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ABSTRACT 
Helical guided waves in pipelines are studied under the effects of pressurization stresses from a contained liquid. The 
pipeline is approximated by an “unwrapped” plate waveguide, and a transfer matrix method is used to solve for guided 
wave velocity and attenuation dispersion curves in a multilayered plate waveguide subject to an arbitrary triaxial state of 
initial stress. The matrix-based model is able to incorporate both elastic and viscoelastic solid materials, as well as 
approximate non-uniform distributions in initial stress through the thickness of a waveguide. Experiments on a steel 
pipe filled with pressurized water are carried out to validate the modeling approach. 
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1 INTRODUCTION 
Guided ultrasonic waves (GUWs) are a potentially high-impact technology for nondestructive evaluation (NDE) 
methods in various waveguide-like structures. Accordingly, attention to this area has grown in recent years, leading to 
the development of methods for damage assessment in a number of structural components, such as plates, pipes, rail, 
&c.1–4 In general, features like energy velocity and signal attenuation are extracted from GUW signals and processed to 
aid in the critical tasks of locating and characterizing crucial types of damage. The efficacy of GUWs hinges on their 
sensitivity to damage. This sensitivity can be significantly affected by variations in normal operating conditions, such as 
stress distributions, produced either while in service or from manufacturing processes. Knowledge of how these stress 
distributions affect GUW dispersion characteristics (i.e. wave features) is critical to their successful application. 

The effect of initial static stresses on bulk ultrasonic waves is well understood5–8, yet the influence of these 
stresses on GUWs is not as developed. Features like wave velocity have been studied in rods9,10 and plates11,12 subjected 
to initial stresses in vacuo. A semi-analytical finite element (SAFE) method has been used to study the effect of initial 
stresses in a waveguide of arbitrary cross-section in vacuo, composed of either a single elastic13 or viscoelastic14 
material. Analyses for layered waveguides have also been formulated15,16. However, these analyses have been limited, 
either to a certain number of layers, or propagation in the direction of a principal axis of initial stress only. 

Here, an approach is introduced for eliminating the restrictions stated above that are placed on the initially 
stressed waveguide. In addition, viscoelastic layers may also be included. The approach provides more freedom for the 
materials and types of initial/residual stresses that may be studied. The transfer matrix method is used to generate 
guided wave mode solutions for an initially stressed multilayered waveguide. In addition, due to the convenience of the 
matrix-based method, the actual layered waveguide may be discretized into sublayers, in order to model initial stresses 
that vary through the thickness. The transfer matrix method has been chosen for these cases on account of its relatively 
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higher computation speed, compared to the global matrix method, for a large number of layers. Solutions across real 
frequency and complex wavenumber are used to describe the effect that initial stresses have on the velocity and 
attenuation of GUWs. Material absorption and leakage are the two sources of attenuation that are considered. 

2 TRANSFER MATRIX METHOD 

2.1 BULK WAVES IN A STRESSED LAYER 

Matrix-based methods for computing guided wave mode solutions use a partial wave technique to express the guided 
wave displacements and stresses as a superposition of bulk waves propagating in each layer of a multilayered 
waveguide. To this aim, the nature of bulk waves propagating in a stressed layer is first analyzed. In the next section, a 
matrix-based method is then used superimpose these bulk waves and enforce boundary conditions along layer 
interfaces. This imposition of boundary conditions establishes the existence of guided waves. 

The velocity of bulk waves propagating in an initially stressed solid medium vary linearly as the stress is 
changed5. This is known as the acoustoelastic effect.7 The present approach of accounting for the acoustoelastic effect in 
triaxially stressed multilayered viscoelastic waveguides expands upon a formulation11 for Lamb waves in a biaxially 
stressed plate in vacuo. The approach is to model bulk plane wave motion as a time-dependent displacement 
superimposed on an initial static deformation.5 The sequence of deformation is composed of three stages: 1) unstrained 
(natural) stage, 2) initial stage of static deformation, and 3) final stage of wave motion. No plastic deformations are 
assumed. 

