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EXECUTIVE SUMMARY 
Objective 
Current models for corrosion growth within a pipeline assume a single rate along a pipeline's length. These rates 
tend to be too conservative for most of the pipe, and yet in some cases fail to account for regions of excessive 
growth.  Most anomalies grow at slower than assumed rates, resulting in pipes being replaced sooner than 
necessary. At the same time isolated regions of unusually aggressive corrosion can fail when corrosion growth 
exceeds calculated reinspection intervals.  The project supports the direct measurement of local corrosion growth 
rates by monitoring the rate of change of individual anomalies as seen by internal pipeline inspections.   

Goals 

First, most pipeline operators rely on commercially available high resolution pipeline inspections by smart pigs.  
The vendors who operate these tools deliver inspection reports whereby individual anomalies have been called out 
as sized boxes with a depth.  Matching these called out anomalies across inspections is a tedious process.  The 
goal is to define the problem and develop an algorithm based on this analysis. 
 
Second, there is an emerging class of cleaning and inspection tools, ICIPs, which deliver low resolution scans of 
the pipe interior during frequent cleaning operations.  In the interest of rapid turn-around times, these tools return 
raw signals to the operator.  Matching anomalies with these tools is a question of matching raw signals then 
identifying changes which may have occurred since the last inspection.  The goal is to develop an algorithm which 
can align two raw inline inspection sensor signals in the face of irregular velocities. 

Solution 

The team intended to develop two algorithms for matching anomalies across coincident internal pipeline 
inspections.  The first algorithm would match boxed anomalies.  The second algorithm would match raw signals.  
The goal for each algorithm is slightly different.  The boxed algorithm is intended to do a complete mapping of 
individual called-out anomalies from one inspection to the next.  The raw signal algorithm velocity corrects and 
aligns raw inspections signals. 

Report Content 

This report presents an overview of the challenges encountered in doing anomaly alignment over multiple pig-run 
scans. In addition, it provides insights into the applicability of robotic SLAM techniques to pipeline anomaly 
alignment. 
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INTRODUCTION  
The	PHMSA	CAAP	award	funded	a	student	at	the	Colorado	School	of	Mines	to	develop	computer	algorithms	
for	automatically	matching	anomalies	across	consecutive	inline	inspections	of	oil	and	gas	pipelines.		These	
algorithms	are	related	in	that	they	both	intended	to	align	pipeline	inspections	for	measuring	local	corrosion	
growth	rates.			

This	introduction	section	discusses	the	use	of	aligned	anomalies	for	determining	local	corrosion	growth	rates.		
Next,	the	report	will	define	the	distinct,	but	related,	problems	each	of	the	two	algorithms	would	solve.		The	
first	algorithm,	called	BACO,	matches	boxed-and-called-out	anomalies	from	vendor-supplied	inspection	
spreadsheets.		The	second	algorithm,	VVFM	(variable	velocity	feature	matching),	algorithm	would	alignment	
points	for	raw	signal	matching	in	support	of	the	emerging	class	of	integrated	cleaning	and	inspecting	pigs	–	
ICIPs,	which	are	discusses	in	a	later	section.	

MOTIVATION 

Real Corrosion Growth Rates 

It	is	well	known	that	corrosion	growth	rates	differ	along	a	
pipeline’s	length.		Many	people	in	the	pipeline	industry	
are	familiar	with	corrosion	rate	distribution	curves	as	seen	
in	Figure	1	Corrosion Rate Distribution	(Moghissi,	
2008).	This	curve	matches	a	statistical	distribution	pattern	
know	as	an	extreme	value	distribution.		Examining	this	
figure	which	represents	the	distribution	of	corrosion	rates	
as	measured	at	discrete	points	along	a	pipe’s	length,	we	
see	the	x-axis	representing	real	corrosion	rates.	The	origin	
represents	no	corrosion.		As	we	move	to	the	right	along	
this	axis,	we	see	faster	and	faster	local	corrosion	growth	
rates.		The	y-axis	represents	population	-	the	number	of	
samples	experiencing	a	specific	local	corrosion	rate.	

Most	of	the	corrosion	rates	seen	along	a	pipeline	fall	into	the	fat	part	of	the	curve	on	the	left	side.		On	this	
graph,	there	is	a	vertical	dotted	line	representing	the	average	measured	corrosion	rate.		This	average	is	
slightly	to	the	right	of	the	peak	of	the	distribution.		The	right	side	of	the	curve	represents	the	extreme	value	
portion.	There	is	a	non-zero	probability	that	any	arbitrarily	large	corrosion	rate	exists	within	the	population	as	
the	distribution	approaches	but	never	quite	reaches	zero	on	the	right	side	of	the	curve.			
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Corrosion Rate Distribution: Extreme value 
distribution of measured corrosion rates. 

Figure	1	Corrosion	Rate	Distribution	
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When	one	examines	an	individual	corrosion	pit,	the	question	that	is	asked	it	is	growing.		If	it	is	growing,	how	
quickly?				Where	does	this	data	point	lie	on	the	corrosion	rate	distribution	curve?		How	long	until	the	pipe	
must	be	replaced?		From	the	distribution	curve,	it	is	most	probable	that	any	given	anomaly	is	growing	very	
slowly,	but	one	cannot	be	sure.		Without	local	corrosion	measurements,	it	is	impossible	to	know	how	fast	any	
specific	anomaly	is	growing.	

The	standard	approach	is	to	use	an	assumed	rate.		If	a	slow	rate	is	selected,	there	is	a	finite	chance	that	
somewhere	the	pipe	is	corroding	faster	than	this	rate.		If	a	faster	rate	is	selected,	one	penalizes	the	large	
portion	of	the	population	that	is	corroding	slowly.	Because	it	is	possible	that	any	arbitrarily	large	corrosion	
rate	can	exist	in	the	pipeline,	regardless	of	what	rate	is	selected	there	is	a	non-zero	probability	that	
somewhere	along	the	pipe	there	exists	a	faster	rate.		There	is	some	chance	that	some	point	on	the	pipe	will	
corrode	faster	than	expected.		Thus,	while	assumed	rates	tend	to	be	too	conservative,	there	is	still	the	risk	of	
missing	extreme	values.		(McNealy	et	al.	2012)	

The	only	real	solution	to	this	conundrum	is	to	use	locally	measured	corrosion	rates	along	the	pipeline’s	
length.		By	doing	this	one	can	tailor	the	reinspection	intervals	to	data-supported	values.		Most	of	the	pipe	will	
be	maintained	using	slow	corrosion	growth	rates.		This	allows	us	to	confidently	leave	pipe	alone	for	longer	
periods	of	time.		Some	small	percentage	of	pipe	will	require	more	frequent	attention	in	response	to	the	
measured	fast	corrosion	rates.		Thus,	one	can	operate	safely	by	maintaining	these	sections	more	aggressively.		
Knowing	real	corrosion	growth	rates	provides	for	the	optimally	use	of	maintenance	budgets.	

