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1. Phase 1 Summary 
 
Pipelines used for transporting natural gas and petroleum fluid are aging and may suffer from accidental damage. The 
need is growing for an efficient and reliable inspection system to locate and characterize the weak spots that can fail 
and result in leakage. Mechanical damage causes dents to be formed. For “saucer” dents which are smooth, it may not 
be critical; however, for “cup” dents that are abrupt, certain range of field conditions including soil type, stress, cathode 
potential, coating conditions, and temperature, etc., may lead it to a catastrophic failure. Axial and circumferential 
field magnetic flux leakage (MFL) In-Line Inspection (ILI) smart Pipe-Inspection-Gears (PIG) and compression wave 
ultrasonic transmission devices, currently used for detecting metal loss and other defects like Stress Corrosion Cracks 
(SCC), have the difficulty of reliably detecting the coincidental metal loss associated with the “cup” type injurious 
anomaly, let alone quantifying it.  
 
If, instead of using the magnetic field and bulk wave ultrasound that are overly sensitive to the local surface condition, 
ultrasonic guided waves are directed through and along the wall of the pipe, flaws within the wave propagation path 
will reveal their unique signatures. By thoroughly analyzing the waveform collected from multi-sensors with multi-
measurements at multi-locations, defect feature will be extracted and classified into various shape and sizes. This also 
reduces the impact of local unpredictable variations to the sensor arrays. Guided waves are elastic waves propagating 
along a thin walled structure or structural boundaries [1-3]. Shear Horizontal (SH) wave, a special type of guided wave 
whose particle displacement is parallel to the structure surface, has the advantage of simple wave structure, less mode 
conversion and less attenuation to fluid load and coating, etc. This makes it an ideal choice for defect detection in 
pipes. 
 
In this project, Intelligent Automation, Incorporated (IAI) and Oak Ridge National Lab (ORNL) propose a novel and 
integrated approach to inspect the mechanical dents and metal loss in pipelines. It combines the state-of-the-art SH 
wave Electro-magnetic Acoustic Transducer (EMAT) technique, through detailed numerical modeling, data collection 
instrumentation, and advanced signal processing and pattern classifications, to detect and characterize mechanical 
defects in the underground pipeline transportation infrastructures. The technique has four components: (1) thorough 
guided wave modal analysis, (2) recently developed three-dimensional (3-D) Boundary Element Method (BEM) for 
best operational condition selection and defect feature extraction, (3) ultrasonic Shear Horizontal (SH) waves EMAT 
sensor design and data collection, and (4) advanced signal processing algorithm like nonlinear split-spectrum filter, 
Principal Component Analysis (PCA) and Discriminant Analysis (DA) for signal-to-noise-ratio enhancement, crack 
signature extraction, and pattern classification. This technical not only can effectively address the problems with the 
existing methods, i.e., to detect the mechanical dents and metal loss in the pipelines consistently and reliably, but also 
it is able to determine the defect shape and size to certain extent. The key advantages of our proposed approach are 
summarized in the next few paragraphs: 
 
 Sensitive SH wave to inspect various defects in the pipeline 

An SH wave propagates in a pipe structure with its energy distributed across the pipe wall. It can detect cracks 
and corrosions anywhere along its traveling path. Since the particle displacement of an SH wave is parallel to the 
pipe surface, it is less sensitive to the surface condition, has less mode conversion at the defects, and the 
interpretation of signals is easier as compared to other types of guided wave such as Lamb waves [3]. This 
capability enables us to inspect both the inner surface and outer surface of the pipe wall for metal loss with an ILI 
SH EMAT PIG setup easily and rapidly. 

 
 Computationally efficient BEM model to optimally determine the working conditions of SH EMAT PIG 

The eigen-modes of SH waves span all the wave-number vs. frequency domain represented by dispersion curves 
[4]. To select the optimal mode and frequency for best inspection sensitivity, a BEM model will be set up to 
emulate the SH wave interaction with a crack in the pipe. By extensive parametric study of the wave scattering 
factors vs. wave mode and frequency, the best combination can be determined for metal loss detection. Since the 
“cup” dents and buckles are three dimensional defects, a 3-D numerical model is required for this problem. BEM 
has the advantage of dimensionality reduction, less computer time and storage, more targeted calculation etc. over 
the popular Finite Element Method (FEM) [5-6]. It is used for the guided wave scattering problem. The PI of this 
proposal has extensive experience in BEM model and has developed 2-D and 3-D code for the SH wave defect 
characterization.   

 
 Non-contact, couplant free EMAT to generate and receive SH waves 

The use of EMAT to generate and receive SH waves is another advantage. EMAT works on the principle of 
Lorentz force in non-ferromagnetic materials like aluminum and copper etc., and Lorentz force combined with 
magnetostrictive effect in ferromagnetic materials like nickel and steel. One big advantage of these 
electromagnetic energy transduction methods is the non-contact properties. The absence of liquid couplant makes 
EMATs a primary choice for operating at elevated temperatures and for high speed scanning. Furthermore, the 
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operation characteristics of EMATs can be reproduced from one unit to another quite easily since they are only 
made of a piece of conducting wire and a permanent magnet; and the test results of EMATs are highly stable and 
repeatable. Another important feature of EMATs is it can generate SH waves efficiently, which must otherwise 
be generated with piezoelectric transducers rigidly bonded or sticky coupling to the pipe wall. The PI of this 
proposal has designed and manufactured various EMAT probes, including SH and Lamb wave EMAT, for both 
Penn State University and the Oak Ridge National Lab. 

 
 Proven signal processing algorithms to extract weak signatures and characterize defect  

Due to the coating and underground burying nature of the pipelines, as well as the EMAT sensor noise during the 
scanning process, the waveform signature from the defects will be extremely weak. After the waveforms are 
collected, a signal processing algorithm called split-spectrum [7] filter will be used to improve the signal-to-noise 
ratio. Then the PCA will be applied to extract the crack signatures features out of the mixed acoustic signals. 
From a wave feature B-scan image, or by using a pattern classifier such as Discriminant Analysis, the presence 
of mechanical dents can be determined. PCA is a linear neural network. A key benefit is that it significantly 
reduces the input data dimensionality. The specific algorithm for this project includes windowing the time domain 
waveform corresponding to the effective inspection area by transforming into the frequency domain, and then 
using the PCA network for metal loss determination. IAI has applied PCA and DA in many applications such as 
waveform recognition for the Space Shuttle, helicopter gearbox failure classification, diagnostics for the Call 
Processing Component of the Iridium 66 satellite worldwide telephony system, etc.  

 

In Phase 1, we have achieved many significant results. Fig. 1 summarizes our major achievements. First, we performed 

theoretical studies and BEM simulations on the impact of Shear Horizontal guided waves to defects in pipes. The 

study shows that the transmission coefficient and resultant waveform changes are useful features that will guide us in 

frequency and mode selections for better defect detection. Second, several algorithms have been implemented for 

defect classification. Third, various defects such as notch crack, “cup”, and “saucer” dents were produced on a steel 

pipe and SH wave data were collected on these defect with a pair of EMATs. Fourth, extensive data analysis was 

carried out and it was found that the PCA-DA algorithm yielded very good performance: we were able to detect and 

classify dents with size as small as 0.1”, which is much smaller than the safety requirements (0.5”) that OPS listed for 

a 12-inch standard seamless pipe. Fifth, a Graphical User Interface (GUI) was designed and implemented for the SH 

EMAT inspection system which will assist inspection of the pipelines. User can select any raw data files from normal, 

“cup”, and “saucer” cases, and the signal are displayed along with the detection and classification results so that a user 

can get first-hand information about the performance of the algorithm. This GUI can be further improved in phase 2 

for automatic defect detection and classifications. 