The equation of motion, referenced to the natural geometry of a solid medium, for the dynamic incremental 
displacement u (i.e. the wave motion) is8 

,0
, αβδγαβγδ ρ uuA &&=  (1) 

where a Greek letter following a comma in a subscript denotes partial differentiation with respect to that component of 
the natural coordinates ξ, ρ 0  is the unstrained density, and A is expressed 

.~ )3()2()2()2()2( iiii ececececcicA εζαβγδεζαεεβγδγεαβεδαγεζβδεζαβγδαβγδαβγδ δω ++++−=  (2) 

Here, c(2) and c(3) are the tensors of second-order and third-order elastic constants, respectively, while c~  is the tensor of 
viscoelastic constants. For an isotropic solid medium, these tensors are7 
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where λ,μ  are the Lamé constants, l, m, n  are the Murnaghan constants, and λ~ , μ~  are the viscoelastic constants. 

Additionally, αβδ  is the Kronecker delta, and ( )δεγζεζγδαβαβγδεζ δδδδδδ +=ˆ . ei is the infinitesimal static strain 
resulting from the initial stage of deformation, and is expressed via the Second Piola-Kirchhoff stress Si as 
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In forming the equation of motion, it is assumed that the static stresses in the medium are homogeneous.8 A small 
gradually varying inhomogeneity in these stresses, however, does not significantly affect experimental results (see Sec. 
4.4). 

A constitutive equation for the stress S in the incremental stage may also be formed:11 

,,δγαβγδαβ uBS =  (5) 

where B is expressed 

.~ )3()2()2( ii ececcicB εζαβγδεζγεαβεδαβγδαβγδαβγδ ω ++−=  (6) 

The tensors A and B reduce to a linear viscoelastic form when the initial stresses vanish. 

To simplify the calculation of these tensors, they are first calculated using the principal initial strains, where 
they are given a special identification as A′  and B′ . Afterward, if the principal initial strain axes ξ′  do not align with 
the natural geometry ξ, A′  and B′  may be rotated as 

,    ; λμντδτγνβμαλαβγδλμντδτγνβμαλαβγδ BaaaaBAaaaaA ′=′=  (7) 

where the direction cosine between αξ  and βξ ′  is denoted αβa . 

 A plane wave in the 1ξ - 3ξ  plane is now assumed as a solution to the equation of motion:17 

( )[ ],exp 31 tizikUu ωξξαα −+=  (8) 

where Uα is the amplitude of the wave motion, k is the wavenumber in the 1ξ  direction, z  is the ratio of the 
wavenumbers in the 3ξ  and 1ξ  directions, and ω  is the angular frequency. An eigenvalue problem is formed in the 
displacement amplitudes, 

( ) ,,, 0UK =zkω  (9) 
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The eigenvalues of K ω, k, z( )  describe a set of three upward and downward propagating bulk plane waves. The 
displacement polarizations of these waves are in general coupled, and this behavior resembles wave propagation in 
anisotropic solid media. It is thus convenient to work with amplitude ratios for the 2ξ  and 3ξ  displacements as11,17 

Vq =
U2q

U1q

;     Wq =
U3q

U1q

,     q =1, 2,L, 6    (no sum).
 

(11) 

Here, q is an index that identifies each of the bulk plane waves. The first subscript on U⋅ ⋅  denotes the direction 
component, and the second, q, indicates the bulk wave. 

2.2 MULTILAYERED WAVEGUIDE ASSEMBLY 

A matrix-based method is now used to generate guided wave solutions for a multilayered waveguide. This is done by 
combining the bulk waves of each layer into an eigenvalue problem, which is accomplished by imposing continuity in 
the incremental stresses and displacements along layer interfaces. It is assumed that no discontinuities exist along these 
interfaces after the initial deformation (i.e. before the wave motion takes place). The transfer matrix method is used here 
in order to increase the computational speed when the waveguide is composed of a large number of layers. 

