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PROJECT BACKGROUND

 Mechanical damage is the leading cause of pipeline failures.

 Mechanical damage exhibits a variety of features:
— Denting
— Removal of metal surface
— Cold-work of the material below the surface
— Cracking when the pipe is re-rounded by internal pressure
— Residual stresses and strains due to plastic deformation
— Coatingdamage




PROJECT BACKGROUND

 Mechanical damage occurs at different periods during
construction of pipelines.

— Wrinkles, ripples, or buckles commonly occur during laying
and bending of the pipelines.

— Dents, surface damage, and coating damage more often
arise during removal and movement of third-party
construction equment [Maxey, 1986].




PROJECT BACKGROUND

Mechanical damage can lead to immediate failure, but
otherwise results in a delayed or time-dependent failure.
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PROJECT BACKGROUND

 The mechanical damage and residual stresses associated

with the damage lower the overall fatigue strength of the
steel and its weldments.

* The size and shape of the flaw determines the level of stress
necessary for crack initiation [Vuherer et al., 2007].
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EXISTING DAMAGE INSPECTION PRACTICES

* The current practices for inspection of mechanical damage typically
involves the use of inline inspection data from caliper tools followed

by exterior inspection with UT and caliper tools to measure the angle
of the dent.

Plain dents Dents at Dents with Dents with
: _ welds cracks or corrosion
Constrained | Unconstrained gouges
Up to 2% OD or Up to 6% OD for
Up to 6% OD or 6% strain 4% max strain No safe limit dent and metal
ASME B31.8 P ’ ’ for ductile welds. loss, as per
No safe limit for corrosion
brittle welds criterion
No limit provided Up to 6% OD.
rock remains in >2% requires a Up to 2% OD Not allowed Not considered
AP1 1156 place fatigue P ’
assessment
EPRG Up to 7% at a hoop stress of 72% Not allowed Not allowed Not allowed
SMYS
PDAM Up to 7% of pipe diameter Not allowed Assess as dent and defect
combination
2662 Up to 6 mm for <102 mm OD Not allowed Not allowed Not allowed
Up to 6% for >102 mm OD




EXISTING WRINKLE BEND CRITICALITY CRITERIA

Height/Width Ratio = h/L
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ADVANCED EDDY CURRENT ARRAY DAMAGE DETECTION

Permeabili

Lift-Off

42 49 4«

1
' I '
¥0 W5 3J0

el

B
»

. 1)

0

0 1 2 3 4 5 6 7 8 9 10 1M 12 13 14 15 16 177 18 19 N0 N 2 B AU B XU B B WV N N NV MUB BV BB O LG e

S ——

) G e, Y | L s |
16 18 20 2 24 2% 28 I R M4 % 3B 4 42 44 4 48 S50 5 54 5 56 60 62 64 65 68 T T2 T4 T e 0 R H4 B B W ¥ M

N. Goldfine, 2010, PRCI Presentation, http://primis.phmsa.dot.gov/matrix/FilGet.rdm?fil=5529&nocache=1855




CHALLENGE

The challenge is to develop a real-time sensor that can provide through-
thickness residual stress characterization of mechanically damaged
pipelines because:

Mechanical damage and deformations, including dents, bends, wrinkles, and
other forms, are the leading cause of all pipeline failures.

When mechanical damage or deformation of a pipe occurs, both macro and
micro-scale gradients of stress are established around the damage area.

— Depending on the size, shape, and the extent of the damage, these stresses
can vary in complex ways both around and through the thickness of the
damaged region.

The geometry-based methods currently used should be based on actual critical
stress intensity factors determined by design criteria, modeling, and other
means instead of outdated geometric measurements.

By mapping and characterizing the residual stresses around the entire region,
any regions above or near the critical stress can be handled appropriately with a
defined maintenance or operation program.