It	would	appear	that	it’s	relatively	straight	forward	to	obtain	real	corrosion	growth	rates	along	the	length	of	a	
pipeline.		It	is	a	simple	matter	of	tracking	changes	in	anomaly	size	over	time.		One	can	watch	how	anomalies	
found	in	inline	inspections	change	over	time.		If	the	pipes	are	being	inspected	at	regular	intervals	of	every	
several	years,	it	should	be	relatively	easy	to	compare	the	size	of	anomalies	from	one	inspection	to	the	next	
and	report	the	change	in	size	as	a	function	of	the	time	between	inspections	as	the	anomaly’s	growth	rate.		
Indeed,	many	operators	and	vendors	have	noticed	the	theoretical	merit	of	this	approach.		(PHMSA	waar		
2008),	

In	practice,	however,	this	approach	can	be	complicated	and	time	consuming.	One	vendor,	who	provides	the	
match	up	corrosion	anomalies	service,	describes	the	process	as	being	labor	intensive,	e.g.,	taking	months	to	
align	anomalies	between	two	inspections	(Yeagley	and	Madden	2014).		Also,	when	there	are	many	anomalies	
in	the	same	area	it	can	be	hard	to	figure	out	which	anomaly	goes	where.		Finally,	differences	between	tools	
and	even	between	inspections	can	obscure	correct	anomaly	matches.		In	short,	the	corrosion	anomaly	
matching	process	is	more	complicated	than	it	may	appear	at	first	glance.		In	addition,	because	of	the	
relatively	long	intervals	between	high	resolution	pipeline	inspections,	(on	the	order	of	multiple	years),	it	can	
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be	the	case	that	too	few	spatiotemporal	data	points	are	available	to	provide	an	accurate	representation	of	
local	corrosion	rate.	

Raw Signals vs Boxed Anomalies 

Pipeline	inspection	vendors	usually	return	inspection	
results	as	a	spreadsheet	of	anomalies.	These	
inspection	reports	“call	out”	each	anomaly	as	a	box	
with	a	depth	at	locations	along	the	pipe.		Creating	a	
box	from	the	raw	signal	requires	that	the	vendor	
does	some	signal	interpretation.	Figure	2,	
Inspection Signals,	shows	the	raw	signal	from	
two	inspections,	one	taken	in	2001	and	one	taken	in	
2006.		Typical	returned	boxes	are	overlaid	on	top	of	
these	raw	signals.	This	gives	us	some	idea	of	what	
the	raw	signal	underlying	“boxed	and	called	out”	
anomalies	might	look	like.	

In	the	raw	signal	of	this	figure	we	have	the	pig’s	
direction	of	travel	from	left	to	right	along	the	
pipeline’s	length.		The	radial	direction	is	up	and	
down	along	the	y-axis.		Each	blue	scan	line	is	the	sequence	of	values	recorded	by	a	single	sensor	as	the	pig	
travels	along	the	pipe	in	the	x	direction.		When	the	pipe	wall	material	is	good	and	all	sensors	are	operating	
correctly,	we	see	a	featureless,	uniform	baseline	signal	level	recorded	as	a	straight	line.		When	there	is	a	
detectible	feature,	sensor	outputs	change	from	this	baseline	value.		When	a	sensor	goes	offline,	we	see	a	bare	
spot	in	the	data.		There	are	several	bare	spots	in	the	2001	data.	

To	create	boxed	anomalies	an	inspection	vendor	runs	an	algorithm	which	processes	the	raw	signal.		This	
algorithm	looks	for	contiguous	regions	where	raw	sensor	readings	differ	from	the	baseline	levels	by	some	
threshold	value.		When	such	a	region	is	detected	this	algorithm	draws	a	bounding	box	around	it	and	
establishes	its	depth	by	looking	for	the	deepest	point	within	the	box.		We	see	two	such	red	bounding	boxes	in	
the	figure,	one	in	the	2001	data	and	one	in	the	2006	data.		These	two	boxes	represent	the	same	boxed-and-
called-out	anomaly	as	observed	by	two	coincident	inspections	-	inspections	taken	at	different	times,	over	the	
same	segment	of	pipe.		These	bounding	boxes	represent	an	“anomaly	matching”	across	two	inspections.	

Most	inline	inspection	vendors	return	only	the	boxes	shown	in	this	figure,	not	the	signal.		We	can	see	that	
although	these	boxes	are	slightly	different	sizes,	they	are	at	roughly	the	same	position	both	axially	and	
radially.		The	reported	depth	of	the	2001	box	is	26%	of	the	wall	thickness.		The	reported	depth	of	the	2006	

Inspection Signals: Signal and box matching across two 
inspections.  The boxed anomaly is reported as 3% WT 
growth. (Kevin Spencer 2008)) 

Figure	2	Inspection	Signals	
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box	is	29%	of	the	wall	thickness.		If	we	had	been	given	only	the	boxes	from	these	two	inspections	and	did	not	
have	the	benefit	of	seeing	the	raw	signal	underlying	them,	we	might	assume	that	this	boxed	anomaly	had	
grown	by	a	modest	4%	WT	over	the	5	years	between	these	inspections.		By	looking	at	the	raw	signal,	
however,	we	see	that	the	29%	WT	pit	has	sprung	up	virtually	instantaneously	between	the	two	inspections.		
Instead	of	an	anomaly	which	is	growing	at	a	modest	rate,	we	have	an	extremely	rapid	corrosion	growth	area.		
Instead	of	a	region	of	no	concern,	as	suggested	by	the	boxed	anomalies,	we	see	by	the	raw	signal	that	we	
have	a	region	of	serious	concern.		Clearly	in	this	situation	we	would	make	better	maintenance	decisions	from	
the	raw	signal	than	we	would	make	from	the	reported	boxes.	It	is	desirable	to	use	raw	signals.	

While	we	can	see	the	benefit	of	matching	raw	inspection	signals,	at	the	time	of	this	writing	these	raw	signals	
are	rarely	available	from	inspection	vendors.		For	several	reasons	inspection	vendors	almost	exclusively	return	
spreadsheets	of	boxed	anomalies.		This	limitation	is	of	no	great	concern,	however,	when	it	comes	to	equating	
anomalies	from	one	inspection	to	the	next.			We	will	perform	matching	of	boxed	anomalies.		A	raw	signal	is	
essentially	a	boxed	anomaly	where	we	know	what	is	in	the	box.		If	we	can	match	boxes,	we	can	draw	boxes	
around	a	raw	signal	and	match	them	too.		Because	there	is	less	information	in	vendor-supplied	boxes,	
matching	empty	boxes	is	the	harder	problem.	

