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guaranty or warranty, either expressed or implied. 

The analysis and conclusions provided in this report are for the sole use and benefit of the 
Client.  No information or representations contained herein are for the use or benefit of any 
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presented herein is limited to the facts as presented and examined, as outlined within the body 
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Improve and Develop ILI Tools to Locate, 
Size, and Quantify Complex/Interacting Metal 
Loss Features and Dents 
Bruce Nestleroth, Kiefner and James Simek, TD Williamson 

INTRODUCTION 
The ability to characterize metal loss and gouging associated with a dent, the identification of 
corrosion type near the longitudinal seam, and interacting and complex corrosion geometries 
are three of the remaining obstacles with in-line inspection (ILI) integrity assessment of metal 
loss defects.  The difficulty with denting is that secondary features of corrosion and gouging 
present very different safety and serviceability scenarios; corrosion in a dent is often not very 
severe while metal loss caused by gouging can be quite severe.  Selective seam weld corrosion 
(SSWC) of older low frequency electric resistance welding (ERW) seams also presents two 
different integrity scenarios; the ILI tool must differentiate the more serious SSWC condition 
from the less severe conventional corrosion which just happens to be near a low frequency 
ERW seam. Both of these cases involve identification difficulties that require improved 
classification of the anomalies by ILI to enhance pipeline safety.  

In the last decade, the detection capability for ILI tools has improved, enabling the reporting of 
smaller corrosion and shallower dents.  Also, many tools are better at detecting the seam weld 
in well-trimmed ERW pipe.  However, the reporting of smaller corrosion that is coincident with 
dents or the long seam has caused an increase in excavations per the regulations.  The goal of 
the regulations is to ensure that mechanical damage in dents and selective corrosion of the long 
seam, both potentially service limiting anomalies, are always detected. 

Keeping with the spirit of the regulations, the goal of the work presented herein is to build 
classifiers that combine the measurements from multiple sensing systems.  These classifiers, 
when implemented in data analysis software tools, will be used to detect mechanical damage in 
dents and selective corrosion of the long seam, while dismissing many of the smaller corrosion 
features that do not impact pipeline performance.  The classifiers are designed to be 
conservative, meaning some non-injurious corrosion anomalies will be designated for 
excavation so that the likelihood of catching all potentially injurious mechanical damage and 
selective seam corrosion is greater.  This report discusses the development and verification of 
these classifiers. 
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The third topic this work is improvements to corrosion depth determination by magnetic flux 
leakage (MFL).  MFL tools size most metal loss anomalies with sufficient accuracy to achieve 
acceptable pipe integrity.  However some corrosion geometries provide a greater challenge to 
achieve the specified accuracy.  One anomaly class is wide spread corrosion with pitting 
corrosion in large patches of general corrosion.  This report also discusses the development of 
improved sizing models. 

SUMMARY AND CONCLUSIONS 
Three new classifiers are presented for MFL tools, the technology most commonly used by 
pipeline operators for integrity assessments.  The dent classifier that distinguishes dents with 
gouges from dents with corrosion or smooth dents uses a high and low magnetization level 
approach combined with a new method for analyzing the signals.  In this classifier, detection of 
any gouge signal is paramount; the conservatism of the classifier ensures reliable identification 
of gouges can be achieved.  In addition to the high and low field data, the classifier uses the 
number of distinct metal loss signatures at the dent, the estimated maximum metal loss depth, 
and the location of metal loss signatures relative to dent profile (e.g. Apex, Shoulder). 

The SSWC classifier that distinguishes SSWC from corrosion near the longitudinal weld uses two 
orientations of the magnetic field, the traditional axial field and a helical magnetic field.  In this 
classifier, detection of any long narrow metal loss is paramount; the conservatism of the 
classifier ensures high identification of SSWC can be achieved.    The relative amplitude of the 
corrosion signal for the two magnetization directions is an important characteristic, along with 
length and width measures of the corrosion features. 

The third classifier for complex and interacting metal loss is a longer development.  The SSWC 
and dent with metal loss classifiers mainly examined detection of these anomalies.  Detection 
algorithms primarily require data from smaller anomalies to demonstrate the effectiveness for 
detection.  Metal loss sizing algorithm development requires data from all sizes of corrosion, 
from small inconsequential to large repairable anomalies.  The available data was sufficient to 
develop a frame work for a new sizing model for metal loss.  Additional inspection and 
excavation confirmation data are required to complete the algorithms. 

These models were developed using ILI data from pipeline anomalies identified during actual 
inspections, a critical step to ensure results can be directly transferred into practice.  Inspection 
measurements from excavations as well as pipe removed from service for lab analysis and 
pressure testing were used to confirm the results. 
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BACKGROUND 
The most common pipeline inspection method, magnetic flux leakage (MFL), uses magnetic 
components to induce magnetic flux within the pipeline wall [1].  The magnetic flux naturally 
enters the metal wall of the pipeline and distributes evenly to produce a full volumetric 
inspection.  Anomalies in the wall of the pipeline tend to disrupt the uniform flow of the flux and 
create a leakage of magnetic flux, which can then be detected by sensors. MFL-based tools 
have the capability of addressing many of the threats listed in ASME B31.8S.  Each 
implementation of MFL technology typically focuses on a subset of pipeline wall anomalies that 
affect pipeline integrity with varying levels of success, or sensitivity, for each implementation. 
Not all implementations will provide sufficient information for detailed defect assessment.  

Corrosion assessment by MFL 
MFL-based inspection tools for detecting corrosion commonly use high magnetic fields to 
saturate the pipeline material. Such high magnetic field-based magnetizers help suppress noise 
due to local stress variations and changes in the microstructure of the metal [2].  At metal-loss 
defects, such as corrosion, an increased amount of magnetic flux attempts to flow through the 
remaining material; however, some flux leaks from the pipeline wall due to saturation of the 
remaining material.  In addition, a second phenomenon causes even more flux to leak.  In 
magnetically saturated materials, an increase in magnetizing flux causes the flux-carrying 
capability (permeability) to decrease [3].  The combination of increased flux and decreased flux-
carrying capacity, which are nonlinearly related, result in significant flux leakage at corrosion 
anomalies.  Furthermore, since flux prefers to stay in the pipe, the flux goes around the 
anomaly rather than leak out of the pipe.   

One of the most challenging anomalies for traditional MFL are long, narrow, axially aligned 
anomalies sometimes called grooving corrosion.  In the mid-1990s, a new type of MFL tool was 
developed that aligned the magnetic field in the circumferential direction [1].  While this 
technology improved sizing of grooving corrosion, the sizing of other anomalies types such as 
patch corrosion and pitting corrosion was better left to traditional axial MFL.  Some ILI vendors 
that supply both tool types combine the two data sets, but this requires the operational logistics 
and cost of two tool runs. 

With all of the limitations of MFL, the rugged nature of the technology make it the most used 
inspection technology; detection of corrosion is good, however determining the depth corrosion 
anomalies can be challenging.  The specification vendors used for sizing was established in the 
1990s and described in the API 1163 ILI standard.  In general, the depth of corrosion 
anomalies is measured to an accuracy of ±10 percent of the wall thickness.  For most tool runs, 
this ±10 percent sizing goal is attained for 80 percent (4 of 5) of corrosion anomalies, in 
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statistical terms referred to as the certainty.  Also in statistical terms, “most tool runs” is defined 
as the confidence; vendors generally specify a the confidence that a tool run will make 
specification is about 95 percent , but 5.0 percent (1 of 20) will not make specification.  The 
goal of this work is to improve on these statistical measures; this could be improving the sizing 
accuracy, decreasing the uncertainty in the measurement accuracy and/or increasing the 
confidence that the tool will make specification. 

General Advancement in ILI technology 
The 1990s was a period when ILI technology was evolving from low resolution, dozens of 
sensors, to high resolution, hundreds of sensors.  This was true for both magnetic flux leakage 
for detection and sizing of metal loss and caliper tools for the detection and sizing of dents.  
Advances in computer and data storage technology have enabled many of the improvements.  
For example, in 1995, a 500 Megabyte (0.5 Gigabytes) of flash memory cost $10,000 and came 
in a 4 x 4 x 0.5-inch cube; a 16 Gigabyte USB thumb drive is now available for less than 10 
dollars.  Therefore data storage is less of a limiting factor in ILI tool design. 

The technology used in the most common implementation of MFL and caliper tools has matured 
and is available from many ILI vendors.  Most vendors only supply tools that meet the high 
resolution category.  With this higher resolution comes the ability to detect much smaller 
anomalies: 

• Dents with depth greater than 0.5% of pipe diameter can be detected where low 
resolution tools detected dents greater than 2%. 

• Metal loss on the order of 5% of wall thickness can be detected where low resolution 
tools detected corrosion greater than 20%. 

With this higher resolution, ILI tools are identifying many more dents and dents with metal loss.  
While the MFL tools can detect metal loss associated with gouging, MFL cannot easily and 
routinely distinguish between metal loss by corrosion and metal loss from gouging.  Therefore, 
many more metal loss anomalies in dents must be investigated after an ILI run today than 
when the regulation was first implemented in 2000. 

Dent Assessment by ILI 
Accepted codes, standards, and governmental regulations address the secondary features of 
corrosion and gouging in dents.  As an example, per 49 CFR 192.933 (d) natural gas pipeline 
operators in the United States “…must treat the following conditions as immediate repair 
conditions: (ii) A dent that has any indication of metal loss, cracking or a stress riser.” A similar 
requirement can be found for liquid pipelines in 49 CFR 195.452(h)(4) “(i) immediate repair 
conditions (C) dents on the top of the pipeline (. . .) with any indicated metal loss.”   
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The regulations were shaped by three incidents in the 1990s in which the pipeline failure mode 
was attributed to dents with gouging.  These failures highlighted the need to detect gouging 
associated with mechanical damage.  Gouges, as defined by API 1160, are “the elongated 
grooves or cavities usually caused by mechanical removal or smearing of metal”.  While the 
detection of metal loss in a dent is possible, detection of the metal loss associated with a gouge 
may not always be detected by conventional MFL tools, especially if the gouge is long and 
narrow.  In two of the three incidents, the pipelines had been inspected by MFL pigs, and post 
failure analysis of the data showed a metal loss anomaly present in the dent.   

