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ABSTRACT 
The ability to characterize metal loss and gouging associated 
with dents and the identification of corrosion type near the 
longitudinal seam are two of the remaining obstacles with in-
line inspection (ILI) integrity assessment of metal loss defects.  
The difficulty with denting is that secondary features of 
corrosion and gouging present very different safety and 
serviceability scenarios; corrosion in a dent is often not very 
severe while metal loss caused by gouging can be quite severe.  
Selective seam weld corrosion (SSWC) along older low 
frequency electric resistance welding (ERW) seams also 
presents two different integrity scenarios; the ILI tool must 
differentiate the more serious SSWC condition from the less 
severe conventional corrosion which just happens to be near a 
low frequency ERW seam. Both of these cases involve 
identification difficulties that require improved classification of 
the anomalies by ILI to enhance pipeline safety.  

In this paper, two new classifiers are presented for magnetic 
flux leakage (MFL) tools since this rugged technology is 
commonly used by pipeline operators for integrity assessments.  
The new classifier that distinguishes dents with gouges from 
dents with corrosion or smooth dents uses a high and low 
magnetization level approach combined with a new method for 
analyzing the signals.  In this classifier, detection of any gouge 
signal is paramount; the conservatism of the classifier ensures 
reliable identification of gouges can be achieved.  In addition to 
the high and low field data, the classifier uses the number of 
distinct metal loss signatures at the dent, the estimated 
maximum metal loss depth, and the location of metal loss 
signatures relative to dent profile (e.g. Apex, Shoulder). 

The new classifier that distinguishes SSWC from corrosion near 
the longitudinal weld uses two orientations of the magnetic 
field, the traditional axial field and a helical magnetic field.  In 
this classifier, detection of any long narrow metal loss is 
paramount; the conservatism of the classifier ensures that high 

identification of SSWC can be achieved. The relative amplitude 
of the corrosion signal for the two magnetization directions is 
an important characteristic, along with length and width 
measures of the corrosion features. 

These models were developed using ILI data from pipeline 
anomalies identified during actual inspections.  Inspection 
measurements from excavations as well as pipe removed from 
service for lab analysis and pressure testing were used to 
confirm the results. 
 
INTRODUCTION 
In the last decade, the detection capability for ILI tools has 
improved, enabling the reporting of smaller corrosion and 
shallower dents.  Also many tools are better at detecting the 
seam weld in well-trimmed ERW pipe.  However, the reporting 
of smaller corrosion that is coincident with dents or the long 
seam has caused an increase in excavations per the regulations 
in many countries.  The goal of the regulations is to ensure that 
mechanical damage in dents and selective corrosion of the long 
seam, both potentially injurious anomalies, are always detected. 
 
Keeping with the spirit of the regulations, the goal of the work 
presented herein is to build classifiers that combine the 
measurements from multiple sensing systems to detect 
mechanical damage in dents and selective corrosion of the long 
seam, while dismissing many of the smaller corrosion features 
that do not impact pipeline performance.  The classifiers are 
designed to be conservative, meaning some non-injurious 
corrosion anomalies are designated for excavation so that the 
likelihood of catching all potentially injurious mechanical 
damage and selective seam corrosion is greater.  This paper 
discusses the development and verification of these classifiers. 
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NOMENCLATURE 
A – MFL Signal Amplitude 
B – Background MFL Amplitude 

 - Normalized Amplitude 
w –MFL Signal Width 

 – Normalized MFL Signal Width 
XILI – X is any of the above variables, the subscript 

ILI indicates data type 
• mfl – axial MFL 
• lfm – low field axial MFL 
• smfl – helical MFL 

t – wall thickness 
F – general function 
x – general variable 
βn – Weighting constants n = 0,1,2,3,4 

BACKGROUND  
Dent Assessment by ILI 
Accepted codes, standards, and governmental regulations 
address the secondary features of corrosion and gouging in 
dents.  As an example, per 49 CFR 192.933 (d) natural gas 
pipeline operators in the United States “…must treat the 
following conditions as immediate repair conditions: (ii) A dent 
that has any indication of metal loss, cracking or a stress riser.” 
A similar requirement can be found for liquid pipelines in 49 
CFR 195.452(h)(4) “(i) immediate repair conditions (C) dents 
on the top of the pipeline (. . .) with any indicated metal loss.”  
Many international codes have similar repair requirements. 
 
