

U. S. Department of Transportation Pipeline and Hazardous Materials Safety Administration

Jeff Wiese

Associate Administrator for Pipeline Safety

Presentation to Pipelines and Informed Planning Alliance (PIPA)

January 15, 2008 - Plenary Session - Arlington, VA

Objectives

Pipeline and Hazardous Materials Safety Administration

- Initial Introductions By Affiliation, Alphabetically
 - ° Who's Here
 - Who's Invited but Not Yet Here
- Stage Setting
 - Role and Value of Pipelines
 - Scope of PIPA
 - What We Hope to Create
 - Intro to Land Use Planning Near Hazards
 - A Bit About Risk Assessments v. Risk Informed

What stakeholder organizations are represented at PIPA?

Federal Government

Department of Housing and Urban Development (HUD)

- Nelson Rivera Protecting Communities
- Antoinette Sebastian

Federal Energy Regulatory Commission (FERC)

- Doug Sipe
 Protecting Communities
- Dave Swearingen
 Protecting Pipelines
- Eric Tomasi
 Risk Communication

Pipeline and Hazardous Materials Safety Administration (PHMSA)

- John Jacobi Protecting Communities
- Harold Winnie Protecting Pipelines

Karen Butler
 Risk Communication

State and Local Government Associations

National Association of Counties (NACo)

Pipeline and Hazardous Materials Safety Administration

Julie Ufner

Pedro Flores

National Association of Pipeline Safety Representatives (NAPSR)

- Mary McDaniel (Represented by Edward Abrahamson), Railroad Commission of Texas Protecting Communities
- Darin Burk, Illinois Commerce Commission Protecting Pipelines
- Cynthia Munyon, Iowa Utilities Board Risk Communication

Hazardous Materials Safety Administration

National Association of Regulatory Utility Commissioners (NARUC)

 David Lykken, Washington Utilities and Transportation Commission Protecting Pipelines

National Association of State Fire Marshals (NASFM)

Jack Alexander

Paul Maldonado, Texas State Fire Marshall Office

National Association of Towns and Townships (NATaT)

Matt Ward

National League of Cities (NLC)

- Betty Dunkerley (Represented by Chuck Lesniak), Austin, Texas
 Protecting Communities
- Leslie Wollack

Julia Pulidindi

Public Advocacy

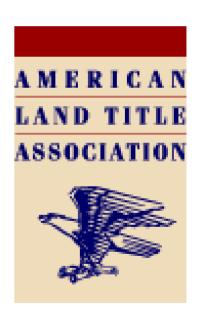
Pipeline Safety Trust

Pipeline and Hazardous Materials Safety Administration

Carl Weimer*
 Protecting Communities

Non-Pipeline Industry Associations

Associated General Contractors of America (AGC)


Stu Megaw

American Land Title Association (ALTA)

- Gary Kent
- Edward Miller

American Public Works Association (APWA)

- Monty Zimmerman, City of Lenexa, Kansas Protecting Communities
- Roger Buell, Charter Township of Grand Blanc, Michigan Protecting Pipelines
- Larry Schall, SKW
 Risk Communication

Common Ground Alliance (CGA)

Pipeline and Hazardous Materials Safety Administration

Erika Andreasen Lee
 Risk Communication

International Code Council (ICC)

Mark Dinneen

International Right of Way Association (IRWA)

Pipeline and Hazardous Materials Safety Administration

- Russell Verba, Spectra Energy Protecting Communities
- Terry Mock, Colonial Pipeline Protecting Pipelines
- Jon Taylor, Sempra Energy Utilities
 Risk Communication

National Association of Home Builders (NAHB)

Pipeline and Hazardous Materials Safety Administration

 Bruce Boncke, BME Associates Protecting Communities

Debra Bassert

Safety Administration

National Association of Local Government Environmental Professionals (NALGEP)

- Paul Connor, Spiegel & McDiarmid LLP
- Alain Watson, Environmental Protection Commission of Hillsborough County, FL

National Association of Realtors (NAR)

Russell Riggs
 Protecting Communities

National Fire Protection Association (NFPA)

