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Business and Activity Section 

(a) Generated Commitments -  
I. Agreement	Changes	

A. Requested	a	no-cost	extension	from	March	31,2016	to	August	31,	2016	
II. Purchases	

A. Tubing	for	surrogate-pipe	test	fixture			---			$45.20	
B. LighJng	for	test	fixture	-	$32.00	

(b) Status Update of Activities - 
I. Kickoff Meeting: Held at CSM, October 6, 2014. Jim Merritt and David Mulligan from 

DOT and John Steele and Craig Champlin from CSM were in attendance. A presentation on 
the research to be conducted was given, and the DOT managers gave us advice on how to be 
most effective in producing useful results.  

II. Experimental Setup: Initial work on the CSM Experimental Lab Test Setup for surrogate 
pipe integrity sensor data has been underway.  

III.  Data Collection: We have been able to collect data using the CSM Experimental Lab Test 
Setup using a surrogate pipe. Data were collected under variable conditions with two 
different types of sensors. All tests were run with randomized scan velocities. Data quality 
was sufficient for testing our feature detection algorithm.  

IV. Algorithm Implementation: The feature detection algorithm was adapted to match 
locations both with and without odometry data. The algorithm with odometry is robust to 
tool velocity surges such as those that sometimes occur during real pipeline inspections. 
However, exact odometry is not required. Even “poor” odometry gets the algorithm close 
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enough to the correct location to be sufficient. We have also implemented a similar approach 
that does not rely on odometry.  

V. Algorithm Results: We have constructed an artificial pipeline “run” consisting of five 
pipeline “segments”.  Three segments in the “run” were featureless. Two segments contained 
synthetic “defects” - various sized holes drilled through the cardboard “pipe”. Scans were 
taken with a laser. In one set of experiments, the holes were open and deep. In the second set 
of experiments, the holes were covered and were a close match to the background intensity. 
Our sensor, a scanning laser, traveled down the pipe, collecting data over 240 degree arc. 
Multiple data sets were collected from these two different configurations, with variations in 
the travel velocity of the sensor (to simulate real-world conditions). These set were then 
laced together to give sections of pipe that were 5 segments long. The algorithm was run on 
these 5-segment “runs”. The goal was to see if the algorithm could match up the features 
from the two different appearances.  
A. With minimal optimization of the algorithm, we were able to achieve the following 

location matching rates:  
1. True positive: 80.3% - locations correctly identified as equivalent in two different 

data sets  
2. False negative: 15.7% - locations incorrectly identified as not matching  
3. False positive: 3.9% - locations incorrectly matched  

B. These preliminary results are encouraging. While the artificial holes are distinct, they are 
sparse. Additionally, there were long sections of featureless pipe that were virtually 
indistinguishable. We were able to achieve good matching (alignment) over these 
regions.  

VI. Boxed and Called Out Anomaly Algorithm: In conjunction with One Bridge Solutions, we 
developed an algorithm which is able to associate boxed and called out anomalies across 
traditional inspections.  When vendors box and call-out an anomaly, they discard most of the 
information about that anomaly.  This makes it difficult to uniquely identify anomalies, 
consequently making anomalies difficult to match when there is moderate to high anomaly 
density.  (Matching anomalies is trivial when there are only a handful of anomalies per joint.)    

 

 
 

Figure 17:   Visual  comparison of AUT, MFL and SIC  signals  (location 
along the pipeline on the horizontal axis, circumferential position on 
the  vertical  axis).  Color  scales  are  not  identical  across  all  three 
techniques;  the  figure  illustrates how  the eddy  current SIC  tool  can 
complement the MFL signal and increase the accuracy of the feature 
width and depth, particularly for circumferentially bridging features. 

 
Figure  18:  The  improved  circumferential  representation  of  the 
corrosion shape by the SIC technology and the MFL signal reference is 
used as input for an improved data interpretation.   

SIC data only give information about the first few 
millimeters and are insufficient to accurately size the deep 
features. However, the SIC information allows to get an 
accurate estimate of the depth and the width of the individual 
features along the circumference. Accurate knowledge of the 
feature shapes enables effective compensation for the signal 
superposition that occurred during the MFL inspection and 
thereby turning the smeared MFL signal into several distinct 
features (Figure 18). 

A combination of the SIC information with the traditional 
MFL inspection results can give a more accurate and reliable 
indication of the true feature size. In addition to the additional 
depth information, the discussed bridging effect was overcome 
(Figure 19). The investigation indicated that accuracies 
comparable to regular corrosion may be achievable for these 
complex Top of Line corrosion morphologies. 