The regulations were shaped by three incidents in the 1990s in 
which three pipeline failures were caused by dents with 
gouging.  These failures highlighted the need to detect gouging 
associated with mechanical damage.  Gouges, as defined by API 
1160, are “the elongated grooves or cavities usually caused by 
mechanical removal or smearing of metal”.  The metal loss 
associated with a gouge can be detected by conventional MFL 
tools.  For two of the three incidents, the pipeline had been 
inspected by MFL pigs, and post failure analysis of the data 
showed a metal loss anomaly present in the dent.   
 
Dents, which are primarily detected by caliper tools, often are 
caused by mechanical damage.  Therefore, dents with 
associated metal loss could have gouging.  But, more often than 
not, the metal loss in a dent is caused by corrosion at damaged 
or disbonded coating.  Unfortunately, traditional applications of 
MFL tools cannot reliably discern gouging from simple metal 
loss due to corrosion. 
 
Dual field magnetization approach. An alternative MFL 
approach that was developed with DOT PHMSA funding, dual 
field MFL, can distinguish dents with gouging from dents with 
metal loss.  This technology has been commercialized in 
different forms by ILI vendors.  Common MFL-based 
inspection tools for detecting corrosion use high magnetic fields 

to saturate the pipeline material [1].  Such high magnetic field-
based magnetizers help suppress noise due to local stress 
variations and changes in the microstructure of the metal [2].  
At metal-loss defects, such as those caused by corrosion, an 
increased amount of magnetic flux attempts to flow through the 
remaining material, however some flux leaks from the pipeline 
wall due to saturation of the remaining material.  In addition, in 
magnetically saturated materials, an increase in flux causes the 
flux-carrying capability (permeability) to decrease [3] resulting 
in additional leakage.  The dual effect of increased magnetic 
flux and decreased flux-carrying capacity results in significant 
flux leakage at metal loss defects. 
 
Stress and material variations can also change the flux-carrying 
capacity of the pipe [4-5].  A local decrease in flux-carrying 
capacity causes leakage similar to that resulting from metal-loss 
defects.  A local increase in flux-carrying capacity causes a 
decrease in flux leakage relative to the nominal, magnetic field 
level.  For example, for tensile stresses, the overall flux levels in 
the pipeline increase.  For compressive stresses, such as cold-
worked areas, the flux levels decrease.  The flux density 
variations between tensile stresses and compressive stresses are 
small for magnetic field levels greater than about 6,400 A/m (80 
Oersted) and particularly for magnetic field levels greater than 
about 9,600 A/m (120 Oersted).  These general values may vary 
with pipeline wall thickness, chemical composition, grain 
structure, and fabrication methods [6].  As discussed previously, 
most MFL-based apparatuses for corrosion are designed to 
operate above these levels to reduce signals due to stress, 
typically considered noise.  To detect changes in stress and cold 
working in the pipe wall, however, the magnetic field must be at 
lower, unsaturated levels, typically between 4,000 and 5,600 
A/m (50 and 70 Oersted).  Unfortunately, field levels in this 
range can produce results that are difficult to interpret because 
they can be affected by corrosion anomalies, stresses, and 
changes in material composition.  A low-field-strength MFL 
based pig can be used to detect stresses and material variations 
using fields in the range of 4,000 and 5,600 A/m (50 to 70 
Oersted); however, corrosion anomalies are also detected at this 
field level and assessment of these anomalies would be 
inaccurate as demonstrated by early MFL pigs. 
 