Dents, which are primarily detected by caliper tools, can be caused by excavation equipment.  
Therefore, dents with associated metal loss could have gouging.  But, more often than not, the 
metal loss in a dent is caused by corrosion at damaged or disbonded coating.  Unfortunately, 
traditional applications of MFL tools cannot reliably discern gouging from simple metal loss due 
to corrosion. 

Dual Field Magnetization Theory 

An alternative MFL approach that was developed with DOT PHMSA funding, dual field MFL, can 
distinguish dents with gouges from dents metal loss [7].  This technology has been 
commercialized in different forms by ILI vendors.  The high magnetic field-based magnetizers 
commonly used [1] suppress noise due to local stress variations and changes in the 
microstructure of the metal [2].  These stress and material variations are indicative of 
mechanical damage and since they change the flux-carrying capacity of the pipe [4-5], they can 
be detected with a properly designed tool.  A local decrease in flux-carrying capacity causes 
leakage similar to that resulting from metal-loss defects.  A local increase in flux-carrying 
capacity causes a decrease in flux leakage relative to the nominal, magnetic field level.  For 
example, for tensile stresses, the overall flux levels in the pipeline increase.  However, for 
compressive stresses, such as cold-worked areas, the flux levels decrease.  The flux density 
variations between tensile stresses and compressive stresses are small for magnetic field levels 
greater than approximately 6,400 A/m (80 Oersted) and nearly negligible for magnetic field 
levels greater than approximately 9,600 A/m (120 Oersted) depending the magnetic properties 
of the pipe..  These general values may vary with pipeline wall thickness, chemical composition, 
grain structure, and fabrication methods [6].  As discussed previously, most MFL-based 
apparatuses for corrosion are designed to operate above these levels to reduce signals due to 
stress, typically considered noise.  To detect changes in stress and cold working in the pipe 
wall, however, the magnetic field must be at lower, unsaturated levels, typically between 4000 
and 5600 A/m (50 and 70 Oersted).  Unfortunately, field levels in this range can produce results 
that are difficult to interpret because they can be affected by corrosion anomalies, stresses, and 
changes in material composition.  A low-field-strength MFL based pig can be used to detect 
stresses and material variations using fields in the range of 4000 and 5500 A/m (50 and 70 
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Oersted); however, corrosion anomalies are also detected at this field level and assessment of 
these anomalies would be inaccurate as demonstrated by early MFL pigs. 

Thus, using two magnetic field levels and methods to process both signals can improve the 
detection and assessment of pipeline anomalies [7-11].  The high magnetic field employed in 
most inspection tools detects and sizes metal loss such as corrosion.  A second low magnetic 
field must also be applied to detect the metallurgical changes caused by mechanical damage 
(e.g., from excavation equipment).  To apply a two magnetization approach, it is possible (but 
rarely practical) to send more than one pig separately through the pipeline.  A single pig having 
two separate sets of magnetizers, while also technically feasible, results in a longer ILI tool that 
can be prohibitive for some pipeline systems. 

Seam Corrosion Assessment by ILI 
Similar to dents, accepted codes, standards and governmental regulations address corrosion 
near the longitudinal seam weld.  For example, per 49 CFR 195.452(h)(4)(iii)(H) liquid pipelines 
operators in the United States must address corrosion of or along a longitudinal seam weld in 
180-days.  The primary concern of these regulations is selective seam weld corrosion (SSWC), 
which accounts for about 1.0 percent of the failure incidents reported in the United States [12].  
SSWC is a localized corrosion attack along the bond line of some low-frequency ERW and 
electric flash welding (EFW) piping that leads to the development of a narrow groove.  Since 
the weld bond line chemistry may be more susceptible to corrosion processes, the presence of 
corrosion at the weld is considered an indicator of potential SSWC.  This is particularly true if 
the pipeline has the following conditions present: 

• Exposure to corrosive conditions due to poor or absent coating; 
• Ineffective cathodic protection; and 
• The presence of non-metallic inclusions in the weld bond line region (e.g., contaminants 

present during the manufacturing process). 

SSWC is generally not considered to be a concern for pipe manufactured subsequent to 1970 
due to the use of cleaner steels with greatly reduced sulfur contents and the replacement of low 
frequency welding equipment with high frequency equipment in the manufacturing process.   

Pipeline companies use in-line inspection (ILI) technology to detect and assess the potential 
impact of various corrosion threats.  SSWC is detectable with both liquid coupled angle beam 
ultrasonic crack detection (UTCD) and electromagnetic acoustic transducer (EMAT) ultrasonic 
methods when anomalies are isolated.  However, when surface corrosion surrounds the SSWC, 
detection and sizing can be impacted.  For UTCD methods, the adjacent corrosion may change 
the reflection angle, so energy that reflects from an anomaly may not return to the sending 
sensor for detection, identification and sizing.  EMAT methods detect both the general corrosion 
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and selective corrosion; however, the long wave length nature of these tools make it difficult to 
always distinguish between the two corrosion types. 

Circumferential MFL methods are most applicable for SSWC since this feature has width.  Tight 
cracks such as stress corrosion cracking or fatigue cracks are difficult to detect with MFL 
methods.  The signal amplitude is a function of crack width combined with length and depth, so 
sizing of SSWC is not as accurate as other corrosion anomalies.  One circumferential tool vendor 
specifies an accuracy of ±20 percent for axial slotting between 0.2 inch and 0.4 inch in width.  
Most SSWC anomalies are narrower than this width and nearby corrosion impacts detection, 
identification and sizing.   

In summary, the regulatory requirement of investigating any corrosion of or along a longitudinal 
seam weld is the result of the difficulty that ILI tools have with detecting and identifying SSWC.  
The industry and public would benefit if ILI tools could reliably differentiate the more serious 
SSWC condition from the less severe conventional corrosion near a low frequency ERW seam.  
These ILI tool limitations require improved anomaly classification algorithms to better identify 
dents with gouges and SSWC. 

APPROACH  
Five different ILI measurements made on a single tool were used to develop the discrimination 
algorithms: 

• Conventional axial MFL technology (high field) 
• ID versus OD discrimination sensors 
• Deformation measurements 
• Helical MFL technology 
• Reduced field axial MFL measurements (low field) 

The advantage of using data from a single tool run is to avoid the additional step of aligning the 
data between runs.  The goal of this work was to develop algorithms that combine all five 
methods to differentiate severe mechanical damage from less severe metal loss in dents, 
separate SSWC from general corrosion near the long seam, and provide better depth 
characterization of corrosion anomalies.   

Previous algorithms for dents with metal loss and gouging attempted to quantify mechanical 
damage severity.  The algorithms established five levels of importance from benign to severe; 
however this approach was not implemented by industry nor accepted by regulators; one 
reason was the severity level could not be confirmed without significantly more testing of pipe 
pulled from service.  The more conservative approach presented herein considers all mechanical 
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damage anomalies to be severe.  As the process evolves and improved mechanical damage 
assessment methods become robust, the assessment of mechanical damage from ILI data may 
become part of the process.  For the SSWC challenge, combining helical and axial MFL should 
allow metal loss on an ERW longitudinal seam to be identified and better characterized by 
determining the exact location with respect to the seam and improving sizing algorithms for 
corrosion associated with the seam.  To improve corrosion sizing, corrosion areas identified by 
ILI were excavated and detailed depth data for the entire area was recorded using an optical 
method.  Algorithms were developed by comparing the optical data sets to the MFL and SMFL 
Raw signals. 

Use of data from actual pipeline anomalies collected at excavation sites was a key part in this 
development.  The results from ILI tool runs and in-the-ditch field assessment data were 
correlated with ILI data.  Pipes were removed from service and burst tests were conducted to 
determine the remaining strength for selected anomalies.  For the dent discrimination classifier, 
field samples were augmented with some carefully manufactured mechanical damage features. 

PIPE SAMPLES 
The key to developing improved algorithms is the collection of in‐ditch field data to correlate 
with ILI data.  Pipelines with specific ILI anomalies were targeted for in-ditch measurements, 
specifically selective seam corrosion, corrosion near the long seam, wide area corrosion, and 
dents with corrosion or mechanical damage.  The pipeline company participants in this project 
performed excavations on these pipelines.  ApplusRTD technicians performed detailed 
excavations.  Dent depth measurements, curvature to determine strain, and etching to detect 
changes in metallurgy and hardness measurements in dents to detect cold working were used 
to characterize dents with metal loss and potential gouging.  Selective seam weld corrosion 
anomalies were assessed with replication methods, seam susceptibility measures, field 
metallurgical assessments and advanced ultrasonic methods to assess depth.  Laser Scan data 
from external corrosion areas were collected for comparison to metal loss data from the 
multiple measurement ILI tool.  Pipeline examined at excavation sites were: 

Pipeline A:  On a 24-inch pipeline with dents with corrosion, mechanical damage and 
weld repairs, more than 40 anomalies were targeted. 

Pipeline B:  On a 6-inch pipeline with corrosion near the seam weld with potential 
selective seam weld corrosion, 9 anomalies were targeted for the potential of selective 
seam weld corrosion.   
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Pipeline C:  On a 12-inch pipeline with corrosion near the seam weld with potential 
selective seam weld corrosion, 7 anomalies were targeted for the potential of selective 
seam weld corrosion.   

Pipeline D:  On a 16 inch pipeline with complex corrosion, 13 metal loss features at two 
locations were targeted.   

Pipeline E:  On the 3 segments of a 20-inch pipeline with complex corrosion and dents 
with potential mechanical damage, 4 sites with complex corrosion and 5 dents with 
metal loss were targeted. 