CHOSEN APPROACH

Next Generation Of Material Property Sensors
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CHOSEN APPROACH
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SUPPORT OF CHOSEN APPROACH

Electromagnetic Hydrogen Measurements On Pipeline Steel
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SUPPORT OF CHOSEN APPROACH
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SUPPORT OF CHOSEN APPROACH

Impeadance Factor

0.3

0.25

0.2

0.1

0.05

’ - \\
= \
- T- - L -
= .
- n - .
- »
(=4 ,’ \\\
’ .
" N
A T------ -’ -
____ .”
p—
/‘\
—————— -4»—--____.,4"" TN
- .
~——ey”
—~s~‘ T - - -- —————— - o S 6 TR S o= e
-25 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Position (inches)

25

== 20D
- *= 20D
- &= 20D
20D

- &= 20D
=- 20D

20

100
200
S00
1k




SUPPORT OF CHOSEN APPROACH
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Figure 1. (a) Electromagnetic measurements on tungsten and molybdenum at two
different stand off distances of 2 and 3 inches with austenitic stainless steel shielding.

(b) Shielded electromagnetic measurements on molybdenum, tungsten, and depleted
uranium using three different shielding materials with standoff of approximately 1.25

inches.



CHOSEN APPROACH

PipeTel Technologies Inc.




TASKS

Development of the electromagnetic (includes low frequency
impedance) analysis probe system to be able to assess residual
stress at mechanically damaged regions;

Determination of the residual stress levels present in mechanically
damaged pipelines steels;

Determination of the ability for low frequency impedance to
monitor residual stress at the levels present in mechanically
damaged pipeline steels;

Demonstration of the ability of electromagnetic measurements to
measure the residual stress as a function of time in pipeline steel;

Determination of the repeatability of electromagnetic
measurements as a function of damage severity; and

Demonstration of the use of an electromagnetic monitoring to
assess damage severity.



TASK 1

* Development of the electromagnetic (includes low frequency
impedance) analysis probe system to be able to assess
residual stress at mechanically damaged regions;
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TASK 2

 Determination of the residual stress levels
present in mechanically damaged pipelines steels
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TASKS 3 AND 4

Determination of the ability for low frequency impedance to monitor
residual stress at the levels present in mechanically damaged
pipeline steels;

 Demonstration of the ability of electromagnetic measurements to
measure the residual stress as a function of time in pipeline steel;
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FOUR POINT BEND RESIDUAL STRESS DISTRIBUTION

(ASM Handbook Volume 8: ;
Stress-Strain Behavior in _— —2
Bending P. Dadras, Wright 1Y

State University) = ———
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Impedance (Ohms)

FOUR POINT BEND COMPRESSION
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TASKS 5 AND 6

 Determination of the accuracy and repeatability of electromagnetic
measurements as a function of damage severity; and

 Demonstration of the use of an electromagnetic monitoring system
to assess damage severity.




NEUTRON DIFFRACTION MEASUREMENTS

* Neutron diffraction is the only method comparable to an electromagnetic residual stress
sensor to determine residual stress as a function of depth into the material.

e X-ray diffraction type measurements are insufficient because only provides surface
residual stress measurement.



NEUTRON DIFFRACTION MEASUREMENTS
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Stresses (MPa)

Sum Position  Depth Hoop
312.755 2 2 43
3.555451 2 475 13
-311.169 2 7.5 -2
215.6362 3 2 30
-23.1897 3 475 -5
-1636.89 3 7.5 -245
£80.312¢6 £ 2 85
-361.669 £ £.75 -73
-1565.38 4 7.5 -260
748.0225 5 2 165
15.70892 5 475 20
-1172.69 5 7.5 -160
284.2362 6 2 105
-150.181 6 4.75 38
o /2e9 6 75 6L
113.5882 7 2 83
-172.171 7 475 51
13695 7 75 297
-127.927 8 2 64
-573.306 8 475 45
779806 8 75 68
478,092 3 2 -10
-602.566 9 475 A4

-1057.82
-793.849

-590.528 16 2 -97
-21.4843 16 £.75 63
258.8714 16 7.5 58

Axial
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3
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Radial
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-25
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NEUTRON DIFFRACTION MEASUREMENTS

Axial Stress in ksi

21.60364159
0.49510063
-31.66021204
17.56275484
-7.930906078
-61.03394401
27.2437884
-17.90214256
-52.0975687
30.11923759
-10.97486523
-41.87750491
10.22066551
-19.5491077
-31.81967 |
2141368142
-22.28535008
-52.79739142 |
-8.573149254
-32.95431789
-44.19206831 |
-18.01054529
-36.7770002
-36.15274887 |
-41.63794206
-48.73069512
-38.6827859
-45.20735931
-56.57471509
-46.57075368
5.256363212
-7.058095921
7118684282