 

 
 

Fig. 1 Summary of Phase 1 results. 
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2. Review of Phase 1 Objectives and Technical Approach 
 

2.1 Phase 1 Objectives 
 

After the project started, we set up a kick-off meeting with Mr. Merritt of OPS. From the meeting and several 

correspondences afterwards, we were able to refine our task plans. More importantly, we learned that seamless pipes 

cause more problem for defect inspection than the roll-welded pipes. The wall thickness of the seamless pipe could 

vary up to 10% and it is periodic with a wavelength about 1 foot. The variation of a seamed pipe is less than 2%. We 

believe this variation will not affect the EMAT signal much, but will take that into account for signal processing and 

defect classification stages. For the Phase 1 project, we will stick to 12” pipe and do all the preliminary proof-of-

principle demonstration.  Once we are in Phases 2 or 3, we can figure out how it needs to be integrated.  When the 

pipe diameter changes, all the fixtures change.  Some modifications are needed to accommodate for the mechanical 

damages that the PIG will encounter when going through the pipe. Since the lift off will be of concern when the 

EMATs pass though the pipe, we need to make a careful mechanical design.  

Based on the OPS pipeline safety regulation 49 CFR Part 192 pipeline Safety: Pipeline Integrity Management in High 

Consequence Areas (Gas Transmission Pipelines). The proposed rule is that a dent with a depth greater than 6% of 

the pipeline’s diameter (greater than 0.5 inch for a pipeline diameter less than Nominal Pipe Size 12) or a dent with a 

depth greater than 2% of the pipeline’s diameter (0.25 inch for a pipeline diameter less than NPS 12) that affects the 

pipe curvature at girth weld and longitudinal seam weld, needs a 180-day remediation. Our man-made dents should 

be shallower than the case mentioned above which means less than 0.25 inch for 12” pipe and less than 0.6 inch for 

the 30” pipe.  Table 1 lists the proposed dent size and shape for Phase 1 research.  

Table 1: Specifications of the dent dimensions to be introduced to the 12” pipe 

 

Dent Type Diameter of Ball Depth Dent diameter 

 

 

 

Saucer 

3.75 0.25 2 

3.75 0.156 1.5 

4.8 0.2 2 

4.8 0.35 2.5 

 

 

 

Cup 

1 0.5 1 

1 0.4 0.98 

0.75 0.375 0.75 

0.75 0.3 0.375 
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The specific method to introduce dent defect on a pipe is to use hydraulic press machine, with various sizes of ball-
heads pressing onto the outer surface of the pipe wall. ORNL has the facility in producing these defects. 
 
Our key Phase 1 objective is to demonstrate that our proposed system can detect and classify defects with size smaller 
than 0.25” for 12” pipes. Through many experiments and simulations, we have clearly demonstrated the feasibility of 
our system. Section 3 summarizes our results in detail. 
 

2.2 Phase 1 Technical Approach 
 

The proposed system architecture is shown in Fig. 2. SH wave EMAT sensors are placed inside a pipe on a test fixture 
that can be pulled through the pipe. The EMAT sensor is optimally designed with the best sensitivity to the dents and 
metal loss in the pipe. The tone-burst signal, whose frequency is also optimized with BEM, is input to the EMAT. The 
scattered ultrasonic signal from defects will be captured by all the EMAT and digitized by Data Acquisition Card 
(DAC) with filtering and noise reduction, the data are sent to PCA network for flaw feature extraction and LVQ 
classifier or B-scan imaging system for display. 

 
 

 
 

Fig. 2 Architecture of the proposed in-line pipe inspection system 
 

The use of guided SH wave is both an art and a technology. The benefit of the above proposed approach includes: 
• Long range inspection capability of SH waves from a single probe position.  
• Insensitive to the liquids transporting inside the pipe or the protecting coating layer and soil outside. 
• Optimized probe design and inspection parameters with a solid BEM modeling. 
• Renovated nonlinear filter for extracting flaw signal which may totally buried under the noise even after 

linear filtering and waveform time averages. 
• Robust and sensitive fault diagnosis algorithm with PCA and DA, and versatile result output capability. 
• Compatible and easy integration with existing ILI system. 

 
Details of each module are summarized below. 

2.2.1 SH Transducer: EMAT Sensor Principle and Design 

 
For a 12-inch diameter standard pipe, the dispersion curves of the circumferential SH wave is shown in Fig. 3. In our 

study, n1 mode SH wave was used due to its high excitation and reception efficiency compared with the n0 mode. 
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The basic components of EMAT consist of a face coil and magnets. It works under the Lorentz force principle in a 

non-ferromagnetic metal. The oscillating current in the face coil induces oscillatory eddy current at the surface of a 

metal close to the face coil. Under the magnetic field of the permanent magnets or electromagnets, the induced eddy 

current will exert vibration force to the lattice of metal microstructure, which in turn induces mechanical vibration in 

the material. The EMAT receiver is just the reverse of that process. It is of a great advantage that EMAT does not 

require couplant for transmitting energy into the material like conventional piezoelectric transducers. And it can be 

easily put onto and taken off from the structure and has very good measurement repeatability. Fig. 4 shows the diagram 

of the SH EMAT principle and a sample SH EMAT probe. The length of the alternating magnets in the wave 

propagation direction determines the slope of the excitation line that runs from the origin across the dispersion curve 

(see Fig. 3 dashed line), i.e. 

2
pC

d
f

         (2) 

where   is the wavelength of the SH wave to be generated, d  is the distance between the center of the two adjacent 

alternating magnets, pC  is the phase velocity and f  is the excitation frequency. 

 

Fig. 3 Circumferential SH wave dispersion curves in a 12-inch standard pipe. 
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      (b) 
 

Fig. 4 (a) Principle of the Lorentz force SH wave EMAT and (b) SH EMAT probe designed for this study. 
 
Fig. 5 (a) shows a 270 kHz EMAT system we produced at IAI, which consists of an EMAT transmitter, a receiver, 
impedance-matching networks and a signal amplifier. A sampled through-transmission signal on a 2mm aluminum 
plate is shown in Fig. 5 (b), which demonstrated good S/N ratio. We expect no problem producing a specialized probe 
for this project. 
 

  
 

Fig. 5 (a) an example EMAT sensor system made at IAI and (b) EMAT signal of the test shown in (a) 

2.2.2 Split-Spectrum Nonlinear Filter for Coherent Noise Reduction and Signal Extraction 

 
For ILI of pipelines, noise is usually a big issue that can deteriorate the effectiveness of the inspection. if noise if 
random and time-dependent, a simple time averaging or temporal compounding is usually sufficient to improve the 
signal to noise ratio (SNR). However, for noise that is coherent (time-invariant), conventional linear filtering or time 
average failed to eliminate the noise. Recently, we have renovated a split-spectrum nonlinear filtering algorithm can 
shows great success in extracting useful signal out of overwhelmingly coherent noises. The technique makes use of 
the frequency domain spectrum of the raw data by spiting it into tens of separate spectrum channels with overlapping 
Gaussian windows. By taking the minimization and polarity thresholding functions on the spectrum channels and 
merging into a single spectrum, the inverse Fourier transformed signal will retain only the flaw signal while eliminate 
the noise. 
 

Frame

Magnets

EMAT Coil

Frame

Magnets

EMAT Coil

EMAT Transmitter EMAT Receiver 

Transmitter matching network 
Receiver matching network 

Pre-amplifier 

Main bang 

Direct signal 

Edge reflections 



Proprietary Information - IAI 9 

 
 

Fig. 6 An example of the split-spectrum noise reduction for an ultrasonic raw waveform 
 
The top plot of Fig. 6 is the raw data collected from a 3 MHz Lamb wave sensor for crack detection in a plate by using 
Metac TB-1000 toneburst card. The signal is already bandpass filtered (500 kHz~ 5MHz), and time-averaged 100 
times. The signal is seen buried under the noise. Conventional linear filters and wavelet denoising approach did not 
work for this data. 
 
