

Strategic Center for Natural Gas & Oil

EXECUTIVE SUMMARY

Assessing the integrity of natural gas transmission and distribution pipelines costs industry millions each year. With passage of the Pipeline Safety Improvement Act (PSIA) in 2002, industry will be required to invest significantly more capital to inspect and maintain their systems. The PSIA requires enhanced maintenance programs and continuing integrity inspection of all pipelines located within "high consequence areas" where a pipeline failure could threaten public safety, property and the environment. According to the Interstate Natural Gas Association of America (INGAA) the cost to industry to implement the PSIA in the first ten years will exceed \$2 billion.

The Strategic Center for Natural Gas and Oil (SCNGO) is the Department of Energy's lead organization for research and technology development focused on assuring that sufficient quantities of affordable natural gas (and oil) are available to meet U.S. customer demands. Within the SCNGO, the Natural Gas Delivery Reliability Program has the responsibility to develop improved systems designed to improve the safety and reliability of the nation's transmission and distribution system. According to INGAA, "Operational costs will be dwarfed by the cost to the gas customer caused by supply constraints as many miles of pipeline are taken out of service during inspection and maintenance...This cost could be as high as \$5.7 billion in higher gas costs [to consumers] over ten years"

> *Pipeline & Gas Journal* March 2003

For several years the Gas Delivery Reliability Program has funded the development of advanced in-line inspection (ILI) technologies to detect mechanical damage, corrosion and other threats to pipeline integrity. Many of these efforts have matured to a stage where demonstration of their detection capability is now warranted. During the week of September 13, 2004, the Gas Delivery Reliability Program and the U.S. Department of Transportation's Office of Pipeline Safety (OPS) co-sponsored a demonstration of eight innovative technologies; five technologies developed through SCNGO funding support and three technologies supported by OPS.

The demonstrations were conducted at Battelle's West Jefferson Pipeline Simulation Facility (PSF) near Columbus, Ohio. The pipes used in the demonstration were prepared by Battelle at the PSF and each was pre-calibrated to establish baseline defect measurements. Each technology performed a series of pipeline inspection runs to determine their capability to detect mechanical damage, corrosion, or stress corrosion cracking. Overall, each technology performed well in their assessment category. Further R&D will help to refine the precision and accuracy of these techniques with the goal of further testing in the coming fiscal year (FY2005).

This document provides a summary of the demonstration results. A brief assessment of the results is presented in order to give the reader a feel for how each technology performed relative to the benchmark data. It is not the intention of this document to provide a detailed analysis of each technology's performance or to rate one technology over the others.

BACKGROUND

The Gas Delivery Reliability Program develops innovative sensor systems that provide enhanced assessments of the status of transmission and distribution pipelines. This includes sensors to detect corrosion defects, stress corrosion cracking, plastic pipe defects, physical damage areas, gas content, gas contamination, and 3rd party intrusion near "... natural gas consumption will rise rapidly, as electric utilities make greater and greater use of this environmentally-friendly fuel. We will need newer, cleaner <u>and safer pipes</u> to move larger quantities of natural gas."

> George W. Bush NEP - May 2001

gas line right-of-ways. A primary program goal is to develop ILI sensors that can be deployed remotely as part of an integrated robotic platform/sensor package. The sensor demonstrations conducted at Battelle's PSF were a key step toward achieving this goal.

Purpose

This document provides a brief summary assessment of the demonstration test results. The purpose of this assessment is to help identify promising inspection technologies best suited for further development as part of an integrated teaming effort between robotic platform and sensor developers. This document is not intended to provide a detailed analysis of each technology's performance or to rate their performance relative to one another.

The Technologies

Eight innovative sensor technologies were demonstrated at Battelle's PSF the week of September 13, 2004. The different technologies demonstrated their ability to detect pipeline corrosion, mechanical defects or stress corrosion cracking. The technologies were:

Shear Horizontal Electromagnetic Acoustic Transducer (EMAT) – Oak Ridge National Laboratory (ORNL) has developed an EMAT system that uses shear horizontal waves to detect flaws on natural gas pipelines. A wavelet-based analysis of ultrasonic sensor signals is used for detecting physical flaws (e.g., SCC, circumferential and axial flaws, and corrosion) in the walls of gas pipelines. Using an in-line non-contact EMAT transmitter-receiver pair, flaws can be detected on the walls of the pipe that the current magnetic flux leakage (MFL) technology has problems detecting. One EMAT is used as a transmitter, exciting an ultrasonic impulse into the pipe wall while the second EMAT located a few inches away from the first is used as a receiving transducer.

Remote Field Eddy Current (RFEC) – The Gas Technology Institute (GTI) has developed a RFEC inspection technique to inspect pipelines with multiple diameters, valve and bore restrictions, and tight or miter bends. This electromagnetic technique uses a simple exciter coil driven by a low-frequency sinusoidal current to generate an oscillating magnetic field that small sensor coils can detect. The oscillating field propagates along two paths; a direct axial path and an indirect path that propagates out through the pipe wall, along its exterior and then re-enters the pipe 2-3 pipe diameters from the exciter coil. Changes from nominal values of the amplitude and phase of the indirect field indicated defects in the pipe wall.

Collapsible Remote Field Eddy Current – Through funding support from OPS, the Southwest Research Institute (SwRI) has also developed a remote field eddy current technology to be used in unpiggable lines. The RFEC tool is expected to be able to detect corrosion and mechanical damage. Since a large percentage of pipelines cannot be inspected using "smart-pig" techniques because of diameter restrictions, pipe bends and valves, a concept for a collapsible excitation coil was developed. The SwRI technology utilizes a unique hinged coil that allows for inspection of various diameter pipes. The coil consists of six hinged segments that expand to create a full-diameter coil and then retract to accommodate smaller diameter restrictions. The collapsible coil can also be folded in half allowing passage through plug valves that have openings that are the same as the pipe diameter in one direction, but are narrow in the other direction.

Nondestructive Ultrasonic Measurement – Pacific Northwest National Laboratory (PNNL) has developed an ultrasonic sensor system capable of detecting pipeline stress and strain caused by mechanical damage i.e., dents and gouges. PNNL has established the relationship between residual strain and the change in ultrasonic response (shear wave birefringence) under a uniaxial load. Initial measurements on samples in both axial and biaxial states have shown excellent correlation between shear birefringence measurements. The demonstration focused on refining the methodology, particularly under circumstances when the damage is more complex than a simple uniaxial deformation.

Permanent Magnet Eddy Current – Battelle has developed an innovative electromagnetic sensor that incorporates high-strength permanent moving (rotating) magnets. This configuration is expected to reduce power consumption and improve energy coupling into the pipe wall compared to eddy current systems that use a fixed transmitter coil.

Multi-purpose Deformation Sensor – Los Alamos National Laboratory (LANL) has developed an ILI system capable of performing a number of inspection measurements. The LANL technology uses ultrasonic techniques to determine pipe ovality, structural defects, wall thickness, and the velocity/flow rate of gas flowing within the pipe.

Dual Magnetization MFL – Battelle has developed a magnetic flux leakage (MFL) inspection tool that detects and sizes both metal loss and mechanical damage. Theoretical work supported by OPS showed that two magnetic field levels improve mechanical damage detection and assessment capabilities. In addition to the high magnetic field employed on most inspection tools, this technology utilizes a lower field to detect the metallurgical changes caused by excavation equipment. This low field is needed because the high magnetic field level masks and erases important components of the signal that are due to mechanical damage.

Guided Wave Ultrasonics – The final technology was the only non-in-line inspection system demonstrated. This technology was developed by a research team comprised of PetroChem Inspection Services, Plant Integrity, Ltd., FBS, Inc., and The Pennsylvania State University with funding support from OPS. The technology uses guided wave ultrasonics (GWUT) to detect pipeline corrosion and other metal loss defects. Unlike conventional ultrasonics, which measures a single point on the pipe, the GWUT system can measure 100% of the pipe's

circumference and has the advantage that long lengths (100 feet or more) in either direction may be measured from a single test point. The transducer collars can be assembled for pipes ranging in size from 2-inches up to 60-inches. The benefit of GWUT is ability to inspect inaccessible pipe including unpiggable lines, under sleeves and insulation, and buried pipes. This technology is also passed proof-of-concept stage and is commercially available.

Demonstration Configuration

The emerging inspection technologies were tested within a 40 by 100 foot high-bay area at Battelle's PSF. Pipes selected for these tests had various types of natural and machined defects. A black tarp covered the pipes to hide defect locations. Figures 1 and 2 show the configuration of the pipes during the demonstration. These pipes included:

Figure 1 (left) north end of the high-bay area looking south. 30-inch SCC pipe and 24-inch mechanical damage pipe in foreground. Figure 2 (above) high-bay looking north. 12-inch corrosion and 24-inch mechanical damage pipe with gouges in foreground. Dent and gouge machine in far background outside the high-bay area.

Detection of Metal Loss

- One 12-inch diameter seamless pipe measuring approximately 48 feet in length with natural corrosion defects.
- One 12-inch diameter seam welded pipe measuring 32 feet in length with manufactured corrosion defects.

Detection of Mechanical Damage

- One 24-inch pipe measuring 41.5 feet in length comprised of two separate pipes welded together with mechanical damage defects including gouges.
- One 24-inch diameter pipe measuring approximately 40 feet in length with plain (or smooth) dent defects.

Stress Corrosion Cracking

• One 30-inch diameter pipe measuring 20 and 1/3 feet in length with natural stress corrosion cracking.

Additional information on the pipe defect sets, pipe preparation, demonstration facility layout, and demonstration procedures can be found in the final benchmarking report, *Benchmarking Emerging Pipeline Inspection Technologies*, prepared by Battelle.¹

DEMONSTRATION RESULTS

This section provides an assessment of the test data relative to the benchmark data developed at the Battelle PSF. The benchmark data is provided as Appendix A of this document and test results for the individual technologies, as prepared and submitted by the technology developers, can be found in Appendix B.

Metal Loss Corrosion Assessment

Two 12-inch diameter pipes were inspected by each technology for corrosion. The first pipe (Sample Pipe C1) was a seam-welded pipe measuring 32 feet in length. This sample consisted of three pipe sections welded together (two circumferential welds) and contained manufactured corrosion defects set along two test lines set 180° apart. The second pipe (Sample Pipe C2) was a seamless pipe measuring approximately 48 feet in length containing natural corrosion defects. The benchmark data and test results for the four technologies that tested for metal loss on Sample Pipe C1 are shown in Table 1.

The Battelle *Rotating Permanent Magnet EC* technology did not detect any false positive signals, however, there were three defect sites on Sample Pipe C1 where no clear signal was detected. For example, site MC05 was not detected. This site contained a 1.2 x 2-inch metal loss region with a fairly significant 0.21-inch maximum metal loss depth. In areas where a clear signal was detected, the technology was able to identify the axial location of the corrosion region with good precision. Maximum depth of metal loss was qualitatively accessed as small, medium or deep. In this regard, there was some inconsistency in the reported values. On Line 1 for example, a 0.17-inch (47%) metal loss region (MC07) was defined as "medium" whereas on Line 2 a 0.18-inch (50%) metal loss region (MC12) was defined as "small." Future efforts should include either quantifying metal loss or developing a standard qualitative scale (e.g., small < 25% loss, medium = 25% to 50%, and large >50%) that can be used for all pipes regardless of their nominal wall thickness. The rotating permanent magnet EC technology was unable to detect any clear defect signals on Sample Pipe C2.

¹ Benchmarking Emerging Pipeline Inspection Technologies is available on the SCNGO homepage at www.netl.doe.gov/scngo/Natural%20Gas/publications/t&d/Benchmark%20Emerging%20Technologies%20Fina 1%20Report.pdf

	Manufactured Corrosion Pipe Sample C1 - Line 1											
Defect Number	MC02	MC03	MC04	MC05	MC06	MC07 ²	MC08	MC09	MC10			
	126" to	144" to	162" to	186" to	210" to	234" to	264" to	282" to	306" to			
Search Region	138"	156"	174"	198"	222"	246"	276"	294"	318"			
	Length of Metal Loss Region											
Benchmark Data	3	blank	blank	1.2	blank	2.7	blank	2	blank			
Battelle - Rotating EC	no signal			no signal		2.0		2.5				
GTI - RFEC	2.6			1.0		1.1 1.0		1.7				
SwRI - Collapsible RFEC	2.43			1.62		1.89		1.62				
				Width of	f Metal Loss	Region						
Benchmark Data	1.2	blank	blank	2	blank	1.1	blank	1.5	blank			
Battelle - Rotating EC	no signal			no signal		na		na				
GTI - RFEC	1.1			1.1		0.75 0.75		2.6				
SwRI - Collapsible RFEC	2.5			2.5		1.5		3.0				
	Depth of Metal Loss Region											
Benchmark Data	0.13	blank	blank	0.21	blank	0.17	blank	0.29	blank			
Battelle - Rotating EC	no signal			no signal		medium		deep				
GTI - RFEC	0.243			0.258		0.211 0.229		0.279				
SwRI - Collapsible RFEC	0.06			0.16		0.12		0.22				
PetroChem - GWUT	small; all quads	(FP) small; Q1, Q2, Q3	(FP) very small @ 270°	moderate @ 270°	(FP) very small @ 90°	moderate @ 270°		small @ 270°				

Table 1. Benchmark Data vs. Test Results for Corrosion Testing Pipe Sample C1; Line 1

All measurements are in inches

FP = False Positive

 $^{^{2}}$ Defect MC07 was actually two axially separated defects. The GTI RFEC technology was able to detect the individual defects. For more information regarding this defect site, see GTI's test results comments in Appendix C.

