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• Items to be discussed: 

• Introduction of attendees and responsibilities 

• Project work scope with anticipated results 

• Major task and timeline (who’s doing want and when) 

• Deliverables –Monthly Status updates, quarterly reports and final 
report 

• Concerns and barriers 

• Online Project database 

• Next meeting 

• Facilities Tour
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• 4-D (time) profiles of individual corrosion anomalies 

• Supporting Integrated Cleaning and Inspection Pigs (ICIP)

Goal: Algorithm to quickly and correctly match anomalies 
across consecutive inline inspections (ILI’s)
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Domain→Background→Measuring→Matching→ICIP→Goals→Approach→Work	


 

	

 Domain - Corrosion Rates

Palmer-Jones, Roland, Phil Hopkins, and D. Eyre. "Understanding the 
results of an intelligent pig inspection." Penspen Integrity 8 (2006): 1-16.

Figure 6 'Tenting' Of A Tape Wrap Coating

Figure 7 Multiple Deep Pits
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• Global rates compromise 
between average and 
extreme 

• Measured rates benefit 
the average AND catch 
the extreme

 

	

 Background

J.C. Velazquez, A. Valor, F. Caleyo, V. Venegas, J.H. Espina; “Corrosion - Conclusion: Pitting corrosion models 
improve integrity management, reliability; Oil and Gas Journal; July 27, 2009; (online) http://www.ogj.com/
articles/print/volume-107/issue-28/Transportation/corrosion-conclusion-pitting-corrosion-models-improve-
integrity-management-reliability.html

0.1 mm (4 mil) states

12 mpy

McNealy 2012 
• 48” Gas Transmission 
• ILI 2007 and 2009 

!
Re-inspection 

• 12 mpy - 4.5 yr 
• measured - 2.0 - 2.5 yr 

Richard McNealy, Steven Osgood, Lucinda Smart; “Effect of Corrosion Growth Rate Estimated from 
Consecutive Assessments on Response to In-Line Inspection Anomaly Predictions” NACE Corrosion 2012 
Conference and Expo; C2012-0001560; 2012. 

8 mpy



• Match anomalies 

• Compare depths

 

	

 Measuring CGR with ILI

5 /
GE / 

October 23, 2008

Vs. SIGNAL Matching with same vendor data

26% wt

25% wt
29%

Signal matching is the most accurate method

2001 Data

2006 Data

But this pit is  
29%WT growth 

No this pit is probably 
not growing

Kevin Spencer, GE; “PHMSA Pipeline Safety: Workshop on Anomaly Assessment and Repair”; October 22, 2008; Gaylord National Resort and 
Convention Center, 201 Waterfront Street, National Harbor, MD; Last checked May 6, 2014; (Available) http://www.ingaa.org/file.aspx?id=7759

Challenges!
• Matching is slow and error prone 
• Signal matching only works on same tool 
• Infrequent (expensive) data collection



1. Correct tool position 

2. Match known features 

3. Pattern match anomalies 

4. Verify and correct

 

	

 Anomaly Matching 

Current practices vis a vis ICIP :!
• Too slow  
• Too labor intensive 
• Tool/ calibration/ sensor sensitive

Yeagley 2014 
• 90% automatic matching (box) 
• 10% missed 

!
Implications 

• Humans must verify 
• 10 Km for every 100 Km 
• Takes months

Brian Yeagley and Mark Madden; “Leveraging Previous Inline Inspection Assessment Results” in Pipeline & Gas 
Journal, Volume 241, Number 3, March 2014.



• 1.5D Disk Cleaning Pig 

• Hardened, low cost sensors 
(MFL, EMAT, EMIT) 

• Requires minimal training 

• Part of routine maintenance 
(weekly, monthly)

 

	

 Integrated Cleaning and  
	

 	

 	

 	

 Inspection Pigs (ICIP)

“SIG | ICIP : Integrated Cleaning and Inspection Pigs (ICIP)”; Subsea Integrity Group R&D Showcase; Last 
checked May 8, 2014; (Available) http://subsea-integrity.com/icip.asp

Better granularity shows CGR variability!
• Product composition 
• Inhibitor Effectiveness 
• Missed anomalies