Anomaly Matching Problem 

The	anomaly	matching	problem	maps	zero	or	more	anomalies	in	a	first	inspection	to	zero	or	more	anomalies	
in	a	second	inspection	across	the	same	physical	joint	of	pipe.		Ultimately,	we	will	use	these	matched	
anomalies	to	extract	a	corrosion	growth	signal.		On	its	face	the	anomaly	matching	problem	is	quite	simple.		If	
there	is	an	anomaly	in	the	same	position	in	two	different	inspections,	then	it	is	the	same	anomaly.			

Things	are	never	simple.		Three	elements	conspire	to	make	anomaly	matching	difficult:	

1) Anomaly density - anomaly identity gets confusing in a crowd of other anomalies  

2) Sensing differences - different sensors and sensing conditions return different signals  

3) Positional uncertainty - we estimate tool location, these estimates have errors 

Each	of	these	elements	conspire	to	obscure	the	identity	of	individual	anomalies	from	one	inspection	to	the	
next.		It	is	these	ambiguities	of	anomaly	identity	which	bog	down	manual	attempts	to	match	anomalies	and	
cause	anomaly	matching	to	be	an	inexact	and	laborious	process.		In	fact,	one	commercial	anomaly	matching	
service	strives	to	simply	match	the	deepest	anomaly	per	joint	(Yeagley	and	Madden	2014).		This	deepest	
measured	anomaly	is	not	likely	to	be	the	same	anomaly	from	one	inspection	to	the	next.		How	valid	is	such	a	
corrosion	rate?	
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This	section	of	the	report	will	establish	the	challenges	inherent	in	the	anomaly	matching	problem.		We	will	
describe	each	of	these	three	challenges	in	detail.		We	will	present	a	morphology	of	anomaly	matches.		We	will	
introduce	a	vocabulary	which	we	can	use	to	discuss	the	challenges	faced	when	tracing	an	anomaly’s	identity	
across	multiple	pipeline	inspections.		We	will	only	describe	the	structure	of	these	differences	without	
discerning	the	cause	of	these	differences.		These	concepts	apply	whether	the	bounding	box	is	a	simple	shape,	
as	a	boxed	anomaly,	or	is	a	complex	shape,	as	a	raw	signal.	

Anomaly Density 

Consider	Figure	3,	Anomaly Matching Problem.		This	figure	presents	several	anomaly-matching	examples.		
In	it	we	see	two	pipeline	inspections	separated	in	time.		Inspection	1	is	the	three	joints	at	the	top	of	the	figure	
and	Inspection	2	is	the	three	joints	in	the	lower	half	of	the	figure.		We	require	that	Inspection	1	occurs	in	time	
before	inspection	2.		Each	inspection	traverses	from	left	to	right	through	three	joints	separated	by	two	girth	
welds.		We	have	correctly	aligned	each	joint	using	known	features	like	above-ground	markers,	valves,	and	
weld	counts.		In	this	figure,	the	small	black	crosses	indicate	anomaly	locations	but	not	their	geometry.			

Each	successive	joint	in	the	example	pipe	has	increasing	anomaly	density.	These	three	joints	represent	slices	
across	an	anomaly	density	continuum	from	no	anomalies	on	one	extreme	to	completely	covered	in	anomalies	
on	the	other	extreme.		We	see	that	Joint1	has	very	few	anomalies,	Joint	2	has	an	intermediate	anomaly	
density,	and	Joint	3	has	almost	continuous	corrosion	along	the	bottom	of	the	pipe.			

Before	we	consider	the	impact	of	anomaly	density	let	us	use	Joint1	to	help	us	establish	a	vocabulary	to	
describe	the	morphology	of	anomaly	matches	across	repeated	inspections.		Referring	to	the	figure,	we	begin	

Anomaly Matching Problem: Two inspections across three joints showing impact of anomaly density on the anomaly 
matching problem.  Joint 1 has low density.  Anomalies may easily be matched by inspection.  Joint 2 has a moderate 
density.  The best anomaly matches are not always apparent.  Joint 3 is heavily corroded.  Anomaly matching here is more 
complex. 

Figure	3	Anomaly	Matching	Problem	
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by	moving	from	left	to	right	along	this	joint.		The	first	set	of	diverging	red	arrows	show	what	was	reported	as	
a	single	anomaly	in	the	first	inspection	reported	as	two	anomalies	in	the	second	inspection.		When	this	
happens,	we	will	say	that	the	single	anomaly	has	“split”	into	two	anomalies	even	though	this	splitting	is	more	
of	a	reporting	inconsistency	than	a	reflection	of	what	is	happening	inside	the	pipe.			

Next,	we	see	what	was	reported	as	two	anomalies	in	the	first	inspection	converge	into	one	anomaly	in	the	
second	inspection.		It	appears	as	if	these	two	anomalies	“merge”	in	the	second	inspection.		This	merging	
could	be	due	to	anomalies	physically	growing	such	that	the	boundary	between	them	blurs.		This	merging	is	
just	as	likely	to	be	the	result	of	reporting	differences	between	the	two	inspections.		In	either	case,	what	was	
reported	as	multiple	anomalies	in	the	older	inspection,	Inspection	1,	appear	to	be	a	single	anomaly	in	the	
more	recent	inspection,	Inspection	2.	

The	next	two	sets	of	arrows	on	Joint1	show	disappearing	and	appearing	anomalies.		First,	we	see	an	anomaly	
which	was	reported	in	Inspection	1	which	seems	to	“vanish”	in	Inspection	2.		Next,	we	see	an	anomaly	which	
seems	to	suddenly	“appear”	between	the	first	and	second	inspection.		Although	we	will	use	this	terminology	
in	the	context	of	matching,	these	anomalies	haven’t	really	disappeared	or	appeared.		The	most	reasonable	
explanation	is	that	we	are	seeing	differences	due	to	both	sensing	and	reporting	between	these	two	
inspections.		We	will	discuss	this	in	more	detail	in	“Sensing	differences”	subsection	below.	

Now	that	we	have	some	vocabulary	to	talk	about	anomaly	matching,	let	us	return	the	attention	to	the	impact	
of	anomaly	density	on	forming	matches.		Observe	how	the	nature	of	the	anomaly	matching	problem	changes	
with	increasing	anomaly	density.		In	Joint	1	it	is	easy	to	match	anomalies	by	simple	observation.		Anomalies	
which	have	similar	position	in	the	joint	are	probably	the	same.		Even	if	anomalies	merge	or	split	or	shift	their	
position	slightly	we	can	easily	identify	analogous	regions	by	where	they	are	in	the	pipe	and	where	they	are	in	
relation	to	neighboring	anomalies.			

