Advanced Welding and Joining Technical Workshop

Boulder, Colorado, January 25-26, 2006

Working Group 4 Weld Maintenance and Repair

Co-chairs: Jim Swatzel, Columbia Gas Transmission

Bill Bruce, Edison Welding Institute

Scribe: Dave Tordonato, Colorado School of Mines

Attendance Breakdown

Approximate total attendance	10 persons
Federal Regulators	1 persons
State Regulators	0 persons
International Regulators	0 persons
Pipeline Industry (operators)	4 persons
Pipeline Industry (vendors/suppliers)	2 persons
Standard Organizations	0 persons
Researchers	1 persons
Academics	2 persons

Working Group Meeting Plan

Day 1

- 1. Roundtable Introduction
- 2. Discuss Weld Maintenance and Repair Topics
- 3. Brainstorming Session

Day 2

1. Prioritization Session

WG 4 - Discussion Topics

- 1. Pre-Weld Planning
- 2. Industry Standards Considerations
- 3. In-the-Ditch Application
- 4. Quality Control
- 5. Other Mentionable Aspects

Topic: Pre-Weld Planning

- 1. Cooling rate model improvements
 - Funding necessary upgrade to PRCI's commercial product with previously developed improvements, or
 - Advances in computing technology make the creation of a brand new thermal model attractive (current models are based on old/very old thermal modeling technology)
- 2. Microstructure/Hardness Limits as a function of hydrogen, chemistry, and wall thickness.

Topic: Industry Standards Consideration

- In-service welding API 1104 Appendix B is developed, ASME guidance being developed (Post-Construction Sub Committee), CSA Z662 developed.
- Welding procedure and welder performance qualification for weld deposition repair
 - ASME weld build-up qualified by a butt weld procedure qualification within the set of essential variables.
 - API 1104 Appendix B under development
 - CSA Z662 requirements recently incorporated
- Application of fillet weld in-service welding procedure to partial-penetration weld used to attach a branch pipe (weld considered fillet weld in API 1104)
 issue recently resolved
- 4. Branch and sleeve weld design considerations
 - Weld metal strength issues for high strength pipelines

Topic: In-the-ditch Application

- 1. Weld Deposition Repair
 - In-service versus out-of-service maintenance
- 2. Heat Input control run out ratio method and validation
- 3. In-service Welding Processes
- 4. Type A versus Type B (pressure containment)
 - Sealing of Type A steel sleeve ends (thick layer of epoxy paint)
 - Cathodic Protection Issues?
- 5. Chemical analysis difficulties, lack of chemical composition data
 - Justification for use of company or industry database(s)
 - New in-situ tools for analysis what can we do?
- 6. Weld Deposition Repair Discussion
 - Acceptability of WDR on or adjacent to weld seams, Long. and/or girth. Standardizing the training.

Topic: Quality Control

- 1. Low-hydrogen welding electrode QC. Completed PRCI work, issue is technology transfer. PRCI's Pipeline Repair Manual
- 2. Welding procedure/guidance implementation in-the-ditch, knowledge transfer, training.
- 3. Heat Input level control. (Is there a need for recommended practice for welder training manual for in-service welding)

Topic: other mentionable aspects

- Technology transfer of expert system rollout to broad spectrum of operators/regulators
- 2. Welded repair of sub-sea pipelines
- 3. Application of wet welding for pipeline maintenance
- 4. Better distribution of PRCI knowledge.

Top 3 Identified Goals

Goal #1 - Improve Methods of Technology Transfer

 Better ways of informing operators of results of completed research and industry practices (e.g., manuals, notes for guidance documents, websites, training courses, videos, interactive CD-ROMs)

Goal #2 – <u>Further Develop Understanding of Metallurgical Factors that Affect Hydrogen Cracking</u>

- Microstructure/hardness limits as a function of hydrogen, chemistry, and wall thickness
- Methods for determining chemical composition of in-service pipelines (e.g., database development, development of new analytical methods, etc.)

Goal #3 - Develop Better Predictive Models for Pre-Weld Planning

- Cooling rate/microstructure/hydrogen model for predicting hydrogen cracking
- Thermo/mechanical model for predicting burnthrough

Associated Actions (Goal #1)

Improve Methods of Technology Transfer

Regulatory

1. None required

Technology

- 1. None required for completed research
- 2. Continue to disseminate new technology as developed (ongoing)

Consensus Standards

- 1. Continue to incorporate research results into consensus standards (ongoing)
- 2. Provide support for technology developers for incorporation of research results (?)

General Knowledge

 Yes! – Develop technology transfer mechanisms (near term - the sooner the better and ongoing)

Advanced Welding and Joining Technical Workshop - Boulder, Colorado, January 25-26, 2006

Associated Actions (Goal #2)

Further Develop Understanding of Metallurgical Factors that Affect Hydrogen Cracking

Regulatory

1. None required

Technology

1. Yes! - Develop Understanding of Metallurgical Factors (1-3 years)

Consensus Standards

1. Incorporate results into consensus standards (upon completion)

General Knowledge

1. As required

Associated Actions (Goal #3)

Develop Better Predictive Models for Pre-Weld Planning

Regulatory

1. None required

Technology

1. Yes! - Develop better predictive models (1-3 years)

Consensus Standards

1. Refer to better predictive models in consensus standards (following development)

General Knowledge

1. As required

Additional Identified Goals - 1

- •Weld deposition repair on or adjacent to girth and seam welds
- •Training and certification of welding inspectors for in-service welding
- •Availability of high CE pipe material for procedure qualification
- •In-service welding on pipelines that are and have been in hydrogen service, recognized as a long term issue.

Additional Identified Goals - 2

•For others, see:

Grace, Paul, "In-Service Welding of Pipelines – Industry Action Plan," IIW Asian Pacific International Congress, Welding Technology Institute of Australia, Melbourne, Australia, November, 2000.

- •Paper describes the development and current status of an industry action plan for in-service welding of pipelines (many still relevant in 2006)
- •Issues were identified during the First International Conference on Welding onto In-Service Petroleum Gas And Liquid Pipelines, Wollongong, Australia, March 2000.
- •Action plan pertains to issues that need further research, other issues that do not require research, and expert technology tools.