Nancy McNabb

Pipeline Industry Associations

Safety Administration

American Gas Association (AGA)

- Galen Denio, Southwest Gas Protecting Communities
- Chuck Kanoy, Vectren Protecting Pipelines

 Claudia Rapkoch, NorthWestern Energy* Risk Communication

^{*}Unable to attend Plenary

American Public Gas Association (APGA)

John Erickson

Association of Oil Pipe Lines (AOPL) American Petroleum Institute (API)

 Bill Sanders, Explorer Pipeline Protecting Communities

 James Sanford, NuStar Energy LP Protecting Pipelines

 Jerry Milhorn, Kinder Morgan Risk Communication

Gas Processors Association (GPA)

Pipeline and Hazardous Materials Safety Administration

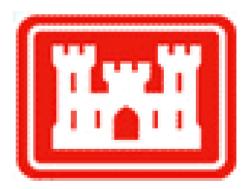
- DeWitt Burdeaux, Quicksilver Resources
 Protecting Communities
- Jeanette Jones, DCP Midstream Protecting Pipelines

 David McAtee, DCP Midstream Risk Communication

Interstate Natural Gas Association of America (INGAA)

- Gregory Ford, Williams Gas Pipeline Protecting Communities
- Eric Amundsen, Panhandle Energy Protecting Pipelines
- Danny Gibbs, Spectra Energy Risk Communication

Federal Government Invited



Council on Environmental Quality

Department of Defense, Army Corp of Engineers

Department of Interior (DOI)

State and Local Government Associations Invited

National Conference of State Legislatures

National Governors Association (NGA)

Non-Pipeline Industry Associations Invited

American Planning Association (APA)

American Bar Association, PUCAT

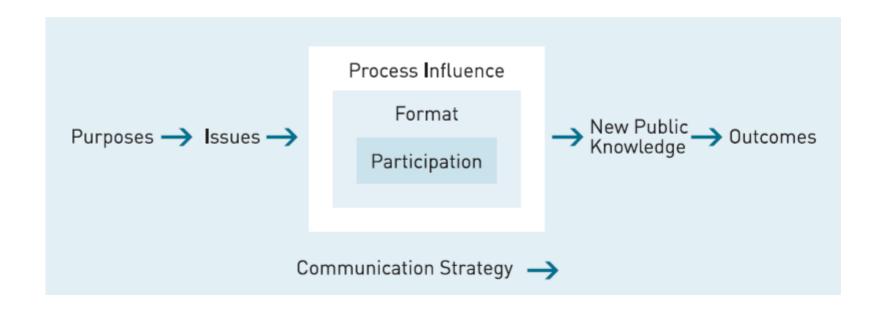
International Council of Shopping Centers

National Association of Industrial and Office Properties

American Association of Professional Landmen

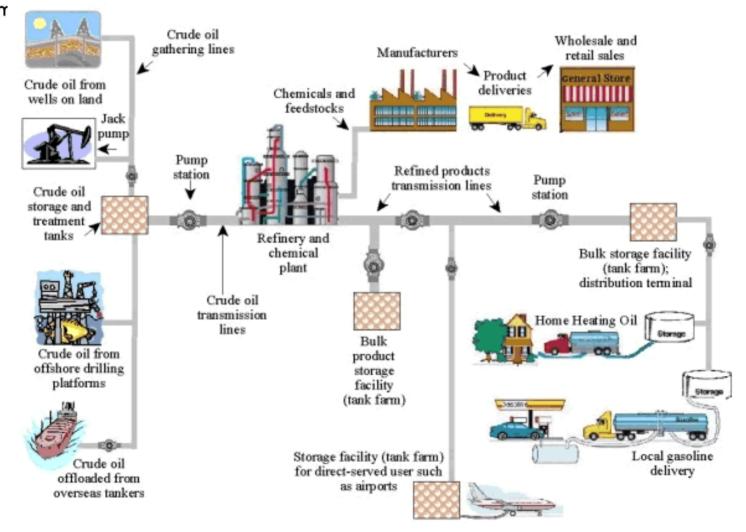
National Utility Contractors Association (NUCA)