	Manufactured Corrosion Pipe Sample C1 - Line 2												
Defect Number	MC11	MC12	MC13	MC14	MC15	MC16	MC17	MC18	MC19				
	78" to	102" to	138" to	174" to	198" to	222" to	246" to	272" to	288" to				
Search Region	90"	114"	150"	186"	210"	234"	258"	284"	300"				
				Length	of Metal Los	ss Region							
Benchmark Data	blank	3	blank	blank	1.5	blank	1.4	blank	1.4				
Battelle - Rotating EC		1.0			1.5		1.0		no signal				
GTI - RFEC		2.6			1.0		1.7		1.4				
SwRI - Collapsible RFEC		2.69			1.08		1.62		1.08				
		•	•	Width	of Metal Los	s Region	•						
Benchmark Data		1.4			1.5		3.3		3				
Battelle - Rotating EC		na			na		na		no signal				
GTI - RFEC		3.4			0.75		3.4		1.9				
SwRI - Collapsible RFEC		2.5			2.0		3.0		1.5				
		Depth of Metal Loss Region											
Benchmark Data		0.18			0.20		0.27		0.09				
Battelle - Rotating EC		small			medium		deep		no signal				
GTI - RFEC		0.118			0.143		0.226		0.1				
SwRI - Collapsible RFEC		0.16			0.05		0.21		0.08				
			(FP)	(FP) very			largest						
		small @	small; Q1,	small @	moderate		defect @		small; all				
PetroChem - GWUT		90°	Q2, Q3	90°	@ 90°		90 [°]		quads				

Table 1 (continued). Benchmark Data vs. Test Results for Corrosion Testing Pipe Sample C1; Line 2

All measurements are in inches

FP = False Positive

The GTI *RFEC* technology detected all defect sites on Pipe Sample C1 and there were no false positive signals. Defect lengths were estimated to $\pm 15\%$ of the actual length. The metal loss start location data clearly shows odometer slippage, which GTI had indicated was a problem during testing. GTI anticipated that the precision of their defect width estimates would be poorer than the length estimates, and in fact, these estimates are on average about $\pm 35\%$ of the actual defect widths. With respect to metal loss depth, the GTI technology typically overestimated on Line 1 and underestimated on Line 2 of Sample Pipe C1. Overall, the GTI technology performed very well with metal loss estimates of $\pm 22\%$ of the actual. Due to multiplexer failure, GTI was unable to scan Sample Pipe C2.

The SwRI *Collapsible RFEC* technology detected all defect sites on Pipe Sample C1 and there were no false positive signals. Defect lengths were estimated at $\pm 20\%$ of the actual length. Defect width estimates were on average about $\pm 35\%$ of the actual defect widths. For metal loss depth, the estimates for the SwRI technology were typically $\pm 20\%$. However, estimates for defect sites MC02 and MC15 were significantly less than the actual metal loss depth. For example, the actual metal loss for MC15 (198 to 210 inches from side A) was 0.2 inches, whereas the Collapsible RFEC technology estimated 0.05 inches of metal loss.

The SwRI Collapsible RFEC technology was able to detect defects on the natural corrosion seamless Sample Pipe C2. With the exception of one false positive within the region of T02 (180 to 192 inches from side A) and one missed defect at T10, the results are very encouraging. The two defect sites T05 and T09 have only one region of corrosion and thus, they provide good points for data comparison. Table 2 shows good agreement between the benchmark data and SwRI's estimates (shaded) for these two sites. SwRI did detect separate signals at sites where two regions of corrosion existed, but only the maximum depth defect was reported due to confusion regarding reporting requirements. At site T01 however, it appears that the detected signal is a combination of both the benchmark sites T01a and T01b. For sites T12 and T13, the SwRI reported results show good correlation with benchmark sites T12a and T13b, respectively. Note, however, that T13b is shallower than defect 13a.

Defect Number	Search Region (Distance from End A)	Start of Metal Loss Region from Side A	End of Metal Loss Region from Side A	Total Length of Metal Loss Region	Width of Metal Loss Region	Maximum Depth of Metal Loss Region
T01	144 to 156	T01a = 147.1 T01b = 153.4	T01a = 149.0 T01b = 156.6			T01a = 0.13 T01b = 0.15
	SwRI	146.43	155.84	9.31	3.0	0.9
T05	272 to 284	273.7	284.3	10.6	1.1	0.12
	SwRI	273.58	284.0	10.42	4.5	0.15
T09	360 to 372	363	367	4.0	1.3	0.20
	SwRI	364.67	366.24	1.57	1.5	0.09
T12	474 to 486	T12a = 474.0 T12b = 482.6	T12a = 480.0 T12b = 485.4	T12a = 6.0 T12b = 2.75	T12a = 2.0 T12b =0.9	T12a = 0.18 T12b = N/A
	SwRI	475.11	477.28	2.17	3.0	0.08
T13	486 to 498	T13a = 487.4 T13b = 492.9	T13a = 488.6 T13b = 495.1	T13a = 1.25 T13b = 2.25	T13a = 0.5 T13b = 0.4	T13a = 0.15 T13b = 0.10
SwRI		492.32	493.22	0.9	0.5	0.29

 Table 2. Benchmark Data vs. Test Data for SwRI Collapsible RFEC; Sample Pipe C2

All measurements are in inches

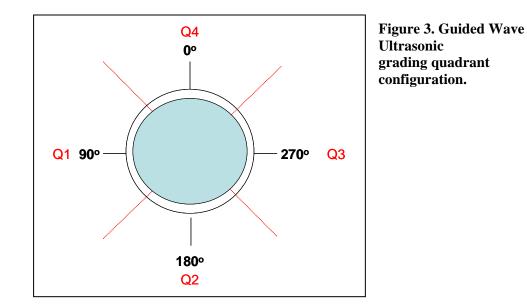


Figure 3 shows the grading quadrants used by the *Guided Wave Ultrasonic* system. For Pipe Sample C1, two scan lines were taken at approximately 90° and 180°. Because the guided wave technology detects a full 360°, a number of small corrosion defects not included along the two manufactured defect lines were detected, resulting in a number of apparent false positive readings. Setting aside these data, the guided wave technology performed very well in determining the relative size—small, moderate, or large—of the corrosion defect for both scan lines. The only exception was defect site MC09 (Line 1). This site had the deepest metal loss defect of both lines and yet, it was detected as a small defect by the GWUT system. In comparison, site MC05 along the same line had slightly less surface area and nearly 30% less metal loss, but was defined as a moderate defect (refer back to Table 1).

For Sample Pipe C2, benchmark defect sites were generally within ± 4 inches of the scan line at 0° and thus, generally fell within the guided wave grading quadrant 4 (Q4). The guided wave technology performed adequately on the Sample Pipe C2 (see Table 3). Again, because of the full circumferential scanning of the system, a number of defects (albeit usually small) were detected outside the baseline testing region (i.e., Q1, Q2 and Q3). The guided wave did detected two large corrosion defects at sites T02 and T08 within Q4 that were not included as baseline defects. Moreover, the guided wave detected no visible corrosion in the area of T05 and only moderate corrosion in the area of T09. Unlike the other defect test sites on Sample Pipe C2, which consist of two separate defect regions, these two defect sites consist of a single large region of corrosion. The guided wave also detected small corrosion at the axial distance of T06, but within Q2. T06 contained two defect regions within the scanning area that were not detected; one fairly large and the other small. Baseline defect sites that appear to correlate well with detected signals from the GWUT system include T01, T10, T11 and T12.

As previously noted, the GWUT is an external inspection method. The corrosion anomalies planned for this benchmarking study were specifically selected to demonstrate the capability of internal inspection devices. As such, in some cases the test setup was less than optimal for the external inspection method.

sion)						
	Ma	nufactured C	Corrosion Pip	be Sample	C1 - Line	1
0		BEN	CHMARK DATA			
Search Region (Distance from End A)	Start of Metal Loss Region from Side A		Total Length of Metal Loss Region Region		Maximum Depth of Metal Loss Region	Comments Guided Wave Ultrasonic Technology Demonstration Results
144 to 156	T01a = 147.1 T01b = 153.4	T01a = 149 T01b = 156.6	T01a = 1.9 T01b = 3.25	T01a = 0.9 T01b = 0.8	T01a = 0.13 T01b = 0.15	Large (142 to 156) located in Q1 and Q4
180 to 192	***	***	***	***	***	Large (188 to 197) located in Q3 and Q4
216 to 228	***	***	***	***	***	Moderate (224 to 240) located in Q1
260 to 272	***	***	***	***	***	Moderate (at 262) located in Q2
272 to 284	273.7	284.3	10.6	1.1	0.12	no call
284 to 296	T06a = 285.3 T06b = 295.5	T06a = 294.8 T06b = 196.5	T06a = 9.5 T06b = 1	T06a = 1.3 T06b = 1	T06a = 0.15 T06b = N/A	Small (at 288) located in Q2
296 to 308	***	***	***	***	***	Small (at 300) located in Q3 and Q4
348 to 360	***	***	***	***	***	Large (at 350) located in Q2 and Q4
360 to 372	363	367	4	1.3	0.20	Moderate (at 360) located in Q3 and Q4
438 to 450	T10a = 440.3 T10b = 447.4	T10a = 443.8 T10b = 448.6	T10a = 3.5 T10b = 1.25	T10a = 0.9 T10b = 0.4	T10a = 0.15 T10b = N/A	Moderate (at 448) located in all quadrants
462 to 474	T11a = 462.8 T11b = 469.2	T11a = 467.2 T11b = 472.8	T11a = 4.4 T11b = 3.6	T11a = 0.8 T11b = 1.1	T11a = 0.13 T11b = 0.16	Large (at 470) located in Q1 and Q4
474 to 486	T12a = 474 T12b = 482.6	T12a = 480 T12b = 485.4	T12a = 6 T12b = 2.75	T12a = 2 T12b =0.9	T12a = 0.18 T12b = N/A	Large (475 to 481) located in Q3 and Q4 (with T13)
486 to 498	T13a = 487.4 T13b = 492.9	T13a = 488.6 T13b = 495.1	T13a = 1.25 T13b = 2.25	T13a = 0.5 T13b = 0.4	T13a = 0.15 T13b = 0.10	Large (475 to 481) located in Q3 and Q4 (with T12)
500 to 512	***	***	***	***	***	Moderate (at 502) located in all quadrants
	Search Region (Distance from End A) 144 to 156 180 to 192 216 to 228 260 to 272 272 to 284 284 to 296 296 to 308 348 to 360 360 to 372 438 to 450 462 to 474 474 to 486 486 to 498	Mai Search Region (Distance from End A) Start of Metal Loss Region from Side A 144 to 156 T01a = 147.1 T01b = 153.4 180 to 192 **** 216 to 228 **** 260 to 272 **** 272 to 284 273.7 284 to 296 T06a = 285.3 T06b = 295.5 296 to 308 **** 348 to 360 **** 360 to 372 363 438 to 450 T10a = 440.3 T10b = 447.4 462 to 474 T11a = 462.8 T11b = 469.2 474 to 486 T12a = 474 T12b = 482.6 486 to 498 T13a = 487.4 T13b = 492.9	Manufactured C BEN Search Region (Distance from End A) End of Metal Loss Region from Side A 144 to 156 $T01a = 147.1$ T01b = 153.4 $T01a = 149T01b = 156.6$ 180 to 192 **** **** 216 to 228 **** **** 260 to 272 **** **** 272 to 284 273.7 284.3 284 to 296 $T06a = 285.3T06b = 295.5$ $T06a = 294.8T06b = 196.5$ 296 to 308 **** **** 348 to 360 **** **** 360 to 372 363 367 438 to 450 $T10a = 440.3T10b = 447.4$ $T10a = 443.8T10b = 447.4$ 474 to 486 $T12a = 474T12b = 482.6$ $T12a = 480T12b = 485.4$ 486 to 498 $T13a = 487.4T13b = 492.9$ $T13a = 488.6T13b = 492.9$	Manufactured Corrosion Pip BENCHMARK DATA Search Region (Distance from End A) 144 to 156 T01a = 147.1 T01b = 153.4 End of Metal Loss Region from Side A Total Length of Metal Loss Region 144 to 156 T01a = 147.1 T01b = 153.4 T01a = 149 T01b = 156.6 T01a = 1.9 T01b = 3.25 180 to 192 *** *** *** 216 to 228 *** *** *** 2260 to 272 *** *** *** 272 to 284 273.7 284.3 10.6 284 to 296 T06a = 285.3 T06b = 295.5 T06a = 294.8 T06b = 196.5 T06a = 9.5 T06b = 1 296 to 308 *** *** *** 348 to 360 *** *** *** 360 to 372 363 367 4 438 to 450 T10a = 440.3 T10b = 447.4 T10a = 443.8 T10b = 448.6 T10a = 3.5 T10b = 1.25 462 to 474 T11a = 462.8 T11b = 469.2 T11a = 467.2 T11b = 472.8 T11a = 4.4 T11b = 3.6 474 to 486 T12a = 474 T12b = 482.6 T12a = 480.4 T12a = 6 T12b = 2.75 486 to 498 T13a = 48	Manufactured Corrosion Pipe Sample BENCHMARK DATA Search Region (Distance from End A) Start of Metal Loss Region from Side A Total Length of Metal Loss Region Width of Metal Loss Region 144 to 156 T01a = 147.1 T01b = 153.4 T01a = 149 T01b = 156.6 T01a = 1.9 T01b = 3.25 T01a = 0.9 T01b = 0.8 180 to 192 *** *** *** *** *** 216 to 228 *** *** *** *** *** 260 to 272 *** *** *** *** *** 284 to 296 T06a = 285.3 T06b = 295.5 T06a = 294.8 T06b = 196.5 T06a = 9.5 T06b = 1 T06a = 1.3 T06b = 1 296 to 308 *** *** *** *** *** 348 to 360 *** *** *** *** *** 360 to 372 363 367 4 1.3 438 to 450 T10a = 440.3 T10b = 447.4 T10a = 443.8 T10b = 447.4 T10a = 3.5 T10b = 1.25 T10a = 0.9 T10b = 0.4 462 to 474 T11a = 462.8 T11b = 467.2 T11a = 4.4 T11b	Manufactured Corrosion Pipe Sample C1 - Line BENCHMARK DATA Search Region (Distance from End A) Start of Metal Loss Region from Side A Tota Length of Metal Loss Region Maximum Depth of Metal Loss Region 144 to 156 T01a = 147.1 T01b = 153.4 T01a = 149 T01b = 156.6 T01a = 1.9 T01b = 3.25 T01a = 0.9 T01b = 0.8 T01a = 0.13 T01b = 0.15 180 to 192 *** *** *** *** *** 216 to 228 *** *** *** *** *** 260 to 272 *** *** *** *** *** 272 to 284 273.7 284.3 10.6 1.1 0.12 284 to 296 T06a = 285.3 T06a = 295.5 T06a = 294.8 T06b = 196.5 T06a = 9.5 T06b = 1 T06a = 1.3 T06b = 1.1 T06a = 0.15 T06b = 1.1 348 to 360 *** *** *** *** *** 348 to 360 *** T10a = 443.8 T10b = 448.6 T10a = 3.5 T10b = 0.4 T10a = 0.15 T10b = 0.4 422 to 474 T11a = 462.2 T11a = 467.2 T11b = 472.8 T11a = 4.6 T11b = 1.1 T11a = 0.16 T10b = 0.4

 Table 3. Benchmark vs. PetroChem GWUT Detection Results; Pipe Sample C2 (Natural Corrosion)

All measurements are in inches

Mechanical Damage Assessment

Two 24-inch diameter pipes were inspected by each technology for mechanical damage. The first pipe (Sample Pipe MD1) consisted of two separate pipes welded together. One of the two pipes had been cut and re-welded together thus, three welds were encountered along the scan lines. The pipe measured 41.5 feet in length with mechanical damage defects including gouges. The second pipe (Sample Pipe MD2) measured approximately 40 feet in length with plain (or smooth) dent defects. The benchmark data and test results for the three technologies that tested for mechanical damage are shown in Table 4.