The two pipes for pull testing were: 

Pipe F:  Mechanical damage pipe sample.  A 16-inch pipe was pulled from service and 
intentionally struck with a backhoe 30 times. 

Pipe G:  Pitting corrosion pipe sample.  This 12-inch pipe, pulled from service, had many 
significant internal corrosion pits. 

Dent Discrimination 
Data were collected from more than 30 excavations on pipelines with dents with corrosion, 
mechanical damage and weld repairs.  These excavations continued through February of 2014.  
In-the-ditch measurements included dent depth, curvature, strain, gouge assessment, cold 
work detection by etching, hardness testing, and corrosion depth.  Detailed data was collected 
from more than 40 excavation sites where the ILI analysis identified dents with metal loss, 
some with potential gouging.  In-the-ditch measurements included dent depth, curvature, 
strain, gouge assessment, cold work detection by etching, hardness testing, and corrosion 
depth. 

Excavations of a 20 inch with pipeline with complex corrosion and dents with potential 
mechanical damage were performed as this part of the pipeline was undergoing other 
scheduled maintenance.  Three dig sites were dents, with one site having significant mechanical 
damage.  A forth dig site has corrosion.    

The dent with metal loss and gouging data bases was augmented with pipe removed from 
service and intentionally dented with a backhoe.  The dents with gouges assessed in the ditch 
had only small amounts of gouging.  This pipe added 30 more dents showing significant 
gouging. 
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Selective seam weld corrosion 
Detailed data was collected from more than nine excavation sites where the ILI analysis 
identified potential selective seam weld corrosion (SSWC).  This involved two pipelines, a 6-inch 
diameter line inspected in 2013 and a 12-inch diameter line inspected in 2012.  In the ditch 
measurements included corrosion depth, grooving ratio, chemical composition and seam 
susceptibility were assessed.  Only the 6-inch line contained SSWC. 

Metal loss 
Excavations on a 16-inch pipeline with complex corrosion were performed in March 2014 as this 
part of the pipeline was undergoing other scheduled maintenance.  For the two dig sites, one 
site was approximately 80 feet, with multiple complex corrosion anomalies.  Also at the long site 
were two preferential seam weld corrosion anomalies.  

Another set of metal loss data came from a pipe with significant internal corrosion pulled from 
service, Pipe G.  The 12-inch MDS tool was pulled through this internal corrosion pipe sample 
five times yielding sufficient data to develop methods for assessing repeatability and variability 
of depth sizing results.  Paired comparisons among the depth measurements for the five pulls 
show reasonable repeatability pull-to-pull and reasonable variation with respect to the AUT 
measurements for 139 anomalies.  The data were also used to improve MDS Depth 
performance further by extracting additional information from the combined MFL and SMFL 
signatures.  

ALGORITHM DEVELOPMENT 
Algorithm for Dent Discrimination  
Previous work on dents with gouges and the use of two MFL field levels for prioritization 
demonstrated a process for identifying signal characteristics that were indicative of cold work 
and metal removal during the gouge creation [13].  The gouges used in that study were severe, 
both in depth and length, and obvious “gouge” and “plow” signatures were discernable in the 
low-field MFL (LFM) signatures after a suitable signal decoupling algorithm was applied.  To 
meet the goal of detecting all mechanical damage, the gouges in the current study were 
generally shallow and much less severe.  Most ILI tools in use today are quite capable of 
detecting very shallow metal loss.  That said, the resulting MFL and LFM signatures were very 
small and subtle.  Signal decoupling was attempted early on in this study but was deemed 
unreliable because of the strong sensitivity to alignment between the two MFL and LFM data 
sets.  Shifts in sample alignment in both axial and circumferential directions were often as 
significant as the decoupled signal.  Consequently a new approach was required. 
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Metal Loss Types.  The field measurements describe dents with five distinct metal loss types 
(and associated number of occurrences): 

• Corrosion (24) 
• Gouge (50) 
• Mill Grinding (1) 
• Puddle Weld (3) 
• No Metal Loss (14) 

It was determined that the puddle weld ILI signatures would be sufficiently recognizable as 
something other than true metal loss in future inspections, and these samples were eliminated 
from the list, removing one type entirely.  A single mill grind sample is insufficient to adequately 
train a classifier, so this sample was also removed from consideration, leaving 88 of the original 
92 samples, and three of the original five types.  The remaining three types in the discussion 
are labeled as follows below: 

• Corrosion 
• Gouge 
• None 

Feature Engineering.  The selection of type labels addressed the problem of choosing 
meaningful input features.  LFM can identify locations where magnetic permeability has 
changed as a result of cold work.  At a gouge enough through-the-thickness cold work will have 
to take place in order for a LFM signature to be affected significantly.  The LFM also has a 
response associated with bulk metal loss, so a method for separating the LFM response due to 
permeability versus the LFM response due to removed metal when both LFM and MFL 
responses are already quite small was needed. 

As discussed earlier, full signal decoupling was deemed unreliable for this study because of the 
small signal sizes.  However, it was decided that the ratio of MFL response to LFM response 
amplitudes might be a suitable stand-in as an indicator of how much the observed LFM signal is 
due to bulk metal loss versus magnetic permeability change.  First, the signal amplitude in the 
LFM and MFL signals are normalized by their local background level to account for local 
magnetization strength.  

𝔸𝔸𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙
𝐵𝐵𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙

𝔸𝔸𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙

𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙

       (1) 

Then an overall amplitude ratio is computed using these normalized amplitudes as: 
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𝔸𝔸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝔸𝔸𝑙𝑙𝑙𝑙𝑙𝑙

𝔸𝔸𝑙𝑙𝑙𝑙𝑙𝑙
       (2) 

This amplitude ratio is used as an input to the classifier.  In practice, whenever 𝔸𝔸𝑙𝑙𝑙𝑙𝑙𝑙 is zero, 

𝔸𝔸𝑙𝑙𝑙𝑙𝑙𝑙 is also zero.  Under these circumstances, 𝔸𝔸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is set to zero by definition.  Other feature 

inputs from the ILI record are: 

• Number of distinct metal loss signatures at the dent (ML Sig Count) 
• Estimated maximum metal loss depth (ML Depth %) 
• Location of metal loss signatures relative to dent profile (Apex, Shoulder, Both, or None) 
• The location data are first converted to binary indicator variables before classifier 

training. 

Just as important in this study are the features which were eliminated from consideration.  
Orientation with respect to top-of-pipe was not included in the feature set since the 
manufactured dents do not have a meaningful orientation, and those dents constitute a 
significant fraction of the samples in this study.  Dent depth was also excluded since dent depth 
was strongly correlated with real versus manufactured anomalies.  The dents from operating 
pipelines were all very shallow.  The dents in the manufactured set were generally deeper.  
Dent depth was removed to avoid the potential of the classifier exploiting this somewhat 
artificial correlation that happens to be present in this data set but would not be representative 
of the general mechanical damage population in actual use. 

The classifier input features are plotted as pairs against each other in Figure 1.  The separation 
between the classes is quite subtle, and simple linear decision boundaries would be insufficient 
to provide good classifier performance.  A more advanced classification model is appropriate. 
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Figure 1. Pair plot of some of the classifier inputs for the three metal loss types 
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Model Selection.  A random forest classifier was selected because of its ability to model a 
complex decision boundary while still avoiding the tendency to over fit the training data.  
Random forests are created by training many binary decision trees in a special fashion and then 
averaging the predictions of these trees.  A full discussion can be found in the literature and is 
beyond the scope of this paper [14].  When trained with a technique called “bootstrap 
aggregation,” random forest classifiers generate their own estimates of generalization accuracy 
based on samples that are excluded from the training of individual trees in the ensemble.  
These samples are sometimes referred to as “out-of-bag” (OOB) samples.  We take advantage 
of this feature in the performance metrics that follow. 

Model Training.  A random forest classifier with 100 individual binary tree estimators was 
trained on the 88 observations with the goal of predicting the three metal loss types: Corrosion, 
Gouge, and None.  Increasing the number of trees beyond 100 produced no obvious 
improvement in classifier performance. 

The classifier itself estimates the relative importance of the various input features as part of the 
training process.  Table 1 shows relative input feature importance for the metal loss classifier.  
Metal loss signal count, amplitude ratio, and estimated metal loss depth appear to be of nearly 
equal importance while metal loss location indicator variables are somewhat less important 
unless the metal loss is located at the apex of the dent. 

Table 1. Classifier input feature importance 

Input Feature Relative Importance 
ML Sig Count 0.25 

ML Amp Ratio 0.22 
ML Depth (%) 0.21 

Apex 0.17 
Both 0.05 

None 0.02 
Shoulder 0.08 

 
Custom Decision Function.  In a multi-class problem such as this one, the classifier produces 
a probability that each observation belongs to each of the types.  With type probabilities in 
hand, the most commonly used decision function is to assign each observation to the type that 
has the highest probability.  However, in this study we wish to influence the decision function to 
err on the side of assigning observations to the “Gouge” type to be conservative.  As a result, 
we adopt a decision function that assigns each observation to whichever type has the highest 
probability except where the probability of “Gouge” is above a certain threshold in which case 
“Gouge” is assigned. 
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As a brief illustrative example, consider that the classifier might return the following type 
probabilities after evaluating the feature inputs for a given sample: 

• Corrosion: 0.45 
• Gouge: 0.35 
• None: 0.20 

The conventional decision function would assign this sample to the “Corrosion” type since its 
probability was the highest. However, to reflect a desire for conservatism, suppose the decision 
function is modified to assign “Gouge” to any sample that has a gouge probability above 0.3 
regardless of the other type probabilities.  For this sample the more conservative decision 
function would assign this sample to the “Gouge” type. 

More precisely, there are quantitative measures of classifier performance that are useful to 
examine in this study (see [14]).  

Precision: The fraction of samples that were correctly called “type” out of all samples 
that were called “type.” 

Recall: The fraction of samples that were correctly called “type” out of all samples that 
were truly “type.” 