Contrast	the	ease	with	which	we	can	match	up	anomalies	in	Joint	1	with	how	difficult	it	is	to	see	matches	in	
Joint	3.		In	Joint	3	we	see	a	near	continuous	distribution	of	anomalies.		Pipe	joints	with	this	high	level	of	
corrosion	may	confound	the	matching	process.		It	may	be	a	misuse	of	time	to	try	to	match	every	anomaly.		At	
these	high	densities,	it	may	be	more	meaningful	to	match	some	identified	subset,	such	as	deepest	10%	of	
anomalies.	

Finally	explore	the	non-trivial	case	of	Joint	2	where	anomaly	density	is	too	great	to	match	by	observation,	as	
we	did	with	Joint	1,	but	anomaly	density	is	not	so	dense	that	individual	anomalies	are	essentially	
indistinguishable	as	was	the	case	with	Joint	3.		Here	the	matching	process	becomes	more	complicated.		We	
have	circled	two	clusters	of	anomalies,	Cluster	1	and	Cluster	2.		Not	only	is	it	less	than	obvious	where	to	draw	
these	clusters,	within	each	cluster	it	is	not	obvious	which	anomalies	are	equivalent	between	the	first	and	
second	inspections.			
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The	focus	of	the	anomaly	matching	problem	is	on	pipes	like	Joint	2.		These	intermediate	anomaly	densities	
present	the	greatest	challenge	since	mappings	from	one	inspection	to	the	next	are	not	obvious.		In	Cluster	1	
we	see	the	2	anomalies	reported	in	inspection	1	reported	as	4	anomalies	in	inspection	2.		How	do	we	match	
these?		Do	we	pick	the	single	best	match	across	the	two	inspections?		Inspection	1	shows	an	anomaly	at	the	
top	of	Cluster	2	which	appears	to	vanish	in	Inspection	2.			Is	there	no	direct	equivalent	of	this	anomaly	in	
inspection	2?		Is	it	reported	as	multiple	anomalies	in	inspection	2?	

In	this	report	thinking	we	will	focus	on	pipes	that	look	like	Joint	2.		We	are	concerned	with	nontrivial	amounts	
of	corrosion	over	regions	of	pipe	where	corrosion	is	not	continuous.		Establishing	exact	and	unambiguous	
matches	in	this	density	regime	is	non-trivial	and	would	benefit	from	the	logically	consistent	repeatability	
afforded	by	assigning	matches	with	a	computer	algorithm.	

Sensing Differences 

While	the	anomaly	density	of	an	inspection	is	a	function	of	the	number	of	anomalies	in	a	joint,	it	is	also	a	
function	of	the	sensors	used	in	the	inspection.		For	example,	when	inspection	vendors	report	results	they	
establish	a	baseline	signal	level.		Signals	below	this	chosen	level	are	reported	as	being	anomaly	free,	while	
signals	above	this	level	are	reported	as	anomalous.		Increasing	or	decreasing	this	level	will	cause	anomalies	to	
seem	to	disappear	and	appear	as	threshold	levels	are	increased	and	decreased.		Anomalies	will	seem	to	
change	shape	as	shallow	regions	of	the	anomaly	go	in	and	out	of	scope.		Thus	one	parameter	can	have	a	
profound	impact	on	the	nature	of	reported	anomalies.		Other	parameters	such	as	sensor	calibration,	sensor	
size,	scanning	speed,	and	different	processing	algorithms	can	all	affect	the	reported	results.	
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Now	we	will	look	at	an	example	of	differences	due	to	different	sensor	technologies.		Consider	Figure	4	Signal 
Differences.		On	the	left	side	of	this	figure	are	the	raw	signal	of	three	different	sensors	over	the	same	0.3	
meter	by	180º	(from	9:00	to	3:00)	section	of	pipe.		The	sensors	from	left	to	right	are:	AUT	(automated	
ultrasonic	testing),	MFL	(magnetic	flux	loss),	and	SIC	(shallow	internal	corrosion	-	an	eddy	current	technology	
by	Rosen).		Scans	have	been	carefully	controlled	so	that	sensor	positions	are	well	known	and	are	directly	
comparable.		The	black	box	shows	the	same	physical	location	on	all	three	scans.			

The	color	values	in	these	scans	represent	signal	intensity	which	correlates	to	anomaly	depth.		Because	of	
scaling	differences,	these	intensity/depth	values	cannot	be	compared	directly	from	sensor	to	sensor.		In	
contrast,	anomaly	shape	and	position	can	be	compared	because	the	anomaly	boundary	is	independent	of	the	

Signal Differences: [Left] The raw signal of three sensors showing the in the top 60º over the same 0.3 meter section.  
(From: (Huyse 2010))  [Right] The raw signal in the top 30º (between 10:30 and 1:30) of the same 0.3 m long section of 
pipe. For the top set we have overlaid bounding boxes onto each anomaly.  For the lower set, we have removed the raw 
signal to show just the boxes. 

Figure	4	Signal	Differences	using	AUT,	MFL,	&	SIC	
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signal	values.	Anomaly	boundary	is	a	threshold	difference	in	signal	intensity	from	the	background	signal	in	
regions	of	unblemished	pipe.	

The	right	side	of	this	figure	shows	a	zoomed	in	view	of	the	original	scans.		Here	we	see	the	top	90º	(from	1:30	
to	10:30).		The	top	portion	continues	to	show	signal	intensity	as	color.		A	bounding	box	has	been	drawn	
around	each	anomaly	using	these	intensity	values.		In	the	lower	half	of	the	right-side	figure,	we	have	removed	
the	signal	intensity	information	so	that	we	can	focus	exclusively	on	the	box	patterns	produced	by	these	three	
sensor	types.	Examining	the	resulting	box	patterns,	we	see	that	AUT,	which	produces	the	highest	resolution	
signal,	produced	24	boxes.		The	next	highest	resolution	signals	is	from	the	SIC	sensor	which	produced	11	
anomaly	boxes.		Finally,	the	lower	resolution	MFL	scan	in	the	center	produced	10	boxes.	

Superficially	these	patterns	look	quite	dissimilar.		If	we	did	not	know	in	advance	that	these	represent	the	
same	section	of	pipe	and	know	how	these	patterns	align,	it	would	not	be	obvious	how	these	patterns	match	
up.		Matching	these	patterns	by	hand	would	be	a	time-consuming	process	which	may	not	be	repeatable	from	
one	trial	to	the	next.		Look	closely	at	the	box	patterns	generated	by	the	MFL	sensors	in	the	lower-center	
image.		We	have	assigned	a	color	to	the	three	largest	anomalies	-	from	left	to	right	we	have	assigned	the	
colors	red,	blue	and	green.			