Thus, using two magnetic field levels and methods to process 
both signals can improve the detection and assessment of 
pipeline anomalies [7-11].  The high magnetic field employed in 
most inspection tools detects and sizes metal loss such as 
corrosion.  A second low magnetic field must also be applied to 
detect the metallurgical changes caused by mechanical damage 
(e.g., from excavation equipment).  To apply a two 
magnetization approach, it is possible (but rarely practical) to 
send more than one pig separately through the pipeline.  A 
single pig having two separate sets of magnetizers, while also 
technically feasible, results in a tool length that can be 
prohibitive for some pipeline systems. 
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Seam Corrosion Assessment by ILI 
Similar to dents, accepted codes, standards, and governmental 
regulations address corrosion near the longitudinal seam weld.  
For example, per 49 CFR 195.452(h)(4)(iii)(H) liquid pipeline 
operators in the United States must address corrosion of or 
along a longitudinal seam weld in 180-days.  Many 
international codes have similar repair requirements.  The 
primary concern of these regulations is selective seam weld 
corrosion (SSWC), which accounts for about 1.0 percent of the 
failure incidents reported in the United States [12].  SSWC is a 
localized corrosion attack along the bond line of low-frequency 
ERW and electric flash welding (EFW) piping that leads to the 
development of a narrow groove.  Since the weld bond line 
chemistry may be more susceptible to corrosion processes, the 
presence of corrosion at the weld is considered an indicator of 
potential SSWC. This is particularly true if the pipeline has the 
following conditions present: 
• Exposure to corrosive conditions due to poor or absent 

coating; 
• Ineffective cathodic protection; and 
• The presence of non-metallic inclusions in the weld bond 

line region (e.g., contaminants present during the 
manufacturing process). 

SSWC is generally not considered to be a concern for pipe 
manufactured subsequent to 1970 due to the use of cleaner 
steels with greatly reduced sulfur content and the replacement 
of low frequency welding equipment with high frequency 
equipment in the manufacturing process. 
 
Pipeline companies use in-line inspection (ILI) technology to 
detect and assess the potential impact of various corrosion 
threats.  SSWC is detectable with both liquid coupled angle 
beam ultrasonic crack detection (UTCD) and electromagnetic 
acoustic transducer (EMAT) ultrasonic methods when 
anomalies are isolated.  However, when surface corrosion 
surrounds the SSWC, detection and sizing can be impacted.  
For UTCD methods, the adjacent corrosion may change the 
reflection angle, so energy that reflects from an anomaly may 
not return to the sending sensor for detection, identification and 
sizing.  EMAT methods detect both the general corrosion and 
selective corrosion; however, the long wave length nature of 
these tools make it difficult to always distinguish between the 
two corrosion types. 
 
Circumferential MFL methods are most applicable for SSWC 
since this feature has width.  The signal amplitude is a function 
of crack width combined with length and depth, so sizing of 
SSWC is not as accurate as other corrosion anomalies 
  
In summary, the regulatory requirement of investigating any 
corrosion of or along a longitudinal seam weld is the result of 
the difficulty that ILI tools have with detecting and identifying 
SSWC.  The industry and public would benefit if ILI tools 

could reliably differentiate the more serious SSWC condition 
from the less severe conventional corrosion near a low 
frequency ERW seam.  These ILI tool limitations require 
improved anomaly classification algorithms to better identify 
dents with gouges and SSWC. 

APPROACH  
Five different ILI measurements made on a single tool were 
used to develop the discrimination algorithms: 

• Conventional axial MFL technology (high field) 
• ID versus OD discrimination sensors 
• Deformation measurements 
• Helical MFL technology 
• Reduced field axial MFL measurements (low field) 

 
The advantage of using data from a single tool run is to avoid 
the additional step of aligning the data between runs.  The goal 
of this work was to develop algorithms that combine all five 
methods to differentiate severe mechanical damage from less 
severe metal loss in dents and separate SSWC from general 
corrosion near the long seam.   
 
Previous algorithms for dents with metal loss and gouging 
attempted to quantify mechanical damage severity.  The 
algorithms established five levels of importance from benign to 
severe; however this approach was not implemented by industry 
nor accepted by regulators.  The more conservative approach 
presented herein considers all mechanical damage anomalies to 
be severe.  As the process evolves and improved mechanical 
damage assessment methods become robust, the assessment of 
mechanical damage from ILI data may become part of the 
process.  For the SSWC challenge, combining helical and axial 
MFL should allow metal loss on an ERW longitudinal seam to 
be identified and better characterized by determining the exact 
location with respect to the seam and improving sizing 
algorithms for corrosion associated with the seam. 
 
Use of data from actual pipeline anomalies collected at 
excavation sites was a key part in this development.  Pipeline 
companies provided results from ILI tool runs and in-the-ditch 
field assessment data to correlate with ILI data.  Pipes were 
removed from service and burst tests were conducted to 
determine the remaining strength for selected anomalies.  For 
the dent discrimination classifier, field samples were augmented 
with some carefully manufactured mechanical damage features. 