Under these definitions, high precision implies a low false positive rate, and high recall implies a 
low false negative rate.  The simultaneous maximization of both is generally not possible.  We 
would seek to maximize precision when calling false positives would be most detrimental.  
Conversely, we seek to maximize recall when false negatives would be most detrimental.  A 
classifier with high precision might be labeled as efficient while a classifier with high recall might 
be labeled as conservative. 

Out-of-Bag Performance Metrics.  As discussed previously, the OOB samples in a random 
forest model can be used to provide unbiased estimates of classifier performance similar to 
what would be obtained through the use of a hold-out test set.  The OOB samples are used first 
in the selection of a suitable gouge probability threshold followed by a more general 
examination of overall classifier performance. 

To select a reasonable gouge probability threshold, the precision and recall of the classifier and 
decision function as a function of gouge probability are examined.  Figure 2 shows the results of 
computing both precision and recall for various gouge probability thresholds in the decision 
function.  A threshold of 0.3 provides reasonable classifier precision of around 80% for all types 
while maintaining a recall of over 95% for gouges. 
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Figure 2. Precision and recall for the three metal loss types as a function of gouge 

probability threshold 

Summary details on the number of correctly classified features can be obtained by examining 
the classifier confusion matrix as presented in Table 2.  Table 3 shows a summary of precision 
and recall for the classifier and decision function combination. 

Table 2. Classifier confusion matrix 

 Called 
“Corrosion” 

Called 
“Gouge” 

Called 
“None” 

Is “Corrosion” 18 6 0 
Is “Gouge” 1 48 1 

Is “None” 2 8 4 
 

Table 3. Classifier performance summary 

  Precision Recall Samples 
“Corrosion” 0.86 0.75 24 

“Gouge” 0.77 0.96 50 
“None” 0.80 0.29 14 

average / 
total    

0.80 0.80 88 
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In summary, a random forest classifier that can distinguish dent with gouge from dent with 
corrosion was developed.  A custom decision function was developed that provides a means to 
vary the conservatism of the classifier so that high recall on gouges can be achieved.  A gouge 
probability threshold of 0.3 achieves better than 95% recall for OOB samples.  The details are 
shown in the table in Attachment A 

Metal Loss Sizing.  Field measurements of metal loss depth were available for 70 of the 
samples in this study.  One of those samples (anomaly ID 90) in the ILI data had no detectable 
metal loss.  Eliminating that leaves 69 samples where both ILI and field metal loss depths can 
be compared. 

For this study, the field measured depth of metal loss anomalies associated with both corrosion 
and gouge features show that all but four are below 20% depth.  One outlier at 58% depth was 
associated with a very sharp puncture-like feature at Anomaly ID 50.  Rather than attempt to fit 
a specific metal loss sizing model for shallow metal loss associated with dents over such a small 
range of anomaly size, we instead provide guidance on the best practice to apply existing sizing 
models.  Historically, axial MFL was the primary data set used to size all metal loss.  With a full 
MDS data set, the spiral MFL (SMFL) data is also available for sizing and can be used when 
appropriate.  Best practice is as follows: 

• Size the metal loss using the data set where the metal loss signal is most pronounced.  
For circumferentially oriented features this will be axial MFL.  For axially oriented 
features, this will be spiral MFL. 

• The MFL or SMFL response due to the dent geometry itself must be removed from the 
signature before sizing the metal loss.  This is generally obvious as the dent response is 
slow and gradual across the dent shape whereas the metal loss response is more rapid 
and local.  The dent response in these data sets is largely due to the sensors changing 
position radially with respect to the magnetizer body.  Strong field gradients exist 
between the field in the pipe wall and the field in the return path in the magnetizer 
body. 

Figure 3 shows the results of applying these practices to the metal loss anomalies in this study.  
Of the 69 sized features, 56 (or 81%) show agreement between ILI and field measurements 
within ±10%. A small ILI under call bias of 2% on average exists which is likely due to the very 
small length and width of some of the metal loss. This level of performance is roughly in line 
with metal loss sizing performance in the absence of a dent for anomalies of similar size and 
shape. 
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Figure 3. Metal loss sizing performance for anomalies in dents 

Summary of Mechanical Damage Classifier.  A random forest classifier has been 
developed that can distinguish dent with gouge from dent with corrosion.  A custom decision 
function was developed that provides a means to vary the conservatism of the classifier so that 
high recall on gouges can be achieved.  A gouge probability threshold of 0.3 achieves better 
than 95% recall for OOB samples.  Guidelines for sizing metal loss in dents using data MFL and 
SMFL are provided with produce metal loss depth agreement between ILI and field in dented 
pipe comparable to that achieved in clean pipe. 

Algorithm for SSWC Discrimination 
Historically many ILI vendors have employed a process for identifying potential SSWC based 
largely on the scrutiny of a subject matter expert (SME).  The objective of the current classifier 
model development is to arrive at a quantitative model that resembles the process that a SME 
would follow.  While there are many forms that such a classifier can take, one of the most 
commonly used models is logistic regression.  It is especially appropriate where the training 
data set is relatively small and can be separated by a linear decision boundary.  
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In logistic regression, a linear combination of continuous input variables, often called “features,” 
is mapped to a continuous output value between 0.0 and 1.0 using the logistic function.  It is 
commonly employed when the goal is to place candidates into one of two classes, the first 
corresponding to a model output of 0.0, and the second corresponding to 1.0.  As such, the 
output of such a model can be treated as a probability.  The continuous probability can be 
interpreted as the likelihood that the candidate anomaly belongs to the second class.  The 
decision to label each observation as one class or the other is set by selecting a probability level 
as the decision boundary, often called the discrimination threshold.  This is commonly set at 
0.5, but it can be set differently to emphasize either false positive or false negative rates [15]. 

The features selected for input in this study mirror those used by subject matter experts in their 
qualitative classification.  Qualitatively, a large SMFL amplitude response that is sharp in the 
width (circumferential) direction is an indicator of narrow, axial character to the anomaly.  
Furthermore, if the SMFL signal response is uncharacteristically large relative to the 
corresponding MFL response at the same location, then the anomaly is more likely to be SSWC 
rather than corrosion along the long seam.  Accordingly, the input features selected for 
development of the classifier were signal widths and signal amplitudes from both the SMFL and 
MFL signatures.  Commercial ILI analysis software is used to extract the best estimates of signal 
widths and signal amplitudes for each anomaly. 

Kiefner selected the line segments to target for field activities related to SSWC after TDW had 
provided a preliminary prioritization of anomalies most likely to be SSWC. A full list of the 39 
anomalies used for model development is included in Attachment B Table B1.  Note that each 
anomaly has been labeled as either SSWC or corrosion crossing the long seam (CCLS). Because 
the number of anomalies available for model development is relatively small a substantial 
amount of time was dedicated to making sure the correlation between the ILI and field results 
was accurate. The impact of a single “bad” training example becomes much more important 
with a small set of data to begin with. 

To make the model more general, the raw signal measurements were first nondimensionalized.  
Signal width and signal amplitude are nondimensionalized by wall thickness and local 
background flux density, respectively. 

 

𝕨𝕨𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑤𝑤𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙

𝑟𝑟
𝔸𝔸𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐴𝐴𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙

𝐵𝐵𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙

𝕨𝕨𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙

𝑟𝑟
𝔸𝔸𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙

𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙

      (3) 
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These four nondimensionalized features are shown plotted as pairs against each other in Figure 
4.  For the pair plot of the nondimensionalized classifier inputs for the two classes, the red 
squares represent SSWC, and blue circles represent CCLS.  Opportunities for developing a 
boundary between the two classes are apparent when examining these parameters, especially 
the signal widths. 

 
Figure 4. Pair plot of the nondimensionalized classifier inputs for the two classes. 

Red squares represent SSWC, and blue circles represent CCLS. 
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With input features defined, a logistic regression model of the following form was fit to the full 
set of 39 training anomalies: 

 

𝐹𝐹(𝑧𝑧) = 1
1+𝑒𝑒−𝑧𝑧

𝑧𝑧 = 𝛽𝛽0 + 𝛽𝛽1𝕨𝕨𝑙𝑙𝑙𝑙𝑙𝑙 + 𝛽𝛽2𝕨𝕨𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙 + 𝛽𝛽3𝔸𝔸𝑙𝑙𝑙𝑙𝑙𝑙 + 𝛽𝛽4𝔸𝔸𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙

    (4) 

 

where F(z) represents the likelihood that a particular anomaly is SSWC.  Best fit model 
coefficients are: 

𝛽𝛽0 = −5.21
𝛽𝛽1 = 1.08
𝛽𝛽2 = −1.90
𝛽𝛽3 = 5.42
𝛽𝛽4 = 9.10

       (5) 

Raw training accuracy is 87% against the original training data using a discrimination threshold 
of F(z)=0.5.  Classifier predictions of “probability of SSWC” for all training anomalies are 
available in Attachment B Table B2.  The classifier commits five errors, three of which are false 
negatives and two of which are false positives. 

With a small set of data it is usually necessary to use all of the available data to train the 
classifier rather than hold out some of the data in a separate model test set.  Some form of 
model cross validation using sets resampled from the training set is pursued instead.  For this 
study, a stratified k-fold cross validation was employed using two folds.  A stratified approach 
preserves the fraction of observations from each class in each fold and also shuffles the 
observations randomly before dividing the full set into training and test sets.  With two folds, 
half the observations are used to train the model, and then the other half are used to test the 
model.  The process is then repeated with the training and test sets swapping places.  Since the 
process involves random sampling, it is only possible to report representative accuracies on the 
test sets since rerunning the cross validation exercise produces a different random sample in 
the two sets.  For one representative random sampling, the test accuracies on the two folds 
were 70% and 79%, somewhat lower than the training accuracy which is to be expected.   