Environmental Organizations Invited


Sierra Club

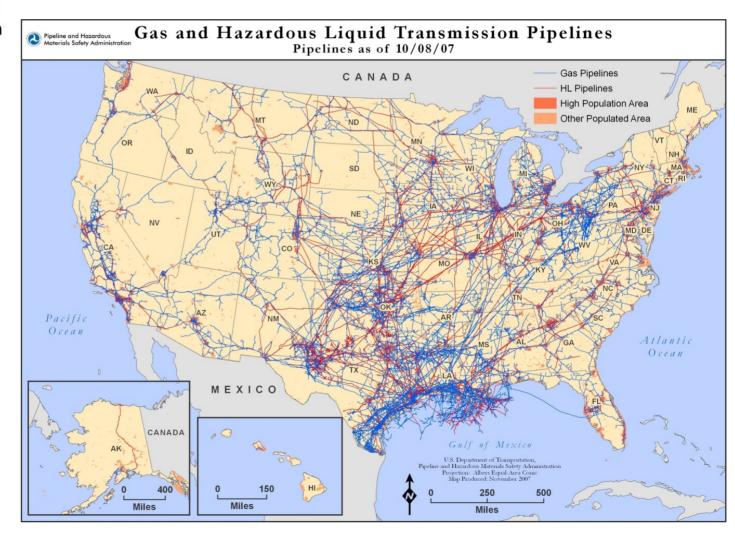
Why is it important that the broad spectrum of organizations be involved?

Working directly with stakeholders ensures a more fully developed and robust outcome.



U.S. Department of Transportation

What are pipelines' role and value?


Pipeline and Hazardous Materials

Safety Adm

What are pipelines' role and value?

Why are pipelines critical to our communities and necessary for basic needs and economic mobility?

- •Energy from oil and natural gas is essential, and will continue to be essential, to all facets of our daily lives. It fuels most of our transportation needs, heats our homes, schools, offices and shops, and even generates a large share of our electricity. Oil and natural gas together supply approximately two-thirds of U.S. energy needs. Our dependency on energy is growing not lessening.
- •Crude oil and natural gas are generally produced in regions located far from consumption centers. This means crude oil must be moved to refineries, and refined products and natural gas must be moved from producing regions to consumption centers.
- •The U.S. pipeline infrastructure is the primary means of transporting this natural gas and oil, moving all the natural gas and about two-thirds of the oil. Consequently, everyone in the U.S. is a stakeholder.

What is the scope of PIPA?

Pipeline and Hazardous Materials Safety Administration

- As part of this team, you will investigate existing best practices, learn about the different stakeholders' needs and challenges and come to consensus to develop practical guidance on a range of topics including:
 - 1. Land use policies affecting the siting, width, and other characteristics of new pipeline corridors.
 - 2. The range of appropriate land uses, structures, and human activities compatible with pipeline ROW.
 - 3. Setbacks <u>and other</u> measures that could be adopted to protect structures built and maintained near pipelines.
- •Among topics and approaches we will discuss are:
 - 1. Model local zoning ordinances, subdivision regulations, and planning policies and model state legislation that could be adopted for land uses near pipelines.

What will this team create?

Pipeline and Hazardous Materials Safety Administration

- <u>A high-quality, national level risk assessment</u> that acknowledges various classes of pipelines, their risk profiles and the variety of conditions that exist in the field;
- <u>Simple and easy-to-use decision-guiding tools</u> with regard to risk levels associated with various extents of setbacks, rights-of-way, and procedures involved in maintenance, inspections, and mitigation in emergencies;
- <u>A management plan for implementation</u> that renders help to local communities according to need and incorporates feedback from use of the approach in the field;
- A management plan for long-term communication of risk and input from all stakeholders, especially pipeline operators, local officials, and the public; and
- A management plan for integrating all the preceding components and refining them on a continuing basis using actual experience.

How did land use planning near hazardous facilities evolve?