The	single	red	anomaly	in	the	center-left	of	the	MFL	scan	corresponds	to	the	left-most	set	of	four	anomalies	
also	colored	red	in	the	AUT	scan	and	the	left-most	set	of	three	anomalies	in	the	SIC	scan.		The	center-most	
anomaly	which	is	colored	blue	in	the	MFL	scan	corresponds	to	the	center	group	of	four	anomalies	in	the	AUT	
scan	and	the	center	group	of	two	anomalies	in	the	SIC	scan.		Finally,	the	right-most	green	anomaly	in	the	MFL	
scan	corresponds	to	the	three	anomalies	which	have	been	colored	green	on	the	AUT	scan	and	the	single	

Positional Uncertainty:  Overlaying the SIC scan onto the MFL scan.  We have shaded the SIC boxes so that they can be 
more easily seen.  The matching scores are the number of SIC boxes matched to MFL boxes over the total number of SIC 
boxes. 

Figure	5	Comparison	of	positional	uncertainty	
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green	anomaly	on	the	center-right	of	the	SIC	scan.		What	the	MFL	sensor	shows	as	three	anomalies,	the	AUT	
sensors	show	as	11	anomalies	and	the	SIC	sensors	show	as	6	anomalies.			

This	example	shows	that	even	when	the	sensor	location	is	well	known	it	can	still	be	difficult	to	match	
individual	anomalies	across	successive	inspections.		More	generally,	differences	between	individual	sensors	
conspire	to	make	anomaly	matching	difficult.	

Positional Uncertainty  

No	matter	if	the	internal	inspection	is	taken	by	a	pig	or	a	crawler,	the	position	of	the	sensor	in	an	operating	
pipeline	is	an	estimate.		While	there	are	occasional	checkpoints	inside	the	pipe	-	valves,	aboveground	
markers,	et	al	-	as	soon	as	we	move	away	from	these	known	points	the	location	of	the	sensors	becomes	
uncertain.	Location	is	estimated	by	fusing	the	input	from	one	or	more	distance	sensors	-	odometer	wheels,	
inertial	measurement	units	(IMUs),	etc.		While	one	might	assume	that	combining	the	input	from	multiple	
odometer	wheels	or	from	an	IMU	would	give	a	pretty	good	estimate	of	position,	in	practice	wheels	slip	and	
IMU	drift	results	in	some	error	that	accumulates	over	long	distances	inside	pipelines.		According	to	a	study	
done	in	2010,	commonly	used	sensor	fusion	techniques	for	estimating	pig	position	predict	location	with	about	
0.4%	error	(Santana	2010).		This	sounds	pretty	good	until	you	consider	that	this	translates	to	a	positional	
error	of	about	2.2	inches	over	a	typical	40	foot	pipe	joint1	which	suddenly	seems	pretty	big	when	compared	
to	a	1	inch	corrosion	pit.	

Consider	an	example	of	the	impact	of	this	uncertainty	on	the	real	corrosion	signal	we	looked	at	earlier.		How	
much	impact	will	uncertainty	of	2.2	inches	per	joint	have	on	the	ability	to	match	anomalies?		Consider	the	
two	boxed	signals	from	the	previous	section	as	shown	in	Figure	5	Comparison	of	positional	uncertaintyFigure	
5	Positional Uncertainty.		The	sample	in	this	figure	is	0.3	meters	long,	about	12	inches.		This	figure	shows	
the	MFL	and	the	SIC	signals.	The	SIC	signal	is	shaded	with	light	yellow	and	filled	in	with	the	non-colored	boxes	
so	one	can	see	its	contribution	when	it’s	overlayed	onto	the	MFL	signal.		After	the	equals	sign	in	the	figure	are	
two	cases,	0”	offset	and	2”	offset.	

For	the	first	case,	labeled	“0”	offset”,	the	two	signals	are	directly	overlaid.			This	represents	the	case	where	
there	is	no	positional	uncertainty.	The	6	red,	green,	and	blue	anomalies	in	the	SIC	scan	match	the	3	red,	
green,	and	blue	anomalies	from	the	MFL	scan.		In	addition	to	these	anomalies,	also	there	are	two	non-colored	
anomalies	from	the	SIC	scan	which	match	the	MFL	scan.		This	gives	a	total	of	8	matched	anomalies	from	the	
SIC	scan	out	of	11	anomalies	total	resulting	is	a	match	score	of	72%.			

                                                
1 A pipe joint is defined as a continuous section of pipe between circumferential girth welds.  While there is no set standard joint length, 40 foot 
joints are commonly used because this length can be conveniently transported on a flatbed truck. 
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Now	consider	the	second	case	labeled	as	the	2”	offset.		This	case	represents	the	linear	uncertainty	near	the	
end	of	a	joint.		Here	the	SIC	signal	is	shifted	by	about	+2”.		However,	there	are	still	matches.		The	red	SIC	
boxes	match	the	blue	MFL	boxes,	giving	3	matches.		The	blue	SIC	boxes	match	the	green	MFL	box	and	an	
empty	MFL	box,	giving	us	2	more	matches.		Finally,	the	top-center	uncolored	SIC	box	has	an	MFL	match.		This	
gives	us	a	total	of	6	of	the	SIC	boxes	which	have	found	matches	for	a	matching	score	of	54%.	

The	point	of	this	example	is	that	a	reasonable	metric	of	match	quality	can	be	fooled	by	a	coincidental	
positional	error.		While	in	this	example	the	54%	offset	match	is	not	as	good	as	the	74%	no-offset	match,	it	is	
still	a	pretty	good	match.		It	is	conceivable	that,	given	a	different	pattern	of	anomalies,	we	could	see	more	
matches	with	the	offset	case	than	with	the	non-offset	case.		Since	matches	are	only	correct	for	the	no-offset	
case,	positional	uncertainty	can	complicate	the	matching	process	with	incorrect	answers.	

Since	the	goal	for	anomaly	matching	is	to	establish	local	corrosion	rates,	we	need	better	than	simply	
consistent	matching.		We	need	a	consistently	correct	anomaly	matching.		We	should	measure	correctness	of	
matching	against	externally	established	anomaly	identities.		We	can	gauge	the	effectiveness	of	an	algorithm	
by	comparing	its	matching	results	against	a	laboriously	established	ground	truth	dataset.			

In	addition	to	linear	uncertainty,	the	pig	also	spins	while	it	travels	introducing	rotational	uncertainty.	

The	overlaying	of	the	SIC	scan	from	this	figure	onto	the	MFL	scan.		On	the	0”	offset	overlay	image	we	see	that	
we	are	able	to	match	8	of	the	11	SIC	anomalies	in	this	region	of	the	scan	with	MFL	features.	