ALGORITHM DEVELOPMENT 
Algorithm for Dent Discrimination  
Previous work on dents with gouges and the use of two MFL 
field levels for prioritization demonstrated a process for 
identifying signal characteristics that were indicative of cold 
work and metal removal during the gouge creation [13]. The 
gouges used in that study were severe, both in depth and length, 
and obvious “gouge” and “plow” signatures were discernable in 
the low-field MFL (LFM) signatures after a suitable signal 
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decoupling algorithm was applied.  To meet the goal of 
detecting all mechanical damage, the gouges in the current 
study were generally shallow and much less severe.  Most ILI 
tools in use today are quite capable of detecting very shallow 
metal loss.  That said, the resulting MFL and LFM signatures 
were very small and subtle.  Signal decoupling was attempted 
early on in this study but was deemed unreliable because of the 
strong sensitivity to alignment between the two MFL and LFM 
data sets.  Shifts in sample alignment in both axial and 
circumferential direction were often as significant as the 
decoupled signal.  Consequently a new approach was required.  
 
Metal Loss Types. The field measurements describe five 
distinct metal loss types (and associated number of 
occurrences): 

1. Corrosion (24) 
2. Gouge (50) 
3. Mill Grinding (1) 
4. Puddle Weld (3) 
5. No Metal Loss (14) 

It was determined that the puddle weld ILI signatures would be 
sufficiently recognizable as something other than true metal loss 
in future inspections, and these samples were eliminated from 
the list, removing one type entirely.  A single mill grind sample 
is insufficient to adequately train a classifier, so this sample was 
also removed from consideration, leaving 88 out of the original 
92 samples, and three of the original five types.  The remaining 
three types are labeled as follows in the discussion below: 

• Corrosion 
• Gouge 
• None 

Feature Engineering. The selection of type labels addressed 
the problem of choosing meaningful input features.  LFM can 
identify locations where magnetic permeability has changed as a 
result of cold work.  At a gouge, enough through-the-thickness 
cold work will have to take place in order for a LFM signature 
to be affected significantly.  The LFM also has a response 
associated with bulk metal loss, so a method for separating the 
LFM response due to permeability versus the LFM response 
due to removed metal when both LFM and MFL responses are 
already quite small was needed. 
 
As discussed earlier, full signal decoupling was deemed 
unreliable for this study because of the small signal sizes.  
However, it was decided that the ratio of MFL response to LFM 
response amplitudes might be a suitable stand-in as an indicator 
of how much the observed LFM signal is due to bulk metal loss 
versus magnetic permeability change. First, the signal amplitude 
in the LFM and MFL signals are normalized by their local 
background level to account for local magnetization strength. 

 

 

1) 

  
Then an overall amplitude ratio is computed using these 
normalized amplitudes as 
 

 
2) 

  
 
This amplitude ratio is used as an input to the classifier.  In 
practice, whenever  is zero,  is also zero.  Under these 
circumstances,  is set to zero by definition.  Other feature 
inputs from the ILI record are: 
• Number of distinct metal loss signatures at the dent (ML 

Sig Count) 
• Estimated maximum metal loss depth (ML Depth %) 
• Location of metal loss signatures relative to dent profile 

(Apex, Shoulder, Both, or None) 

The location data are first converted to binary indicator 
variables before classifier training. 
 
Just as important in this study are the features which were 
eliminated from consideration.  Orientation with respect to top-
of-pipe was not included in the feature set since the 
manufactured dents do not have a meaningful orientation, and 
those dents constitute a significant fraction of the samples in 
this study.  Dent depth was also excluded since dent depth was 
strongly correlated with real versus manufactured anomalies.  
The dents from operating pipelines were all very shallow.  The 
dents in the manufactured set were generally deeper.  Dent 
depth was removed to avoid the potential of the classifier 
exploiting this somewhat artificial correlation that happens to be 
present in this data set but would not be representative of the 
general mechanical damage population in actual use. 
 
The classifier input features are plotted as pairs against each 
other in Figure 1. The separation between the classes is quite 
subtle, and simple linear decision boundaries would be 
insufficient to provide good classifier performance.  A more 
advanced classification model is appropriate. 
 