 Layer interfaces are horizontal planes defined by const. 3 =ξ  The natural coordinates of each layer are 
designed to coincide, although their principal strain axes may differ. In the nth layer the displacements and stresses at a 
horizontal plane (defined by const. 3 =ξ ), from the superposition of all bulk waves in the layer, can be expressed 

[ ] ( )[ ] ( ).exp 116113333231321 tiikUUSSSuuu TT ωξξ −= LDZ  (12) 

Because the harmonic terms on the r.h.s are shared, they may be ignored while solving the eigenvalue problem. Here, 
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where zq is the ratio of wavenumbers for the qth bulk wave, and 
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is called the field matrix for the nth layer. Eq. (5) has been used to produce 
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Assigning the 3ξ  origin of each layer along its lower interface, the quantities along the upper and lower 
interfaces are be related by 

[ ] [ ] ,bot.331top331
T

n
T SuSu LL L=  (16) 

where ( ) 1
3

−== DDZL dn ξ  is called the layer matrix for the nth layer, and d is the layer thickness. Continuing the 
process, the quantities along the final Mth interface are related to those along the first as 

[ ] [ ] ,1331331
TT

M SuSu LL Y=  (17) 

where 11 LLLY L−= NN  is called the system matrix of the N-layered waveguide. 

 The eigenvalue problem in Y may now be solved for the case of a layered waveguide in vacuum by requiring 
the stresses to vanish along the outer interfaces. If the waveguide is bordered by halfspaces, the eigenvalue problem is 
formed by requiring that only the outward propagating bulk waves exist in the halfspaces.18 For this case, the 1st and Mth 
interface quantities are expressed in terms of outgoing wave amplitudes in the halfspaces. This reformulation may be 
expressed as 

[ ] [ ] ,b1611b
1

tt1611
TT UUUU LL YDD−=  (18) 

where t and b indicate top and bottom halfspaces. Ordering the wave amplitudes in each halfspace such that those 
propagating upward (i.e. with a positive real 3ξ  wavenumber) are [ ]131211 ,, UUU , then 
[ ] [ ] 0,,,, b131211t161514 == UUUUUU . An eigenvalue problem is then formed for the lower right 3 3 submatrix of the 

matrix b
1

t YDD− . If there is only one halfspace present, then the reformulation is applied only to that halfspace. 

2.3 GUIDED WAVE FEATURES 

For guided waves with a complex wavenumber, the imaginary component describes the attenuation along the direction 
of propagation18 

( ) ( ) ( ),exp rkAA I−=′ ωω  (19) 

where kI is the imaginary component of the wavenumber, ( )ωA  is the amplitude of a mode in the frequency domain 
after it has propagated distance of r, and ( )ωA′  is the amplitude after attenuation has been accounted for. 

The energy velocity ce is the velocity of energy transport for a guided wave packet. It is defined as19 

( )
( ) ,

,
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thE
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e
P

c =  (20) 

where P is the Poynting vector and E is the total energy. Both P and E are due to the incremental wave motion only. 
The operation ⋅  is the average over both one period and the waveguide depth, 

×
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where T is the period of ( )⋅  and H is the thickness of the waveguide. 

3 NUMERICAL APPLICATION 

3.1 SANDWICH PLATE 

An aluminum-epoxy-aluminum sandwich plate is used to demonstrate certain features of guided wave propagation in an 
initially stressed multilayered viscoelastic waveguide. Before the results are presented, an overview is made of the 
waveguide that is used to generate numerical results. The waveguide is composed of three layers and bordered by 
vacuum on each side. Material constants for the layers are defined in Table I (steel and water are used in the 
experimental section). The third-order elastic constants l,m,n for the epoxy are assumed at 10% of the aluminum values. 
Fig. 1 provides an illustration of the waveguide. Two different cases of initial stress are analyzed: 1) in-plane uniaxial 
tension (CS1), and 2) pure flexure superimposed on the tension of the first stress case (CS2). The through-thickness 
variation in stress caused by the flexure is approximated by discretizing the aluminum layers into five sublayers each, 
such that each sublayer has a uniform stress distribution. The two stress cases are summarized in Table II. In addition, 
two different propagation directions are analyzed: 1) parallel to the uniaxial tension (CD1), and 2) perpendicular to the 
tension (CD2). 

 

 
TABLE I. Material constants used for numerical results. 

 

 Aluminum (l1) Epoxy (l2) Aluminum (l3) 
CS1 100 1 100 
CS2 150 → 110 1 90 → 50 

TABLE II. In-plane normal stresses ( iS11  [MPa] ) within layers for the two stress cases CS1 and CS2. The symbol “→” indicates that 
the stresses vary stepwise between the two values. 