	Search Region	Region (inches)		Dent De (% of diam		Dent Severity*						
Defect Number	(distance from end A; inches)	Benchmark	LANL	Benchmark	LANL	Panahmark	PNNL	Pottollo				
Number	A, Inches)	Denchinark			LANL	Benchmark	FININL	Battelle				
Sample Pipe MD1												
Q1	406 to 430	0.25	6	6%	6.9%	1	3	1+				
Q2	370 to 394	blank	11	blank	1.6%							
Q3	334 to 358	6	9	3%	6.0%	3-	1	3				
Q4	298 to 322	2	5.7	3%	7.0%	2	2	2				
Q5	262 to 286	0.25	7	3%	7.0%	1-	1.5	1+				
Q6	226 to 250	blank	blank	blank	blank							
			Sam	ple Pipe MD2								
R03	96 to 120	4	2	1.21%	1.3%	1	1	1				
R04	132 to 156	10	6	0.96%	1.6%	3	2	3				
R05	168 to 192	8.5	6	0.83%	2.0%	2	3	2				
R06	204 to 228	4	2	1.21%	2.1%	1	1	1				
R07	240 to 264	8.5	6	0.83%	1.7%	2	2	2				
R08	276 to 300	10	6	0.96%	2.0%	3	3	3				
R09	312 to 336	8.5	6	0.83%	1.9%	2	2.5	2				
R10	348 to 372	10	ND	0.96%	ND	3	3	3				
R11	384 to 408	blank		blank								

 Table 4. Benchmark vs. Test Results; Technologies Testing for Mechanical Damage

* 0 = No dent, 1 = Least severe, 2 = Moderate severity, 3 = Most severe. ND= no data

Both the Battelle *Dual Magnetization MFL* and the PNNL *EMAT Strain Measurement Tool* assess relative damage severity by measuring the stresses and strain surrounding the mechanical defect. As the results in Table 4 show, Battelle's MFL technology showed excellent results, identifying each defect and its severity on both pipe samples. PNNL's technology also performed well. At defect sites Q1 and Q3 on Sample Pipe 1 as well as R04 and R05 on Sample Pipe 2 there was discrepancy between the PNNL data and the benchmark.

LANL's *Acoustic Sensor* measures pipe deformation using ultrasonic methods. On Sample Pipe MD1, LANL used the opposite end of the pipe as a reference point and thus, their defect start and end data reflects measurement from pipe side B. LANL successfully identified all defect locations including the long shallow gouge at defect site Q2. The LANL system typically overestimated the defect length as well as the dent depth. For Sample Pipe MD2 (see Table 4), the technology generally identified the start location of a defect within 2 inches of its actual location. However, the measured defect lengths were on average 40% less than the actual defect. Dent depth was consistently overestimated on Sample Pipe MD2; also about 40%. Thus, for both pipes the LANL system overestimated defect depth, which is contrary to what the research team had expected.

Stress Corrosion Cracking

Only one technology, the ORNL *Shear Horizontal EMAT*, was tested for detection of stress corrosion cracking. As shown in Table 5 the technology ran three lines on a 30-inch diameter pipe with natural stress corrosion cracking. The EMAT technology detected several false positive signals; especially evident on Line 2. Because the EMAT configuration scans 9-inches of the pipe's circumference, some of the false positives could be the result of cracks lying along one of the neighboring scan lines. A number of defect sites (SCC1, SCC6 and SCC13) provided no discernable signal. The EMAT system had some difficulty distinguishing between isolated cracks and a group or "colony" of cracks.

			Benchmark		ORNL						
Defect Number Number Search Region (Distance from End A)		Start of Crack Region from Side A	End of Crack Region from Side A	Type of SCC	Start of Crack Region from Side A	End of Crack Region from Side A	Type of SCC				
Line 1											
SCC1	60 to 70	63	63	isolated	no s	ignal	none				
SCC2	70 to 80	75	75	isolated	70	77	colony				
SCC3	80 to 90	82	84.5	colony	82	90	colony				
SCC4	90 to 100	bla	ınk	none	96	99	isolated				
SCC5	110 to 120	bla	ink	none	bla	none					
SCC6	130 to 140	137	138	colony	no s	ignal	none				
	Line 2										
SCC7	60 to 75	61	67	colony	69	72	isolated				
SCC8	75 to 90	bla	ink	none	80	90	colony & isolated 75" to 80"				
SCC9	90 to 105	bla	nk	none	94	104	colony				
SCC10	105 to 120	bla	ink	none	106	107.5	isolated				
SCC11	120 to 135	bla	ink	none	127	132	isolated				
			Lin	e 3							
SCC12	60 to 75	62	71	colony	64	66	isolated				
SCC13	75 to 90	78	84	colony	no s	ignal	none				
SCC14	90 to 105	94	94	isolated	90	93	isolated				
SCC15	105 to 120	114	115.5	isolated	106	110	isolated & colony 113.5" to 120"				
SCC16	120 to 135	bla	ink	none	127	131	isolated				

All measurements are in inches

SUMMARY

The corrosion detection techniques demonstrated hold significant promise for inspection of unpiggable pipes. Accurate detection of corrosion on seamless pipes appears somewhat more challenging. The two technologies—Collapsible RFEC and GWUT—that did detect metal loss in the seamless pipe performed well. This is particularly encouraging when one considers the 20% variation in nominal wall thickness of the seamless pipe (from 0.31 to 0.38 inches). Further development to target corrosion on seamless pipe must be balanced, however, with other critical technical challenges, as only a small percentage of existing distribution pipes are seamless.

The mechanical damage detection techniques also achieved good results. LANL was unfortunate that their system was damaged in transit and thus, could not be deployed to its full capability. Damaged components likely contributed to some of the measurement inaccuracies.

The ORNL EMAT system performed satisfactory but it did detect a significant number of false positives and had difficulty distinguishing between an isolated crack and a colony of cracks. In addition, as noted by the developer, the system typically overestimated the defect length.

Following the submittal of their test data, the technology developers were sent the benchmark data. They were given an opportunity to comment on their results and to provide their perspective on their technology's performance relative to the benchmark data. Appendix C contains the developer's comments. Overall, the Natural Gas Delivery Reliability Program believes each of the technologies performed well and the results are extremely encouraging. Table 6 provides a general assessment of the technologies. As the development of these technologies progresses and future testing takes place, it is envisioned that improvements in the technology and data analysis techniques will result in fewer false positives and greater precision and accuracy of defect signals.

Detection of Metal Loss							
Battelle – Rotating Permanent	Good correlation with baseline data on Sample Pipe 1; no detection on						
Magnet EC	Sample Pipe 2						
GTI – RFEC	Very good correlation with baseline data on Sample Pipe 1; no detection on Sample Pipe 2 due to apparatus failure						
SwRI – Collapsible RFEC	Very good correlation with baseline data on both Sample Pipes 1 and 2						
PetroChem – Guided Wave	Very good correlation with baseline data on Sample Pipe 1 and Good						
Ultrasonic	correlation on Sample Pipe 2; some apparent false positives (see text)						
Detection of Mechanical Damage							
PNNL – EMAT Strain	Vary good correlation with bosoling data on both Sample Dines 1 and 2						
Measurement Tool	Very good correlation with baseline data on both Sample Pipes 1 and 2						
Battelle – Dual Magnetization	Excellent correlation with baseline data on both Sample Pipes 1 and 2						
MFL	Excellent correlation with baseline data on both Sample Fipes 1 and 2						
LANL – Deformation Acoustic	Good correlation with baseline data on Sample Pipe 2; See text regarding						
Sensor	Sample Pipe 1.						
Stress Corrosion Cracking							
ORNL – Shear Horizontal	Good correlation with baseline data; many false positives						
EMAT	Cood correlation with baseline data, many faise positives						

Table 6. Ge	eneral Assessment	of Demonstrated	Technologies
-------------	-------------------	-----------------	--------------

PATH FORWARD

As noted, a key Gas Delivery Reliability Program goal is to develop ILI sensors that can be deployed remotely as part of an integrated robotic platform/sensor package. The program has established an aggressive schedule to develop a prototype remote system that can traverse all pipes including unpiggable lines of various diameters while providing continuous and real-time detection of pipe anomalies or defects. This effort is driven in large part by new PSIA regulations that require inspection of gas transmission pipelines and distribution mains in high-consequence areas. A large percentage of these pipes cannot be inspected using "smart-pig" techniques because of diameter restrictions, pipe bends and valves. In addition, pressure differentials and flow can be too low to push a pig through some pipes.

Two teams have been established, each based on a unique remote platform system. The first team will base their system on the EXPLORER platform developed by the Robotics Institute at Carnegie Mellon University and the Northeast Gas Association. EXPLORER is an untethered, articulating platform comprised of a series of inter-connected modules that can be assembled as desired to achieve specific objectives. The core modules include a low-power locomotion system, an energy storage module, and a 190-degree field-of-view camera module. The second team will base their sensor system on a robotic platform designed by Foster-Miller and the Northeast Gas Association. This modular system utilizes a fiber-optic tether design to control operations. Tractor modules are incorporated between sensing modules to provide drive, steering, and clamping capabilities.

The teams also consist of sensor developers, many of which have been included in this demonstration. Each team will establish their own integration parameters and development schedules. Funding for the sensor development will be separate from that of the platform development efforts thereby providing DOE with greater flexibility to integrate sensors and platforms as development progresses. The goal is to develop an integrated prototype within two to three years.

The demonstrations conducted at Battelle's PSF were a fundamental step toward achieving the goal of a remote integrated sensor system. The test results will be used to guide future development efforts by identifying those technologies that hold the greatest promise.

APPENDIX A – BENCHMARK DATA

				Bend	hmarking of I Detection of N				
Name:		BENCHMARK			Detection of a				
Date:		DENCIMARK							
Company									
Sensor De	esign:								
					CALIBR	ATION DATA			
		Calibration Metal Loss Location inches from	Metal Loss Length & Width	Depth of Metal Loss	Radius of Curvature	Measured Length & Width of Defect	Measured Depth of Defect	Comments	
		end A	inches	inches	inches				
				Nat	tural Corrosion	n Pipe Sample	(48' 2")		
Calibratio		60"	1"	0.3"	0.557"				
Calibratio		96"	1.475"	0.21"	1.417"				
Calibratio	n 13:	401"	1.475"	0.21" Mapu	1.417" factured Meta	LLoss Dino Sa	mple (22')		
Groove De	efect 1.	55"	0.5"	0.09"	0.25"	I LUSS PIPE 3a			
Groove De		329"	0.5"	0.14"	0.25"				
		-	1.2" long x						
Calibratio	n MC01:	90"	3" wide	0.29	0.933				
Disc. Com	1 -					ST DATA			
Pipe Sam Defect Se				12" Dian	M	anufactured (Corrosion Sal	mple th Manufactured Metal Loss	
Delect Se	l.				neter, 0.358 w		NE 1		
				1		Maximum			
Defect Number	Search Region (Distance from End A)	Start of Metal Loss Region from Side A	End of Metal Loss Region from Side A	Total Length of Metal Loss Region	Width of Metal Loss Region	Depth of Metal Loss Region		Comments	
	inches	inches	inches	inches	inches	inches			
MC02	126" to 138"	130.5"	133.5"	3"	1.2"	0.13"	Radius o	of curvature tool used to create defect - 1.417"	
MC03	144" to 156"	* * *	* * *	* * *	* * *	* * *		Blank	
MC04	162" to 174"	* * *	* * *	* * *	* * *	* * *		Blank	
MC05	186" to 198"	191.4"	192.6"	1.2"	2"	0.21"	Radius	of curvature tool used to create defect - 0.933"	
MC06	210" to 222"	* * *	* * *	* * *	* * *	* * *		Blank	
MC07	234" to 246"	239.15"	241.85"	2.7"	1.1"	0.17"	Radius of curvature tool used to create defect - 0.933"		
MC08	264" to 276"	* * *	* * *	* * *	* * *	* * *	Blank		
MC09	282" to 294"	287"	289"	2"	1.5"	0.29"	Radius of curvature tool used to create defect - 1.417"		
MC10	306" to 318"	* * *	* * *	* * *	* * *	* * *		Blank	

	Benchmarking of Inspection Technologies Detection of Metal Loss - Page 2											
Name:		BENCHMARK					•					
Date:												
Company	:											
Sensor De	esign:											
TEST DATA												
Pipe Sample: Manufactured Corrosion Sample												
Defect Set: 12" Diameter, 0.358" Wall Thickness Pipe Sample with Manufactured Metal Loss												
							NE 2					
Defect Number	Search Region (Distance from End A)	Start of Metal Loss Region from Side A	End of Metal Loss Region from Side A	Total Length of Metal Loss Region	Width of Metal Loss Region	Maximum Depth of Metal Loss Region	Comments					
	inches	inches	inches	inches	inches	inches						
MC11	78" to 90"	* * *	* * *	* * *	* * *	* * *	Blank					
MC12	102" to 114"	106.5"	109.5"	3"	1.4"	0.18"	Radius of curvature tool used to create defect - 2.726"					
MC13	138" to 150"	* * *	* * *	* * *	* * *	* * *	Blank					
MC14	174" to 186"	* * *	* * *	* * *	* * *	* * *	Blank					
MC15	198" to 210"	203.25"	204.75"	1.5"	1.5"	0.20"	Radius of curvature tool used to create defect - 1.417"					
MC16	222" to 234"	* * *	* * *	* * *	* * *	* * *	Blank					
MC17	246" to 258"	251.3"	252.7"	1.4"	3.3"	0.27"	Radius of curvature tool used to create defect - 2.726"					
MC18	272" to 284"	* * *	* * *	* * *	* * *	* * *	Blank					
MC19	288" to 300"	293.3"	294.7"	1.4"	3"	0.09"	Radius of curvature tool used to create defect - 2.726"					