Pipeline and Hazardous Materials Safety Administration

CSA Special Publication

PLUS 663

Land use planning for pipelines: A guideline for local authorities, developers, and pipeline operators

- DECD Chemical Safety
- **▶ UNECE**
- > Convention on the trans-boundary effects of industrial accidents

Chemical Accidents (Seveso II) - Prevention, Preparedness and

What is Seveso?

Major accidents in chemical industry have occurred world-wide. In Europe, following the Seveso accident in 1976 prompted the adoption of legislation aimed at the prevention and control of such accidents. In 1982, the first EU Directive 82/501/EEC - so-called Seveso Directive - was adopted. On 9 December 1996, the Seveso Directive was replaced by Council Directive 96/82/EC, so-called Seveso II Directive. This directive was extended by the Directive 2003/105/EC. The Seveso II Directive applies to some thousands of industrial establishments where dangerous substances are present in quantities exceeding the thresholds in the directive.

The Seveso accident

Washington Model Pipeline Ordinances

Contents

- About the Model Ordinances
- Model Setback and Franchise Ordinances
- Other References

About the Model Ordinances

In 2000 state legislation was passed, now codified a

The municipal research council shall, by June 30, 20

(1) A model ordinance that establishes setback and

(2) A model franchise agreement for jurisdictions the

The task of drafting the documents was entrusted local governments in this state to produce document pipelines in the State of Washington. As noted in th Health & Safety Executive

Enforcement action

Land use planning

industry representatives, local governments, and regulatory agencies will provide assistance for future modifications. Some

documents will need to be modified slightly if utilized by counties rather than cities. Model Setback Ordinance. Though the legislation called for depth requirements for transmission pipelines in the model ordinance, those

1976 at a chemical plant in Seveso, Italy, manufacturing pesticides ud containing tetrachlorodibenzoparadioxin (TCDD) was released from of trichlorofenol. Commonly known as dioxin, this was a poisonous and ntrolled exothermic reaction. Although no immediate fatalities were the substance lethal to man even in microgramme doses were widely ediate contamination of some ten square miles of land and vegetation

Project overview Project members **Objectives** Contact EWGLUP

Members area

European Working Group Land Use Planning

standards are established by federal regulations and are beyond local government or state control. Regulations for the minimum cover for b

On what experience can we draw as evidence of proven practices and guidance?

City of Austin Hazardous Liquid Pipeline Ordinance

- •"Use requiring evacuation" prohibited within 500 ft of pipeline
- •New construction within 200 ft of pipeline must meet enhanced building code
- •No structures or excavation within "restricted pipeline area" (within 25 feet of pipeline)
- •Residential lot less than 1 acre cannot include a "restricted pipeline area"

Washington State Model Ordinance

- Model ordinance made available to local governments
- Buildings setback 50 feet from edge of ROW
- •Setback designed to protect the pipeline from damage during building construction
- Protection of people achieved through restricting allowed building uses

Municipal Code of Edison (NJ) Township

- •Interference with pipelines in Section 17.08.210
- •No building or land disturbance within 75 feet of any pipeline
- •No building containing hazardous materials within 125 feet of any pipeline

Complex Risk Assessments

Change Text Size: A A A
Search GO
Advanced | Site Map | A-Z Index

Curriculum & Instruction		Testing & Ad	countability	Professional Development		
Finance & Grants	Data & Statistics		Learning Supp	ort	Specialized Programs	

Home » Learning Support » Facilities » School Facility

Printer-friendly version

Guidance Protocol School Site Pipeline Risk

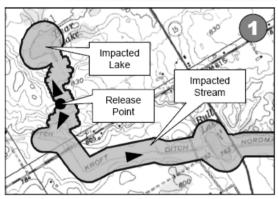
California Department of Education

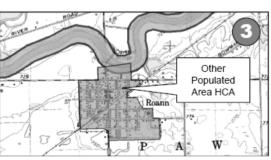
PIPELINE RISK ANALYSIS PROTOCOL TOTAL INDIVIDUAL RISK (TIR) ESTIMATING AID

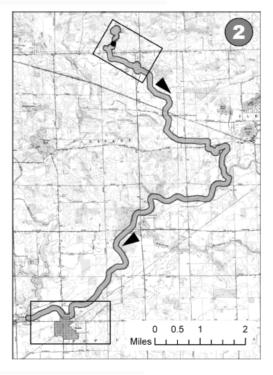
To be used in conjunction with the CDE Guidance Protocol for School Site Pipeline Risk Analysis