• Fast  
• Accurate  
• Position neutral 
• Tool neutral 
• Sensor neutral 
• User friendly

 

	

 Research Goals 
Better anomaly matching algorithm



Simultaneous Localization and Mapping

• Map and locate self 

• Stored uncertainty 

• Loop closure

Robotic Navigation - SLAM!
• Bayesian (single pass) 
• estimate position based on landmarks 
• map landmarks relative to current position 
• store then resolve uncertainty



SLAM Family

 

 

 

continuous attractor network, and the tuning process is largely heuristic and must be performed for 
each new environment and platform (Milford et al. 2006).  

A SLAM system with a similar approach to the novel system presented in this paper is described in 
(Koenig et al. 2008). A Rao-Blackwellised particle filter is used to weight topological map 
hypotheses based on local odometric similarities (generated using nearest-neighbour distances 
between the global map and a fixed-length local odometry history) and visual similarities (generated 
using HSV histogram distance for panoramic images). An adaptive sensor model is used to compare 
the current histogram to one generated at an arbitrary distance between two previously visited 
locations, similar to the continuous appearance model presented in Section 4. Although this system is 
built on probabilistic principles and has been demonstrated to map routes up to 1.5km in length, it 
too requires a number of tuning parameters to function on a particular platform in a given 
environment. 

The promising results of the motion model in FAB-MAP at larger scales and the successes of 
RatSLAM indicate that for large-scale long-term operation, motion and sequence information can 
provide higher loop closure detection performance than appearance-only or appearance-and-
geometry matching alone.   

3. Background 

The following section describes the essential components of two SLAM systems from which 
components of CAT-SLAM are derived: Particle Filter SLAM and FAB-MAP. 

A. Particle Filter SLAM 

 

Figure 1 – Geometric SLAM interpretation. A continuous observation and motion model is 
defined by successive observations of feature geometry. 

The majority of Kalman- and Rao-Blackwellised particle filter approaches to the SLAM problem use 
a geometric interpretation of the observation and motion model, shown in Figure 1. A series of 
metric measurements zi are taken from locations xi to features mi, typically in the form of range, 
bearing or a combination. The location of the features mi with respect to the previously visited 
discrete locations xi can then be determined in continuous geometric space. Additionally, the 
expected observation for locations between previously visited states (labelled xk) can be determined 
using relative geometry, as can the expected observation for any arbitrary location in space (labelled 
xj).  
A popular SLAM algorithm that makes use of the geometric solution to the SLAM problem is 
FastSLAM, developed in (Montemerlo et al. 2002), which uses a Rao-Blackwellised particle filter 
and various schemes for particle resampling. By storing many different location and map hypotheses 

 

 

 

 
Figure 2 – Appearance-based SLAM interpretation. Expected observations are only available 
at discrete locations where an observation was previously made. Motion information is not 
used, allowing loop closures regardless of accumulated metric error. 

Figure 2 illustrates the appearance-based approach to the SLAM observation and motion model. 
Each state xi has an associated observation zi, which stores features mi that are visible from that 
location. The map is represented by the history of states X0:k. However, motion information is 
typically discarded, since there is no method of generating the expected appearance neither between 
locations (labelled xk) nor at arbitrary locations (labelled xj). Appearance-based SLAM systems can 
therefore close loops of any size, regardless of accumulated odometry error, but rely entirely on the 
data association between the current observation and a previous observation. 

The current state-of-the-art appearance-based SLAM system is FAB-MAP (Cummins and Newman 
2008), which uses a Chow-Liu dependency tree and recursive Bayes estimation within a rigid 
probabilistic framework to provide robust loop closure detection. 

Each image is converted into the visual bag-of-words representation described in (Sivic and 
Zisserman 2003). It is therefore necessary to create a database of common features from a set of 
training data in a similar environment to the test environment prior to performing localisation 
(Cummins and Newman 2007). Every feature extracted from the image is converted to the closest 
visual word, reducing each image to a binary vector of which words are present in the image. 

 Zk  {z1,..., zv } (5)
 

Each unique location Lkis represented by the probability that the object ei(that creates observation zi) 
is present in the scene. 