RESULTS




WRINKLE BEND RESULTS

* Diameter of Pipe: 30 inches

* Length of all seven wrinkle bends: 48 inches

* Height of all seven wrinkle bends: 0.75 inches

* Width of all seven wrinkle bends: 4 inches

* h/L (height to width) ratio for all seven wrinkle bends: 0.1875

CHEMICAL ANALYSIS

C S1 Mn P S Ni Cr Mo
.28 .07 1.03 .01 .03 .06 .01 .001
74 Cu W Ti Sn Co Al B
.002 .03 <.001 .001 <,001 .02 .003 <.001
Nb 2r

.003 .003



WRINKLE BEND RESULTS

Residual Stress Map at the Surface of Wrinkle Bend #5
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WRINKLE BEND RESULTS

Residual Stress Map of Cross Section of Wrinkle Bend #5
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WRINKLE BEND RESULTS
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WRINKLE BEND RESULTS




PIPELINE GOUGE RESULTS
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PIPELINE GOUGE RESULTS

BEA179 Line 7

~0.02!

004

S I

= I

S -0.06

S 008

2 f

A [ ]
—O.lOf i10kSi
-0.120

-25206-1.516-0.50.0 0.5 10
Axial Direction (inches)



PIPELINE GOUGE RESULTS
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PIPELINE GOUGE RESULTS
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DISCUSSION OF RESULTS

 Comparison of the residual stress results for seven
different wrinkle bends indicated that:

— There is a large residual stress gradient along all of the wrinkle
bends.

— There is a significant difference in maximum residual stress levels
between the seven geometrically identical wrinkle bends.

— The difference in residual stress levels can be used to determine
the criticality of the mechanical damage.

— The presence of hydrogen (coming from inner diameter)
dramatically increased the impedance towards the inner
diameter of the pipe.

— Geometric and shape based measurements would predict the
same criticality for all seven wrinkle bends which differs
dramatically from residual stress measurements.



DISCUSSION OF RESULTS

* The gouges exhibited large residual stress
gradients as a function of position and depth.

* Electromagnetic measurements can successfully
measure changes in residual stress regardless of
the shape or size of the damage.

* The large differences in residual stress levels of
the mechanical damage region compared to an
undamaged region allows for an easy method to
pinpoint mechanical damage that is not visible or
geometrically measurable.



INDUSTRY INTERESTS AND DESIRES

* The pipeline industry has assisted G2MT in:

— Obtaining pipeline samples
— Obtaining residual stress measurements
— Obtaining comparison models

* Other industries are very interested in residual stress sensors for
various applications

e G2MT has developed partnerships with servicing companies to
help advance the sensors commercialization and entrance to
market

 The Canadian Neutron Beam Centre and G2MT are establishing
a relationship to run in-situ residual stress testing to calibrate
and validate electromagnetic sensors with neutron diffraction
for multiple applications.



EXPECTED OUTCOME

* To provide the pipeline inspection industry with a
new paradigm of pipeline inspection tools based on
material properties.

— Effective management of damage and deformation.

* To provide multiple industries with a new paradigm
of inspection tools for various materials and
applications.

— A strain gauge and x-ray diffraction are only surface
measurements.



RECOMMENDED ADDITIONAL WORK

* Additional work for variable separation

— Hydrogen: To be able to properly measure the hydrogen
concentration existing in the pipe which further alters the
residual stress properties.

* In-situ residual stress measurements while performing neutron
diffraction and electromagnetic measurements.

— To provide characterization never been seen before.

— To increase the accuracy of the electromagnetic sensors to
residual stress.

* Development of wireless system to deliver instantaneous
analyzed results to customer as well as RBI companies.

* Increase ruggedness of instrumentation.



FUTURE PHASES Il AND 11l WOULD INVOLVE?

 Phaselll
— Prototype developed and packaged

— First portable system for in-situ characterization of damage
severity due to dents and wrinkle bends in pipelines used in
field testing of operating pipes

 Phasellll

— Multiple sensor and probe designs and other options will be in
the market or in development.

— Working on increased acceptance based on DOT and industrial
testing

— Increase market share and development of testing standards.
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