Showed on the bottom is the post-processed crack signature with our newly developed nonlinear filtering. The first 
big signal is the echo from the crack. The other two are verified to be an edge reflection and another lamb wave mode. 
The noise is totally eliminated while the defect signal is extracted 
 
2.2.3 Boundary Element Modeling of Guided Wave Interaction with Defects 
 
The basic idea of using BEM to simulate guided wave interaction with defects is to provide a guideline for defect 
shape and size estimation in a plate or pipe structure without much experimental effort. BEM has the advantage of 
much better computational efficiency over the more popular Finite Element Method (FEM) for the same accuracy. It 
only meshes the boundary of the domain instead of the whole domain area (Fig. 7 (a)). Fig. 7 (b) is an example of 
using SH wave to size a crack and corrosion type of defect in a steel plate [8]. The calculated reflection and 
transmission coefficients of n0 mode SH wave from the three different shaped defects are shown in Fig. 8, in which it 
is seen that at low frequency the reflection coefficient increases monotonically and transmission coefficients deceases 
monotonically with the increase of defect size. For narrow surface crack or notch, this tread extends to the whole 
frequency covered in the computation. Generally speaking, for the specimens considered, SH wave around 100 kHz 
has the best sensitivity for defect detection using reflected signals. Fig. 9 shows the experimental verification of the 
results using 220 kHz EMAT probes. Good agreement was obtained. For the problem in this proposal, BEM model 
could easily be modified to take the plate taper angle into account. Our software has the capability to model stepped, 
tapered or lap-jointed cross-sectional waveguide by changing the geometry mesh input.   
 

 
(a)     (b) 

Fig. 7 (a) Boundary element mesh for evaluating guided wave scattering from a surface–breaking defect;  

(b) Sample plates with defects of three different shapes and of 10%, 20%, … 90% through plate thickness.   
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Fig. 8 From top to bottom, approximated reflection and transmission coefficients for n0 mode SH wave incident into 

a 0.5”, 0.25” and 0.012” surface opening elliptical defects with 10%, 20%, .., 90% through plate thickness depth. 
 

 
   (a)      (b) 
Fig. 9 Theoretical and experimental comparison of (a) Reflection and (b) Transmission coefficients for 210 kHz n0 

mode SH wave incident into a 0.012” (0.3mm), 0.25” (6.35mm) and 0.5” (12.7mm) elliptical defect with 10%, 30%, 

… 90% through plate thickness.  
 
To investigate the effect of a 3-D shape to the scattering pattern in the angular direction in the pipe, a 3D BEM model 
can be setup [9]. Fig. 10 shows a schematic view of the model, where the boundary of a virtual region enclosing a 
realistic defect (e.g. a circular through plate hole) was meshed with quadrilateral elements. A time-harmonic plane SH 
wave is incident onto the defect. The scattered wave fields were decomposed as a superposition of various circular 
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crested eigen-modes of both Lamb wave and SH waves [9]. The wave displacement and stress fields are then 
calculated in different directions and form an angular pattern. For different defects, this pattern is expected to be 
different, which could be used for defect shape and sizing analysis.  Fig. 11 shows a sampled result when a 0.8MHz 
SH wave incident onto the circular hole. The diameter of the hole is the same as the thickness of the plate. The 
displacement amplitude at 10 times the radius around the hole is plotted for both the SH wave mode and mode 
converted Lamb modes, which shows that for SH modes, most of the energy is either reflected back or transmitted 
through the defect. 
  

 
 

Fig. 10 A schematic problem of a plane guided wave incident into a three-dimensional defect in an infinite plate.   
 

 
 

Fig. 11 The scattered (a) S0 mode Lamb wave and (b) n0 mode SH wave particle displacement amplitude on the 

virtual cylindrical boundary for 0.8 MHz n0 mode SH wave incidence.  

2.2.4 Sensitive Algorithm for Defect Detection and Classification 

 

In this section, the PCA-DA algorithm is briefly introduced for its formulas, process steps, etc. the block diagram is 

as shown in Fig. 12. The major steps are listed below. 
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Fig. 12 Block diagram of the PCA-LDA based classification method. 

 

Feature Extraction by PSD (Power Spectral Density) 

 

The features used in the classification are extracted by one of the Power Spectral Density methods: Periodogram. Fig. 

13 depicts the PSD of the training and testing data sets between frequencies 80 and 170 (frequency in samples). 

  
Fig. 13 PSD waveforms of the experimental data set (periodogram method). 

 

Feature Dimension Reduction by PCA (Principal Component Analysis)  

 

The dimension of the feature space is reduced by applying PCA. In this way, only the principal component features 

are included in the classification process. The PCA is a well-known and widely used dimension reduction technique 

[10]. 
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In PCA, first the mean vector, μ , and the covariance matrix, Σ ,  are computed for the full data set. In our case, the 

data set corresponds to the spectrum data vectors obtained from PSD. Next the eigenvectors and the eigenvalues are 

computed. The eigenvalues are sorted in a descending order. Finally, a matrix A, whose columns consist of the k 

eigenvectors with the largest eigenvalues is formed. The data is then projected onto the k-dimensional subspace in 

order to represent the data by principal components. 

 

Classification with DA (Discriminant Analysis) 

 

Suppose there is a set of n dimensional samples, 
1
,..., }

N
x xD = { , where each data sample is represented by a data 

vector, 
j

x . The samples in D  belong to a total of c classes and 
i

D will be used as the notation to represent the data 

samples in class i , where 1,...,i c . Let 
i

m  represent the class mean, and 
i

n  represent the number of samples in 

class i . The relation between within-class scatter matrix and scatter matrices can then be depicted by (1).  

1

c

W i

i

S S ,      (1) 

where, the scatter matrices can be expressed by (2). 

( )( )
t

i i i



  
x

S x m x m

iD

.     (2) 

The class mean and total mean vectors can be depicted as (3) and (4), respectively. 

1
i

i
n 

 
x

m x

iD

,      (3) 

1

1 1 c

i

i

n
n n 

   i

x

m x m .     (4) 

With these definitions the total scatter matrix, and between class scatter matrices are introduced in (5-7). 

( )( )
t

T
  

x

S x m x m ,     (5) 

1

( )( )
c

t

B i i i

i

n


  S m m m m ,     (6) 

T W B
 S S S .      (7) 

The LDA based classifier is based on computing the c discriminants for the given c classes in the data set. In the 

computation of the discriminant functions within this classifier, it will be assumed that the covariance matrices of each 

class, 
i

Σ , are different, and 
i

μ  is the vector corresponding to the mean of each class. The resulting discriminant 

functions are quadratic, and mathematically described in (8): 

0
( )

t t

i i i i
g w  x x Wx w x ,     (8) 

where 
i

W  is mathematically introduced in (9), 
i

w  in (10), and 0i  in (11): 

1

2
i i


 W Σ ,      (9) 

i i i


w Σ μ ,      (10) 

0

1 1
ln ln ( )

2 2

t

i i i i i i
P 


   μ Σ μ Σ .    (11) 

Note that in (11), ( )
i

P   represents the prior probability of each class. However, in this study it is assumed that each 

class has the same prior probability. There are c discriminant functions, where ( )
i

g x  denotes the discriminant function 

for class i . The class label of sample x  is determined by comparing the magnitudes of the c discriminant functions 

with respect to x, and the maximum value among them determines the class decision as depicted in (12). 
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arg max( ( ))
i

i

g x .     (12) 

 

Computation of MER (Modeling Error Rate) 

 

The objective of PCA is to reduce the number of features, while still providing enough information about the data. 

The number of principal components can be determined by examining the modeling error rate, MER. In order to 

express the modeling error rate, the following nomenclature is introduced in the following: 

 

1

' '

Nomenclature:

:   feature vector, 1, ...,  

:  number of feature vectors

:  dimension of 

:  mean of { }

:  reduced dimension number, 

:  eigenvectors of the scatter matrix with the largest

th

k

n

k k

i

k k n

n

d

d d d







x

x

m x

e

'

'

1

 eigenvalues, 1, ...,

:  principal component for the  feature vector, where 1, ..., , and 1, ...,  

: error criterion for { }  with a reduced dimension of     

th th

ki

n

k kd

i d

a i k i d k n

J d




 

x

 

 

The modeling error rate (in percentage), MER, is then mathematically expressed as 

'

2

1

(%) 100
d

n

k

k

J
MER



 

 x

,     (13) 

where  

'

'

2

1 1

n d

ki i kd

k i

J a
 

  
 
 
 

 m e x . 
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3. Phase 1 Results 
 

In Phase 1, we have performed many experiments and applied quite a few algorithms to evaluate the pipeline health 

status. Data from three separate experiments were used to validate the performance of our overall technical approach.  