Imagine	if	instead	there	is	error	in	the	x-axis	location.		The	MFL	scan	is	0.05	meters,	about	2	inches,	to	the	left	
of	where	we	think	it	is.		Consider	only	the	matching	between	the	MFL	scan	and	the	SIC	scan.		Now	the	blue	
MFL	box	is	closer	to	the	red	SIC	box.		The	green	MFL	box	matches	to	the	blue	SIC	box.		The	red	MFL	box	is	
unmatched	and	the	green	SIC	box	just	looks	like	noise.		A	match	scoring	scheme	shows	that	this	match	is	as	
good	as	the	correct	one.		This	scenario	is	what	actually	happens.		

Consider	what	would	happen	if	the	signals	from	the	figure	Signal Differences	were	off	by	about	2	inches.		
Recall	that	in	this	figure	we	compare	boxed	anomalies	across	three	different	sensor	types.			

Since	there	is	uncertainty	in	the	location	of	the	pig,	anomalies	are	shifted	both	linearly	and	rotationally.	This	
makes	the	matching	much	more	difficult.	In	this	example	anomaly	location	has	been	carefully	controlled,	in	a	
free-swimming	pig	anomaly	location	is	less	certain.		So,	in	addition	to	differences	in	reported	anomaly	shape	
if	any	of	these	signals	were	shifted	forward	or	backward	by	0.05	meter	the	patterns	would	overlay	the	wrong	
vertical	anomaly	cluster.	These	spatiotemporal	considerations	apply	whether	matching	boxed	raw	signals	or	
vendor-supplied	boxed-anomalies.	To	match	raw	signals,	we	must	ultimately	box	individual	features.		This	
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makes	the	anomaly	matching	problem	identical	for	both	boxed	anomalies	and	raw	signals,	just	different	in	
the	size	and	number	of	the	features	that	need	to	be	matched.	

Matching	across	sensor	types	is	even	more	challenging	because	one	set	of	sensors	sees	two	boxed	anomalies	
-	one	deep	and	one	shallow,	a	second	vendor	may	see	them	as	a	single	deep	anomaly.		A	third	vendor	may	
completely	filter	out	the	anomaly	and	report	nothing.		The	goal	is	to	map	one	or	more	anomalies	in	one	
survey	to	zero	or	more	anomalies	in	a	second	survey.	

What	will	not	change	is	the	relative	location	of	groups	of	anomalies	as	well	as	the	relative	location	of	
anomalies	within	the	group.	

Integrated Cleaning and Inspecting Pigs (ICIPs) 
In	2010	PHMSA	recognized	the	need	to	provide	more	frequent	measurements	along	the	pipeline.		They	awarded	work	to	
Electricore,	Inc.	to	investigate	the	feasibility	of	an	integrated	internal	inspection	and	cleaning	tool,	ICIP	(PHMSA	
integrated	pipeline	cleaning	and	inspection	tool	
	2010).		This	work,	which	was	rated	“very	effective”	
in	its	peer	review,	has	generated	some	industry	
interest.		Although	PHMSA	canceled	the	project,	
both	PRCI	and	Chevron	expressed	interest	in	
continuing	the	work	because	it	“showed	
considerable	near-term	promise	and	benefits	to	the	
pipeline	industry”	(J.	O.	Brien	et	al.,	2012).		
Currently	there	are	several	commercial	ICIP	
offerings	being	developed	by	independent	vendors.	

Integrated	Cleaning	and	Inspection	Pigs	(ICIPs)	are	
cleaning	pigs	which	have	been	instrumented	with	
inexpensive,	ruggedized	sensors.			The	ICIP	was	
developed	by	PHMSA	to	offer	operators	a	low-cost	
and	self-reliant	alternative	to	complex	high-
resolution	tools.		These	low-cost,	low-resolution	
devices	are	designed	to	be	run	frequently	by	
operators	as	part	of	their	normal	cleaning	
operations	or	as	part	of	a	routine	maintenance	program	(PHMSA	ICIP	2012).		While	using	these	devices	does	
not	preclude	the	need	for	occasional	high-resolution	inspections,	they	do	allow	an	operator	to	maintain	near-
real-time	eyes	on	the	conditions	of	the	pipe	in	the	intervening	years	between	traditional	inspections.	

CSM ICIP: The 8” ICIP developed by the Colorado 
School of Mines senior design team.  This ICIP has 
sensors embedded in the trailing disk on the left.  The 
yellow electronics package is exposed for reference. 
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One	potential	benefit	of	these	tools	is	that	frequent	pipeline	inspections	allow	an	operator	to	observe	the	
impact	of	operational	changes	on	corrosion	rates.		An	operator	can	measure	how	changing	corrosion	inhibitor	
or	how	adjusting	water	separation	techniques	impact	local	corrosion	rates.		Instead	of	a	handful	of	corrosion	
coupons	which	may	or	may	not	be	representative	of	conditions	in	the	rest	of	the	pipe,	ICIPs	allow	operators	
more	refined	monitoring	of	pipeline	conditions.		To	support	this	use-case	an	operator	needs	to	be	able	to	
rapidly	process	the	data	collected	by	an	ICIP	run	so	that	it	can	be	combined	with	previous	inspection.		This	
needs	to	occur	before	the	next	scheduled	routine	ICIP	inspection.		A	reasonable	target	would	be	to	
completely	process	an	ICIP	inspection	in	a	week	with	minimum	human	intervention.	

As	a	usage	scenario,	imagine	that	an	operator	has	just	completed	an	ICIP	inspection.		A	technician	extracts	the	
tool	from	the	pipeline	and	scrapes	away	cleaning	debris.		She	brings	her	laptop	computer	within	range	and	
pairs	her	computer	to	the	tool	via	Bluetooth	radio.		Once	paired,	the	ICIP	streams	its	data	to	the	laptop	where	
it	is	received	by	data	processing	software.		As	it	receives	this	data,	the	software	matches	the	anomalies	seen	
by	this	new	inspection	against	previously	recognized	ones.		Within	a	short	time,	the	entire	run	has	been	
processed	and	the	technician	has	been	alerted	to	any	new	anomalies	or	new	areas	where	the	pipeline	may	be	
deteriorating	at	an	unexpectedly	rapid	rate.	The	output	of	this	scenario	is	a	database	of	matched	anomalies,	a	
4-dimensional	profile	of	anomaly	dimensions	as	they	evolve	through	time.			