Model Selection. A random forest classifier was selected 
because of its ability to model a complex decision boundary 
while still avoiding the tendency to over fit the training data.   
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FIGURE 1. PAIR PLOT OF SOME OF THE CLASSIFIER INPUTS FOR THE THREE METAL LOSS TYPES. 
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Random forests are created by training many binary decision 
trees in a special fashion and then averaging the predictions of 
these trees.  A full discussion can be found in the literature and 
is beyond the scope of this paper [14].  When trained with a 
technique called “bootstrap aggregation,” random forest 
classifiers generate their own estimates of generalization 
accuracy based on samples that are excluded from the training 
of individual trees in the ensemble.  These samples are 
sometimes referred to as “out-of-bag” (OOB) samples. We take 
advantage of this feature in the performance metrics that follow. 
 
 
Model Training.  A random forest classifier with 100 
individual binary tree estimators was trained on the 88 
observations with the goal of predicting the three metal loss 
types: Corrosion, Gouge, and None.  Increasing the number of 
trees beyond 100 produced no obvious improvement in 
classifier performance. 
 
The classifier itself estimates the relative importance of the 
various input features as part of the training process.  Table 1 
shows relative input feature importance for the metal loss 
classifier.  Metal loss signal count, amplitude ratio, and 
estimated metal loss depth appear to be of nearly equal 
importance while metal loss location indicator variables are 
somewhat less important unless the metal loss is located at the 
apex of the dent. 

 
TABLE 1. CLASSIFIER INPUT FEATURE IMPORTANCE 

Input Feature Relative Importance 
ML Sig Count 0.25 

ML Amp Ratio 0.22 
ML Depth (%) 0.21 

Apex 0.17 
Both 0.05 

None 0.02 
Shoulder 0.08 

 
Custom Decision Function.  In a multi-class problem such as 
this one, the classifier produces a probability that each 
observation belongs to each of the types. With type probabilities 
in hand, the most commonly used decision function is to assign 
each observation to the type that has the highest probability. 
However, in this study we wish to influence the decision 
function to err on the side of assigning observations to the 
“Gouge” type to be conservative.  As a result, we adopt a 
decision function that assigns each observation to whichever 
type has the highest probability except where the probability of 
“Gouge” is above a certain threshold in which case “Gouge” is 
assigned. 

As a brief illustrative example, consider that the classifier might 
return the following type probabilities after evaluating the 
feature inputs for a given sample: 

• Corrosion: 0.45 
• Gouge: 0.35 
• None: 0.20 

 
The conventional decision function would assign this sample to 
the “Corrosion” type since its probability was the highest.  
However, to reflect a desire for conservatism, suppose the 
decision function is modified to assign “Gouge” to any sample 
that has a gouge probability above 0.3 regardless of the other 
type probabilities.  For this sample the more conservative 
decision function would assign this sample to the “Gouge” type. 
 
More precisely, there are quantitative measures of classifier 
performance that are useful to examine in this study (see [14]).  
• Precision: The fraction of samples that were correctly 

called “type” out of all samples that were called “type.” 
• Recall: The fraction of samples that were correctly called 

“type” out of all samples that were truly “type.” 
 
Under these definitions, high precision implies a low false 
positive rate, and high recall implies a low false negative rate. 
The simultaneous maximization of both is generally not 
possible.  We would seek to maximize precision when calling 
false positives would be most detrimental.  Conversely, we seek 
to maximize recall when false negatives would be most 
detrimental.  A classifier with high precision might be labeled as 
efficient while a classifier with high recall might be labeled as 
conservative. 
 
Out-of-Bag Performance Metrics.  As discussed previously, 
the OOB samples in a random forest model can be used to 
provide unbiased estimates of classifier performance similar to 
what would be obtained through the use of a hold-out test set.  
The OOB samples are used first in the selection of a suitable 
gouge probability threshold followed by a more general 
examination of overall classifier performance. 
 
To select a reasonable gouge probability threshold, the 
precision and recall of the classifier and decision function as a 
function of gouge probability are examined.  Figure 2 shows the 
results of computing both precision and recall for various gouge 
probability thresholds in the decision function.  A threshold of 
0.3 provides reasonable classifier precision around 80% for all 
types while maintaining a recall of over 95% for gouges. 
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FIGURE 2. . PRECISION AND RECALL FOR THE THREE 

METAL LOSS TYPES AS A FUNCTION OF GOUGE 
PROBABILITY THRESHOLD. 