March 2007

CDE provides this template for the convenience of Protocol users as a template. It is the responsibility of the user to ensure that calculations match and are appropriate for the risk analysis being conducted for a particular case. While both CDE and its contractor have sought to make this spreadsheet free of errors there is no expressed or implied warranty to that it is so.

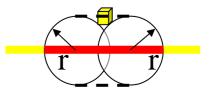

TIR CALCULATIONS - BEGIN ZON	E 1 - FRONT PROPE	RTY LINE							
Green cells indicate data entry cells.									
Input D)ata		1. These instruction boxes apply to						
Product	natural gas		Worksheets TIR1, 2, 3, and 4.						
Diamete	er 30	inches	2. Enter the Input Data indicated for						
Pressur	e 400	psig	the case under analysis. 3. Enter the XSEG values from						
R0	250	ft	Worksheet "XSEG Calculations".						
			4. In the table below enter the F0						
XSE	G RX(1%)	Units	data for the appropriate type pf						
XSEG(L	JF) 0	ft	pipeline from the failure frequency						
XSEG(R	JF) 1178	ft	data in the Protocol, Chapter 4.						
XSEG(L	FF) 0	ft	5.Enter a value for the other green						
XSEG(R	(FF) 5979	ft	cell variables as explained in Chapter						
XSEG(L	EX) 0	ft	4.						
XSEG(R	EX) 0	ft							


Base and Conditional Probability Calculations									
Base		Leak		Rupture		Exposure			
F0	1.2E-04	PC(L)	0.8	PC(R)	0.2	PC(OCC)	0.16		
P0	1.2E-04	PC(LIG)	0.3	PC(RIG)	0.45	PC(OUT)	0.25		
PAF	1.0	PC(FIG)	0.99	PC(FIG)	0.99				
PA	1.2E-04	PC(JF)	0.98	PC(JF)	0.98				
		PC(FF)	0.01	PC(FF)	0.01				
		PC(EIG)	0.01	PC(EIG)	0.01				
Calculated	Values:								
PA(LJF)	0.0E+00	PCI(LJF)	0.233	PCI(RJF)	0.087				
PA(RJF)	2.7E-05	PCI(LFF)	0.002	PCI(RFF)	0.001				
PA(LFF)	0.0E+00	PCI(LEX)	0.002	PCI(REX)	0.001	PC(EXPO)	0.04		
PA(RFF)	1.4E-04								
PA(LEX)	0.0E+00								
PA(REX)	0.0E+00								



Existing Risk-Informed Management

Implementing Integrity Management for Hazardous Liquid Operators



Gas Integrity Management

- *Identify* hazards and screen for potential impact
- •Assess and quantify risks
- Evaluate to make and implement risk-informed decision
- Mitigate to reduce risk
- •Monitor hazard and related risk over time

What do we know about the risk of from pipelines as population density increases in its proximity?

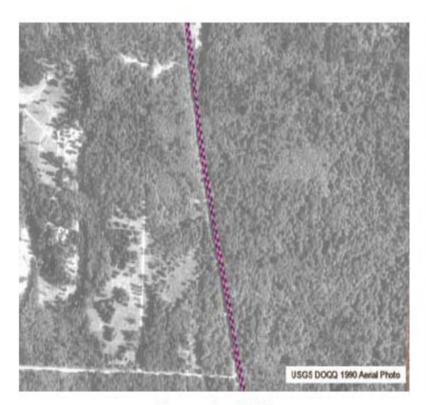


Figure 1 - 1990

Figure 2 - 2002

Next Speaker: Blaine Keener PHMSA's National CATS Coordinator

"Land Use Planning Examples & Resources"