	Benchmarking of Inspection Technologies Detection of Metal Loss - Page 3										
Name:		BENCHMARK									
Date:											
Company	:										
Sensor De	esign:										
g											
					TES	ST DATA					
Pipe Sam						Natural Cor	rosion Sample				
Defect Se	t:			12" Dian	neter, 0.31" to (0.38" Wall Thick	kness Pipe Sample with Natural Corrosion				
Defect Number	Search Region (Distance from End A)	Loss Region from Side A	End of Metal Loss Region from Side A	Total Length of Metal Loss Region	Width of Metal Loss Region	Maximum Depth of Metal Loss Region	Comments				
	inches	inches	inches T01a = 149"	inches T01a = 1.9"	inches T01a = 0.9"	inches					
T01	144" to 156"	T01a = 147.1" T01b = 153.4"	101a = 149" T01b = 156.6"	101a = 1.9" T01b = 3.25"	101a = 0.9" T01b = 0.8"	T01a = 0.13" T01b = 0.15"	Two regions: T01a and T01b				
T02	180" to 192"	* * *	* * *	* * *	* * *	* * *	Blank				
T03	216" to 228"	* * *	* * *	* * *	* * *	* * *	Blank				
T04	260" to 272"	* * *	* * *	* * *	* * *	* * *	Blank				
T05	272" to 284"	273.7"	284.3"	10.6"	1.1"	0.12"					
T06	284" to 296"	T06a = 285.3" T06b = 295.5"	T06a = 294.8" T06b = 196.5"	T06a = 9.5" T06b = 1"	T06a = 1.3" T06b = 1"	T06a = 0.15" T06b = N/A	Two regions: T06a and T06b				
T07	296" to 308"	* * *	* * *	* * *	* * *	* * *	Blank				
Т08	348" to 360"	* * *	* * *	* * *	* * *	* * *	Blank				
T09	360" to 372"	363"	367"	4"	1.3"	0.20"					
T10	438" to 450"	T10a = 440.3" T10b = 447.4"	T10a = 443.8" T10b = 448.6"	T10a = 3.5" T10b = 1.25"	T10a = 0.9" T10b = 0.4"	T10a = 0.15" T10b = N/A	Two regions: T10a and T10b				
T11	462" to 474"	T11a = 462.8" T11b = 469.2"	T11a = 467.2" T11b = 472.8"	T11a = 4.4" T11b = 3.6"	T11a = 0.8" T11b = 1.1"	T11a = 0.13" T11b = 0.16"	Two regions: T11a and T11b				
T12	474" to 486"	T12a = 474" T12b = 482.6"	T12a = 480" T12b = 485.4"	T12a = 6" T12b = 2.75"	T12a = 2" T12b =0.9"	T12a = 0.18" T12b = N/A	Two regions: T12a and T12b				
T13	486" to 498"	T13a = 487.4" T13b = 492.9"	T13a = 488.6" T13b = 495.1"	T13a = 1.25" T13b = 2.25"	T13a = 0.5" T13b = 0.4"	T13a = 0.15" T13b = 0.10"	Two regions: T13a and T13b				
T14	500" to 512"	* * *	* * *	* * *	* * *	* * *	Blank				

							tion Technolo mage - Page	
Name:		BENCHMARK						
Date:			-					
Company	•							
Sensor De	esign:							
		1	1		CALI	BRATION DA	TA	
		Calibration Dent Location	Length	Depth	Measured Length	Measured Depth	Smooth or Gouged?	Comments
		inches from end A to center of dent	inches	% Diameter	inches	% Diameter		
					ical Damag	e Pipe SAN	IPLE 1 (41' 5	.5")
	n Dent Q01: n Dent Q02:	117" 82"	6	<u>6%</u> 3%				
	n Dent Q02:	46"	0	3% 6%				
Calibratio	in Denit Q03.	40	0		ical Damao	e Pipe SAM	IPLE 2 (40' 1	5")
Calibratio	n Dent R01:	42.25"	3.5	1.2%				
Calibratio	n Dent R02:	73.25"	8.5	0.8%				
						TEST DATA		
Pipe Sam							SAMPLE 1	
Defect Se	et:				24"	Diameter P	pe with Mecha	inical Damage
Defect Number	Search Region (Distance from End A)	Start of Dent from Side A		Total Length of Dent	Depth of Dent (% Dia.)	Smooth or	Gouged Dent?	Comments
	inches	inches	inches	inches	%			
Q1	406" to 430"	414.4"	414.7"	0.25"	<mark>6</mark> %		Smooth Gouged None	Gouge ~25% loss in wall thickness
Q2	370" to 394"	* * *	* * *	* * *	* * *		Smooth Gouged None	Actually has only a gouge measuring 2" in length with ~5% loss in wall thickness
Q3	334" to 358"	343"	349"	6"	3%		Smooth Gouged None	Gouge ~5% loss in wall thickness
Q4	298" to 322"	307"	309"	2"	3%		Smooth Gouged None	Gouge ~5% loss in wall thickness
Q5	262" to 286"	270.9"	271.1"	0.25"	3%		Smooth Gouged None	Gouge ~5% loss in wall thickness
Q6	226" to 250"	* * *	* * *	* * *	* * *		Smooth Gouged None	Blank

						g of Inspection Technolog chanical Damage - Page 2						
Name:		BENCHMARK	ζ									
Date:												
Company	/:											
Sensor D	esign:											
					-	TEST DATA						
Pipe Sam						SAMPLE 2						
Defect Se	et:				24"	Diameter Pipe with Mechan	ical Damage					
Defect Number	Search Region (Distance from End A)	Start of Dent from Side A			Depth of Dent (% Dia.)	Smooth or Gouged Dent?	Comments					
	inches	inches	inches	inches	%							
R03	96" to 120"	107.25"	111.25"	4.0"	1.21%	☑ Smooth □ Gouged □ None	R03 = Calibration Dent R01 = R06					
R04	132" to 156"	139"	149"	10.0"	0.96%	Image: Smooth Image: Gouged Image: None	R04 = R08 = R10					
R05	168" to 192"	178.75"	187.25"	8.5"	0.83%	Image: Smooth Image: Gouged Image: None	R05 = Calibration Dent R02 = R07 = R09					
R06	204" to 228"	215"	219"	4.0"	1.21%	Image: Smooth Image: Gouged Image: None	R03 = Calibration Dent R01 = R06					
R07	240" to 264"	248.75"	257.25"	8.5"	0.83%	☑ Smooth □ Gouged □ None	R05 = Calibration Dent R02 = R07 = R09					
R08	276" to 300"	284.5"	294.5"	10.0"	0.96%	Image: Smooth Image: Gouged Image: None	R04 = R08 = R10					
R09	312" to 336"	320.75"	329.25"	8.5"	0.83%	Smooth Gouged None	R05 = Calibration Dent R02 = R07 = R09					
R10	348" to 372"	355.5"	365.5"	10.0"	0.96%	Image: Smooth Image: Gouged Image: None	R04 = R08 = R10					
R11	384" to 408"	* * *	***	* * *	* * *	□ Smooth □ Gouged ☑ None	Blank					

					elle Benchmarking of Ins ection of Mechanical Dan						
Name:		BENCHMARK									
Date:											
Company	:										
Sensor D	esign:										
		•									
CALIBRATION DATA											
		Calibration Dent Location	Dent	Depth of Dent	Dent Severity	Comments					
					0 = No dent						
					1 = Least Severe						
		inches from end A to center of dent	inchos	% Diamotor	2 = Moderate Severity 3 = Most Severe						
			inches		anical Damage Pipe SAMF	PLE 1 (41' 5.5")					
	n Dent Q01:	117"	6	6%	3						
	n Dent Q02:	82"	2	3%	2						
Calibratic	n Dent Q03:	46"	0	6%	1 Dine CAME						
Calibratio	n Dent R01:	42.25"	3.5	1.2%	anical Damage Pipe SAMF	*LE Z (40 1.3 [°])					
	n Dent R02:	73.25"	8.5	0.8%	2						
					I						
Pipe Sam	nla				TEST DATA	SAMPLE 1					
Defect Se						e with Mechanical Damage					
Derection											
Defect Number	Search Region (Distance from End A to Center of Dent)	Dent Severity				Commments					
	inches	0 = No dent 1 = Least Severe 2 = Moderate Severity 3 = Most Severe									
Q1	416.5"	1			This de	nt is similar to calibration defect Q03					
Q3	347"	3-	This dent is similar to calibration defect Q01 but is only 3% deep rather than 6%								
Q4	309.5"	2	This dent is similar to calibration defect Q02								
Q5	272"	1-	This dent is similar to calibration defect Q03 but is only 3% deep rather than 6%								
Q6	239.5"	0		Blank							

			PNNL/Battelle Benchmarking of Inspection Technologies Detection of Mechanical Damage - Page 2							
Name:		BENCHMARK								
Date:										
Company										
Sensor D	Sensor Design:									
			TEST DATA							
Pipe Sam	ple:		SAMPLE 2							
Defect Se	et:		24" Diameter Pipe with Mechanical Damage							
Number	Search Region (Distance from End A to Center of Dent)	Dent Severity	Comments							
		0 = No dent 1 = Least Severe 2 = Moderate Severity 3 = Most Severe								
R03	109.25"	1	R03 = Calibration Dent R01 = R06							
R04	144"	3	R04 = R08 = R10							
R05	183"	2	R05 = Calibration Dent R02 = R07 = R09							
R06	217"	1	R03 = Calibration Dent R01 = R06							
R07	253"	2	R05 = Calibration Dent R02 = R07 = R09							
R08	289.5"	3	R04 = R08 = R10							
R09	325"	2	R05 = Calibration Dent R02 = R07 = R09							
R10	360.5"	3	R04 = R08 = R10							
R11	397"	0	Blank							

				Benchm	narking of I Detection	nspection T of SCC - Pag	echnologies ge 1
Name:		BENCHMARK					
Date:							
Company:							
Sensor De	sign:						
		Calibration				ATION DATA	
		Crack	Length	Depth	Measured Length	Measured Depth	Comments
		inches from end A	inches	% wall thickness			
Manufactu	red Crack 1:		1	25%			
Manufactu	red Crack 2:		1	50%			
	red Crack 3:		1	75%			
Blank Area	a:						
					TE	ST DATA	
Pipe Samp					001 5:		1093
Defect Set					30° Dia		vith Stress Corrosion Cracks
							LINE 1
Defect Number	Search Region (Distance from End A)		End of Crack Region from Side A		Type of SCC	2	Comments
	inches	inches	inches				
SCC1 (11)	60" to 70"	63"	63"		I solated Colony of Colony of Colony of Colony	racks	1 crack; ~1/4" long
SCC2 (8)	70" to 80"	75"	75"		I solated Control Colony of Colony o		1 crack; ~1/4" long
SCC3 (7)	80" to 90"	82"	84.5"		Isolated Cra Colony of C None		2 cracks; 1 crack ~ 2" long
SCC4 (Blank 1)	90" to 100"	* * *	* * *		□ Isolated Crack □ Colony of Cracks		Blank
SCC5 (Blank 2)	110" to 120"	* * *	* * *		Isolated Cra Colony of Ci None		Blank
SCC6 (1 & 2)	130" to 140"	137"	138"		Isolated Cra Colony of (None		2 cracks; 1 crack ~ 1" long

				Bench	marking of Inspection T Detection of SCC - Pag					
Name:		BENCHMARK								
Date:										
Company:										
Sensor Des	sign:									
					TEST DATA					
Pipe Samp					TEST DATA	1093				
Defect Set					30" Diameter Pipe with 9	Stress Corrosion Cracks - LINE 2				
Deleter eet	•									
			End of							
Defect Number	Search Region (Distance from End A)				Type of SCC	Comments				
	inches	inches	inches							
SCC7 (12)	60" to 75"	61"	67"	Isolated Crack Colony of Cracks None		Large colony of cracks				
SCC8 (Blank 3)	75" to 90"	* * *	* * *		Isolated Crack Colony of Cracks None	Blank				
SCC9 (Blank 4)	90" to 105"	* * *	* * *		Isolated Crack Colony of Cracks None	Blank				
SCC10 (Blank 5) 105" to 120"		* * *	* * *	Isolated Crack Colony of Cracks None		Blank				
SCC11 (Blank 6)	120" to 135"	* * *	***		Isolated Crack Colony of Cracks None	Blank				

				Bench	nmarking of Inspection T Detection of SCC - Pag	
Name:		BENCHMARK				
Date:						
Company:						
Sensor Des	sian					
0011001 200						
					TEST DATA	
Pipe Samp	le:					1093
Defect Set					30" Diameter Pipe with S	Stress Corrosion Cracks - LINE 3
						LINE 3
Defect Number	Search Region (Distance from End A)	Region from	End of Crack Region from Side A	Type of SCC		Comments
	inches	inches	inches			
SCC12 (13,14,&1 5)	60" to 75"	62"	71"		Isolated Crack Colony of Cracks None	Relatively small cracks in the same general vicinity
SCC13 (9)	75" to 90"	78"	84"		Isolated Crack Colony of Cracks None	-
SCC14 90" to 105" 94" Isolated Crack (6) 90" to 105" 94" □ Colony of Cracks		1 crack; ~1/4" long				
SCC15 SCC15		Isolated Crack Colony of Cracks	1 crack; ~1 1/2" long			
SCC16 (Blank 7) 120" to 135"		* * *	* * *		Isolated Crack Colony of Cracks None	Blank

APPENDIX B – DEMONSTRATION TEST DATA

					ing of Inspecti ion of Metal Lo		es					
Name:		Bruce Nestlero	th									
Date:		8-Oct-04										
Company:	:	Battelle										
Sensor De		Rotating perma	anent magnet e	eddy current								
			anone magnee	saay sanon								
				T	CALIBRATION D		-					
		CalibrationMetal LossMetal LossLength &LocationWidth		Depth of Metal Loss	Radius of Curvature	Measured Length & Width of Defect	Measured Depth of Defect	Comments				
		inches from end A	inches	inches	inches							
			11101103		prrosion Pipe S	ample (48' 2")					
Calibratio		60"	1"	0.3"	0.557"							
Calibration Calibration		96"	1.475"	0.21"	1.417" 1.417"							
Calibratio	n 13:	401"	1.475"		ed Metal Loss P	ine Samnle (3	21)					
Groove De	efect 1:	55"	0.5"	0.09"	0.25"							
Groove De	efect 2:	329"	0.5"	0.14"	0.25"							
Calibratio	n MC01:	90"	1.2" long x 3" wide	0.29	0.933							
					TEST DATA							
Pipe Sam		Manufactured Corrosion Sample 12" Diameter, 0.358" Wall Thickness Pipe Sample with Manufactured Metal Loss										
Defect Se	1:		I	2 Diameter, C	1.358 Wall Thick	LINE 1	bie with Manula					
Defect Number	Search Region (Distance from End A)	Start of Metal Loss Region from Side A	End of Metal Loss Region from Side A	Total Length of Metal Loss Region	Width of Metal Loss Region	Maximum Depth of Metal Loss Region		Comments				
	inches	inches	inches	inches	inches	inches						
MC02	126" to 138"							No Clear Signal Detected				
MC03	144" to 156"							No Clear Signal Detected				
MCO4	162" to 174"							No Clear Signal Detected				
MC05	186" to 198"							No Clear Signal Detected				
MC06	210" to 222"							No Clear Signal Detected				
MC07	234" to 246"	Cent	ered	2 inches		Meduim						
MC08	264" to 276"							No Clear Signal Detected				
MC09	282" to 294"	Cent	ered	2.5 inches		Deep		Largest Signal				
MC10	306" to 318"											

					ing of Inspecti ion of Metal Lo	ion Technologi oss - Page 2	es						
Name:		Bruce Nestlero	th										
Date: 8-Oct													
Company	:	Battelle											
Sensor De	esign:	Rotating Permanent Magnet Eddy Current											
					TEST DATA								
Pipe Sam					Manufac	tured Corrosio	n Sample						
Defect Se	t:		12" Diameter, 0.358" Wall Thickness Pipe Sample with Manufactured Metal Loss										
				1		LINE 2							
Defect Number	Search Region (Distance from End A)	Start of Metal Loss Region from Side A	End of Metal Loss Region from Side A	Total Length of Metal Loss Region	Width of Metal Loss Region	Maximum Depth of Metal Loss Region	Comments						
	inches	inches	inches	inches	inches	inches							
MC11	78" to 90"						No Clear Signal Detected						
MC12	102" to 114"	Cent	ered	1 inch		small							
MC13	138" to 150"						No Clear Signal Detected						
MC14	174" to 186"						No Clear Signal Detected						
MC15	198" to 210"	Cent	ered	1.5 inch		Medium							
MC16	222" to 234"						No Clear Signal Detected						
MC17	246" to 258"	Centered		1 inch		Deep							
MC18	272" to 284"						No Clear Signal Detected						
MC19	288" to 300"						No Clear Signal Detected						