 

Dispersion curves for phase velocity cp, energy velocity ce, and attenuation ki, for Lamb-like GUWs in the 
sandwich plate under different stresses and for different propagation directions are shown in Figs. 2, 3, and 4. Variations 
in these guided wave features are also shown, with all variations referenced to the unstressed dispersion curves. 

Aluminum Epoxy Steel Water
λ 54.9 5.13 111 2.19
µ 26.5 1.42 82.1

0 –0.0143+0.00161 i 0 0
0 0.0452–0.00108 i 0 0

l –252 0.1·(–252) –461 —
m –325 0.1·(–325) –636 —
n –351 0.1·(–351) –708 —

Units: GPa

%λ
%μ

≈ 0
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FIG. 1. Sandwich plate waveguide and natural geometry. 

Certain characteristics of the attenuative waveguide, like cut-off phase velocities in higher order modes, may 
be seen in the plots. The directional dependence of the three wave features in the stressed waveguide may be seen in 
plot (b) of each figure. This directional dependence has been leveraged by other researchers to characterize an unknown 
stress state in an isotropic plate.20 Using the presented model, this technique may be used for more general stress states 
in multilayered plate-like waveguides. It may also be noted that stress and propagation direction cases CS1&CD1 and 
CS2&CD1 produce nearly identical variations in the wave features for each mode. This indicates that the addition of 
pure flexure (i.e. an antisymmetric stress distribution through the thickness) to the symmetric waveguide does not alter 
GUW propagation. This particular conclusion was drawn, based on perturbation theory, for Lamb wave modes in a non-
attenuative plate21. In this example, it is demonstrated numerically for guided waves in a symmetric multilayered 
attenuative waveguide. 

 

                                

 
(a)      (b) 

FIG. 2. (a) Phase velocity dispersion curves for Lamb-like modes under zero stress, and (b) Normalized variations for different 
stresses and propagation directions. Color indicates the mode and line style indicates the stress/direction condition. 
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(a)      (b) 

FIG. 3. (a) Energy velocity dispersion curves for Lamb-like modes under zero stress, and (b) Variations for different stresses and 
propagation directions. Color indicates the mode and line style indicates the stress/direction condition. 

                               

 
(a)      (b) 

FIG. 4. (a) Attenuation dispersion curves for Lamb-like modes under zero stress, and (b) Variations for different stresses and 
propagation directions. Color indicates the mode and line style indicates the stress/direction condition. 

4 EXPERIMENTAL STUDY 

4.1 HELICAL GUIDED WAVES 

The matrix-based method that has been presented is used to predict the effect of pressurization on helical guided waves. 
Experiments on the effect of stress are performed on a steel pipe filled with pressurized water. For a waveguide with 
low curvature, such as the large diameter steel pipe, the helical guided wave modes may be approximated by plate wave 
modes. Due to the geometry of the cylindrical waveguide, multiple helical wave paths exist between a pair of 
transducers attached to the pipe surface. The additional information provided by multiple paths has recently been 
exploited for mapping reductions in pipeline wall thickness, using a low density distribution of piezoelectric (PZT) 
transducers.22 
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4.2 TEST SETUP 

A 3m steel pipe simply supported at its ends and 100% filled with pressurized water is used to experimentally verify the 
acoustoelastic effect on helical guided waves in a layered, leaky waveguide. The pipe wall has a thickness of d = 2.1mm 
and inner radius of ri = 75.1mm. Before ultrasonic testing, temperature equilibrium is reached at 22°C. PZT transducers, 
with a center frequency f = 400 kHz, are permanently attached to the surface of the pipe. To record the internal pressure, 
a pressure gauge is instrumented to the pipe. Waveform data is sampled at 10 MS/s using a National Instruments NI PXI 
system. A 5.5-cycle Hanning toneburst is the excitation waveform. The received signals are averaged 250 times. 