Another valuable indicator of model performance is the receiver operating characteristic (ROC).  
The ROC curve shows the relationship between a classifier’s true positive and false positive 
rates as the discrimination threshold varies from 0.0 to 1.0.  The area under the ROC curve is 
an indicator of overall model performance.  An ideal model would have a false positive rate of 
0.0 and a true positive rate of 1.0, which would produce an area under the ROC curve of 1.0.  
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At the other extreme, random assignment of each observation to one of the two classes would 
have roughly equal false positive and true positive rates, yielding an area under the “random 
guess” ROC curve of 0.5.  A ROC curve was developed for the SSWC classifier model using the 
same stratified k-fold cross validation split described above.  The results are presented in Figure 
5. 

 
Figure 5 Receiver operating characteristic for the SSWC classifier 

SSWC Sizing Models.  Once an anomaly has been identified as SSWC, it is desirable to obtain 
an estimate of the true anomaly depth and length.  Sizing models for conventional corrosion 
and axial narrow features already exist in TDW’s analysis software, but those models do not 
account for the coincidence of the two.  Consequently, adjustments to the standard models are 
required to appropriately size SSWC. 

Depth Model.  The depth of SSWC is assumed to be a linear combination of the depths obtained 
from the independent application of the SMFL sizing and MFL sizing models. 

 �̂�𝑑𝑠𝑠𝑠𝑠𝑤𝑤𝑠𝑠 = 𝛽𝛽5 �̂�𝑑𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙 + 𝛽𝛽6�̂�𝑑𝑙𝑙𝑙𝑙𝑙𝑙 (6) 
 
Training the model on the 13 available SSWC examples yields these coefficients: 
 
 𝛽𝛽5 = 0.68

𝛽𝛽6 = 0.27 (7) 
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The model performance is shown as a unity plot in Figure 6.  No attempt at model validation 
beyond this graphical approach is attempted here because of the small number of samples and 
limited depth range available.  Model scatter is visually quite small. 

 
Figure 6. SSWC depth model performance 

Length Model.  Similar to the depth model, the length model for SSWC assumes length is a 
linear combination of the length estimates obtained from the independent SMFL and MFL length 
models. 

 𝑙𝑙𝑠𝑠𝑠𝑠𝑤𝑤𝑠𝑠 = 𝛽𝛽7 𝑙𝑙𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙 + 𝛽𝛽8𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (8) 
 
A best fit to the training data yields these coefficients: 
 
 𝛽𝛽7 = 0.59

𝛽𝛽8 = 0.93 (9) 

 
Model performance is displayed as a unity plot in Figure 7.  Model scatter is quite large, most 
likely due to the ILI tool’s inability to detect the shallower extents of an SSWC anomaly whereas 
very shallow regions of SSWC are often visually apparent under field examination. 
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Figure 7. SSWC length model performance 

Summary of SSWC Classifier.  A statistical classifier for SSWC has been developed which 
attempts to quantify the process used by TDW SMEs to identify regions of likely SSWC.  The 
classifier performance has been cross validated using a stratified k-fold approach.  Sizing 
models for SSWC depth and length have been developed and are available for use in prioritizing 
SSWC locations.  Validation of the sizing models was not attempted because of the small 
number of anomalies available.  The depth model shows a much better fit to the training data 
than the length model.  

Algorithm for Classifying Complex Corrosion  
The first step in improving corrosion sizing is developing an improved classifier model for 
separating complex corrosion inline inspection (ILI) signatures into individual metal loss 
anomaly calls.  The model that has been developed uses ILI data gathered with TDW’s Multiple 
Data Set (MDS) inspection systems.  The ILI data originated from actual field use of the 
systems in operating pipelines with real complex corrosion anomalies.  Corresponding field 
validation measurements were gathered by Applus RTD using high resolution laser scanning 
systems. 

Data Sources.  TDW has inspected several line segments using MDS ILI systems.  The ILI 
analysis identified some metal loss anomalies that occurred in patterns that would be 
considered complex and interacting.  The project team jointly evaluated which complex 
corrosion candidate anomalies would be suitable for detailed field examination, and subsequent 
field evaluation was performed.  The final set of anomalies was drawn from the following 
segments: 

• 16” Pipeline D, inspected 2/9/2012 
• 20” Pipeline E, inspected 7/11/2013 
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Laser scanning was performed at two locations in each of the segments, capturing multiple 
complex corrosion anomalies at each scan location. 

Complex Corrosion Classifier Model.  Magnetic flux leakage (MFL) inspection is an 
inferential measurement technique in that flux readings are not a direct indicator of the 
underlying metal loss depth.  Instead, the MFL signal patterns must be processed through some 
set of models to arrive at estimates of anomaly dimensions. The process of sizing complex 
corrosion signatures is currently a two-step process.  First, the complex signature must be 
partitioned into individual metal loss anomalies.  Second, the individual metal loss anomalies are 
sized using appropriate models, usually some form of machine learning regression model that 
has been trained to accept certain characteristic features of the individual metal loss signatures 
and return estimates of the underlying anomaly dimensions.  The methods described in this 
report relate to the first step.  Improvements in estimated anomaly dimensions will be 
addressed in later sections. 

While machine learning techniques are most appropriate for sizing complex corrosion the 
techniques of computer vision and image processing are better suited for classifying complex 
corrosion into individual metal loss anomalies.  The discussion in the following represents a 
general approach for taking a complex corrosion signature and breaking it down into 
constituent metal loss anomalies using image processing techniques.  There is inherent 
ambiguity in this process since there is no general set of rules in the industry for how this is to 
be accomplished even under direct examination of corroded pipe in the ditch.  The methods 
developed below do not attempt to address this inherent ambiguity.  Instead, they represent a 
reasonable approach that can be reduced to practice in production ILI analysis software with 
moderate effort. 

As an overview of the method, consider that magnetic field data collected from different types 
of sensors are used to construct individual metal loss anomalies, hereafter referred to 
generically as pits, in a complex corrosion patch.  Axial MFL data shown in Figure 8(a) is used 
as the main source for identifying individual pits in a corrosion patch.  SpirALL® MFL (SMFL) 
data shown in Figure 8(b) is used to compensate for the influence of the direction of the 
magnetic flux on pit size and shape.  The laser scan data shown in Figure 8(c) is obtained by 
excavating the pipe region where corrosion is identified and by scanning the surface of the pipe 
with a laser displacement meter.  This laser data acts as ground truth for both identifying the 
deepest points of the individual pits as well as future sizing of the pits done using a combination 
of MFL and SMFL data sets.  The process for applying the method is described below using one 
of the complex corrosion locations from the project data. 
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(a) MFL data of a complex corrosion patch: a small section indicated by circular 
mark is shown zoomed in. 

 

(b) SMFL data of a complex corrosion patch (same pipe region as above MFL data) 

 
(c) Corresponding laser scan data of the pipe surface 

Figure 8. A complex corrosion patch as detected by (a) MFL sensors (b) SMFL 
sensors and (c) laser scanning of the pipe surface 
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Methodology.  Several data preprocessing and segmentation steps are developed to identify 
individual pits in a given complex corrosion patch.  The end result of processing the data 
through multiple filters is a list of uniquely labeled pit masks covering the entire complex 
corrosion patch in MFL data with a corresponding mask in the SMFL data (if a corresponding pit 
can be uniquely identified in SMFL data).  Sizing of the individual pits (and that of a complex 
corrosion patch) can be accomplished with these masks and checked against corresponding 
ground truth from the laser scanning data, which will be addressed in later section of this 
report.  Several steps involved in segmentation of individual pits in a complex corrosion patch 
are listed below. 

1. Remove Tool Rotation.  The MFL and SMFL data are both re-indexed such that first 
row of the data corresponds to top of the pipe.  This is accomplished using the 
orientation sensor data gathered as part of the ILI inspection log. 

2. Scale and Quantize.  For internal processing purposes the data from the individual 
sensors is scaled to have a common mean and resampled to 256 quantization values 
across the total range of observed sensor readings. 

3. Mark Regions of Interest.  The overall rectangular area enclosing the complex 
corrosion patch is partitioned to identify regions of interest (ROI) in MFL and SMFL data 
as illustrated in Figure 9.  The partitioning is accomplished by an analyst using a 
graphical user interface that allows for interactive boxing of arbitrarily shaped regions in 
the MFL data.  Both MFL and SMFL data are approximately in sync in the distance 
domain at this stage, so the resulting marked ROI are applied to both MFL and SMFL 
data sets. 

 
(a) 

 
(b) 

Figure 9. (a) Part of the MFL data of a whole joint that was later scanned by 
laser. (b) Interactively marked regions of interest showing complex corrosion 

patch 
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4. Detect MFL Peaks.  An automated peak detection algorithm searches the MFL data in 
the ROI for local peaks.  Individual peaks in the MFL data are designated in Figure 10 by 
colored square dots, corresponding to the deepest points in the individual pits; these are 
signal locations that have shown a magnetic flux leakage above or equal to its 
neighborhood magnetic flux leakage.  Certain statistical criteria are used to reduce noisy 
peaks. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10. Four complex corrosion patches in an MFL joint with the peaks of 
individual pits marked. Colored dots placed on deepest points of the local pits were 

automatically identified. 
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5. Transfer MFL Peaks to SMFL.  The detected peaks in MFL are registered to the SMFL 
data by affine transformation as shown in Figure 11.  The peak locations are first scaled 
by a ratio of sensors in SMFL to sensors in MFL data.  These peaks form initial peak 
locations in SMFL.  A small window region in the SMFL data around the initial peak is 
automatically searched for local SMFL peaks.  The initial peak is then shifted to the 
location of highest local SMFL peak within the corresponding region.  This local 
readjustment of the peak position in SMFL while trying to keep the global peak pattern 
intact can be approximated by a shearing transformation.  Conflicts are resolved based 
on these predefined rules: 

5.1 While undertaking this affine transformation, the peak labels remain constant 
so that a correspondence between MFL and SMFL peaks is preserved.  