 

3.1 Theoretical modeling of SH wave incident into the dents using BEM Method 
 

In this study, boundary element modeling (BEM) is set up for calculating the reflection and transmission coefficients 
of SH wave impinging onto the dent defects. A two dimensional model is setup, with the “cup” and “saucer” dents 
represented as 180 degree volume angle indentation and 60 degree indentation. The mathematical schemes are shown 
in Fig. 14. The usage of plate specimen to approximate a 12” standard pipe has been proven valid [11]. Around 1000 
elements are used to mesh the boundary of the specimen with the dent defect. The calculated reflection and 
transmission coefficients are shown in Fig. 15 to Fig. 18. 

 
   (a) 0.75” diameter, 0.375” depth half-sphere “cup” dent 

 
   (b) 1” diameter, 0.5” depth half-sphere “cup” dent 

 

 
  (c) 1.5” diameter, 0.23” depth 60-degree-volume-angle-sphere “saucer” dent 

 
  (d) 2” diameter, 0.31” depth 60-degree-volume-angle-sphere “saucer” dent 

 

Fig. 14 BEM model of the “cup” and “saucer” dents 
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Fig. 15 Reflection coefficient of SH n0 mode wave incident into the dents 

 
Fig. 16 Transmission coefficient of the SH n0 mode incident into the dents 
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Fig. 17 Reflection coefficient of the mode converted n1 mode for n0 mode SH wave incident into the dents. 

 
Fig. 18 Transmission coefficient of the mode converted n1 mode for n0 mode SH wave incident into the dents 

 
From the BEM calculation, it is evident that the dent will cause wave reflection and transmission energy partition. 
Moreover, mode conversion occurs at the defect. n0 mode SH wave incidence will not only result in n0 mode reflection 
and transmission, but also n1, n2, or even higher mode to appear and energy partition. This feature, though complex, 
could benefit for the defect classification and sizing since different dents will cause different response of these effects. 
   
It is also seen that the reflection coefficient of the n0 mode SH wave at low frequency region (200 kHz ~ 400 kHz) 
has distinct response to “cup” dents and “saucer” dents, i.e. high reflection occurs for “cup” dents and much less 
reflection occurs for “saucer” dents. This could be used for classification purpose. Also, with different size dent, the 
reflection and transmission coefficient has different values, which could be extracted for defect sizing. 
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3.2 Defect Classification for man-made notch defects 
 
Oak Ridge Lab. has some EMAT data for man-made notch defects on a 12 inch pipe. In this section, we initiated the 

effort of developing the defect classification algorithm. SID (Spectrum Information Divergence) similarity measure 

[12], Orthogonal Subspace Projection (OSP) [12], Nonnegatively Constrained Least Squares (NCLS) [12], and 

Principal Component Analysis combined with Discriminant Analysis (PCA-DA) [10] were evaluated. Results show 

that PCA-DA approach has a relatively superior performance over the other methods for EMAT data on a pipe.  

 

3.2.1 Data specification 

 

The experimental data set consists of 300 samples collected from acoustic sensor located on a pipe. The EMATS are 

3.375” in dimension (circumferentially), with the active area being 1.35” (circumferential) by 1.5” (width).  The 

distance between the transmitter and receiver EMATs is 1.5”.  The EMATs were positioned in the center of the defects. 

Each sample is a time domain data vector, which consists of 2048 data points. The data set has been divided into two 

sets: 

 Training data set, (50 normal, 25 defect1, 25 defect2, 25 defect3, 25 defect4), 

 Testing data set (50 normal, 25 defect1, 25 defect2, 25 defect3, 25 defect4). 

 

The types of defects introduced on the pipe and the normal condition are given as: 

 Normal: width: none, depth: none, 

 Defect1: width: 0.25, depth: 0.2, 

 Defect2: width: 0.25, depth: 0.17, 

 Defect3: width: 0.125, depth: 0.224, 

 Defect4: width: 0.125, depth: 0.185. 

 

Fig. 19 shows the sample waveform for normal data and defect 1 data.  

 

 
   

(a) Normal      (b) Defect 1 

 

Fig. 19 Collected EMAT transmission waveform of the SH wave incident into notch defects. 

 

3.2.2 Defect Classification Using SID, OSP, NCLS, and PCA-DA 

 

Various methods were used and tested, such as SID (Spectrum Information Divergence) similarity measure, 

Orthogonal Subspace Projection (OSP), Nonnegatively Constrained Least Squares (NCLS) and Principal Component 

Analysis combined with Discriminant Analysis (PCA-DA). The details of the algorithms (SID, OSP, NCLS) are 

shown in the Appendices.  

 

We will not elaborate the details of each method here, but just show one method for illustration purpose. The PCA-

DA algorithm is composed of three parts: feature extraction by PSD (Power Spectral Density), feature dimension 
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reduction by Principal Component Analysis (PCA), and data classification using DA (Discriminant Analysis). The 

block diagram of the applied classification method is depicted in Fig. 12.  

 

Fig. 13 depicts the PSD of the training and testing data sets between frequencies 80 and 170 (frequency in samples). 

 

 The spectral signatures representing the five different condition of the pipe are obtained by averaging the PSD 

waveforms of the corresponding training data sets. Fig. 20 depicts the spectral signatures of the five conditions 

after the averaging process. 

 

 
 

Fig. 20 Spectral signatures of the five pipe conditions after averaging the corresponding PSD waveforms. 

 

To apply the various methods to the EMAT data, the training and testing data sets are randomly separated. Random 

selection is applied using Matlab’s random generator function (rand). Only training data set is used in finding PC 

eigenvectors. Table 2 gives the evaluation results for these methods. For PCA-DA method, 6, 8, 11 and 14 principal 

components were evaluated for feature extraction, the PCA Modeling Error Rate definition (MER, see Section 2.2 for 

definition) for each case were shown in Fig. 21.  

 

Fig. 22 illustrates the results in Table 2 in graphical manner. It can be clearly seen that PCA-DA yielded the best 

performance. If we choose 8 principal components, we can get close to 100% correct classification accuracy for most 

of the cases. We also observed that more and less principal components do not yield good performance because of 

over-training and under-training issues. 

 

Table 2 Results for the testing data on a 12” pipe 

 
 Correct Classification Percentage for Testing Data Sets 

Method Healthy Defect1 Defect2 Defect3 Defect4 

SID 98% 100% 100% 88% 88% 

OSP 94% 100% 100% 72% 76% 

NCLS 94% 96% 100% 72% 80% 

      

PCA-DA (6 PC features) 98% 88% 88% 96% 88% 

PCA-DA (8 PC features)  100% 100% 100% 100% 96% 

PCA-DA (11 PC features)  100% 92% 100% 100% 96% 

PCA-DA (14 PC features)  100% 84% 100% 100% 100% 
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Fig. 21  Modeling error rate (%) with PCA modeling (12” data)  

 

 
Fig. 22 Classification results of different methods for different defect conditions. 

 

3.3 “Cup” and “Saucer” Defect Detection, Classification, and Size Estimation for 12” Pipe 
 

First, we have successfully fabricated a test specimen with a 7 feet long, 12 inch diameter seamless pipe. Six “cup” 

dents and ten “saucer” dents were successfully introduced on the outside pipe wall.  The dents size, depth and the 

surrounded area of deformation were measured and cataloged for the rest of the studies.  

 

Second, we set up the SH EMAT data acquisition system and collected a large number of through-transmission data 

inside the pipe. The data consists of 9 groups of normal data which were collected at 9 different locations in the pipe 

where there is no visual defect; 30 groups of “cup” dents data, with every five of them were collected through the 

same “cup” dent but at a slightly different lateral position; and 50 groups of “Saucer” dents, also with every five 

groups on the same dent. 