				Benchmark	ing of Inspecti ion of Metal Lo	ion Technologi	es						
Name:		Bruce Nestlero	th	Delect		555 - Faye 5							
Date:		Didee Nestiero											
Company	•	Battelle											
Sensor De													
Sch30r DC	Rotating Permanent Magnet Eddy Current												
					TEST DATA	A							
Pipe Sam		Natural Corrosion Sample											
Defect Se	t:		1	2" Diameter, 0	.31" to 0.38" W	all Thickness Pip	be Sample with Natural Corrosion						
Defect Number	Search Region (Distance from End A)	Start of Metal Loss Region from Side A	Loss Region from Side A	Total Length of Metal Loss Region	Width of Metal Loss Region	Loss Region	Comments						
	inches	inches	inches	inches	inches	inches							
T01	144" to 156"						Technique was not sucessful at this time						
T02	180" to 192"						No Clear Signal Detected						
T03	216" to 228"												
T04	260" to 272"												
T05	272" to 284"												
T06	284" to 296"												
T07	296" to 308"												
Т08	348" to 360"												
T09	360" to 372"												
T10	438" to 450"												
T11	462" to 474"												
T12	474" to 486"												
T13	486" to 498"												
T14	500" to 512"												

						Inspection Teo Metal Loss - Pa								
Name:		Albert Teitsma	1											
Date:								6-Oct-04						
Company	:	Gas Technolog	gy Insitute											
Sensor De	esign:	12" Remote Fi	eld Eddy Curre	ent Tool										
		•			CALIPI	RATION DATA								
		Calibration Metal Loss Location	Metal Loss Length & Width	Depth of Metal Loss	Radius of Curvature	Measured Length & Width of Defect	Measured Depth of Defect	Comments						
Monuf M	etal Loss 1:	inches from end A 60"	inches	inches 0.3	inches 0.557									
	etal Loss 1:	96"	1.475	0.3	1.417									
Manuf. Me	etal Loss 3:	401"	1.475	0.21	1.417									
					TE	ST DATA								
Pipe Sam						Manufactured (Corrosion San	nple						
Defect Se	et:		12" Diameter, 0.375" Wall Thickness Pipe Sample with Manufactured Metal Loss LINE 1											
							NE 1							
Defect Number	Search Region (Distance from End A)	Loss Region from Side A	End of Metal Loss Region from Side A	Total Length of Metal Loss Region		Maximum Depth of Metal Loss Region		Comments						
	inches	inches	inches	inches	inches	inches								
MC01	66" to 78"													
MC02	84" to 96"													
MC03	126" to 138"	129	132.4	2.6	1.1	0.243 (68%)	S	art of and end of signal are given here and below.						
MC04	144" to 156"							No defect detected						
MC05	162" to 174"							No defect detected						
MC06	186" to 198"	190	191.8	1	1.1	0.258 (72%)								
MC07	210" to 222"	236.9 238.2	238.7 240	1.1	0.75	0.211 (59%)		Two axially aligned pitts closely spaced.						
MC08	234" to 246"	200.2	270		0.75	5.227 (0770)		No defect detected						
MC09	264" to 276"							No defect detected						
MC10	282" to 294"	283	285.3	1.7	2.6	0.279 (78%)								
MC11	306" to 318"					(No defect detected						

				Bend	hmarking of I Detection of M	nspection Tec Metal Loss - Pa							
Name:		Albert Teitsma											
Date:							6-Oct-04						
Company	:	GTI											
Sensor De	esign:	RFEC	······································										
						ST DATA							
Pipe Sam						Manufactured C	Corrosion Sample						
Defect Se	et:			12" Dian	neter, 0.375" W		pe Sample with Manufactured Metal Loss NE 2						
Defect Number	Search Region (Distance from End A)	Start of Metal Loss Region from Side A	End of Metal Loss Region from Side A	Total Length of Metal Loss Region	Width of Metal Loss Region	Maximum	Comments						
	inches	inches	inches	inches	inches	inches							
MC12	78" to 90"						No defect detected						
MC13	102" to 114"	105.6	109	2.6	3.4	0.118 (33%)							
MC14	138" to 150"						No defect detected						
MC15	174" to 186"						No defect detected						
MC16	198" to 210"	202.9	204.7	1	0.75	0.143 (40%)							
MC17	222" to 234"						No defect detected						
MC18	246" to 258"	249	251.5	1.7	3.4	0.226 (63%)							
MC19	272" to 284"						No defect detected						
MC20	288" to 300"	290	292.2	1.4	1.9	0.1 (28%)							

Benchmarking of Inspection Technologies Detection of Metal Loss - Page 1													
Name:		Gary L. Burkhardt											
Date:		9/14/2004											
Company:		Southwest Research Institute											
Sensor De	esign:	Collapsible RF	EC										
		CALIBRATION DATA Calibration Metal Loss Death of Deating of Measured Measured											
			Length & Width	Depth of Metal Loss	Radius of Curvature	Length & Width of Defect	Depth of Defect	Comments					
		inches from end A	inches	inches	inches								
		1	1	Natural C	orrosion Pip	pe Sample (48' 2	2")						
Calibration		60	1	0.3	0.557								
Calibration		96	1.475	0.21	1.417			 					
Calibration	n T3:	401	1.475	0.21	1.417		(2.2.1)	1					
	C					ss Pipe Sample	(32')						
Groove De Groove De		55 329	0.5	0.09	0.25								
GIOOVE DE	elect 2.	329		0.14	0.25								
Calibration	n MC01:	90	1.2 long x 3 wide	0.29	0.933								
			•		TEST D	ΑΤΑ							
Pipe Samp	ole:				Manu	Ifactured Corros	ion Sample						
Defect Set	t:		12	" Diameter,	0.358" Wall T	hickness Pipe Sar	mple with Man	ufactured Metal Loss					
						LINE 1							
Defect Number	Search Region (Distance from End A)	Start of Metal Loss Region from Side A	End of Metal Loss Region from Side A	Total Length of Metal Loss Region	Width of Metal Loss Region	Maximum Depth of Metal Loss Region	Comments						
	inches	inches	inches	inches	inches	inches							
MC02	126" to 138"	130.83	133.26	2.43	2.5	0.06							
MC03	144" to 156"												
MC04 162" to 174"													
MC05 186" to 198"		191.31	192.93	1.62	2.5	0.16							
MC06 210" to 222"													
MC07 234" to 246"		239.10	240.99	1.89	1.5	0.12							
MC08	264" to 276"												
MC09	282" to 294"	286.08	287.70	1.62	3.0	0.22							
MC10	306" to 318"												

Benchmarking of Inspection Technologies												
Detection of Metal Loss - Page 2												
Name:		Gary L. Burkhardt										
Date:	Date:		9/14/2004									
Company:		Southwest Research Institute										
Sensor De	esign:	Collapsible RFEC										
					TEST D							
Pipe Sam			Manufactured Corrosion Sample									
Defect Se	t:		12" Diameter, 0.358" Wall Thickness Pipe Sample with Manufactured Metal Loss									
Defect Number	Search Region (Distance from End A)	Start of Metal Loss Region from Side A	End of Metal Loss Region from Side A	Total Length of Metal Loss Region	Width of Metal Loss Region	LINE 2 Maximum Depth of Metal Loss Region	Comments					
	inches	inches	inches	inches	inches	inches						
MC11	78" to 90"											
MC12	102" to 114"	107.05	109.74	2.69	2.5	0.16						
MC13	138" to 150"											
MC14	174" to 186"											
MC15	198" to 210"	203.49	204.57	1.08	2.0	0.05						
MC16	222" to 234"											
MC17	246" to 258"	251.45	253.07	1.62	3.0	0.21						
MC18	272" to 284"											
MC19 288" to 300"		292.67	293.75	1.08	1.5	0.08						

Benchmarking of Inspection Technologies Detection of Metal Loss - Page 3												
Name:		Gary L. Burkhardt										
Date:		9/15/2004										
Company:		Southwest Research Institute										
Sensor De	esign:	Collapsible RFEC										
		TEST DATA										
Pipe Sample:		Natural Corrosion Sample										
Defect Se	Defect Set:		12" Diameter, 0.31" to 0.38" Wall Thickness Pipe Sample with Natural Corrosion									
Defect Number End A)		Start of Metal Loss Region from	End of Metal Loss Region from	Total Length of Metal Loss	Width of Metal Loss Region	Maximum Depth of Metal Loss Region	Comments					
	inches	inches	inches	inches	inches	inches						
T01	144" to 156"	146.53	155.84	9.31	3.0	0.09						
T02	180" to 192"	191.11	191.87	0.76	1.0	0.11						
T03	216" to 228"											
T04	260" to 272"											
T05	272" to 284"	273.58	284.00	10.42	4.5	0.15	T05 defect extends into T06.					
T06	284" to 296"	284.00	288.66	4.66	2.0	0.15	T05 defect extends into T06.					
T07	296" to 308"											
T08	348" to 360"											
T09	360" to 372"	364.67	366.24	1.57	1.5	0.09						
T10	438" to 450"											
T11a	462" to 474"	465.56	469.03	3.47	2.0	0.05	Two separate defects in T11 area.					
T11b	462" to 474"	471.54	473.39	1.85	2.0	0.04	T11b may be part of T12.					
T12	474" to 486"	475.11	477.28	2.17	3.0	0.08						
T13	486" to 498"	492.32	493.22	0.90	0.5	0.29	Signal only on one scan line; difficult to characterize.					
T14	500" to 512"											

					marking of I etection of N			
Name: Date:		Li Zhang						
Company:		FBS, Inc.						
Sensor Design:		TeleTest						
		TeleTest						
	CALIBRATION DATA							
		Calibration Metal Loss Location	Metal Loss Length & Width	Depth of Metal Loss	Radius of Curvature	Measured Length & Width of Defect	Measured Depth of Defect	Comments
		inches from end A	inches		inches ral Corrosior	n Pipe Samp	le (48' 2")	
Calibrati Calibrati		60" 96"	1" 1.475"	0.3" 0.21"	0.557" 1.417"			
Calibrati		401"	1.475"	0.21"	1.417"			
Greeve	Defect 1:	55"	0.5"	Manufa 0.09"	ctured Meta 0.25"	Loss Pipe 9	Sample (32)
	Defect 2:	329"	0.5"	0.09	0.25			1 1 1
o - l'h t'	MOOL		1.2" long x	0.00				
Calibrati	on MC01:	90"	3" wide	0.29	0.933 TE:	ST DATA		
Pipe San				a oll e l	Ma	nufactured (
Defect S	et:			12" Diamet	er, 0.358" Wa		ipe Sample NE 1	with Manufactured Metal Loss
Defect Number	Search Region (Distance from End A)	Start of Metal Loss Region from Side A	End of Metal Loss Region from Side A inches	Total Length of Metal Loss Region	Width of Metal Loss Region	Maximum Depth of Metal Loss Region		Comments
MC02	inches 126" to 138"	inches 133	Inches	inches	inches	inches		Small and present in all guadrants
MC03	144" to 156"	144						Small and present in quadrants 1, 2, and 3
MC04	162" to 174"	174						Very small; May be located at 270 degrees
MC05	186" to 198"	193						Moderate size at 270 degrees
MC06	210" to 222"	215						Very small located at 90 degrees
MC07	234" to 246"	241						Moderate size at 270 degrees
MC08	264" to 276"							No call; too close to a weld
MC09	282" to 294"	286						Small located at 270 degrees
MC10	306" to 318"						N	call;Overlapped with mode converted signals
					narking of I etection of №			
Name:		Li Zhang						
Date:						28-Sep-04		
Company		FBS, Inc.						
Sensor D)esign:	TeleTest						
					TES			
Pipe Sam				10" Diamat		ample		
Defect S				12 Diamet	01,0,330 Wa	with Manufactured Metal Loss		
Defect Number	Search Region (Distance from End A) inches	Start of Metal Loss Region from Side A inches	End of Metal Loss Region from Side A inches	Total Length of Metal Loss Region inches	Width of Metal Loss Region inches	Maximum Depth of Metal Loss Region inches	NE 2	Comments
MC11	78" to 90"	mones	mones	incites	110/103	mones		No Call
MC12	102" to 114"	108						Small located at 90 degrees
MC13	138" to 150"	144						Small and present in quadrants 1, 2, and 3
MC14	174" to 186"	184						Very small and possibly at 90 degrees
MC15	198" to 210"	204						Moderate located 90 degrees
MC16	222" to 234"						Possib	y a very small defect at 229 inches at 270 degrees
MC17	246" to 258"	253					L	argest defect noted and located at 90 degrees
MC18	272" to 284"						N	call;Overlapped with mode converted signals
MC19	288" to 300"	295						Small and present in all guadrants

						nspection Te 1etal Loss - I		\$
Name:		Li Zhang						
Date:						28-Sep-04		
Compan	у:	FBS, Inc.						
Sensor [Design:	TeleTest						
					TE	ST DATA		
Pipe Sar	nple:					Natural Corr	osion Sar	ple
Defect S	et:			12" Diamet	er, 0.31" to 0.	38" Wall Thick	ness Pipe S	ample with Natural Corrosion
Defect Number	Search Region (Distance <u>from End A)</u>	Start of Metal Loss Region from Side A	from Side A	Total Length of Metal Loss Region	Width of Metal Loss Region	Maximum Depth of Metal Loss Region		Comments
	inches	inches	inches	inches	inches	inches		
T01	144" to 156"	142	156					Large located in quadrants 1 and 4
T02	180" to 192"	188	197					Large located in quadrants 3 and 4
т03	216" to 228"	224	240					Moderate located in quadrant 1
T04	260" to 272"	262						Moderate located in quadrant 2
T05	272" to 284"	272	284					No call
T06	284" to 296"	288						Small located in quadrant 2
T07	296" to 308"	300						Small located in quadrants 3 & 4
т08	348" to 360"	350						Large located in quadrants 2 & 4
т09	360" to 372"	360						Moderate located in quadrants 3 & 4
T10	438" to 450"	448						Moderate located in all quadrants
T11	462" to 474"	470						Large located in quadrants 1 & 4
T12	474" to 486"	475	481					Large located in guadrants 3 & 4 (with T13)
T13	486" to 498"	475	481					Large located in quadrants 3 & 4 (with T12)
T14	500" to 512"	502						Moderate located in all quadrants