5.2 If there are no corresponding peaks found in SMFL, such peaks are 
eliminated from the SMFL peak map.  

5.3 If multiple MFL peaks point to the same SMFL peak, the highest and nearest 
MFL peak will be assigned to the corresponding SMFL peak.  The rest of the 
MFL peaks are eliminated (if they do not correspond to other SMFL peaks) 
from the SMFL peak map. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 11. Peaks identified in the complex corrosion patches of MFL data are 
mapped onto SMFL data with corresponding scaling, translation and local window 

search 

Grow MFL Peaks Into Pits.  After the peaks are identified, they are grown into their 
immediate neighborhood constrained by the local magnetic flux intensity profile as shown in 
Figure 12.  The region growing process starts from the highest peak.  

5.4 If 𝐼𝐼𝑙𝑙𝑟𝑟𝑚𝑚 is the highest peak value in a given corrosion patch, then this peak is 
grown into its neighborhood pixels that have a magnetic flux value above or 
equal to 𝐼𝐼max− 𝑟𝑟 where t is the iteration index, and 𝐼𝐼max− 𝑟𝑟 >  𝐼𝐼𝑏𝑏𝑟𝑟𝑠𝑠𝑒𝑒 where 𝐼𝐼𝑏𝑏𝑟𝑟𝑠𝑠𝑒𝑒 
is the baseline value corresponding to the clean pipe surface.  

5.5 𝐼𝐼𝑏𝑏𝑟𝑟𝑠𝑠𝑒𝑒 can be considered as the average magnetic flux outside of the corrosion 
patch calculated using ordered statistics. 
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5.6 After each iteration, the list of peaks is scanned to identify those peaks that 
are equal to or above 𝐼𝐼max− 𝑟𝑟.  If any such peaks are found, those peaks will 
be added to the list of peaks that are actively growing into their immediate 
neighborhood.  The growth of an individual peak is terminated if there are no 
pixels in the neighborhood into which the peak region can grow into, under 
given constraints. 

5.7 The iterative region growing is terminated when all the peaks have stopped 
growing. If there are ‘p’ peaks and Rj

t is the total region grown by the peak ‘j’ 

at the end of iteration ‘t’, then the region growing is stopped if,  

�𝑅𝑅𝑗𝑗𝑟𝑟−1
𝑝𝑝

𝑗𝑗=1

=  �𝑅𝑅𝑗𝑗𝑟𝑟
𝑝𝑝

𝑗𝑗=1

 

  

Kiefner and Associates, Inc. 31 April 2016 



Public Report 16-015 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 12. The MFL pits segmentation by a constrained region growing method in 
the four complex corrosion patches of the MFL data 

 
6. Grow Corresponding SMFL Peaks into Pits.  The corresponding peaks in the SMFL 

data are also grown into respective pits using the same region growing algorithm, 
shown in Figure 13.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 13. Result of individual pit segmentation in SMFL data. Each pit has a direct 
correspondence with pits in MFL.  Pits in SMFL have a corresponding pit in MFL with 

a same label. 
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Model Verification.  The laser scan data are used as ground truth for verification of the pit 
segmentation in MFL data as well as to facilitate the future sizing of the pits.  The process of 
registering MFL data to laser data is more challenging.  This process involves the following 
steps: 

1. Correct for Scan Direction.  Generally, laser data does not cover the complete joint 
either axially or circumferentially.  Both the starting location and the circumferential scan 
area (including the direction of scan) are passed as input information to the MFL region 
extracting method.  The MFL data region thus extracted would match the same pipe 
region from which laser data were scanned. 

2. Approximate Synchronization.  In the second step, the laser data is synced to the 
MFL data in the axial direction using reported ILI distances and recorded field records 
taken in the ditch.  Since a small scaling discrepancy between the MFL axial distance 
and the laser axial distance is inevitable this initial synchronization will only be 
approximate. 

3. Down Sample Laser Data for Automated Final Synchronization.  Laser data are 
resized to the same number of rows as MFL data, i.e. converted to lower resolution 
data, for use in an automated synchronization algorithm. 

4. Scale, Quantize, and Automatically Synchronize.  Both regional MFL data and 
laser scan data are then preprocessed to have common mean across their rows and 
scaled to equal number of quantization levels, e.g., 256.  The two data are then 
automatically synchronized using cross-correlation within a limited translation, rotation 
and scaling window. 

5. Transfer MFL Peaks to Down-Sampled Laser Data.  After the laser data and MFL 
region data are appropriately synched the MFL peaks are superimposed onto laser data 
as in Figure 14.  Using a method similar to the one where MFL peaks are superimposed 
on SMFL data, we locally adjust the initial peak position to correspond to a local peak 
position by applying local shearing (non-linear shift).  Every peak in MFL is expected to 
have a corresponding peak in the laser data and hence no peak is eliminated in this 
process. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 14. The peaks of MFL are mapped to low resolution laser data of complex 
corrosion patches. 

 
6. Transfer Peaks to Full Resolution Laser Data.  Peaks are then mapped back onto 

full resolution laser data as in Figure 15. 
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Figure 15. Peaks marked on full resolution laser data of the complex corrosion 
patches 

7. Grow Peaks in Full Resolution Laser Data.  Peaks in the laser data are grown using 
a similar region growing algorithm used for MFL and SMFL pit segmentation as shown in 
Figure 16.  It is apparent that many smaller pits in the laser data are not separately 
identified in the MFL data.  Also, there are some erroneous regions grown as pits in the 
laser data due to stitching artifacts in the laser data at boundaries between scans.  
These may require manual removal. 
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Figure 16. The pits segmented in laser data using the pits identified in MFL data. 
Many pits in the laser data have gone unmarked (white areas) as those pits are 

either not identified in MFL data or merged with other pits in the lower 
resolution MFL data. 

Summary and Recommendations on Corrosion Classifier.  A classifier for segmenting 
complex corrosion patches into individual metal loss anomalies or pits has been developed using 
image processing techniques.  At this stage each individual pit region as identified in the MFL 
data is marked by a uniquely labeled mask.  Most of these pits have corresponding masks in 
SMFL data and a definite mask representation in the laser data.  The data in the masked 
regions of ILI data will form the input features to a new sizing model.  The data in the masked 
regions of the laser data will serve as ground truth for training that model which will be 
developed in the next phase of the project. 

The segmentation procedure presented here is suitable for corrosion that produces at least 
moderate signal response in axial MFL data.  This will be the most common case for complex 
corrosion patches.  However, for narrow, axially-oriented corrosion axial MFL produces very 
little response, and the SMFL signal response alone would be more appropriately used to assess 
these areas.  A future improvement to the procedure could be developed that seeks to identify 
unique signal peaks that exist only in the SMFL data and uses those unique peaks to define pit 
and axially elongated regions, although it is not clear what the specific decision rules should be 
to flag certain SMFL peaks as unique rather than associated with a neighboring MFL peak.  
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Algorithm for Sizing Complex Corrosion  
The second step is to develop an improved sizing model for complex corrosion inline inspection 
(ILI) signatures.  This model has been developed using ILI data gathered with TDW’s Multiple 
Data Set (MDS) inspection systems.  The ILI data originated from actual field use of the 
systems in operating pipelines with real complex corrosion anomalies.  Corresponding field 
validation measurements were gathered by Applus RTD using high resolution laser scanning 
systems. 

TDW has inspected several line segments using MDS ILI systems.  The ILI analysis identified 
some metal loss anomalies that occurred in patterns that would be considered complex and 
interacting.  The project team jointly evaluated which complex corrosion candidate anomalies 
would be suitable for detailed field examination, and subsequent field evaluation was 
undertaken.  The final set of anomalies was drawn from the following segments: 

• 16” Pipeline D, inspected 2/9/2012 
• 20” Pipeline E, inspected 7/11/2013 

Laser scanning was performed at two locations in each of the segments, capturing multiple 
complex corrosion anomalies at each scan location. 

Background.  Magnetic flux leakage (MFL) inspection is a well-established, mature technique 
that has been successfully applied to pipelines for many years now.  Nevertheless, MFL users 
are still faced with limitations to the technology that can be roughly categorized into three 
areas.  These limitations become particularly apparent when dealing with complex corrosion 
patches. 

First, unlike ultrasonic inspection techniques (UT) which return direct measurements of 
remaining pipe wall, MFL is an inferential technique that uses a mathematical model to translate 
signal responses into measurements of essential dimensions of corrosion geometry.  The 
physics of the technology make it impractical to formulate an MFL model that can return a 
uniformly spaced grid of depth measurements across a section of pipe surface in a similar 
fashion to UT.  Instead, an MFL model is generally trained to estimate the essential dimensions 
of length, width, and depth for a distinct corrosion pit that happens to coincide with a 
recognizable distinct peak in the MFL signature.  When corrosion becomes highly interactive and 
complex, the identification of distinct corrosion pits in the complex patch becomes quite 
challenging.  Neighboring anomalies can influence the signal acquired which significantly 
complicates the analysis methodology.  This represents one possible approach to the problem 
of partitioning complex corrosion patches.  More importantly, there is no standard procedure 
today for establishing truth for the essential dimensions of length, width, and depth for each 
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distinct corrosion pit in a complex patch.  The work presented below presents one simplistic 
approach to this problem, but this question deserves more attention elsewhere. 

Second, it is not immediately obvious which features of the MFL signal directly correlate to the 
essential dimensions of the underlying corrosion pits.  This is particularly true in the case of 
complex corrosion as the closely spaced metal loss regions cause the MFL signatures to interact 
with each other in more complex ways.  The selection of candidate features for inclusion into a 
model is largely a matter of trial and error. 

Third, the field process for gathering high quality training data for MFL model development is 
costly, and consequently the amount of data available for modeling is usually relatively small.  
Furthermore, the training data is rarely spread evenly across the entire ranges of length, width, 
and depth over which the model is expected to perform.  This is especially true for complex 
corrosion patches, where the patch is usually dominated by widespread, shallow surface 
corrosion encompassing isolated deeper pitting anomalies. 