 

Third, after the EMAT data were collected for the dents defect, we applied the PCA-DA algorithm to the “cup” and 

“Saucer” dents as compared to the normal conditions. We can successfully detect any dents of depth larger than 0.1” 

with 100% correct rate and classify the “cup” dents 100%. This depth is much less than that required by the OPS 

pipeline safety regulation (0.5” for 12” seamless pipe) [13] and should give maintenance personnel enough confidence 

margin for critical dents detection. For “Saucer” dents, the correct classification rate is about 70% since the saucer 

dents we used in the study is less than 0.15”. We should be able to achieve 100% correct rate for the deeper dents.  
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Finally, the dents depths are plotted versus the EMAT through-transmission signals amplitude, which show the 

reduction in amplitude for increased dent depth and size. The initial linear curve fitting combined with the dent 

classification algorithm could roughly provide the dent depth information.   

 

In the following sections, technical details of the work performed and the results are presented. Future work plans and 

financial status are also attached. 

3.3.1 Mechanical dents creation and descriptions 

 

Mechanical damage in natural gas pipelines is of great concern to the industry.  There is potential for a catastrophic 

failure if these damages are not detected.  Most of these flaws are caused by third party damages during digging around 

the area where pipelines are buried. 

 

A 12-inch diameter schedule 40 (wall thickness 0.375 inch) seamless steel pipe sample was selected to study the 

feasibility of detecting these defects using EMATs.  In simulating dents, the dents were classified into cups and 

saucers.  The differentiation of a cup and a saucer is based on the severity of the slope of the defect.   

 

Dent Creation  
 

Dents on the pipes were created using a hydraulic press.   Chrome finish steel balls of 5-inch, 3.75-inch, 1-inch and 

0.75-inch diameter were used for the creation of dents.  The pipe was placed on the hydraulic press with support braces 

under it.  A fixture attached to the ram on the hydraulic press secured the steel balls.  By controlling the amount of 

displacement of the ram, the dents of different depth were created.  The larger diameter balls were used to create 

saucer while the smaller ones produced the cups.  Fig. 23 shows the diagram of the pipe specimen with the mechanical 

dents created. 

 

 
Fig. 23 Three rows of cup and saucer dents created on a 7 feet long, 12 inch diameter schedule 40 seamless pipe. 

They are 1 foot apart from each other or the pipe end for the same row. 

 

 

 

7 feet 

1 foot 

cup dents saucer dents 



Proprietary Information - IAI 22 

  
  (a) “cup” dent     (b) “saucer” dent 

Fig. 24 Cup and saucer dents on a 12-inch pipe created by a 0.75” and 5” diameter steel ball 

 
Fig. 24 gives an example of the cup and saucer created on the 12-inch diameter pipe. It can be seen that the cup dent 

is relatively smaller in size but much sharper, while the saucer dent is flat and large in area. There are also some minor 

deformations around the dents seen from the photo. 

 

Fig. 25 shows more pictures of the dents created on the 12” schedule 40 seamless pipe. The left column is cup dents, 

the right are saucers. The programmed indentation depth is shown in each figure. Note that due to deformation 

recovery of the pipe, the actual size and depth of the dents are much different from what is intended. 

 

     
 (a) 1” ball, pushed 0.2” into the pipe     (b) 3.75” ball, 0.2” into the pipe  

 

     
 (c) 0.75” ball, 0.3” into pipe    (d) 5” ball, 0.3” into pipe 
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 (e) 1” ball, 0.375” into pipe    (f) 5” ball, 0.375” into pipe 

Fig. 25 Pictures of various cup and saucer dents on a 12” pipe wall 

 
Dent Data   
 

To obtain a representative sample of the EMAT response to varying dent sizes, multiple dents were created.  When 

the steel ball penetrates the 12–inch pipe and creates a dent, the material is displaced, but due to the elasticity of the 

pipe, the material springs back when the ram is released.  The amount of spring back is difficult to predict and control.  

The depth of the dent created is dependent on how the pipe is secured and where the supports are relative to the ram.  

In some cases while the ram was pushing the ball into the pipe, the opposite end of the pipe lifted upward.  To eliminate 

all these variables, measurements are based on the dent depth after they have been created and not during the creation 

of dent. The depths were referenced with the original no-dent condition, i.e., the deepest point of the dent to the original 

pipe surface.  

 

Table 3 gives values for the depth and area of the dents.  Although the ball was spherical, due to the curvature of the 

pipe circumference, the dents created were ellipsoidal.  Table 3 gives the major and minor diameters of the dents.  

Also, around the area of the dent, there was a region that experienced a flattening or gradual slope to the actual 

depression of the cup and saucer.  This area is referred to as the area of deformation.  At the area of deformation, the 

curvature of the pipe is absent.  Fig. 26 explains the shape around the dents. 

 

Table 3 Dent number and size information 

 

Dent Number 

Diameter 

Depth 
Area of 

deformation 

Ball 

Diameter 

 
Axial Circumferential 

1 0.395 0.378 0.085 0.63 x 0.55 

0.75 2 0.5 0.488 0.218 1.4 x 0.75 

3 0.444 0.435 0.124 0.95 x0.75 

4 0.415 0.415 0.065 0.625 x 0.625 

1 5 0.545 0.534 0.20 1.35 x1.2 

6 0.386 0.375 0.062 0.55 x 0.51 

7 0.72 0.65 0.033 1.25 x 0.875 

3.75 8 1.35 0.995 0.118 3 x 3 

9 0.595 0.526 0.04 1.25 x 0.95 

10 1.46 0.855 0.134 2.4 x 1.56 

5 11 1.46 0.894 0.121 1.6 x 1.3 

12 0.73 0.715 0.094 1.1 x 1.1 

13 0.615 0.547 0.070 0.95 x 0.65 3.75 

14 0.875 0.775 0.179 1.75 x 1.3 3.75 

15 0.886 0.75 0.123 1.5 x 1 5 

16 0.745 0.62 0.076 1.1 x 0.85 5 
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Fig. 26 Diagram of the dent and the induced deformation  

 

3.3.2 EMAT data collection inside the 12-inch pipe 

 

Data collection 
 

After the dents were created on the pipe, EMATs in through-transmission mode were used to collect the data.  Fig. 27 

shows the pipe specimen and the receiver and transmitter EMAT setup inside the 12-inch pipe.   

 

 
(a) The 12-inch standard seamless pipe specimen with the dents on the outer surface of the pipe wall 

 

Deformed region 

Dent 
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(b) EMAT configured inside the test pipe 

 

Fig. 27 EMAT data collection setup 

 

The flaws were positioned between the two EMATs to obtain the data.  The spacing between the transmitter and 

receiver could be adjusted in the fixture for the particular measurement of interest. For all these tests, the center-to-

center transmitter-receiver spacing was set at 6.5- inches.  The frequency of the pulser was set at 263.4 KHz with a 

pulse width of 22 microseconds and a repetition rate of 12 milliseconds.  The signals are amplified by 93 dB before 

being collected by the data acquisition unit. 

 

The EMATs were positioned on either side of the dents while the measurements were taken.  For these sets of data, 

the signals were obtained while the EMATs were stationary. Five measurements were taken for each dent with two 

readings on either side of the mid-point of the dent and one with the EMAT mid-point coinciding with the dent center.  

After the successful demonstration of the technology, when the system is field deployed, the measurements have to 

be obtained while the EMAT are in motion relative to the flaw 

Since EMAT measurement in this configuration is not an absolute measurement of the dent, baseline readings were 

obtained to reference the signal deviation from the norm. To obtain the baseline readings, the EMATs were positioned 

on the pipe with no visible flaws.  Multiple measurements were taken to obtain a good sample of the no-flaw signal. 

 

Fig. 28, Fig. 29, and Fig. 30 show the sample though transmission waveforms for normal, a cup dent and a saucer dent 

pipe section collected by the EMAT sensors. It is seen that the amplitude of the direct through signal for the cup and 

saucer dents were reduced. Moreover, the signal from the saucer dent becomes dispersed due to a multi-path effect 

around the dent, which is less so for the cup dents because of the smaller size.  