					enchmarking of Inspection T							
				D	etection of Mechanical Dama	age - Page 1						
Name:		Paul D. Panetta and George A	Alers									
Date:		October 8, 2004	tober 8, 2004									
Company	:	acific Northwest National Laboratory and EMAT Consulting										
Sensor De	esign:	Electromagnetic Acoustic Tra	nsducers (EN	/IAT)								
			Length of	Depth of	CALIBRATION DATA							
		Calibration Dent Location	Dent	Depth of	Dent Severity	Comments						
		inches from end A to center of dent	inches		0 = No dent 1 = Least Severe 2 = Moderate Severity r 3 = Most Severe							
0.111.11	D 1 001	4478	,		hanical Damage Pipe SAMPL							
	n Dent Q01: n Dent Q02:	117" 82"	6	<u>6%</u> 3%	3	These calibration defects were in the portion of the pipe that burst, thus making them unusable as calibration defects.						
	n Dent Q02: n Dent Q03:	46"	0	<u> </u>	<u>∠</u> 1	Further study is needed on these types of pipes.						
canbratio		40	0		hanical Damage Pipe SAMPL							
Calibratio	n Dent R01:	42.25"	3.5	1.2%	1	Localized damage						
	n Dent R02:	73.25"	8.5	0.8%	2	moderate damage over large area						
Pipe Sam						AMPLE 1						
Defect Se	et:				24" Diameter Pipe	with Mechanical Damage						
Defect Number	Search Region (Distance from End A to Center of Dent)	Dent Severity				Comments						
	inches	0 = No dent 1 = Least Severe 2 = Moderate Severity 3 = Most Severe										
Q1	416.5"	3	Proc	essing histo	ry (bursting, rerounding, rotatir	ng and welding) produced significant deviations in material properties from "normal"						
Q3	347"	1	Proc	essing histo	ry (bursting, rerounding, rotatir	ng and welding) produced significant deviations in material properties from "normal"						
Q4	309.5"	2	Proc	essing histo	ry (bursting, rerounding, rotatir	ng and welding) produced significant deviations in material properties from "normal"						
Q5	272"	1.5	Proc	essing histo	ry (bursting, rerounding, rotatir	ng and welding) produced significant deviations in material properties from "normal"						
Q6	239.5"	nconclusive (burst pipe section	Proc	essing histo	ry (bursting, rerounding, rotatir	ng and welding) produced significant deviations in material properties from "normal"						

			Benchmarking of Inspection Technologies Detection of Mechanical Damage - Page 2									
Name:		Paul D. Panetta and George	Alers									
Date:		October 8, 2004										
Company	:	Pacific Northwest National La	aboratory and EMAT Consulting									
Sensor De	esign:	Electromagnetic Acoustic Tra	ansducers (EMAT)									
			TEST DATA									
Pipe Sam		SAMPLE 2										
Defect Se	t:		24" Diameter Pipe with Mechanical Damage									
Defect Number	Search Region (Distance from End A to Center of Dent)	Dopt Soverity	Comments									
	inches	0 = No dent 1 = Least Severe 2 = Moderate Severity 3 = Most Severe										
R03	109.25"	1	localized damage									
R04	144"	2	moderate damage over large area, may be influenced by damage from R05									
R05	183"	3	severe damage over large area									
R06	217"	1	localized damage, may be influenced by damage from R05									
R07	253"	2	moderate damage over large area, may be influenced by damage from R08									
R08	289.5"	3	severe damage over large area									
R09	325"	2.5	moderate damage over large area, may be influenced by neighboring dents									
R10	360.5"	3	severe damage over large area									
R11	397"	0	No dent - baseline material									

					nspection Technologies anical Damage - Page 1				
Name:			0000		annoar Danhage Trage T				
Date:									
Company									
Sensor De	esign:								
				CALIBR	ATION DATA				
		Calibration Dent Location	Length of	Depth of	Dent Severity	Comments			
		Calibration Dent Location	Dent	Dent	0 = No dent	Comments			
					1 = Least Severe				
		inches from end A to center			2 = Moderate Severity				
		of dent	inches	% Diameter	3 = Most Severe				
				ical Damage	Pipe SAMPLE 1 (41' 5.5")				
	n Dent Q01:	117"	6	6%	3				
	n Dent Q02: n Dent Q03:	82" 46"	2	3% 6%	2				
Calibratio	in Dent Q03:	48			Pipe SAMPLE 2 (40' 1.5")				
Calibratio	n Dent R01:	42.25"	3.5	1.2%	1				
Calibratio	n Dent R02:	73.25"	8.5	0.8%	2				
				TE	ST DATA				
Pipe Sam	ple:			12	SAMPLE 1				
Defect Se				24" D	iameter Pipe with Mechanica	I Damage			
Defect Number	Search Region (Distance from End A to Center of Dent)	Dent Severity	Comments						
	inches	0 = No dent 1 = Least Severe 2 = Moderate Severity 3 = Most Severe							
						gth less than an inch			
Q1	416.5"	1+		Cleation		al stress over scan area			
		1+		Simila	i to calibration dent Q03, bu	it with more gouging and some reround			
Q2	382"				3 inch remo	ved metal region			
		0				ound or residual stress			
						d length 6 inches			
Q3	347"	2	Cirre !!	or to collibratio	5	al stress over scan area			
-		3	Similar to calibration dent Q01, but with less gouging and stresses. Still severe, but less than Q01 Cold worked length 2 inches						
Q4	309.5"					es stress extend +/- 5inch			
		2			Simil	lar to Q02			
						gth less than an inch			
Q5	272"					al stress over scan area			
		1+			Similar to calibratio	on dent Q03, but smaller			
Q6	239.5"	0				ty – 0 (No Dent) d work or stress signal			

			Benchmarking of Inspection Technologies Detection of Mechanical Damage - Page 2
Name:			X X
Date:			
Company	:		
Sensor D	esign:		
Dine Cert	ala:		TEST DATA SAMPLE 2
Pipe Sam Defect Se			24" Diameter Pipe with Mechanical Damage
Delect Se			24 Diameter ripe with wechanical Damage
Defect Number	Search Region (Distance from End A to Center of Dent)	Dent Severity	Comments
	inches	0 = No dent 1 = Least Severe 2 = Moderate Severity 3 = Most Severe	Relative to the other defects in this pipe.
R03	109.25"	1	Essentially similar to R01
R04	144"	3	R04 and R08 and R10 are essentially similar with slightly more stress than R02
R05	183"	2	Essentially similar to R02
R06	217"	1	Essentially similar to R01
R07	253"	2	Essentially similar to R02
R08	289.5"	3	R04 and R08 and R10 are essentially similar with slightly more stress than R02
R09	325"	2	Essentially similar to R02
R10	360.5"	3	R04 and R08 and R10 are essentially similar with slightly more stress than R02
R11	397"	0	No Dent

							Technologie nage - Page					
Name:		Dipen Sinha										
Date:		8-Oct-04	3-Oct-04									
Company	/:	Los Alamos Na	ational Labor	atory								
Sensor D	esign:	Acoustic										
		•			CALIB	RATION DAT	Ā					
		Calibration Dent Location	Length	Depth	Smooth or Gouged?	Measured Length	Measured Depth	Comments				
		inches from end A to center of dent	inches	% Diameter		inches	% Diameter					
Manufact	ured Dent 1:	380.5"	6	6%	Gouged		5.5	Mexican hat shaped, center: 380.5, depth 5.5%				
	ured Dent 2:	415.5"	2	3%	Gouged	4	2.5					
Manufact	ured Dent 3:	451.5"	0	6%	Smooth		5.8					
					TE	ST DATA						
Pipe Sam Defect Se					24" Г		SAMPLE 1	nical Damage				
Delect Je	51.				24 L			nical Damage				
Defect Number	Search Region (Distance from End A)	Start of Dent from Side A	End of Dent from Side A	Total Length of Dent	Depth of Dent (% Dia.)		or Gouged ent?	Comments				
	inches	inches	inches	inches	%							
Q1	66" to 90"	82	88	6	6.9		Smooth Gouged None	Incomplete data due to sensor transporter near edge Dent Center: 85 inch				
Q2	102" to 126"	94	105	11	1.6		Smooth Gouged None	A series of 3 small dents Dent center: 102				
Q3	138" to 162"	147.4	156.5	9	6		Smooth Gouged None	Double asymmetric dent Dent center: 152				
Q4	174" to 198"	187.8	193.5	5.7	7		Smooth Gouged None	Single clean dent Dent center: 191				
Q5	210" to 234"	223.8	230.8	7	7		Smooth Gouged None	Sharp deep dent Dent center: 227				
Q6	246" to 270"						Smooth Gouged	Could not see anythin meaningful				
20							None					

							ion Technologie Damage - Page						
Name:		Dipen Sinha											
Date:		8-Oct-04											
Company: Los Alamos National Laboratory													
Sensor Design: Acoustic													
					TE	ST DAT							
Pipe Sam			SAMPLE 2										
Defect Se	et:				24" D	iameter	Pipe with Mechar	nical Damage					
Defect Number	Search Region (Distance from End A)	Start of Dent from Side A	End of Dent from Side A	Total Length of Dent	Depth of Dent (% Dia.)	Smo	oth or Gouged Dent?	Comments					
	inches	inches	inches	inches	%								
Det						<u> </u>	Smooth	Nice single dent - well defined rounded					
R01	24" to 48"	20	10	2	2.2		Gouged	Dent center: 39					
		38	40	2	2.2	 	None Smooth	Peak of the dent looks flat instead of round					
R02	60" to 84"				·		Gouged	Fear of the dent looks hat histead of found					
1102	00 10 04	67	73	6	1.4		None	Dent center: 70					
						1	Smooth	Nice rounded dent with slighter wider lip					
R03	96" to 120"						Gouged	5					
		105	107	2	1.3		None	Dent center: 106					
						I	Smooth	Slightly asymmetric depth of dent - the top of peak					
R04	132" to 156"	100	144	,	1 /		Gouged	slightly slanted					
		138	144	6	1.6	 	None Smooth	Dent center: 142 Wide peak with flat peak - nice smooth dent					
R05	168" to 192"						Gouged	wide peak with hat peak - flice shouth defit					
Roo	100 10 172	176	183	6	2		None	Dent center: 178					
						1	Smooth	Sharp peak - nice smooth dent					
R06	204" to 228"						Gouged						
		212	214	2	2.1		None	Dent center: 213.5					
507						V	Smooth	Broad peak with extra lipo and flat peak top					
R07	240" to 264"	247	253	۷	1.7		Gouged None	Dont contor: 250					
		247	200	6	1.7	 	Smooth	Dent center: 250 Same as above					
R08	276" to 300"						Gouged	Same as above					
1100	270 10 000	283	289	6	2		None	Dent center: 286					
			_			7	Smooth	Same as above except top of dent slightly tilted					
R09	312" to 336"						Gouged						
		319	324	6	1.9		None	Dent center: 321.4					
540	0.40%						Smooth	Did not collect data					
R10	348" to 372"						Gouged	Our transporter did not reach that far					
							None Smooth	Did not collect data					
R11	384" to 408"						Gouged						
							None						

				Benchm		nspection T of SCC - Pag	echnologies ie 1					
Name:		Venugopal K.	Varma, Raymo	nd Tucker, J								
Date:		10/1/2004	D/1/2004									
Company: Oak Ridge National Laboratory												
Sensor D	esign:	Shear Horzinta	al EMAT									
	5											
					CALIBR	ATION DATA						
		Calibration Crack Location	Length	Depth	Measured Length	Measured Depth	Comments					
		inches from end A	inches	% wall thickness								
	ured Crack 1:	146.75	0.88	25%			EMAT calculated position at 146.36					
	ured Crack 2: ured Crack 3:	166.0625 170.625	1.212 1.204	48% 63%			EMAT calculated position at 166.06 EMAT calculated position at 170.69					
Blank Are		170.023	1.204	0070								
Pipe Sam	nle				TES	ST DATA	1093					
Defect Se					30" Diar		th Stress Corrosion Cracks					
							INE 1					
Defect Number	Search Region (Distance from End A)		End of Crack Region from Side A		Type of SCO	2	Comments					
	inches	inches	inches									
SCC1	60" to 70"				Isolated Cra Colony of Co None	racks	Interference from weld					
SCC2	70" to 80"	70	77		Isolated Cra Colony of Co None	racks						
SCC3	80" to 90"	82	90		Isolated Cra Colony of Colony							
SCC4	90" to 100"	96	99		Isolated Cra Colony of Co None	racks						
SCC5	110" to 120"				Isolated Cra Colony of Co None	racks						
SCC6	130" to 140"				Isolated Cra Colony of Co None							

				Bencl	nmarking of Inspection T Detection of SCC - Pag					
Name:		Venugopal K. Varma, Raymond Tucker, Austin Albright								
Date:		10/1/2004								
Company	/:	Oak Ridge Nat	ional Laborator	V						
Sensor D	esign:	Shear Horzinta	al EMAT							
		•			TEST DATA					
Pipe Sam	nple:					1093				
Defect Se		1			30" Diameter Pipe with S	tress Corrosion Cracks - LINE 2				
						INE 2				
Defect Number	Search Region (Distance from End A)	Start of Crack Region from Side A	End of Crack Region from Side A		Type of SCC	Comments				
	inches	inches	inches							
SCC7	60" to 75"	69	72		Isolated Crack Colony of Cracks None					
SCC8	75" to 90"	80	90		Isolated Crack Colony of Cracks None	75-80 single crack				
SCC9	90" to 105"	94	104		Isolated Crack Colony of Cracks None	-				
SCC10	105" to 120"	106	107.5		Isolated Crack Colony of Cracks None	109 to 112 isolated crack				
SCC11	120" to 135"	127	132		Isolated Crack Colony of Cracks None	-				

				Bencl	nmarking of Inspection Detection of SCC - Pa					
Name:		Venugopal K. Varma, Raymond Tucker, Austin Albright								
Date:		10/1/2004								
Company	<i>'</i> :	Oak Ridge Nat	ional Laborator	V						
Sensor De	esign:	Shear Horzinta								
		•			TEST DATA					
Pipe Sam	e:					1093				
Defect Se					30" Diameter Pipe with S	Stress Corrosion Cracks - LINE 3				
						LINE 3				
Defect Number	Search Region (Distance from End A)		End of Crack Region from Side A		Type of SCC	Comments				
	inches	inches	inches							
SCC12	60" to 75"	64	66		Isolated Crack Colony of Cracks None	Deep crack				
SCC13	75" to 90"		-		Isolated Crack Colony of Cracks None					
SCC14	90" to 105"	90	93		Isolated Crack Colony of Cracks None	97-102 another isolated crack				
SCC15	105" to 120"	106	110		Isolated Crack Colony of Cracks None	113.5 -120 (Colony)				
SCC16	120" to 135"	127	131		Isolated Crack Colony of Cracks None	Deep Crack Crack/tar/corrosion from 133 to 143 on this line				

APPENDIX C – DEVELOPER COMMENTS

505 King Avenue Columbus OH 43201 Telephone (614) 424-6424 Facsimile (614) 424-5263

October 28, 2004

Via Federal Express and Email

Mr. Robert Vagnetti Senior Scientist Energetics, Inc 2414 Cranberry Square Morgantown, WV 26508

RE: Benchmark Report

Dear Robert:

Battelle was pleased with the defect detection accuracy of our new and unique inspection method. In general, our inspection method found the larger defects and did not make any false calls. Also, the general characterization of size was encouraging. Specifically, we found defects:

- MC09, which was 77% deep and 2 inches long. We characterized this as deep and long.
- MC07, which was 45% deep and 2.7 inches long. We characterized this as medium and long
- MC12, which was 48% deep and 3 inches long. We characterized this as small.
- MC15, which was 53% deep and 1.5 inches long. We characterized this as medium and short.
- MC17, which was 72% deep and 1.4 inches long. We characterized this as deep and long.