 
Summary details on the number of correctly classified features 
can be obtained from examining the classifier confusion matrix 
as presented in Table 2.  Table 3 shows a summary of precision 
and recall for the classifier and decision function combination. 

 
 

TABLE 2. CLASSIFIER CONFUSION MATRIX 
 Called 

“Corrosion” 
Called 

“Gouge” 
Called 

“None” 
Is “Corrosion” 18 6 0 

Is “Gouge” 1 48 1 
Is “None” 2 8 4 

 
TABLE 3. CLASSIFIER PERFORMANCE SUMMARY 

 Precision Recall Samples 
“Corrosion” 0.86 0.75 24 

“Gouge” 0.77 0.96 50 
“None” 0.80 0.29 14 

average / total    0.80 0.80 88 
 
In summary, a random forest classifier was developed that can 
distinguish dent with gouge from dent with corrosion.  A custom 
decision function was developed that provides a means to vary 
the conservatism of the classifier so that high recall on gouges 
can be achieved. A gouge probability threshold of 0.3 achieves 
better than 95% recall for OOB samples. 
 
Algorithm for SSWC Discrimination 
Many ILI vendors have historically employed a process for 
identifying potential SSWC based largely on the scrutiny of a 
subject matter expert (SME).  The objective of the current 
classifier model development is to arrive at a quantitative model 
that resembles the process that a SME would follow.  While 

there are many forms that such a classifier can take, one of the 
most commonly used models is logistic regression.  It is 
especially appropriate where the training data set is relatively 
small and can be separated by a linear decision boundary.  
 
In logistic regression, a linear combination of continuous input 
variables, often called “features,” is mapped to a continuous 
output value between 0 and 1 using the logistic function.  It is 
commonly employed when the goal is to place candidates into 
one of two classes, the first corresponding to a model output of 
0, and the second corresponding to 1. As such, the output of 
such a model can be treated as a probability.  The continuous 
probability can be interpreted as the likelihood that the 
candidate anomaly belongs to the second class. The decision to 
label each observation as one class or the other is set by 
selecting a probability level as the decision boundary, often 
called the discrimination threshold.  This is commonly set at 
0.5, but it can be set differently to emphasize either false 
positive or false negative rates [15]. 
 
The features selected for inputs in this study mirror those used 
by subject matter experts in their qualitative classification. 
Qualitatively, a large SMFL amplitude response that is sharp in 
the width (circumferential) direction is an indicator of narrow, 
axial character to the anomaly.  Furthermore, if the SMFL signal 
response is uncharacteristically large relative to the 
corresponding MFL response at the same location, then the 
anomaly is more likely to be SSWC rather than corrosion along 
the long seam.  Accordingly, the input features selected for 
development of the classifier were signal widths and signal 
amplitudes from both the SMFL and MFL signatures. 
Commercial ILI analysis software is used to extract the best 
estimates of signal widths and signal amplitudes for each 
anomaly. 
 
To make the model more general, the raw signal measurements 
were first nondimensionalized.  Signal width and signal 
amplitude are nondimensionalized by wall thickness and local 
background flux density, respectively. 
 

 

3) 

 
These four nondimensionalized features are plotted as pairs 
against each other in Figure 3.  Opportunities for developing a 
boundary between the two classes are apparent when examining 
these parameters, especially the signal widths. 
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FIGURE 3. PAIR PLOT OF THE NONDIMENSIONALIZED CLASSIFIER INPUTS FOR THE TWO CLASSES. RED SQUARES 

REPRESENT SSWC, AND BLUE CIRCLES REPRESENT CCLS. 
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With input features defined, a logistic regression model of the 
following form was fit to the full set of 39 training anomalies: 
 

 

4) 

     
where F(z) represents the likelihood that a particular anomaly is 
SSWC. Best fit model coefficients are 

  
 
Raw training accuracy is 87% against the original training data 
using a discrimination threshold of F(z)=0.5.  The classifier 
commits five errors, three of which are false negatives and two 
of which are false positives.  For the false negatives, meaning 
the algorithm missed a SSWC anomaly, the missed anomalies 
were quite small and SSWC anomalies, true positives, were 
detected by the algorithm in the same joint of pipe.  
 