EMATs 

EMAT positioning fixture 

Rollers 
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Fig. 28 Data Scan of normal position 

 

 

 
Fig. 29 Data scan of Cup type defect 

Direct through 

signal 

Signal turns around 

the pipe 
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Fig. 30 Data scan of Saucer type defect 

3.3.3 Defect Detection Based on Correlation Technique 

 

We noticed that for shallow dents (i.e., depth less than 0.1 inch), the waveform did not show much visual difference 

from the normal data, which is understandable since the defect is too small and not much change were made to the 

through transmission waveform. Our initial classification algorithm also did not perform well. This could be viewed 

as a detection limitation of EMAT for the dents detection in the pipelines.  

 

Here we apply a time domain cross-correlation method to the dents data (for depth larger than 0.1 inch) collected by 

EMAT sensors. We selected 90 samples of normal data, 150 samples of cup data, and 150 samples of saucer data for 

dents detection and classification. The dents are all have depth larger than 0.1 inch. Note that for each position 10 

samples will be collected. Thus we only need to do the classification for every 10 samples. 

 

The objective is to first determine if there is a defect for each new position. If there is, we need to do the classification 

between Cup and Saucer types of defect. Therefore, we can use time domain correlation of main lobes to determine if 

there is a defect or not.  The correlation value is calculated by the following procedures: 

 

(1)  Use the first normal scan as the reference sample. 

(2) For any new sample, first shift it in the time domain so that the correlation value Re
i i

i Mainlobe

f NewSample


  is 

maximized. 

(3)  The outcome correlation value is the correlation value of this new sample to reference sample. 

 

The correlation values of all 390 samples are shown in Fig. 31. Here first 90 samples are normal data, and all the other 

samples are defect data. 
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Fig. 31 Cross-Correlation value of all samples 

 

As we can see, by choosing an appropriate threshold, we can determine if there is a defect or not. Using the data we 

have and choosing the threshold shown by the dotted line in Fig. 31, the dents are successfully detected without any 

error.  Table 4 summarizes the detection results. 

 

Table 4 Results for the testing data sets regarding the Normal/Defect classification. 

 

 Number of 

samples 

Labeled as 

Normal 

Labeled as  

Defect 

Accuracy 

 

Normal 80 80 0 100% 

Defect 300 0 300 100% 

3.3.4 PCA based Technique for Classification 

 

After we determine there is a defect in the specified position, we need to classify the defect as Cup or Saucer. Time 

domain correlation methods are no longer enough in this case. Instead, we will use PCA-DA based classification. The 

data set has been divided into two sets: 

 Training data set, (100 Cup, 100 Saucer), 

 Testing data set (50 Cup, 50 Saucer). 

 

A total of 14 principal component features have been used, and the test results are shown in Table 5.  

 

Table 5 Results for the testing data sets regarding the Cup/Saucer classification. 

 

 Number of 

samples 

Labeled as 

Cup 

Labeled as  

Saucer 

Accuracy 

 

Cup 50 50 0 100% 

Saucer 50 17 33 66% 
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We can see that with the PCA-DA algorithm, we can successfully detect cup dents deeper than 0.1 inch with no error. 

This is critical since cup dents are considered more harmful to the safety of the transmission lines. The classification 

rate for saucer dents is not as good as cup dents, however, with more EMAT data and more dents specimen, we could 

produce a table or a PD/FLR curve for each type of dents so that the inspection personnel have a better picture of how 

effective the EMAT PIG and what the inspection limitation is.   

 

To help users further visualize the classification results, we plotted the first three principal features (Fig. 32). It can be 

seen that there are some overlapping because we only used 3 out of 14 features. However, the 3-D indeed provides an 

easy and straightforward way for users to visualize the differences between cup and saucer defects. 

 
 

Fig. 32 PCA features of old defected data 

 

3.3.5 Dent depth Estimation 

 

Since we know the signal amplitude information of a newly collected signal and the normal reference signal, upon 

successfully separating the “cup” and “saucer” dents, we can use the waveform envelop to approximately estimate the 

depth of the dents. This will certainly provide some useful information for the pipeline inspector.   

 

Here we tried to examine how the dent depths correlate to the EMAT through-transmission signal. All the 9 groups of 

normal data, 6 groups of cup data and 10 groups of saucer data were calculated for their signal envelop. The peak 

value of the direct through signal envelop were then plotted versus the dent depth. The results are shown in Fig. 33. 

Note that for each dent, 10 frames of data at the center position were used, and their peak values of the direct signal 

are plotted in the figure. Due to the presence of background noise, the peak amplitudes of the signals have some 

variances, resulting in clusters in the figure. Two dashed lines were drawn in the figure to roughly fit the trend of the 

clusters, showing that the overall amplitudes of both the cup and saucer dents decrease with the increase of dent depth. 

However, there are some local amplitude variances due to the constructive and destructive interferences of SH wave 

passing through different sizes of dents and the EMAT data collection conditions. The saucer dents amplitude 

decreases more for the same depth compared to the cup dents, which complies with our intuition since saucers have 

larger dented area and block more wave energy that is coming through.  
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Fig. 33 EMAT through-transmission signal amplitude versus the dent depth showing the overall decreasing signal 

strength with deeper dents. Saucer dents experienced a relatively sharper decrease compared to the cups. This 

information can be used inversely to estimated the dent depth after “cup” and “saucer” separation 

 

3.4 Defect Detection and Classification for another 12” Pipe 
 

In Section 3.3, we presented results of defect detection for a 12” pipe. After that, we also created many new dents on 

a new 12” pipe. Here we briefly summarize the latest results in this section. 

 

Our approach consists of two steps. First, we applied correlation analysis to determine whether a given measurement 

is normal or defective. Second, we applied PCA-DA to further classify the defect type.  

 

The correlation values of all 600 samples are shown in Fig. 34. Here first 100 samples are normal data, and all the 

other samples contain defects. 

 

 
Fig. 34: Correlation value of all samples from new data set 

Saucer 

cup 
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As we can see, if we choose an appropriate threshold, we can determine if there is a defect or not. Using the data we 

have and choosing the threshold shown by the dotted line in Fig. 34, the probability of error is 0. Table 6 shows the 

results. 

 

Table 6. Results for the testing data sets regarding the Normal/Defect classification. 

 

 Number of 

samples 

Labeled as 

Normal 

Labeled as  

Defect 

Accuracy 

 

Normal 90 90 0 100% 

Defect 500 0 500 100% 

 

 

After we determine there is a defect in the specified position, we need to classify the defect as Cup or Saucer. Time 

domain correlation methods are no longer enough in this case. Instead, we will use PCA-DA based classification. The 

data set has been divided into two sets: 

 Training data set, (250 Cup, 150 Saucer), 

 Testing data set (50 Cup, 50 Saucer). 

 

A total of 14 principal component features have been used, and the results are shown in Table 7.  

 

Table 7 Results for the testing data sets regarding the Cup/Saucer classification. 

 

 Number of 

samples 

Labeled as 

Cup 

Labeled as  

Saucer 

Accuracy 

 

Cup 50 48 2 96% 

Saucer 50 15 35 70% 

 

To help users visualize the defect classification results, we plotted the first 3 principal features in a feature space as 

shown in 

Fig. 35. Since we used only the first 3 PCA features of these test data, there are some overlappings. However, most of 

the data sets are separable.  

 

 
 

Fig. 35: PCA features of defect data. 
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3.5 Graphical User Interface for Demonstrations 
 

To help people understand the performance of our algorithms, we developed a Graphical User Interface (GUI). The 

processed results have been saved into files. Our GUI can display raw data and the processed data. We can compare 

the ground truth with the detection and classification results. Fig. 36 shows the GUI. Although our system is not 

running in real-time yet, the GUI will be the same for the real-time version. 

 

 
 

Fig. 36 GUI for pipeline defect detection and classification. 
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4. Conclusions 
 

In this Phase 1 research, we have clearly demonstrated the proposed approach for detecting and classifying “cup” and 

“saucer” dents in pipes. Extensive simulations and comparative studies were performed. Specifically, we have 

observed that: 

• EMAT transducers are quite sensitive in detecting small dents (0.1”), which are much less that the 

minimum dent size (0.25”) required for safety by the pipeline inspection community. 