 {P(ei  1| Lk ),...,P(ev  1 | Lk )} (6)
 

The probability of a new image coming from the same location as a previous image is estimated 
using recursive Bayes: 

 P(Li | Z0:k )  
P(Zk | Li,Z0:k�1)P(Li | Z0:k�1)

P(Zk | Z0:k�1)
 (7)

 

where Z0:k�1is a collection of previous observations up to time k. P(Zk | Li, Zk�1) is assumed to be 
independent from all past observations and is calculated using a Chow Liu approximation (Chow and 
Liu 1968). The Chow Liu tree is constructed once as an offline process based on training data. 
Observation likelihoods are determined using the Chow Liu tree as follows: 

 

 

 

the localisation distribution of particle filter SLAM with the appearance-based observation model 
and new place detection of FAB-MAP. A diagram of the trajectory-based interpretation is presented 
in Figure 3. 

 
Figure 3 – Trajectory-based SLAM interpretation. A continuous trajectory-based observation 
model allows the expected appearance to be calculated at any point along a previously visited 
trajectory. Motion information permits the use of pose filtering without restricting loop closure 
size. 

As with particle filter SLAM, states xi are linked by odometry information ui; however, observations 
zi are formed by appearance representations rather than metric distances. The observation model is 
formed by a continuous trajectory-based appearance model, which calculates the expected 
appearance along the trajectory between two nodes. This model allows the calculation of the 
expected observation zk from location xk on the trajectory between two previously visited locations. 
However, unlike the geometric observation model, it does not allow the calculation of the expected 
observation zj at an arbitrary location xj. This limits the system to localising only to exact trajectories 
it has previously traversed; however, the utility of other appearance-based SLAM methods indicate 
that this capability is not required for all applications (Milford and Wyeth 2009).  

We define a continuous trajectory T which intersects all previously visited locations X0:k: 

 X0:k � T  (11) 

The continuous trajectory T is not subject to global geometric correction when loop closures are 
detected – this is to ensure that multiple traversals of identical locations yield identical odometric 
sequences regardless of any systematic bias. The map m is formed by the history of poses as follows: 
 m  X0:k  (12) 
To perform localisation and mapping along the trajectory, we require a solution to the following 
location distribution: 

 P xk |Z0:k,U0:k� � (13) 

This distribution can be divided into two components: one for all locations along the previously 
visited trajectory, and one for all previously unvisited locations (as in equation 9). This can be 
updated recursively as follows: 

 P xk |Z0:k,U0:k� �  
P zk | xk� �P xk |Z0:k�1,U0:k�1� �

P zk | xm� �P xm |Z0:k�1,U0:k�1� � � P zk | xn� �P xn |Z0:k�1,U0:k�1� �
n�T
¦

m�T
¦  (14) 

Geometric Appearance

Trajectory

• Interpolation 

• Metrics

• Recognition 

• Neutrality



• single pass through data (fast) 

• stored uncertainty (accurate) 

• match relative position (position neutral) 

• match shapes (sensor/tool neutral)

 

	

 Approach - SLAM



• Synthetic Data 
- Prototype on Montrac monorail conveying system 
- Laser scanner mounted perpendicularly  
- Half-pipe above track centered on laser 

• Compare SLAMS 
- CAT-SLAM 
- FAB-MAP, et al 
- CAM 

• Real Data 
- Characterize 
- SAM vs 
- CAM

 

	

 Scope of Work

http://www.montratec.com/index.php?nav=19,320

Monorail

Platform

Laser Scanner

Pipe



Timeline
2014 2015 2016

TASK MILESTONE Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3

Experimental Setup Build test rig X

Collect synthetic data X X

Collect data from pipe sample X X

Baseline SAM Adapt CAT-SLAM as a SAM algorithm X X

Test on synthetic data X X

Test on real data X

Real Data Collect and clean data ! X

Characterize data ! X

Compare SAM and CAM Identify additional SAM candidate algorithms ! X

Implement >2 additional SAM approaches ! X X X

Compare SAM algorithms - synthetic data X X X

Compare SAM algorithms - real data X X

Final Report X X

Intern Chevron Energy Technology Company !  X X
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