SUMMARY AND CONCLUSIONS 
Previous industry reports had indicated significant 

overcalls of the deepest features by MFL inspection in TOL 
corrosion. Chevron experience has confirmed this tendency for 
overcall. Results from other inspection techniques (UT or IRIS 
inspections) were less accurate than hoped for: many features 
were either missed or sized inaccurately. 

Upon recovery and decontamination of a 100m section off 
the sea floor, high-resolution AUT measurements attributed the 
source of these overcalls to the presence of multiple, 
circumferentially closely-spaced, short and deep features. The 
MFL sizing algorithms were subsequently updated. Although 
still somewhat conservative, a remarkable improvement in 
sizing accuracy has resulted from this work.  

 
Figure  19:  Evaluation  of  top  of  line  corrosion  using  SIC/MFL 
technology. Inaccuracy due to the bridging effect can be overcome. 

Application of the combo-tools MFL + SIC revealed that 
the shallow internal corrosion tool is able to pick up the discrete 
features along the circumferential direction and therefore 
results in superior accuracy, in particular for depth and width. 
The work to date suggests that accuracies comparable to regular 
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Signal Differences: [Left] The raw signal of three sensors showing the in the top 60º over the same 0.3 meter 
section.  (From: (Huyse 2010))  [Right] The raw signal in the top 30º (between 10:30 and 1:30) of the same 0.3 m long 
section of pipe. For the top set we have overlaid bounding boxes onto each anomaly.  For the lower set, we have 
removed the raw signal to show just the boxes.



A. Anomaly descriptor: Much of our work was focused on creating a computer feature 
descriptor for machine learning which could identify matching anomalies across two 
inspections having a moderate to high density of anomalies.  Our descriptor describes 
shape and position.  We use the coordinates of the anomaly centroid, the length and 
orientation of the diagonal of a bounding box, and the depth.   

B. Clustering: Our analysis revealed that in pipe segments with moderate to high anomaly 
density it is rare to see a 1:1 anomaly correspondence across multiple inspections.  It is 
common to see a single large anomaly in one inspection represented as multiple smaller 
anomalies in a second inspection.  To account for this we implemented a spatial 
interaction pyramid whereby we generated aggregate anomaly descriptors whenever 
anomalies were within a configurable distance from one another.  We considered these 
anomaly clusters as individual anomalies so we could match across different inspection 
reporting thresholds.  We retained the identities of the constituent anomalies within these 
aggregate anomalies such that after matching we could correctly identify the individual 
anomalies required to make a single match. 

C. Matching: Our anomaly matching algorithm relied on an early Bayesian matching 
algorithm called Relaxation matching.  This older algorithm was developed for 
navigating in space using a pre-known star chart.  We fed the feature descriptors for both 
the original anomalies and the aggregate anomalies into this algorithm to find the best 
matches.  When an aggregate anomaly gets a better matching score than individual 
anomalies, we say that the aggregate anomaly is a match and discard the individual 
matches comprising it.   
The algorithm makes an initial best guess using a Bayesian matching scheme to find the 
best matches.  This step is very fast.  Next the algorithm repeats this process for every 
anomaly in the set.  For each anomaly it calculates what would happen if that anomaly 
were NOT in the set.  If the score improves without a match, then that match is removed.  
This is called the “relaxation step”.  This step is slow but thorough.  

D. Results: Our anomaly descriptor and clustering approaches are sound in the the face of 
moderate to high anomaly densities.  We were able to achieve high match rates which 
matched our intuition about when an aggregate match would be better than an individual 
match. See the figure above.  

(c) Description of any Problems/Challenges -  
I. Universal access to pipeline inspection data  

A. We were not successful in convincing a pig vendor to supply us with the raw signal 
directly from pig sensors.  Our best chance was some Chevron-owned data which was 
collected by Rosen.  Although Chevron “owns” the data, in that they are able to generate 
graphs of this signal using Rosen-supplied software, Rosen would not supply Chevron 
the structural parameters of the data file so that Chevron could construct their own 
processing software using this same raw signal.   



B. A number of phone calls showed that other vendors are just as unwilling to give the 
operator the raw data concerning their pipelines.  By raw data we mean the signal 
directly from the sensors.  Instead of supplying this signal, vendors deliver a set of 
boxed-and-called out indications.   

C. The process for boxing anomalies is subjective and discards a tremendous amount of 
information about individual defects.  Because each vendor makes different choices 
about how to to box anomalies, an operator is unable to use a standard algorithm across 
several inspections.  Since the signal is hidden, the operator is unable to make their own 
algorithm.  This is a problem. 