• Extensive experiments were performed to create dents with different sizes. 

• Correlation analysis was used for defect detection. The performance was perfect. 

• Four defect classification algorithms were implemented and evaluated. The PCA-DA was selected as a 

candidate for Phase 2 implementation. Our evaluation results showed that we can correctly classify over 

95% of cup defects and near 70% of saucer defects.  

• Initial theoretical developments based on Boundary Element Method showed that the frequency and mode 

information will be valuable for further improving the performance of defect detection and classification. 
 

5. Future Work 
 

Phase 2 Work Plan 
 

• Task 1: Further developments in theoretical studies.  

Task 1.1: Arrange a kickoff meeting; further refine the pipeline inspection problem and objective. 

Task 1.2: Further study the guided wave scattering phenomenon from a 3-D perspective so that the 

detection and classification algorithms have a stronger physics based foundation.  

Task 1.3: Further study the features for dent size estimation, both in area and depth. 

 

• Task 2: Perform experiments on large diameter pipes (between 20” to 40”).  

In phase I we focused our effort on the feasibility study of our proposed approach for the pipe dents 

inspection. The pipe specimens were 12-inch diameter. In phase II, we will extend our techniques to 

both the transmission line and distribution network. 

 

Task 2.1: Obtain pipes of diameter larger than 20 inches, produce mechanical dents or other defects on 

the specimen 

Task 2.2: Custom design EMAT sensors for the specific pipes, take consideration of the wall thickness 

change and curvatures.  

Task 2.3: Perform data collection and validate our detection and classification algorithms. 

 

• Task 3: Develop PIGs for either the small diameter pipe or large diameter pipe.  

In phase I, our study is still in a static data collection mode, i.e., the EMATs are not moving when 

collecting data. This will be quite different from collecting data on a moving platform. More noises 

will be introduced if the EMATs are constantly moving inside the pipe. Also, the pipe thickness 

variation will play a role in deteriorating the signal quality. We have the experience of developing an 

EMAT PIG system. A brief description of such a system developed by our subcontractor is shown in 

the Appendix.  

 

Task 3.1: Study the effect of a moving EMAT sensor on data collection; suppress inherent noises and 

variations due to the pipe wall thickness variations.   

Task 3.2: Based on the market needs and DOT engineer input, initiate the design for a PIG system for 

either the gas transmission line or distribution network. 

Task 3.3: Address the potential problem of pipe curvature change or ovulation, finalize the prototype 

PIG system   

  

• Task 4: Further improve and optimize the algorithms developed in Phase 1 

Task 4.1: Further improve the dents classification rates. 

Task 4.2: Capability of dent size estimation  

Task 4.1: Capability to deal with noise 
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Task 4.2: Capability to extract defect signature and deal with new type of defect other than dents 

 

• Task 5: Implement the algorithms in real-time hardware 

Task 5.1: Integrate and test the software together in the MATLAB environment 

Task 5.2: Implement the selected algorithm in the prototype PIG 

Task 5.3: Setup the communications between software and hardware; develop the Graphical User 

Interface (GUI) for the operator 

 

• Task 6: Perform real-time laboratory tests 

Task 6.1: Debug the PIG system hardware and software, perform the real-time test in the pipe 

specimen. 

Task 6.2: Evaluate the integrated system 

  

• Task 7: Perform real-time demonstrations at Oak Ridge Lab. and DOT 

Task 7.1: Finalize the hardware and software of the prototype PIG system, package the system for the 

lab test. 

Task 7.2: Demonstration of the PIG system for real-time mechanical dents and possible other defect 

detection, classification and size estimation 

 

• Task 8: Commercialization 

Task 8.1: Advertise and demonstrations of the system for industries and other government agencies; 

attract investments for phase 3 product development.  

 

 

6. References 
 
[1]  I. A. Viktorov, Rayleigh and Lamb Waves (Plenum, New York, 1970). 

[2] B. Auld, Acoustic Fields and Waves in Solids (Krieger, Malabar, Florida, 1990). 

[3] J. Rose, Ultrasonic Waves in Solid Media (Cambridge University Press, Cambridge, 1999). 
[4] X. Zhao and J.L. Rose, “Guided circumferential shear horizontal waves in an isotropic hollow cylinder,” The 

Journal of the Acoustical Society of America, Vol.115, 1912-1916, 2004. 
[5] C. Brebbia, J. Tells and L. Wrobel, Boundary Element Techniques (Springer, Berlin,1984). 

[6] J. Dominguez, Boundary Elements in Dynamics, (Computational Mechanics Publications, Southampton, Boston, 

1993). 
[7] J.L. Rose, P. Karpur and V. Newhouse, “Utility of Split-spectrum processing in ultrasonic nondestructive 

evaluation” material evaluation, Vol. 46, 114-122, 1988. 
[8] X. Zhao, J. L. Rose, “Boundary Element Modeling for defect characterization potential in a wave guide”, 

International Journal of Solids Structures, Vol. 40, 2645-2658, 2003. 
[9] X. Zhao, J.L. Rose, “Three Dimensional Boundary Element Modeling for Guided Waves Scattering from a 

Defect,” Review of Progress in Quantitative NDE, Vol. 23, 132-138, 2004. 
[10] S. Haykin, Neural Networks, Prentice Hall, 1990. 
[11] X. Zhao, J. L. Rose, “Guided circumferential shear horizontal waves in an isotropic hollow cylinder,” J. Acoust. 

Soc. Am., Vol. 115, 1912-1916, 2004. 
[12] C. Chang, Hyperspectral Imaging: Techniques for Spectral Detection and Classification, Kluwer 

Academic/Plenum Publishers, 2003 

[13] DOT 49 CFR Part 192[Docket No. RSPA–00–7666; Notice 4] RIN 2137–AD54 Pipeline Safety: Pipeline 

Integrity Management in High Consequence Areas (Gas Transmission Pipelines) 

  



Proprietary Information - IAI 35 

7. Appendices 
 

7.1 Spectral Information Divergence (SID) [12] 
 

Assume that  TiLiii sss ,,, 21 s  and  T
jLjjj sss ,,, 21 s  are two spectral signatures. Let 

 1 2, , ,
T

Lp p pp  and  1 2, , ,
T

Lq q qq  the two probability mass functions generated by  1 2, , ,
T

i i i iLs s ss  

and  1 2, , ,
T

j j j jLs s ss  respectively with 1/ L
ll il ilp s s   and 1/ L

ll jl jlq s s  . So, the self-information provided 

by si and sj for band l is defined by  

 

( ) logl i lI p s .                                                                                                (1) 

( ) logl j lI q s                                                                                                   (2) 

 

respectively. By virtue of Eqs. (1-2) we can define the discrepancy of the self-information of band image Bl provided 

by sj relative to the self-information of band image Bl provided by si, denoted by ( || )l i jD s s  as 

 

( || ) ( ) ( ) log( / )l i j l i l j l lD I I p q  s s s s .                                                          (3) 

 

Averaging ( || )l i jD s s  in Eq. (3) over all the band images  
1

L

l l
B


 results in 

 

1 1( || ) ( || ) log( / )L L
l li j l i j l l l lD D p p p q   s s s s                                          (4) 

 

where ( || )i jD s s  is the average discrepancy in the self-information of sj relative to the self-information of si. In the 

context of information theory, ( || )i jD s s  in Eq. (4) is called the relative entropy of sj with respect to si which is also 

known as Kullback-Leibler information measure, directed divergence or cross entropy. Similarly, we can also define 

the average discrepancy in the self-information of si relative to the self-information of sj by 

 

1 1( || ) ( || ) log( / )L L
l lj j l j i l l l lD D q q q p   s s s s .                                        (5) 

 

Summing Eqs. (5) and (6) yields Spectral Information Divergence (SID) defined by 

 

SID( , ) ( || ) ( || )i j i j j iD D s s s s s s ,                                                                 (6) 

 

which can be used to measure the discrepancy between two pixel vectors si and sj in terms of their corresponding 

probability mass functions, p and q. It should be noted that while SID( , )i js s  is symmetric, ( || )i jD s s  is not. This is 

because SID( , ) SID( , )i j j is s s s  and ( || ) ( || )i j j iD Ds s s s . 