As a brief review previous section focused on separating complex ILI signatures into individual 
metal loss anomaly calls.  MFL data shown in Figure 17(a) is used as the main source for 
identifying individual pits in a corrosion patch.  SpirALL® MFL (SMFL) data shown in Figure 
17(b) is used to improve the pit sizing accuracy by using pit signature shape variation in a 
different direction of the magnetic flux.  The laser scan data shown in Figure 17(c) is obtained 
by digging the pipe region where corrosion is identified by MFL data and then scanning the 
surface of the pipe with a laser displacement sensor.  This laser data acts as ground truth for 
both identifying the deepest points of the individual pits as well as sizing of the pits using a 
combination of MFL and SMFL data. 
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(a) MFL data of a complex corrosion patch 

 

 
(b) SMFL data of the same complex corrosion patch 

 

 
(c) Corresponding laser scan data of the pipe surface (ground truth data) 

 
Figure 17. A complex corrosion patch as detected by (a) MFL sensors (b) SMFL 

sensors and (c) laser scanning of the pipe surface 
In the previous section, we described the methods developed to identify, segment, and register 
individual pits across different sensor data.  We have improved some of the methods described 
in the earlier report, specifically in segmenting the pits in the laser data and matching them to 
corresponding pits in MFL and SMFL data.  For this purpose, the laser data is subjected to a few 
steps of preprocessing that include background leveling, automated and localized thresholding, 
component labeling, and morphological filtering.  The segmented laser data with uniquely 
labeled individual pits is shown in Figure 18(a).  The MFL image is suitably trimmed and 
magnified so that it corresponds to the same physical area of the pipe scanned by the laser.  
The MFL pit signatures are then projected onto the laser data, and all the laser pits that are 
located within a uniquely labeled MFL pit region are given the same label as the MFL pit.  The 
relabeled laser data, where the labels correspond to MFL pit labels, are shown in Figure 18(b).  
One of the conclusions here is that the laser data which act as a ground truth has to be 
collected with much more care and all patch like structures and intensity variations that are not 
pits should be reduced if not completely eliminated. 

It should be emphasized that one of the goals of this approach was to arrive at a semi-
automated method for processing these complex corrosion patches.  The separation and sizing 
of complex corrosion patches is currently a time-consuming and tedious process for an ILI 
analyst.  The analyst exercises substantial judgment in the process.  Reducing the variability in 
this human process would be a desirable outcome of this semi-automated approach. 
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(a) All pit-like structures in the laser data are segmented and labeled.  Even after 

preprocessing a significant number of noise artifacts can be seen. 
 

 
(b) MFL pit regions, corresponding SMFL pit regions and laser pit regions.  MFL pits 

are matched with the regions in laser data, and the laser pits that are within MFL pit 
regions are relabeled.  Remaining pit objects in laser data are discarded.  Colors for 
the label are randomly selected in each individual image and hence the colors can 

differ from MFL to SMFL to laser; the recorded labels within the software remain the 
same across all the images. 

 
Figure 18. Labeling and matching ILI pit regions to laser data pit regions 

Establishing Ground Truth.  Establishing true corrosion size is a critical step in developing an 
ILI sizing model using machine learning methods.  This process is often referred to as 
establishing ground truth.  The laser scan measurements are certainly a very accurate 
representation of the pipe surface, but the scanner captures many shallow pits which are not 
distinctly and separately visible in the ILI data.  To this end, we developed a process for 
assigning axial length, circumferential width, and wall loss depth to a collection of laser pits that 
coincide with an MFL pit.  Figure 19 shows a segmented complex corrosion patch where 
multiple laser pits that correspond to an individual pit in the MFL data are given.  All adjacent 
laser pits that correspond to a single MFL pit are assigned the same color. 

Kiefner and Associates, Inc. 41 April 2016 



Public Report 16-015 

 
Figure 19. A complex corrosion patch in the laser data segmented and labeled to 

match corresponding pits in the MFL data 

For each collection of laser pits of the same color, the following rules are applied to establish 
ground truth: 

• True length is defined as the axial extents of the collection of laser pits. 
• True width is defined as the circumferential extents of the collection. 
• True depth is defined as the deepest point in the collection. 

The application of these rules results in a total of 630 truth samples to be used for model 
training.  As illustrated in Figure 20, the distribution of ground truth is highly skewed toward 
shallow corrosion features with only a handful of deep corrosion pits in the data set.  An ideal 
data set would show a uniform distribution across the desired modeling space.  In practice this 
ideal is very difficult to obtain from naturally occurring corrosion, and hence most modeling 
exercises utilize artificial anomaly sets.  On the other hand, it is very difficult to create 
meaningful artificial anomaly sets that exhibit the type of complex interaction that is the target 
of this work.  
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Figure 20. Approximate distribution of ground truth measurements from laser data 
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Feature Engineering.  As a significant portion of time toward the current project was 
dedicated to identifying relevant features in the various ILI signatures, developing methods to 
measure these features, and exploring possible relationships between pit features in the 
magnetic field data, and the corresponding ground truth from the laser data.  Current sizing 
models estimate the length, width, and depth of a corrosion feature as a function of a handful 
of ILI signal geometric characteristics and magnetic field strength measurements.  For this 
work, we investigated the inclusion of many additional ILI signal characteristics as features in 
the sizing model.  A description of these new features is provided below. 

• Average signal amplitude:  The average value of the flux leakage signal, with respect to 
background level, across the signature. 

• Average signal amplitude above half:  The average value of the flux signal with respect 
to background level for that portion of the signal above half the peak amplitude. 

• Plan surface area:  The area of pipe surface covered by the ILI signature. 
• Volume:  An approximate volume of the ILI signature where area is length units as 

obtained above, and the remaining height unit is in gauss. 
• Best fit ellipsoid radii:  The three radii of the ellipsoid that best fits the ILI signature. 
• Best fit ellipsoid orientation:  The orientation of the ellipsoid major axis with respect to 

pipe centerline. 
• Best fit ellipsoid volume:  Volume of the fit ellipsoid. 
• Best fit ellipsoid surface area:  Surface area of the fit ellipsoid. 
• Shape eccentricity:  Ratio of the shortest distance between pit centroid and pit surface 

to the longest distance between pit centroid and pit surface. 
• Center of gravity distance difference:  The distance between the rigid body centroid and 

magnetic field weighted centroid of the signature. 

Again the focus was on features which could be extracted in a semi-automatic fashion without 
the intervention of an analyst.  Each of these features was extracted from both the MFL and 
SMFL signatures that correspond to each of the 630 training samples. 

Model Development.  For this effort, we elected to use Kernel Ridge Regression as the as 
basic model topology (Murphy).  A complete discussion of machine learning and model selection 
is beyond the scope of the effort here, but we highlight a few of the reasons for selecting this 
model topology: 

• Ridge regression provides for a convenient method for regularization to control for over 
fitting. 

• The provision of kernel selection provides a means to control the inherent nonlinearity 
and hence the flexibility of the basic model. 
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• The algorithm is widely available in various, stable software implementations 
(Pedregosa). 

We pursued two approaches to model fitting.  In the first, we selected a very flexible model 
topology and minimal regularization at the risk of over fitting the training results.  We did this to 
examine whether this model topology had enough basic flexibility to reasonably model the 
nonlinearity of the problem at hand.  In the second, we used a k-fold cross validation technique 
to select the optimal regularization parameters that minimize a cross validation error.  This 
approach should yield a model that is not over fit to the training results and should therefore 
perform better on new blind samples. 

Since we have elected to use all of the data in the training process there is no meaningful way 
to compute model performance statistics that would translate into performance on new blind 
samples.  We chose instead to provide graphical representations of performance here to 
provide a qualitative overview of the results. 

Flexible Model.  A polynomial kernel of degree three and regularization parameter of 𝟏𝟏𝟏𝟏−𝟏𝟏𝟏𝟏 
(essentially zero) were selected for the flexible model.  The input features and matching ground 
truth were fed to the training algorithm, and the original model training data was then re-used 
to produce predictions of size using the model.  The results of those predictions are presented 
in Figure 21.  The model topology is at least flexible enough to predict length, width, and depth 
with no severe overcall or undercall bias.  Scatter in both the length and width models is a bit 
larger than expected.  

We reemphasize that this flexible model is deliberately over fitting the training data.  As such, 
this level of performance would not be expected on new blind samples.  The performance of 
the regularized model below provides a better estimate of performance on new blind samples.  

Regularized Model.  K-fold cross validation was used to select the kernel type, the kernel 
degree, and the regularization constants.  A hyper grid was created across these various model 
control parameters, and the entire space was exhaustively searched for the combination of 
parameters that yielded the lowest cross validation error.  The best combination of model 
parameters is different for each of the various predictors:   

• Length: polynomial kernel of degree two with regularization constant 𝛼𝛼 = 10000. 
• Width: linear kernel with regularization constant 𝛼𝛼 = 10. 
• Depth: radial basis function for the kernel (has a Gaussian shape) with regularization 

constants 𝛾𝛾 = 0.1 and 𝛼𝛼 = 0.01.  
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Figure 22 shows the model performance graphically.  The results seem to indicate that the 
models that produce the lowest cross validation error are essentially predicting a noisy 
constant. 

 

Figure 21. Unregularized model performance 
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Figure 22. Regularized model performance 

VERIFICATION 
A conservative approach to verifying the dent with metal loss and SSWC classifiers used 
pressure testing of the smallest detected anomaly.  If the smallest detected anomaly did not 
fail, then smaller anomalies that have a lower failure pressure would be safe; larger anomalies 
would be selected for excavation, assessed and repaired as necessary.  This approach is 
inherently conservative as larger anomalies would be identified for repair even though they may 
pass a pressure test.  The corrosion classifier and sizing models did not require burst testing 
since the assessment standards such as ASME B31G, RSTRNGTH or KAPA provide accepted 
failure pressures. 
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For the mechanical damage sample, one dent with a gouge that was identified as a gouge by 
the classifier was removed from service.  The pipe properties were Grade X52, 508mm (20 
inch) diameter and 6.35mm (0.250 inch).  The dent measured 1.2 percent of the diameter and 
contained three gouge marks.  The pipe was subjected to a pressure test to 100 percent of 
specified minimum yield stress (SMYS).  The pipe did not fail after completing five 
pressurizations to simulate five hydrostatic tests. 