The	work	here	assumes	that	the	process	of	creating	boxed	and	called	out	anomalies	is	too	computational	
intensive	to	be	performed	onboard	an	ICIP.		To	achieve	the	simplicity	and	compatibility	envisioned	for	these	
tools	we	endeavor	to	match	raw	sensor	readings	as	raw	signals.		The	intent	is	to	align	raw	input	signals	across	
multiple	runs	and	data	sets	from	different	types	of	tools.	

Application of SLAM to Pipeline Inspection 

Over	the	last	twenty	years,	there	has	been	a	concerted	effort	on	the	part	of	the	mobile	robotics	research	
community	to	develop	SLAM	(simultaneous	localization	and	mapping)	capabilities	for	mobile	robots	traveling	
through	unknown	environments.	The	idea	is	that	the	robot,	to	be	successful,	can	localize	itself	relative	to	
obstacles	and	boundaries	of	the	environment	in	which	it	is	traveling,	e.g.,	indoor,	outdoor,	or	underground.	In	
addition,	it	needs	to	build	a	map	of	its	environment	both	for	its	own	future	use	as	well	as	for	documentation	
of	its	activities.	This	project	was	first	envisioned	as	an	effort	to	leverage	the	developments	of	the	robotics	
community	to	develop	a	similar	capability	for	a	pipeline	pig	where	the	features	or	landmarks	that	are	used	for	
navigation	the	features,	e.g.,	girth	welds,	valves,	and	other	prominent	features	of	the	pipeline	as	well	as	the	
anomalies	that	are	detected	as	the	pig	travels	through	the	pipe	are	used	localize	the	robot.	The	idea	is	that	
the	anomalies	are	in	fixed	locations	(albeit	there	can	be	more	features,	i.e.,	anomalies	that	are	observed	in	
succeeding	runs	as	was	discussed	earlier	in	this	report),	and	thus	they	can	be	used	to	localize	the	pig,	but	the	
fact	they	are	localized	means	their	characteristics,	e.g.,	wall	loss,	can	be	tracked	from	run	to	run.		
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From	the	work	on	SLAM,	it	has	been	shown	that	robots	can	localize	themselves	both	when	they	have	
odometry	and	when	they	don’t.	We	envision	ICIPs	that	would	have	odometry	would	be	developed	first	since	
this	simplifies	the	algorithm,	and	would	allow	the	use	of	the	Extended	Kalman	Filter	approach	to	the	
localization,	i.e.,	path	tracking.		

In	some	ways,	the	problem	of	localization	of	a	pig	is	simpler	that	for	a	mobile	robot,	e.g.	the	path	is	one-
dimensional	(or	two	dimensional	if	you	include	the	“roll”	of	the	pig,	i.e.,	it	rotation,	as	it	travels),	and	thus	the	
computation	of	position	is	simplified.	

The	key	capability	of	the	SLAM	algorithm	for	run	to	run	anomaly	alignment	will	be	the	ability	to	identify	
sensed	features	as	being	the	“same”	anomaly.	In	SLAM	the	analogous	problem	is	the	challenge	of	recognizing	
the	same	landmark	1)	after	some	incremental	movement	and	2)	to	recognize	that	landmark	after	larger	
traversals	such	that	an	area	is	revisited	and	goal	is	to	recognize	that	the	robot	has	been	there	before.	This	is	
called	loop	closure	and	requires	recomputing	large	segments	of	the	path	(map)	to	fix	errors	in	the	heading.	
For	pipeline	pig	data,	the	issue	will	be	to	align	anomalies	with	those	of	previous	runs,	and	unlike	the	typical	
robot	problem,	the	features	are	expected	to	have	changed	from	the	previous	run,	thus	making	the	matching	
problem	more	difficult.	

While	several	attempts	were	made	to	obtain	real	pipe	pig	data,	none	were	available	for	this	project.	
Experiments	were	done	using	pseudo-pipe	(fiber	construction	tubes)	with	holes	rather	than	surface	flaws.	A	
2D	laser	scanner	was	used	as	the	sensor.	For	this	scenario,	the	localization	was	straight-forward	since	the	
number	of	anomalies	was	quite	small.	

 
Probabilistic SLAM2 

 
𝑃(𝒙$,𝒎|𝒁):$, 𝑼):$, 𝒙)) 

 
Joint	posterior	density	of	 the	 landmark	 locations	 (aka	anomalies),	given	 the	 recorder	observations	
(measurements),	 control	 inputs,	 and	 initial	 pose.	A	 recursive	 solution	 is	 desired	 since	 it	will	 allow	
update	at	each	time-step.		

Starting	 with	 the	 estimate	 for	 the	 distribution	 at	 the	 previous	 time	 step	 (k-
1),𝑃(𝐱𝐤/𝟏,𝐦|𝐙𝟎:𝐤/𝟏, 𝐔𝟎:𝐤/𝟏)	using	the	control	input,	i.e.,	the	motion	of	the	pig	in	the	interval	from	(k-
i	 to	 k)	 and	 the	observation,	 i.e.,	measurement	update,	 the	new	 joint	 posterior	 is	 computed	using	

                                                
2 much of the material for this section is derived from the SLAM tutorial by Durrant-Whyte & Bailey 
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Bayes’	theorem.	To	do	the	computation,	both	a	state	transition	model	and	a	observation	model	are	
defined	and	include	the	effect	of	the	control	input	and	the	observation.	

The	 observation	 (measurement)	 model	 expresses	 the	 probability	 of	 making	 an	 observation	 (e.g.,	
specific	measurement),	 zk,	 when	 the	 pig	 is	 in	 a	 known	 location	 and	 the	 anomaly	 (aka	 landmark)	
location	is	known,	i.e.,	the	anomaly	was	detected	and	mapped	in	a	previous	inspection.	

𝑃(𝒛$, |𝒙$,𝒎)	

The	motion	model	is	described	in	terms	of	a	probability	distribution	of	the	state	transitions	expressed	
as		

𝑃(𝒙$, |𝒙$/6, 𝒖$)	

It	is	important	to	know	that	the	state	transition	model	is	modeled	as	a	Markov	process	for	which	the	
next	state	is	only	a	function	of	the	previous	state	and	the	input	at	that	time	step.		