Only one deep defect was not detected, MC05, which was 56% deep and 1.2 inches long. The technique appears to be more sensitive to longer defects. This is important since length directly affects failure pressure. This method would have advantages over inspection section technologies such as MFL which are more sensitive to corrosion width and depth, and narrow defects can go undetected.

Mr. Robert Vagnetti October 28, 2004 Page 2

Development of this unique approach to inspection energy generation began this year. The tool implementation tasks were accelerated to enable us to participate in the benchmarking study. As the tool used in the benchmarking was the initial design for this method, we feel optimization of both the rotating magnetizer and sensor will improve results. We are using these results and finite element modeling to increase signal to noise ratio to improve detection and sizing capability. With the benchmarking results, we are confident that a more robust system can be developed.

Sincerely

Bruce Kistlinto

J. Bruce Nestleroth Senior Research Scientist Advanced Energy Systems

JBN/cw

cc: Dr. Daniel Driscoll

Comments on the Comparison of Benchmarks and GTI Results

Albert Teitsma, Stephen F. Takach, Jennifer Fox, Julie Maupin, Paul Seger, Paul Shuttleworth

Gas Technology Institute 25 October 2004

Introduction

During the week of 13 September 2004, GTI staff came to the West Jefferson facility of Battelle Labs in Columbus, OH to test a prototype RFEC inspection vehicle in 2 sections of 12" pipe. We reported on our test results in a previous document.¹ In this document we comment on the benchmarks reported in "Benchmarking Emerging Pipeline Inspection Technologies" by Stephanie A. Flamberg and Robert C. Gertler (hereafter, the "Answer Key").

Axial Lengths: Comparison of Benchmarks and GTI Results

Table 1 below compares GTI results to the axial length benchmarks contained in the pipe with manufactured corrosion.

	Search		Length of Metal Loss		% Diff from
	Region (in)	Benchmark (in)	GTI Results (in)	Difference (in)	Benchmark
Line 1	126-138	3.00	2.60	-0.40	-13.33
Line 1	186-198	1.20	1.00	-0.20	-16.67
Line 1	234-246(a)	1.00	1.10	0.10	10.00
	234-246(b)	1.00	1.00	0.00	0.00
Line 1	282-294	2.00	1.70	-0.30	-15.00
Line 2	102-114	3.00	2.60	-0.40	-13.33
Line 2	198-210	1.50	1.00	-0.50	-33.33
Line 2	246-258	1.40	1.70	0.30	21.43
Line 2	288-300	1.40	1.40	0.00	0.00

Table 1: Axial Length Comparison for Manufactured Defects

We note that the manufactured corrosion in the inspection segment 234"-246" (MC07 in the Answer Key) is designated as a single defect with 2.7" axial length. Figure 2-10 in the Answer Key shows (a photo of the MC07 defects) that this is really 2 distinct, axially-aligned defects, each about 1" in length and separated axially by about ½". In our original report², we actually claimed two distinct defects, which match the axial lengths in the photo very well. A raw comparison of the "single-pit" benchmark in Table 2-1 of the Answer Key and our "two-pit" result would be misleading. Our measurements of the axial lengths of the defects are probably no better than about $\pm 20\%$; that uncertainty compares favorably with the percentage deviation from the benchmarks seen in Table 1.

Circumferential Widths: Comparison of Benchmarks and GTI Results

Table 2 below compares GTI results to the circumferential width benchmarks contained in the pipe with manufactured corrosion.

	Search		Width of Metal Loss		% Diff from
	Region (in)	Benchmark (in)	GTI Results (in)	Difference (in)	Benchmark
Line 1	126-138	1.20	1.10	-0.10	-8.33
Line 1	186-198	2.00	1.10	-0.90	-45.00
Line 1	234-246(a)	1.10	0.75	-0.35	-31.82
	234-246(b)	1.10	0.75	-0.35	-31.82
Line 1	282-294	1.50	2.60	1.10	73.33
Line 2	102-114	1.40	3.40	2.00	142.86
Line 2	198-210	1.50	0.75	-0.75	-50.00

¹ "Report on Tests at Battelle Labs of Pipe Inspection by the Remote Field Eddy Current Technique, 13-16 September 2004", A. Teitsma, S.F. Takach, et al.

² Ibid.

Line 2	246-258	3.30	3.40	0.10	3.03
Line 2	288-300	3.00	1.90	-1.10	-36.67

The circumferential resolution of the remote field eddy current technique is about 2 times worse than the axial resolution. Thus, that the accuracies of the circumferential widths are generally worse than those for the axial lengths is not unexpected. Note that circumferential accuracy is not critical for determining the severity of pipeline flaws. Both B31G and RSTRENG use length and depth, but not circumferential extent, to determine metal loss severity.

We do make note of two cases. First, our result for the manufactured corrosion in inspection segment 102"-114" is very far off. We believe that this is some anomalous result from our apparatus or our analysis. Second, Figure 2-15 in the Answer Key shows defect MC19. The table of benchmark results states that the circumferential width of this defect is 3". If we use the scale in the photo to measure the width, we get approximately, 2 3/8". There are obviously corrections due to projecting a curved surface, on an angle, onto a flat photograph. However, similar comparisons of other photos and the benchmarks in Table 2-1 of the Answer Key do not yield such large discrepancies. We are wondering whether the benchmark is listed correctly in Table 2-1.

Maximum Depths: Comparison of Benchmarks and GTI Results

Table 3 below compares GTI results to the circumferential width benchmarks contained in the pipe with manufactured corrosion. We note that the values along defect line 1 are systematically high and those along defect line 2 are systematically low. This may be caused by changes in the pipe properties from one line of defects to the other.

			Max Depth of		
	Search		Metal Loss		Diff as a % of
	Region (in)	Benchmark (in)	GTI Results (in)	Difference (in)	Wall Thickness
Line 1	126-138	0.13	0.24	0.11	32
Line 1	186-198	0.21	0.26	0.05	13
Line 1	234-246(a)	0.17	0.21	0.04	12
	234-246(b)	0.17	0.23	0.06	17
Line 1	282-294	0.29	0.28	-0.01	-3
Line 2	102-114	0.18	0.12	-0.06	-17
Line 2	198-210	0.20	0.14	-0.06	-16
Line 2	246-258	0.27	0.23	-0.04	-12
Line 2	288-300	0.09	0.10	0.01	3

 Table 3: Maximum Depth Comparison for Manufactured Defects

The differences are greater than our estimated accuracy 10% of the wall thickness, and in this case only recalibration by separate defect lines would improve the accuracy, something that would not be done during a normal pipeline inspection.

Natural Corrosion Pipe

We reiterate what we stated in the original report --- that during our attempt to complete the scan of the pipe with natural corrosion our apparatus failed, and we were not able to repair it before the end of the test period. We were only able to obtain data from scanning the region from 144" to 154" and the visible region from 82" to 98".

We did not find any indication of corrosion in the 144" to 154" area of the natural corrosion test pipe. We re-examined the data and again found no clear indication of metal loss. More extensive analysis may find it; however, our analysis methods have not advanced that far yet. We do note that we did report a good scan of the visible corroded area that was not on the Battelle list (82"-98"). We had planned to use it to calibrate any corrosion in the blind section of the pipe, rather than used machined defects. It is known that residual stresses in machined defects change the magnetic properties of the metal and can lead to mis-estimates of defects as large as 70% of the wall thickness, as repeatedly emphasized by the Queen's University Applied Magnetics Group.

Comments on Benchmark Testing at Pipeline Simulation Facility September 13–16, 2004

APPLICATION OF REMOTE-FIELD EDDY CURRENT (RFEC) TESTING TO INSPECTION OF UNPIGGABLE PIPELINES

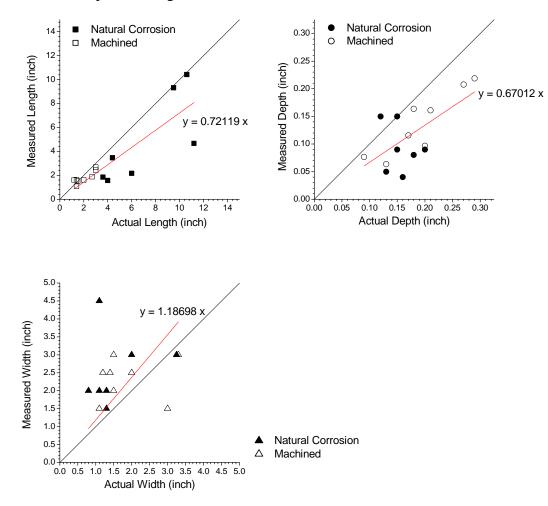
OTHER TRANSACTION AGREEMENT DTRS56-02-T-0001 SwRI[®] PROJECT 14.06162 OFFICE OF PIPELINE SAFETY U.S. DEPARTMENT OF TRANSPORTATION

SOUTHWEST RESEARCH INSTITUTE®

November 2004

The following are comments from Southwest Research Institute (SwRI[®]) related to the benchmark testing of the collapsible remote-field eddy current (RFEC) inspection system. These comments were generated based on comparison of blind test results with the answer keys provided later by the DOE.

Overall, the collapsible RFEC system performed well with few problems during the benchmark testing. Signals were obtained from known calibration flaws in both new and used pipe, and numerous signals were obtained from flaws in blind areas of the pipe.


The DOE requested analysis of the data in specified regions along the length of each pipe. The data requested in each region included start, end, total length, width, and maximum depth of metal loss. The intent of the original SwRI project was to show feasibility of flaw detection with the RFEC system; therefore, procedures for flaw characterization (primarily depth determination) were not included. Nevertheless, to support this benchmarking demonstration, cursory flaw characterization procedures were developed and used in the data analysis. It should be noted that more sophisticated analysis routines could produce more accurate results.

One of the samples was a seam-welded pipe containing manufactured defects; in this sample, all of the flaws were detected, and there were no false calls. The other sample was a seamless pipe with natural corrosion. Several factors made this pipe more difficult to inspect than the seam-welded pipe:

- (1) The signal levels were much lower (about 20% of the amplitude of those in the seam-welded pipe—this is likely related to lower permeability);
- (2) There were significant background fluctuations (caused by the seamless manufacturing process—these are well known in the pipeline inspection industry); and
- (3) The shapes of the natural corrosion defects were much more complex than the machined defects.

In spite of these difficulties, very good results were obtained. Overall, one defect was missed, and there was one false call. Comparisons of the measured flaw characteristics (length, width, and depth) based on those determined from the RFEC signals with the actual values provided in the answer key are shown in the following figures for both pipes. The black line (at 45 degrees) is the

desired 1:1 relationship, and the red line is the best linear fit. In general, the trends were correct; but in the cases of length and depth, the values measured from the signals underpredicted the true values, and the width was overpredicted. If these data were used to refine the characterization routine, then more accurate results would be obtained, as shown by the red line. Some of the scatter in the width data results from the coarse scan increments used to determine these values. It should be noted that analysis of pipeline corrosion defects for determining maximum operating pressure only considers the depth and length, not the width.

The DOE report indicates that the collapsible RFEC system could not discern between two separate corrosion regions. This is due to a misunderstanding about the reporting requirements. It was not clear from the reporting form that multiple indications were to be reported separately since only maximum depth was requested. Therefore, multiple defect signals were not reported separately, even though the signals show separate defects.

SwRI believes that the results are very promising, given the level of development that went into the RFEC system, particularly the data analysis computations. These results show strong potential for development of a pipe inspection system that can collapse to pass through restrictions and then expand to full diameter to provide a reliable high-sensitivity inspection. SwRI is confident that this system can be readily adapted to a robotic pipe inspection vehicle.

Public Page

DOE National Energy Technology Laboratory Technology Demonstration Program

Report of Results: Blind Guided Wave Verification Exercise Conducted at the Battelle -West Jefferson Facility - September 13 – 17, 2004

The *guided wave* exercise describe below was conducted by a research team from PetroChem Inspection Services, Plant Integrity, Ltd., FBS Inc. and The Pennsylvania State University. The objective was to verify the effectiveness of a non-intrusive, nondestructive technology that has been used for pipeline inspections for over four years. This technique only requires access to the outside of the pipe. Refits and/or modifications are not necessary to assess the condition of a pipeline using *guided wave ultrasonic inspection*. This verification test addressed two primary tasks:

- 1. To benchmark the test performance of the guided wave method on machined defects of known dimensions placed at measured intervals along a new piece of 12 inch O.D. pipe. The test was conducted "blind" to be graded later by an independent third party.
- 2. To benchmark the test performance of the guided wave method on actual corrosion defects of known dimensions and locations along a retired piece of 12 inch O.D. pipe. The test was conducted "blind" to be graded later by an independent third party.

Specific zones were selected for evaluation defects or the lack thereof on each of the two pipe samples. The team was to inspect the pipe and report the findings in the zones specified. The results of the exercise will be reported by DOE NETL and RSPA in a separate document. However, preliminary assessment of the pipe defect layouts supplied after the test confirms the viability of the *guided wave* technique for inspecting pipelines for corrosion. The test also validates the improvements to this technique that have been incorporated into the inspection equipment over the past two years as a result of research jointly funded by PetroChem Inspection Services, Plant Integrity Ltd. and RSPA.