D. This reluctance of pigging vendors to release their data to operators will hinder operators’ 
ability to develop time-dependent pipeline analytics which process the data from multiple 
inline inspections.  This will cripple the industry’s ability to leverage multiple inspections 
to learn location-specific corrosion and crack growth rates. 

E. This is unfortunate.  It would greatly benefit the industry if PHMSA could intervene to 
support the development of multi-inspection analytics.  This will require either a standard 
algorithm for vendors to use when when boxing and reporting anomalies or it will 
require that vendors supply the data structure of the data files which pipeline operators 
have purchased. 

II. Access to ICIP data 
A. SIG ran a sequence of test runs with their integrated cleaning and inspecting pig (ICIP).  

We were promised this data, but it was never delivered to us due to an intellectual 
property lawsuit between SIG and Chevron.  As such we were never able to test our 
algorithm against this data. 

B. As the project finished, we were able to get some data from I2I’s ICIP.  However, this 
data was in an unexpected format and arrived too late to be useful for our testing. 

III. SLOW boxed-and-called out anomaly matching 
A. The relaxation matching algorithm relies on one sub-iteration for each anomaly in the 

match set.  One must run through these sub-iterations multiple times until the algorithm 
converges.  We do this relaxation step to eliminate weak matches.  While this is still 
faster than matching by hand, it is slow.  In our testing, two inspections of moderate 
anomaly density took over a week of computer time to process.  This needs to be 
improved.  The first step of the algorithm, the Bayesian matching step, is very fast.  It 
gives us hope that other probabilistic methods will work. 

(d) Planned Activities for the Future Projects 
I. Algorithm for matching raw signals: 

A. We would like to explore our raw signal matching algorithm in more detail by using real 
raw signal data (vs our synthetic data) to do a comparative study of the parameters of the 
algorithm.   
1. We would like to answer questions about the best way to construct the difference 

cube and what are the best ways to select paths through this cube.   



2. We would like to compare different techniques for generating a base image from raw 
signals.  What is the best way to attenuate the raw signal to compare a wide range of 
inspection types?  Can we establish a technique technique which works well across 
both high resolution and ICIP using many sensing types?  (MFL, eddy current, AUT, 
etc.) 

B. We would like to use our signal matching algorithm for higher level studies.  For 
example our motivation for developing this algorithm was to be able to directly measure 
individual corrosion growth rates.  We would like to use our algorithm for this purpose. 

II. Algorithm for matching boxed and called out anomalies: 
A. We would like to apply a graph-based technique for spatial matching using the same 

feature descriptors and aggregate anomalies that we developed here.   
B. We would like to compare the effectiveness of several pattern matching algorithms.  

Again, we would use the same features and clustering techniques we developed here. 
C. It would be interesting to see if we could use this with raw signal matching 

III. Higher-level analysis - corrosion and crack-growth rates 
A. We did this work in anticipation of being able to easily combine multiple pipeline 

inspections.  Our goal is be able to see time-dependent signals emerge.  We hope to 
directly measure corrosion and crack-growth rates by assembling information from 
multiple inspections.  The work we did here are some preliminary steps.  Many questions 
remain. 

(e) Progress against stated milestones 
This section recreates the project schedule introduced during the kickoff meeting and describes 
progress made against each listed item.  Progress is in italics to distinguish it from original text. 

I. Experimental Setup  
A. Build test rig 
1. complete 

B. Collect synthetic data 
1. complete 

C. Collect data from pipe sample 
1. this was problematic as described in the problems section 
2. relied exclusively on synthetic data, no real data available 

II. Baseline SAM 
A. Adapt CAT-SLAM as a SAM algorithm 
1. completed 

B. Test on synthetic data 
1. complete 

C. Test on real data 
1. problematic as described above 

III. Real Data 
A. collect and clean data 



1. problematic as described above 
B. Characterize data 
1. problematic as described above 

IV. Compare SAM and CAM 
A. Identify additional SAM candidate algorithms 
1. complete - settled on Sequence SLAM 

B. Implement 2 additional SAM approaches 
1. complete - Implemented Sequence SLAM 
2. complete - Implemented Sequence SLAM with odometry 

C. Compare SAM algorithms - synthetic data 
1. complete 

D. Compare SAM algorithms - real data 
1. problematic as described above 

E. Final report 
1. complete 

V. Intern 
A. Chevron Energy Technology Company 
1. complete