The	probabilistic	SLAM	algorithm	is	then	a	two-step	recursive	process	constructed	using	a	prediction	
(called	 a	motion	 or	 time	 update)	 followed	 by	 a	 correction	 (called	 a	measurement	 or	 observation	
update).	These	are	expressed	as:	

Time-update:	

𝑃(𝒙$,𝒎|𝒁):$, 𝑼):$, 𝒙)) = ∫ 𝑃(𝒙$|𝒙$/6, 𝒖$)×𝑃(𝒙$/6,𝒎|𝒁):$/6, 𝑼):$/6, 𝒙))𝑑𝒙$/<	

Measurement-update:	

𝑃(𝒙$,𝒎|𝒁):$, 𝑼):$, 𝒙)) =
𝑃(𝒛$|𝒙$,𝒎)𝑃(𝒙$,𝒎|𝒁):$/6, 𝑼):$, 𝒙))

𝑃(𝒛$|𝒁):$/6, 𝑼):$)
	

For	a	map	building	activity,	one	can	compute	the	conditional	density,	i.e.,		

𝑃(𝒎|𝑿):$, 𝒁):$, 𝑼):$)	

which	expresses	the	probability	of	a	landmark,	m	(i.e.,	anomaly),	being	at	a	specific	location	given	a	
certain	pose	of	the	robot	(pig),	a	given	set	of	sensor	readings,	and	a	given	set	of	inputs	(motions)	of	
the	robot	(pig).		

Application of the Kalman Filter to Localization of Pipeline Anomalies  

Applying	 the	 Kalman	 filter	 to	 anomaly	 alignment	 has	 two	 phases,	 a	 priori	 and	 a	 posteriori	 state	
estimates,	often	referred	to	as	the	prediction	and	measurement	updates	(Siewart	et	al.	2011).		
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Prediction	Update:	The	prediction	update	estimates	the	position	of	the	pig	based	on	motion	input	
and	would	most	directly	involve	the	use	of	encoded	movement	sensor	input,	e.g.,	an	instrumented	
wheel	 in	contact	with	the	pipe	wall.	The	pig	position	at	time	k,	ˆxk,	is	based	on	the	position	at	the	
previous	time	step	and	movement	as	indicated	by	the	encoder	measurement,	uk		

𝑥
̂
$ = 𝑓(𝑥$/6, 𝑢$)	

Note	we	recognize	that	the	pose	will	include	both	linear	and	angular	displacement	and	will	require	
these	two	inputs,	thus	x	is	in	fact	2-vector.		With	knowledge	of	the	plant	(pig)	and	the	error	model	on	
can	 compute	 the	variance,	𝑃$/6,	 associated	with	 this	estimate	using	an	equation	derived	 from	an	
expression	of	the	total	probability	theorem	as	applied	to	normal	distributions:	

𝑃
̂
$ = 𝐹C𝑃$/6𝐹CD + 𝐹F𝑄$𝐹FD 	

where	𝑃$/6	is	the	covariance	of	the	previous	robot	(pig)	state,	𝑥$/6,	and	𝑄$	is	the	covariance	of	the	
noise	associated	with	the	motion	model.	These	two	equations	will	be	used	to	update	the	mean	and	
covariance	of	the	position	distribution	for	the	pig.		

Measurement	Update:	This	phase	actually	has	four	steps:	
• Observation	
• Measurement	prediction	
• Matching	
• Estimation	

Observation:	This	 is	the	step	where	sensor	measurements,	𝑧$,	are	gathered.	These	measurements	
would	consist	of	the	wall	assessment	measure	as	dictated	by	the	sensor	used,	e.g.,	MFL,	AUT,	piezo-
sensor,	collected	at	this	time	step.		

Measurement	prediction:	The	pig	position	and	the	map	(for	a	previous	inspection	run)	are	used	to	

generate	 multiple	 predicted	 feature	 observations,	𝑧
̂
$
I .	 The	 predicted	 observations	 represent	 the	

expected	features	(signal	signatures)	for	that	location	in	the	pipeline.	These	features	are	expressed	in	
the	local	coordinate	frame	of	the	robot,	which	will	mapping	their	global	pose	into	the	local	frame,	

𝑧
̂
$
I = ℎI(𝑥

̂
$, 𝑚I)	

where	𝑚I 	represents	the	position	of	the	feature	in	the	map.	

Matching:	In	this	step,	the	measured	features	are	compared	with	the	predicted	features.	This	involves	
an	assignment	of	the	observed	features	zj	to	the	predicted	features	zi	and	specifically	the	computation	
of	their	difference,	which	is	called	the	innovation.	This	is	express	as:	
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𝜈$
MI = (𝑧$M − 𝑧

̂
$
I) = (𝑧$M − ℎM(𝑥

̂
$, 𝑚I))	

The	innovation	covariance	can	then	be	found	by	applying	the	error	propagation	law	to	the	system	and	
measurement	covariances:	

𝑃MO
MI = 𝐻I𝑃

̂
$𝐻ID + 𝑅$M 	

where	𝐻I 	is	the	Jacobian	of	ℎI 	and	𝑅$M 	is	the	noise	covariance	of	the	measurement	system,	i.e.,	the	
sensors.	The	correspondence	between	the	observation	and	the	estimate	are	checked	to	see	that	the	
suggested	correspondence	makes	sense.		This	is	done	by	checking	the	“distance”	between	the	two	
feature	 (anomaly)	 locations.	 The	 distance	 that	 is	 often	 used	 is	 the	 Mahalanobis	 distance	 (an	
expression	of	the	distance	between	the	features	in	terms	of	a	normal	distribution,	i.e.,	a	mean	and	
variance.		This	observation	(measurement)	is	assumed	to	be	normally	distributed	with	the	observed	
value	as	the	mean	and	the	variance	being	that	of	the	measurement.	This	check	is	called	the	validation	
gate,	g,	and	is	expressed	as:	

						𝜈$
MI(𝑃MO

MI)/6𝜈$
MI ≤ 𝑔T	

Estimation:	In	this	step,	the	estimate	of	the	pig’s	position	is	made	based	upon	the	prediction,	𝑥$,	and	
the	observations	(sensed	features)	at	time	k.		To	do	this	the	validated	observations	are	stacked	into	a	
a	vector,	𝑧$,	In	a	similar	fashion	a	composite	Jacobian	is	created	by	stacking	the	𝐻I,	for	each	validated	
measurement.		These	are	used	to	compute	the	composite	innovation	covariance.		

𝑥U = 𝑥
̂
$ + 𝐾$𝜈$	

𝑃$ = 𝑃
̂
U − 𝐾$𝑃MO𝐾$D 	

where	

𝐾$ = 𝑃
̂
$𝐻$D(𝑃MO

MI)/6	

is	the	Kalman	gain.	
 

Summary and Conclusion 

The	problem	of	anomaly	alignment	and	matching	has	been	described	in	detail	and	the	challenges	of	
producing	good	matches	have	been	identified.	Descriptions	of	two	approaches	to	the	algorithms	that	could	
be	used	to	address	this	problem	were	presented.	Due	to	unavailability	of	data,	no	analysis	has	been	
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presented.	The	similarity	of	the	anomaly	matching	to	the	problem	of	robot	SLAM	has	been	presented	and	
some	details	of	how	the	SLAM	algorithms	work	have	been	presented.		
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