A key deliverable in this program was the development a "sound focusing technique" that was utilized in this exercise. The evaluation of the results will show that this development has improved the sensitivity of the guided wave technique significantly. The "sound focusing technique" also added the ability to determine the position of a defect relative to the pipe circumference.

Guided wave inspections are currently utilized by pipeline operators on existing pipelines to assess them for corrosion.

Questions concerning this project should be directed to the Team Project Manager as follows:

Scott Lebsack PetroChem Inspection Services 8211 La Porte Freeway Houston, TX 77012 936-689-3554 aslebsack@houston.rr.com

Comments on the Pipeline Inspection Technologies Demonstration Report

Dual Magnetization Level MFL for Assessment of Mechanical Damage Agreement DOT RSPA DTRS56-02-T-0002 Bruce Nestleroth, Battelle

The dual magnetization magnetic flux leakage (MFL) technology is in the final stages of development. The initial concept was developed in the mid 1990's and subsequent projects have refined this technology. The goal of this technology is to develop a magnetic flux leakage (MFL) inspection tool that detects and sizes both metal loss and mechanical damage. An initial design concept for an MFL tool for mechanical damage employed two magnetizers, operating at both high and low field levels. However, it was not commercially accepted due to its extended length and complexity.

The design currently being developed involves a single magnetizer for detection of both corrosion and mechanical damage anomalies. The latest design includes features that minimize the effect of inspection variables such as velocity and the ability to pass tight bends. The magnetizer is simpler build and use, thus increasing the commercialization potential. In-line inspection for mechanical damage alone has limited commercial potential since an additional inspection would have to be conducted to detect corrosion defects. However coupling mechanical damage assessment with a routine corrosion inspection without adding complexity could change the inspection market. The newly developed inspection tool, shown below, has been run through a pull rig at speeds up to 6 mph and will be tested under pressurized conditions in November 2004.

The next step in the development of this technology is testing in an operational pipeline. We have begun discussions with a pipeline company and an inspection tool manufacturer to organize and conduct such a test.

Dual magnetization inspection tool

Comments on NETL field test Submitted by Paul D. Panetta from Pacific Northwest National Laboratory and George Alers from EMAT Ultrasonics

PNNL participated in the pipeline inspection demonstration held at Battelle on September 13-17, 2004. The focus of our work is to identify and classify third party damage based on ultrasonic measurements of changes in the material properties due dents and bends. The results were excellent for classifying the degree of deformation in the supplied pipes.

The results from pipe 2 are especially encouraging. The pipes were scanned along the axis from the interior utilizing a non-contact Electromagnetic Acoustic Transducer (EMAT). The EMAT generated a wave which traveled through the thickness of the pipe every 0.2" along the axis. The figure below shown the amplitude of the ultrasonic wave as a function of position along the axis of pipe 2 that was 0.75" along the hoop direction from top dead center. The bottom figure shows an ultrasonic parameters called the shear wave birefringence, which is independent of the thickness of the pipe. This aspect is important since the action of deforming the pipe causes the pipe to become thinner and our goal is to determine the degree of residual stress and plastic strain due to the mechanical damage not just the thickness of the pipe. Our classification or ranking of the dent severity is in the bottom figure below. We correctly assessed the degree of deformation on 8 out of the 9 reporting locations. Our assessment for locations R04 and R05 we reversed and our assessment for R09 should have been 2 rather than 2.5. The reason for the deviation for R09 was due to the fact the damage from the indenter at locations R08 and R10 was severe and extended over a large region, causing additional damage near location R09.

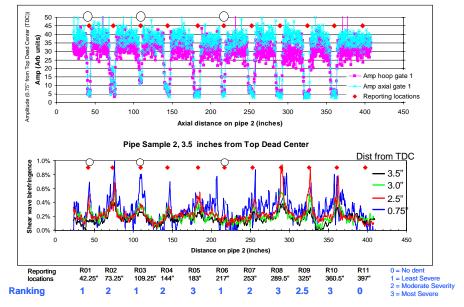


Figure 1. The amplitude of the ultrasonic signal as a function of axial distance on pipe 2 (top) and the shear wave birefringence as a function of axial distance on pipe 2. The red diamonds are the reporting locations.

Our assessment of pipe 1 was complicated due to the complex processing history of the pipe. After denting Pipe 1, it was ruptured during a pressure test, releasing some of the residual stress in the region of the calibration defects. In addition, the pipe was cut and a portion was rotated to align defects, then welded back together. The result was a set of calibration defects that existed in a section that was different than the reporting locations. Even with these complications our assessment was reasonably accurate, with our ranking for Q4 and Q5 correlating nicely with the degree of damage. Figure 2 shows the amplitude dot eh ultrasonic signal along the axis of pipe 2 for two different polarization of the shear wave. The location of the dents is clearly visible as is the difference in the material properties as the EMAT moved across the weld line of the pipes at ~250 inches.

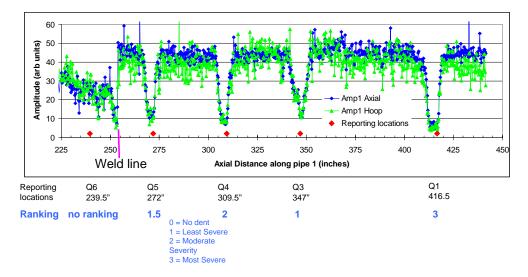
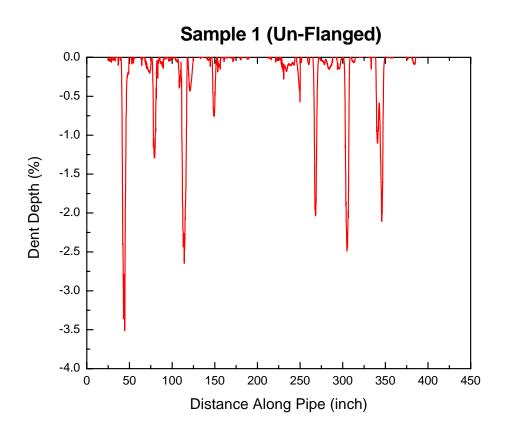


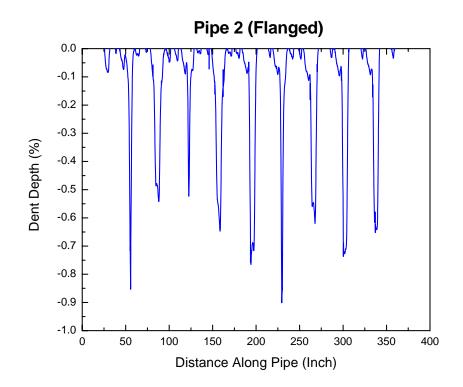
Figure 2. The amplitude of the ultrasonic signal as a function of axial distance on pipe 1 The red diamonds are the reporting locations.

These results are very encouraging and show that our ultrasonic measurements can accurately asses the damage in dented pipelines. The ultrasonic measurements are sensitive the degree of stress and strain in the specimens and can be applied to bent sections as well as dented regions. In addition, these EMAT sensors can be configured for small pipes (~4" diameter) and are conducive for attaching to PIGs and robots.

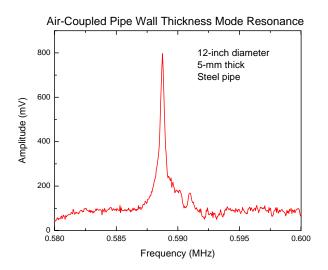
Contacts:


Paul D. Panetta, Ph.D. Nondestructive Evaluation Pacific Northwest National Laboratory 902 Battelle Boulevard, Mail Stop K5-26 Richland, WA 99352 Phone: (509) 372-6107 paul.panetta@pnl.gov George Alers, Ph.D. EMAT Consulting 1328 Tanglewood San Luis Obispo, CA 93401 Phone: (805) 545-0675 X 304 geoalers@charter.net

Multipurpose Deformation Sensor


Dipen N. Sinha Los Alamos National Laboratory

The multipurpose deformation Sensor designed by LANL included three separate types of measurements combined into one system. For deformation detection, it used an optical laser line imaging technique and also an acoustic phase detection technique. LANL had also designed an ultrasonic wall thickness measurement technique for this test but was not able to use it because of equipment failure.


As regards to reporting erroneously higher dent depth, we found our mistake to be wrong calibration. In fact, all results got multiplied by a factor of 1.6. The raw data obtained from the tests on the two pipes are included below and these are closer to the benchmark values as it should have been.

The raw data above indicates that the measured dent depth for Sample 1 never exceeded 3.5% consistent with the benchmark information. The figure below shows the raw data from Sample 2.

For completeness, since several observers at the test facility had expressed an interest in our ultrasonic wall thickness measurement, an example data from laboratory test on a steel pipe at **ambient** pressure and from a stand-off distance of 2-cm (air coupled) is shown below. The resonance frequency is a direct measure of wall thickness.

ORNL Results and the Actual Flaw Locations

The discrepancy between the ORNL results and the actual results can be summarized into six distinct issues: Width of EMAT coverage, Weld Effect, Length of Crack Size, Depth of Crack, Presence of Tar or Corrosion, and Interpretation of Analytical Results.

1) EMAT Coverage: When the EMAT moves through the pipe it is covering a region of 9" along the circumference. The sensor centered on a scan line covers 4.5" on either sides of the line. Hence scans on line 1, 2, and 3 have intersecting regions that are also scanned during other scans as depicted in Figure 1.

2) Weld Effect: Welds create reflections of ultrasonic waves that make it difficult to detect cracks near it. The current EMATs are relatively big and one way to reduce the weld effect will be to reduce the size of the EMATs. Detecting SCCs near welds is something left to be accomplished later.

3) Length of Crack Size: The length of a crack has no bearing on the signal if it is not deep enough for the signal to interact with it. Hence, in detecting the location of the cracks, the detected length corresponds to the location in a particular crack where the depth has crossed a specific threshold. This may skew the crack location between measured and predicted results (see Figure 2). Also, the predicted crack length is always larger than the actual size due to the size of the EMAT. An EMAT going directly over a 0.5" hole will result in signal disruption for 2" (active area of the EMAT is 1.5" by 1.5"). Currently we are performing experiments to arrive at a compensating factor to correct for this.

4) Depth of Crack: The EMATs effectiveness in detecting a crack is directly proportional to the *depth* of the crack. The *width* of a crack does have an effect on the signal, but the system will not be able to detect differences between two cracks or one wide crack if all other parameters are held the same. If the depth of a crack changes in a particular flaw location, the EMAT's greatest response will be centered around the deepest crack location and not the center of the gross size of the crack. Hence, the location of the predicted and measured crack (using liquid florescent magnetic particle inspection) may differ by the width of the EMAT or more as explained above. Since liquid florescent magnetic particle inspection does not predict the depth of the crack, a liquid penetrant X-ray is needed to correlate the results obtained. For cracks smaller than 15% of the pipe wall thickness – the current EMATs cannot detect the location of the defects.

5) Presence of tar or corrosion: EMAT signals are greatly attenuated by tar. There was tar present at the periphery of the covered regions of the pipe where these experiments were conducted. If there are locations on the black paper covered areas with tar patches, the sensors will record it as a flaw and give false results. The presence of corrosion also yields similar results. The projects aim is to have the ability to differentiate between the various types of defect.

6) Interpretation of analytical results: As can be seen in Figure 2, SCC6 is seen, but difficult to interpret as a flaw. An improved algorithm to detect flaws can hopefully extract the flaw information better. Also, while investigating the discrepancies on results obtained from Line 3, an error was discovered in the flaw decision algorithm. This error has since been corrected.

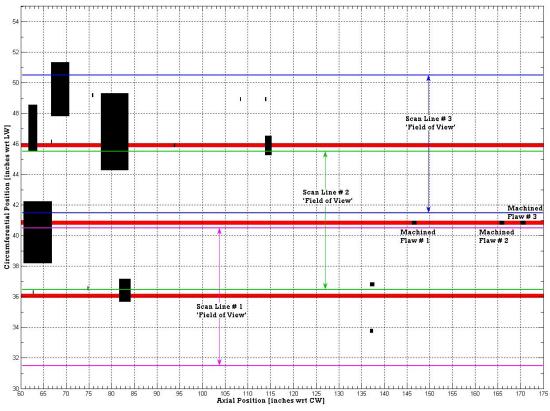


Figure 1. Flaw Location and the EMAT Scan Lines on test pipe at Battelle

Table 1 below gives an itemized summary of the discrepancies for the ORNL reported results.

Defect #	Measured	Predicted	Comments
SCC1	63" -1/4"		Reason 1
SCC2	75' -1/4"	70"-77"	Predicted larger due to reason 3 & skewed due to 4 (flaw 8)
SCC3	82"-84.5"	82"-90"	Predicted larger due to reason 3 & skewed due to 4 (flaw 7)
SCC4	None	96"-99"	Probably reason 5
SCC5	None	None	
SCC6	137"-138"	None	Probably due to reason 4
SCC7	61"-67"	69"-72"	Predicted correct (reasons 1,2&3) (flaw 11,12,14)
SCC8	None	75"-80" &80"- 90"	75"-Reasons 1 and 3 (flaw 8). 80"- Reason 3 (flaw 7)
SCC9	None	94"-104"	Probably reason 5
SCC10	None	106"-107.5" & 109"-112"	106"-probably reason 5 109" – Reasons 1& 3 (flaw 3)
SCC11	None	127"-132"	Probably reason 5
SCC12	62"-71"	64"-66"	Reason 6 –(flaw 14, 12, 13)
SCC13	78"-84"	None	Probably reason 4
SCC14	94"-1/4"	90"-93" & 97"-102"	Reason 6
SCC15	114-115.5"	106"-110" & 113.5"–120"	106" – reason 1(flaw 5) 113.5" – reasons 4 &6 (flaw 4&3)
SCC16	None	127"-131"	Reason 6

Table 1. Resolution bet	ween predicted and	measured results
-------------------------	--------------------	------------------

CONTACTS

National Energy Technology Laboratory

3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880

Brad Tomer Director Office of Natural Gas Strategic Center for Natural Gas and Oil 304-285-4692 brad.tomer@netl.doe.gov

Rodney Anderson Technology Manager Gas Delivery, Storage and LNG Program 304-285-4709 rodney.anderson@netl.doe.gov

Dan Driscoll Project Manager Gas Technology Management Division 304-285-4717 daniel.driscoll@netl.doe.gov

U.S. Department of Transportation

Robert W. Smith Pipeline R&D manager Office of Pipeline Safety 202-366-3814 robert.smith@rspa.dot.gov