 

7.2 Orthogonal Subspace Projection (OSP) [12] 
 

Suppose that there are p targets, 1 2, ,..., pt t t . Let 1 2, ,..., pm m m  be their corresponding spectral signatures. Suppose 

L is the number of spectral bands in jm , where 1 j p  . Let r  denote a linear mixture of 1 2, ,..., pm m m  with 

appropriate abundance fractions specified by 1 2, ,..., p   , which can be denoted by a 1L column vector. Let M  

denote the L p  target spectral signature matrix, depicted by 1 2, ,..., p
 
 m m m . Let 1 2, ,...,

T

p     α  be a 1p  

abundance column vector associated with r , where j  denotes the abundance fraction of jm  that is present in the 

mixture r . The spectral signature of the mixture, r , can be modeled in a linear regression form as follows: 

 r Mα n ,         (8) 
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where n  is the noise or can be interpreted as a measurement error or a model error. 

 

Further we can rewrite it as 

p   r d U n          (9) 

where 
pd m is denoted as the desired spectral signature 

pm  and 
1 2 -1[   ... ]pU m m m  is the undesired target 

spectral signature matrix.  

 

An OSP detector denoted by ( )OSP r  is given by 

T( )OSP UP r d r           (10) 

where # T 1 T( )U L L L LP 

    I UU I U U U U . 

 

Based on OSP, a least-squares estimator, denoted by ( )LS r which is referred to as a posteriori OSP is given by 

T 1ˆ ( ) ( ) ( )p LS U OSPP    r d d r         (11) 

 

Using Eq. (11), we can estimate the abundance fraction 
p  of the desired target signature 

pm  in the mixed signature 

r . 

 

7.3 Nonnegatively Constrained Least Squares Method (NCLS) [12] 
 

The NCLS approach is related to the following optimization problem 

   Minimize LSE   subject to 0
T

j   Mα r Mα r ,    (12) 

where LSE is the least squares error used as a criterion for optimality, and 0j   represents the nonnegativity 

constraint for 1 j p  . In order to use the Lagrange multiplier method, a p-dimensional unknown positive constraint 

vector 1 2, ,...,
T

pc c c   c  with 0jc   is introduced, where 1 j p  . A Lagrangian, ( )J α , by means of c  is formed 

as follows 

   ( ) (1 2) ( )
T TJ     α Mα r Mα r λ α c ,     (13) 

subject to the constraint α c . Differentiating ( )J α  with respect to α  yields 

NCLS

NCLS

ˆ

( )
ˆ0 T TJ

   
 α

α
M Mα M r λ

α
.      (14) 

 

Equation (14) results in the following two iterative equations 

     
1 1 1

NCLS LS
ˆ ˆT T T T

  

   α M M M r M M λ α M M λ ,    (15) 

where 
LSα̂  depicts the least squares estimate of  α  and is expressed as 

 
1

LS
ˆ T T



α M M M r         (16) 

 

Equations (15) and (16) can be used iteratively to solve the optimal solution 
NCLSα̂ utilizing the Lagrange multiplier 

vector 1 2, ,...,
T

p     λ . 

 

In the NCLS algorithm, the components of the estimate LSα̂  is decomposed into two index sets, which are called active 

set, R, and passive set, P, respectively. The active set, R, consists of all indices corresponding to negative (or zero) 

components. The passive set, P, contains indices corresponding to positive components in the estimate 
LSα̂ . The 

algorithm starts with an empty set of P, P  , assuming that the active set contains all components of 
LSα̂ , 

 1,2,...,R p . The sets P and R are then adjusted via iterations using equations (15) and (16). The final generated 
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passive set depicts the components that are legitimate to be used in the abundance estimation, 
LSα̂ . The NCLS 

algorithm can be implemented as follows [1]: 

1. Initialization: Set the passive set  ( ) 1,2,...,kP p , and active set (0)R  . Set 0k  . 

2. Compute 
LSα̂  using (16). Let ( )

NCLS LS
ˆ ˆk α α . 

3. At the k-th iteration, if all components in ( )

NCLS
ˆ k
α  are positive, the algorithm is terminated; otherwise, 

continue. 

4. Let 1k k  . 

5. Move all indices in ( 1)kP   that correspond to negative components of ( 1)

NCLS
ˆ k
α  to ( 1)kR  . Let the resulting 

index sets be denoted by ( )kP  and ( )kR , respectively. Create a new index set ( )kS  and set it equal to 
( )kR . 

6. Let ( )
ˆ

kR
α denote the vector consisting of all components 

LSα̂  in ( )kR . 

7. Form a steering matrix ( )k

  by deleting all rows and columns in the matrix ( )
ˆ

kR
α specified by ( )kP . 

8. Calculate   ( )

1
( ) ( )

max
ˆ

k

k k

R


  α . If all the components in ( )

max

k  are negative, go to step 13; otherwise, 

continue. 

9. Calculate ( ) ( )

max maxk k

j   and move its index in ( )kR  to ( )kP . 

10. Form another matrix ( )k

  by deleting every column of  
1

T


M M  specified by ( )kP . 

11. Set ( )

( ) ( )ˆ ˆ
k

k k

LSS   α α . 

12. If any component of ( )
ˆ

kS
α  in ( )kS  is negative, then move it from ( )kP  to ( )kR  and go to step 6. 

13. Form another matrix ( )k

  by deleting every column of  
1

T


M M  specified by ( )kP . 

14. Set ( ) ( ) ( )ˆ ˆk k k

NCLS LS   α α . Go to step 3. 

 

 

7.4 ORNL EMAT PIG system SCC detection.  
 

ORNL uses EMATs configured in “through-transmission mode” for SCC detection.  In through-transmission mode, 

the transmitted wave is generated by one EMAT and received by another.  Hence, independent of the location of the 

flaws, the ultrasonic waveform arrives at the receiver within a fixed time window since the distance between the 

receiver and the transmitter does not change.  In “pulse-echo” mode, a single EMAT acts as both the transmitter and 

the receiver.  The reflected signal is what is collected and analyzed. The characteristics of the signal received will be 

dependent on the location of the flaw from the transmitter.  This dependency will cause a phase shift and attenuation 

of the signal. Hence, the pulse-echo mode is more difficult to implement for a pipe inspection gauge (PIG) that is 

translating through a pipe.  To simplify the flaw analysis, only “through-transmission” mode was used in this project.  

Later on, to clearly identify the location of the flaws on the circumference of a pipe and obtain another signal from 

the same flaw location, “pulse-echo” mode might be incorporated into the design along with “through-transmission.”   

 

The pipeline industry is interested in detecting SCCs in transmission pipelines because the larger-diameter pipes carry 

large fuel volumes and the potential for greater damage exists when a pipe failure occurs. The ORNL EMATs are 

configured to detect flaws in 30-inch pipes.  Figure 37 is a photo of the EMAT-based pipe test equipment.  The main 

body of the test fixture is made of 80/20® aluminum and travels within the pipe on roller-blade wheels.  The pair of 

EMATs that act as the sensing unit are attached to the frame.  The EMATs have a pre-adjusted standoff distance from 

the pipe inside diameter of about 0.010–inch that is maintained by using a set of small roller wheels located on the 

sensor head mount.  Independently mounted springs also allow the sensors to negotiate uneven surfaces of the pipe 

without damaging the EMAT head while maintaining distance to the inside wall surface.   A resolver is used to measure 

the distance traveled by the inspection system while traveling inside the pipe. The circumferential separation between 

the transmitter and the receiver EMAT can be adjusted, and the current setting of 8 inches ensures that the excitation 

signal does not overlap with the transmitted chirp signal.   To ensure that the PIG does not rotate circumferentially 

while traveling inside the pipe, a counterbalance weight is used that can be adjusted to make the PIG travel in a straight 

line. 
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Fig. 37 ORNL PIG with EMAT sensors for inspecting a 30-inch diameter pipe. 
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