥)

𝑛
                                            (11) 

𝑎 𝜖 𝑋 

𝑥 𝜖 𝑋𝑛 

 

The probability of formation of a given sequence of iid observations x with probability distribution Q, is 
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given by: 

                                                 𝑄𝑛(𝑥) = 2−𝑛(𝐻(𝑃𝑥)+𝐷(𝑃𝑥||𝑄))                      (12) 

𝐻(𝑃(𝑥)) =  − ∑ 𝑃(𝑎) log(𝑃(𝑎))

𝑎𝜖𝑋

 

𝐷(𝑃𝑥||𝑄) = ∑ 𝑃𝑥(𝑎)log [
𝑃𝑥(𝑎)

𝑄(𝑎)
] 

𝐻 − 𝑆ℎ𝑎𝑛𝑛𝑜𝑛 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 

𝐷 − 𝐾𝐿 𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑃 𝑎𝑛𝑑 𝑄 

 

For a sufficiently large sample n, the KL divergence approaches 1, and probability of formation for a given 

sequence can be approximated as: 

𝑄𝑛(𝑥) ≈ 2−𝑛𝐻(𝑃𝑥)                                  (13) 

 

The Bhattacharya merging criterion is derived by considering an (n-1)-dimensional manifold defined by all 

possible empirical distributions for a sequence of n-samples. Chernoff information between the statistical 

distribution of any pair of classes is, 

𝐶(𝑃𝑖, 𝑃𝑗)  ≜  − min
0≤𝜆≤1

log(∑ 𝑃𝑖
𝜆(𝑥)𝑃𝑗

1−𝜆(𝑥)𝑥 )              (14) 

 

This optimization problem merges adjacent regions with the maximum probability of fusion.  

 

Once the regions are merged, the new partitions 𝜋1 from both the color and depth images, are passed into 

the information fusion step, where the greatest lower bound (supremum) of the two partitions is calculated. 

The scale controller block consists of a scale-based filter, and a scale adapter. These adjust the number of 

regions by ensuring that very small regions do not form. The iterations complete when the partitions do not 

change, and the hierarchy has reached the coarsest possible segmentation, yielding results with various 

segmentations corresponding to different coarseness levels. 

 

4. Future Works 

 

4.1 Task 1 

 

In the next quarter, we will work on getting all the three pairs of stereo cameras onto the camera housing 

module and perform image stitching to generate a 360-degree view of the inner surface of the pipe. The 

obtained 360-degree reconstruction of the inner surface will be verified by matching the grid drawn inside 

of the pipeline. Using this device, we will conduct more sophisticated demonstration with more realistic 

simulation of pipeline defects. Furthermore, for the demonstration of next quarter, we will use the robotic 

vehicle assembled to carry the prototype to travel inside of the pipeline to simulate the pipeline inline 

inspection process. Currently, the basic components of the robotic vehicle have been assembled. In the next 

quarter, we will achieve the manual control of the robotic vehicle by attaching the control circuit and allow 

the robot to be controlled with a computer (wireless control) or handle control using a Joystick. 

 

4.2 Task 2 

 

In this quarter, we conducted literature review on an unsupervised technique for information fusion and 

segmentation of RGB-d images. The work in the next couple of quarters would focus on expanding on these 

techniques, both unsupervised and supervised, using benchmark datasets, to arrive at novel information 

fusion techniques for general RGB-d segmentation tasks, and also apply these techniques to the pipeline 

threat detection dataset, that we would collect in-house for task-specific performance. 
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Appendix: Complete Code of the Stereo Vision Algorithm 

 
from __future__ import print_function 

import cv2 

from sklearn.preprocessing import normalize 

import argparse 

import numpy as np 

import glob 

from tqdm import tqdm 

import PIL.ExifTags 

import PIL.Image 

import argparse 

import sys 

import os 

#============================================ 

# Camera calibration 

#============================================ 

#Define size of chessboard target. 

chessboard_size = (7,5) 
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#read images 

calibration_paths = glob.glob('./calibration_images/*') 

#Define arrays to save detected points 

obj_points = [] #3D points in real world space 

img_points = [] #3D points in image plane 

#Prepare grid and points to display 

objp = np.zeros((np.prod(chessboard_size),3),dtype=np.float32) 

objp[:,:2] = np.mgrid[0:chessboard_size[0], 0:chessboard_size[1]].T.reshape(-1,2) 

#Iterate over images to find intrinsic matrix 

for image_path in tqdm(calibration_paths): 

#Load image 

 image = cv2.imread(image_path) 

 gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 

 print("Image loaded, Analizying...") 

 #find chessboard corners 

 ret,corners = cv2.findChessboardCorners(gray_image, chessboard_size, None) 

if ret == True: 

  print("Chessboard detected!") 

  print(image_path) 

  # define criteria for subpixel accuracy 

  criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) 

  # refine corner location (to subpixel accuracy) based on criteria. 

  cv2.cornerSubPix(gray_image, corners, (5, 5), (-1, -1), criteria) 

  obj_points.append(objp) 

  img_points.append(corners) 

# Calibrate camera 

  ret, K, dist, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, gray_image.shape[::-1], None, 

None) 

  # Save parameters into numpy file 

  np.save("./camera_params/ret", ret) 

  np.save("./camera_params/K", K) 

  np.save("./camera_params/dist", dist) 

  np.save("./camera_params/rvecs", rvecs) 

  np.save("./camera_params/tvecs", tvecs) 

 

  # Rectification of images # 

  def plot_rectified_images(self, feat_mode="SURF"): 

      """Plots rectified images 

 

          This method computes and plots a rectified version of the two 

          images side by side. 