With a small set of data it is usually necessary to use all of the 
available data to train the classifier rather than hold out some of 
the data in a separate model test set.  Some form of model cross 
validation using sets resampled from the training set is pursued 
instead.  For this study, a stratified k-fold cross validation was 
employed using two folds.  A stratified approach preserves the 
fraction of observations from each class in each fold and also 
shuffles the observations randomly before dividing the full set 
into training and test sets.  With two folds, half the observations 
are used to train the model, and then the other half are used to 
test the model.  The process is then repeated with the training 
and test sets swapping places.  Since the process involves 
random sampling, it is only possible to report representative 
accuracies on the test sets since rerunning the cross validation 
exercise produces a different random sample in the two sets.  
For one representative random sampling, the test accuracies on 
the two folds were 70% and 79%, somewhat lower than the 
training accuracy which is to be expected. 
 
Another valuable indicator of model performance is the receiver 
operating characteristic (ROC).  The ROC curve shows the 
relationship between a classifier’s true positive and false 
positive rates as the discrimination threshold varies from 0.0 to 
1.0. The area under the ROC curve is an indicator of overall 
model performance.  An ideal model would have a false 
positive rate of 0.0 and a true positive rate of 1.0, which would 
produce an area under the ROC curve of 1.0.  At the other 
extreme, random assignment of each observation to one of the 
two classes would have roughly equal false positive and true 
positive rates, yielding an area under the “random guess” ROC 
curve of 0.5. A ROC curve was developed for the SSWC 

classifier model using the same stratified k-fold cross validation 
split described above.  The results are presented in Figure 4. 

 
FIGURE 4. RECEIVER OPERATING CHARACTERISTIC FOR 

THE SSWC CLASSIFIER 

VERIFICATION 
A conservative approach to verifying both classifiers used 
pressure testing of the smallest detected anomaly.  If the 
smallest detected anomaly did not fail, then smaller anomalies 
that have a lower failure pressure would be safe; larger 
anomalies would be selected for excavation, assessed and 
repaired as necessary.  This approach is inherently conservative 
as larger anomalies would be identified for repair even though 
they may pass a pressure test.  However, the number of tests is 
still too small to be statistically significant. 
 
For the mechanical damage sample, one dent with a gouge that 
was identified as a gouge by the classifier was removed from 
service.  The pipe properties were Grade X52, 508mm (20 inch) 
diameter and 6.35mm (0.250 inch).  The dent measured 1.2 
percent of the diameter and contained three gouge marks.  The 
pipe was subjected to a pressure test to 100 percent of specified 
minimum yield stress (SMYS).  The pipe did not fail after 
completing five pressurizations to simulate five hydrostatic 
tests. 
 
For the SSWC classifier, three pipe samples containing SSWC 
were removed from service.  The pipe with the small SSWC 
was pressure tested and failed at a pressure of 23,028 kpa 
(3,340 psig) and did not fail in the longitudinal seam.  This 
pressure exceeded the calculated yield strength pressure of 
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14,940 kpa (2,167 psi).  It also exceeded the pressure required 
to reach the pipe flow stress, the average of the yield stress (YS) 
and ultimate tensile stress (UTS), (YS+UTS)/2, of 22,470 kpa 
(3,259 psig).  Therefore, it was concluded that the ILI tool and 
classifier are capable of identifying very small non-threatening 
SSWC anomalies.  The SSWC algorithm is currently being 
testing by one pipeline company.  In this test, all corrosion near 
the long seam is being investigated per US DOT regulatory 
requirements.  Detailed measurements are being made at each 
excavation site to determine the presence of SSWC and the 
susceptibility of the pipe to this pipeline threat.  The assessment 
is being performed with DOT PHMSA oversight.   
 
SUMMARY 
Classifiers that combine the measurements from multiple 
sensing systems to detect mechanical damage in dents and 
selective corrosion of the long seam were developed.  These 
classifiers dismiss many of the smaller corrosion features that 
do not impact the performance of the pipeline while still 
conservatively identifying dent with gouge and SSWC features.  
The classifiers were designed to be conservative, meaning some 
non-injurious corrosion anomalies are designated for excavation 
in order to catch all potentially injurious mechanical damage 
and SSWC.  These anomaly classification improvements will 
continue to maintain pipeline safety while eliminating 
unnecessary excavations of non-threatening anomalies. 
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