Experimental measurements for RMS and energy velocity variations over an internal pressurization range of 0 
to 690 kPa are recorded. The pressurization produces hoop and longitudinal stresses in the pipe. The principle initial 
stresses in terms of the pressurization are 

S11
i = pri

d
;     S22

i = 1
2 S11

i ;     S33
i = 0,

 

(22) 

where p is the pressurization value. The principal strain axes of the pipe are assigned as 1) circumferential direction: 

′1ξ , 2) longitudinal direction: ′2ξ , and 3) through-thickness direction: ξ3
′ . The natural coordinates ξ for a given helical 

wave path are thus oriented along a given angle θ in the ′1ξ - ′2ξ  plane. 

 

 
      (a)      (b) 

FIG. 5 Experimental setup (a) for the steel pipe instrumented with PZT transducers and filled with pressurized water. PZT 
transducers are labeled S1,S2, and S5. Data acquisition system (b). 

4.3 ATTENUATION 

Changes in RMS are used to describe the variation in attenuation of recorded helical waves. Theoretical predictions for 
RMS variations under changing pressurization stresses are found using numerical results of imaginary wavenumber for 
a 2.1mm steel plate bordered on one side by a water halfspace. The initial stresses are those that result from the 
pressurization in Eq. (22). Material properties for steel and water that are used to generate theoretical dispersion curves 
are contained in Table I.23 The water is modeled as a solid with a small shear modulus. The frequency domain of a 
reference signal measured at a certain propagation distance under zero stress is scaled according to the attenuation 
dispersion curves for the mode being analyzed. The theoretical prediction for RMS is then calculated after transforming 
the resultant frequency spectrum into the time domain. Experimental and theoretical RMS variations for the Lamb-like 
S0 and A0 helical wave modes may be found in Fig. 6. As the attenuation variations in the two modes are relatively low 
at the tested frequency (400 kHz), the fluctuations due to noise are evident in the plots of RMS, even after the signals 

S2 

S5 

Amplifiers 

Pressure Gauge 

S1 
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have been postprocessed. It has thus proven difficult to verify these theoretical solutions for variations in guided wave 
attenuation under changing stress. 

 

 
(a)       (b) 

FIG. 6 RMS variations (normalized against the zero pressure state) for S0 (a) and A0 (b) in the steel pipe filled with water under 
increasing pressurization. Helical path S1-S5 is shown for S0, and S1-S2 for A0. 

4.4 ENERGY VELOCITY 

Experimental changes in energy velocity are measured using a cross-correlation method. Results for the Lamb-like S0 
and A0 modes may be found in Fig. 7. Included in the plot are numerical results for an initially stressed 2.1mm steel 
plate that is loaded on one side by a water halfspace. At the tested frequency, changes in energy velocity due to the 
pressure are more noticeable than attenuation. Results for the S0 mode along two different helical paths illustrate the 
changes in velocity variation for different propagation orientations relative to the principal initial strains. The paths S1-
S2 and S1-S5 are highlighted, due to their large differences in propagation orientation, demonstrating the effect this has 
on their respective energy velocity variations. Due to large attenuation in the A0 mode, only the shortest helical path 
around the pipe is useable. 

 

 
(a)       (b) 

FIG. 7 Energy velocity variations for S0 (a) and A0 (b) for the steel pipe filled with water under increasing pressurization. Helical 
paths S1-S2 and S1-S5 are shown for S0, and path S1-S2 for A0. 

 The helical path S1-S5 is oriented predominantly along the axis of the pipe, and it demonstrates the 
negligibility of the selfweight stresses when compared to the pressurization. The maximum selfweight stress is on the 
order of 20% of the maximum pressurization stress. 
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5 CONCLUSIONS 
A matrix-based approach has been presented for the computation of guided wave dispersion curves in a triaxially 
stressed plate-like multilayered viscoelastic waveguide. Predictability in energy velocity variations has been 
demonstrated. As these variations are linear, only simple adjustments are necessary if this effect is to be incorporated 
into a SHM system. As common GUW-based SHM methods in pipelines depend upon an understanding of wave 
velocities under idealistic conditions1,22, the effect of operational stresses may negatively influence these methods if 
they are not accounted for, depending particularly on the waveguide, mode, and frequency range used. Due to the 
frequency range evaluated in the experiments, reducing noise and making accurate signal RMS readings was 
encountered. Further research is necessary in measuring third-order elastic constants for more materials. 
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