 

          :param feat_mode: whether to use rich descriptors for feature 

                            matching ("surf") or optic flow ("flow") 

      """ 

      self._extract_keypoints(feat_mode) 

      self._find_fundamental_matrix() 

      self._find_essential_matrix() 

      self._find_camera_matrices_rt() 

 

      R = self.Rt2[:, :3] 
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      T = self.Rt2[:, 3] 

      # perform the rectification 

      R1, R2, P1, P2, Q, roi1, roi2 = cv2.stereoRectify(self.K, self.d, 

                                                        self.K, self.d, 

                                                        self.img1.shape[:2], 

                                                        R, T, alpha=1.0) 

      mapx1, mapy1 = cv2.initUndistortRectifyMap(self.K, self.d, R1, self.K, 

                                                 self.img1.shape[:2], 

                                                 cv2.CV_32F) 

      mapx2, mapy2 = cv2.initUndistortRectifyMap(self.K, self.d, R2, self.K, 

                                                 self.img2.shape[:2], 

                                                 cv2.CV_32F) 

      img_rect1 = cv2.remap(self.img1, mapx1, mapy1, cv2.INTER_LINEAR) 

      img_rect2 = cv2.remap(self.img2, mapx2, mapy2, cv2.INTER_LINEAR) 

 

      # draw the images side by side 

      total_size = (max(img_rect1.shape[0], img_rect2.shape[0]), 

                    img_rect1.shape[1] + img_rect2.shape[1], 3) 

      img = np.zeros(total_size, dtype=np.uint8) 

      img[:img_rect1.shape[0], :img_rect1.shape[1]] = img_rect1 

      img[:img_rect2.shape[0], img_rect1.shape[1]:] = img_rect2 

 

      # draw horizontal lines every 25 px accross the side by side image 

      for i in range(20, img.shape[0], 25): 

          cv2.line(img, (0, i), (img.shape[1], i), (255, 0, 0)) 

 

      cv2.imshow('imgRectified', img) 

 

 

    # Create a VideoCapture object and read from input file 

    # If the input is the camera, pass 0 instead of the video file name 

  cap1 = cv2.VideoCapture(1) 

  cap2 = cv2.VideoCapture(2) 

 

    # Check if camera opened successfully 

  if (cap1.isOpened() == False | cap2.isOpened() == False): 

   print("Error opening video stream or file") 

 

    # Read until video is completed 

  while (1): 

    # Capture frame-by-frame 

    ret1, imgL = cap1.read() 

    ret2, imgR = cap2.read() 

 

    if (ret1 == True & ret2 == True): 

        window_size = 8 

        left_matcher = cv2.StereoSGBM_create( 

            minDisparity=0, 

            numDisparities=256,  # max_disp has to be dividable by 16 f. E. HH 192, 256 

            blockSize=8, 

            P1=8 * 3 * window_size ** 2, 



25  

            P2=16 * 3 * window_size ** 2, 

            disp12MaxDiff=1, 

            uniquenessRatio=15, 

            speckleWindowSize=200, 

            speckleRange=2, 

            preFilterCap=63, 

            mode=cv2.STEREO_SGBM_MODE_SGBM_3WAY 

        ) 

 

        right_matcher = cv2.ximgproc.createRightMatcher(left_matcher) 

 

        # FILTER Parameters 

        lmbda = 90000 

        sigma = 1.2 

        visual_multiplier = 1.5 

 

        wls_filter = cv2.ximgproc.createDisparityWLSFilter(matcher_left=left_matcher) 

        wls_filter.setLambda(lmbda) 

        wls_filter.setSigmaColor(sigma) 

 

        print('computing disparity...') 

        displ = left_matcher.compute(imgL, imgR)  # .astype(np.float32)/16 

        dispr = right_matcher.compute(imgR, imgL)  # .astype(np.float32)/16 

        displ = np.int32(displ) 

        dispr = np.int32(dispr) 

        filteredImg = wls_filter.filter(displ, imgL, imgR, dispr)  # important to put "imgL" here!!! 

 

        filteredImg = cv2.normalize(src=filteredImg, dst=filteredImg, beta=0, alpha=255, 

norm_type=cv2.NORM_MINMAX); 

        filteredImg = np.uint8(filteredImg) 

        ret, thresh1 = cv2.threshold(filteredImg, 255, 255, cv2.THRESH_BINARY) 

 

        # Display the resulting frame 

        cv2.imshow('Disparity Map', filteredImg) 

        # cv2.imshow('Frame1',thresh1) 

        # cv2.imshow('Frame2',imgR) 

        # Press Q on keyboard to  exit 

        if cv2.waitKey(1) & 0xFF == ord('q'): 

            break 

 

     # Break the loop 

    else: 

        break 

cap1.release() 

cap2.release() 

cv2.destroyAllWindows() 

 