For the SSWC classifier, three pipe samples containing SSWC were removed from service.  The 
pipe with the small SSWC was pressure tested and failed at a pressure of 3,340 psig and did 
not fail in the longitudinal seam.  This pressure exceeded the calculated yield strength pressure 
of 2,167 psi.  It also exceeded the pressure required to reach the pipe flow stress, the average 
of the yield stress YS and ultimate tensile stress (UTS), (YS+UTS)/2, of 3,259 psig.  Therefore, 
it was concluded that the ILI tool and classifier are capable of identifying very small non-
threatening SSWC anomalies.  The SSWC algorithm is currently being tested by one of the 
partners.  In this test, all corrosion near the long seam is being investigated per US DOT 
regulatory requirements.  Detailed measurements are being made at each excavation site to 
determine the presence of SSWC and the susceptibility of the pipe to this pipeline threat.  The 
assessment is being performed with DOT PHMSA oversight. 

Mechanical Damage Sample Details.  A photograph of the dent with gouge, identified by 
classification algorithm, that was subjected to repeated pressurization to SMYS tested is shown 
in Figure 23.  The maximum depth before pressure testing was 0.147 inch (0.74% of wall 
thickness) and after was nearly the same at 0.140 inch (0.70% of wall thickness).  The dent 
depth in percent for the entire dent is shown in Figure 24. 
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Figure 23. Dent with gouge, identified by classification algorithm, that was 

subjected to repeated pressurization to SMYS 
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Figure 24. The dent depth in percent 

SSWC Burst Test Details.  In addressing the threat of SSWC, Kiefner examined six cut-out 
pipe pups with SSWC in our laboratory.  These anomalies were identified by the inspection 
technology used for collecting the data for developing the SSWC classifier.  Metallographs of 
three of the SSWC anomalies are shown in Figure 25 and Figure 26.  Kiefner subjected the 
smallest detected SSWC flaw to a burst test.  The pipe failed at a pressure of 3,340 psig and did 
not fail in the seam.  This pressure exceeded that required to reach the pipe flow stress as 
calculated by (YS+UTS)/2 of 3,259 psig.  Therefore Kiefner concluded that the ILI tool and 
classifier are capable of identifying very small non-threatening SSWC anomalies. 

A second set of burst test were conducted to demonstrate that blunt corrosion crossing a seam 
weld in an operating pipeline is not more deleterious than blunt corrosion in the body of the 
pipe at least up to a seam Charpy transition temperature of 200°F. Two burst tests were 
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conducted:  one with an EDM crack-like defect and another with an identical EDM defect but 
with a significant groove machined in it to simulate corrosion less deep than the tip of the 
crack-like defect, e.g., corrosion of the side walls of the notch near the external pipe surface.  
The groove anomaly is shown in Figure 27.  It was expected that the defect with the groove 
would fail at an equal or higher pressure than the defect without the groove due to a reduction 
in the crack-tip stress intensity resulting from the stress contours being more spread out near 
the surface due to the grooving.  This was confirmed by the EDM defect with the groove failing 
at a pressure 24 psig greater than the EDM defect without the groove as shown by the results 
in Table 4. 

Table 4. EDM Notch Burst Tests 

 EDM Notch 
Dimensions 

Buffing 
depth 

Failure 
Pressure, psig 

Without groove 6” x 50% WT 0 1,780 
With groove 6” x 50% WT 35% of WT 1,804 

Moreover, if corrosion of a LoF or hook crack were to occur and if it were to corrode sufficiently 
in depth to make the total defect deeper, it would be expected to corrode as a groove and look 
similar to SSWC and be detectable by ILI technology. 

In summary, ILI methods can be used to conservatively identify locations of SSWC.  The 
susceptibility of seam welds can be determined in the field.  Blunt corrosion crossing a seam 
weld in an operating pipeline is not more deleterious than blunt corrosion in the body of the 
pipe at least up to a seam Charpy transition temperature of 200°F.  This high of a transition 
temperature is associated with specific metallurgy which can be assessed in the field.  
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Figure 25. Metallographic section through flaws G1 (left) and G5 (right) 

 
Figure 26. Metallographic section through flaw G8 groove 
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Figure 27. Typical blunt machined groove 
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ATTACHMENT A - FULL LISTING OF CLASSIFIER INPUTS AND PREDICTIONS 
USING OUT-OF-BAG SAMPLE
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The following table is the full listing of classifier inputs and predictions using out-of-bag 
samples.  Gold cells represent classifier errors that are conservative.  Red cells represent 
classifier errors that are not conservative. 

Anomaly 
ID Segment 

ML Sig 
Location 

ML Sig 
Count 

ML Amp 
Ratio 

ML 
Depth 

(%) 
True Metal 
Loss Type 

Predicted Metal 
Loss Type 

1 Pipeline A Shoulder 4 0.91 9.1 Corrosion Corrosion 
2 Pipeline A Both 13 1.71 12.5 Corrosion Corrosion 
3 Pipeline A Shoulder 3 0.84 5.9 Corrosion Corrosion 
4 Pipeline A Shoulder 3 1.13 6.3 Corrosion Corrosion 
5 Pipeline A Apex 5 3.19 9.7 None Gouge 
6 Pipeline A Shoulder 6 1.40 6.3 Corrosion Corrosion 
7 Pipeline A Apex 2 2.24 1.0 None Gouge 
8 Pipeline A Apex 2 1.47 7.9 Gouge Gouge 
9 Pipeline A Both 6 1.31 4.3 Corrosion Corrosion 

10 Pipeline A Shoulder 1 3.20 8.1 Corrosion Gouge 
11 Pipeline A Both 10 2.94 11.0 Corrosion Corrosion 
12 Pipeline A Shoulder 1 1.18 6.9 None Gouge 
14 Pipeline A Both 2 0.81 1.7 None None 
15 Pipeline A Shoulder 5 1.35 7.5 Corrosion Corrosion 
16 Pipeline A Both 4 2.55 6.9 Corrosion Corrosion 
17 Pipeline A Both 11 0.93 8.8 Corrosion Corrosion 
18 Pipeline A Apex 1 0.55 3.0 Gouge Gouge 
19 Pipeline A Shoulder 6 1.12 5.7 Corrosion Corrosion 
20 Pipeline A Shoulder 3 0.94 7.9 Corrosion Corrosion 
21 Pipeline A Apex 1 1.43 6.1 None Gouge 
23 Pipeline A Shoulder 3 1.11 3.6 Corrosion Corrosion 
24 Pipeline A Both 4 0.83 4.7 Corrosion Corrosion 
25 Pipeline A Both 6 1.07 4.5 Corrosion Corrosion 
26 Pipeline A Both 5 1.48 12.3 Corrosion Gouge 
27 Pipeline A Shoulder 2 1.15 4.5 Corrosion Gouge 
28 Pipeline A Shoulder 10 1.58 6.0 Corrosion Corrosion 
29 Pipeline A Apex 1 -0.42 5.1 Gouge Gouge 
30 Pipeline A Both 5 2.06 4.2 Corrosion Corrosion 
31 Pipeline A Both 5 1.21 2.7 None Corrosion 
32 Pipeline A Shoulder 1 1.56 5.3 Corrosion Gouge 
33 Pipeline A Both 10 1.36 7.9 Corrosion Corrosion 
34 Pipeline A Shoulder 2 1.26 5.4 Corrosion Gouge 
35 Pipeline A Both 6 2.55 17.8 None Corrosion 
36 Pipeline A Apex 1 0.90 3.3 Gouge Gouge 
37 Pipeline A Apex 1 1.52 4.8 Gouge Gouge 
38 Pipeline A Apex 1 0.88 7.8 Gouge Gouge 
40 Pipeline A Apex 4 4.85 4.8 Corrosion Gouge 
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Anomaly 
ID Segment 

ML Sig 
Location 

ML Sig 
Count 

ML Amp 
Ratio 

ML 
Depth 

(%) 
True Metal 
Loss Type 

Predicted Metal 
Loss Type 

42 Pipeline A Both 2 0.59 7.9 None Gouge 
43 Pipeline A Apex 1 0.88 9.7 Gouge Gouge 
44 Pipeline A Apex 1 0.77 8.7 Gouge Gouge 
45 Pipeline E Apex 1 1.98 20.0 Gouge Gouge 
46 Pipeline E Apex 1 2.26 16.4 Gouge Gouge 
47 Pipeline E Apex 1 1.31 10.0 None Gouge 
48 Pipeline E Apex 1 0.80 10.0 None Gouge 
49 Pipeline E Both 2 1.49 10.0 Gouge Gouge 
50 Pipeline E Both 4 1.43 10.0 Gouge Corrosion 
51 Pull Test Apex 1 1.65 3.9 Gouge Gouge 
52 Pull Test Apex 1 1.62 7.6 Gouge Gouge 
53 Pull Test Apex 2 2.15 11.5 Gouge Gouge 
54 Pull Test Shoulder 1 0.51 4.2 Gouge Gouge 
55 Pull Test Apex 1 1.93 8.4 Gouge Gouge 
56 Pull Test Apex 1 1.21 8.4 Gouge Gouge 
57 Pull Test Shoulder 1 0.32 8.5 Gouge Gouge 
58 Pull Test Apex 1 2.42 5.1 Gouge Gouge 
59 Pull Test Apex 1 0.70 8.6 Gouge Gouge 
60 Pull Test None 0 0.00 0.0 None None 
61 Pull Test Both 2 4.20 4.4 Gouge Gouge 
62 Pull Test None 0 0.00 0.0 None Gouge 
63 Pull Test Apex 1 3.56 15.3 Gouge Gouge 
64 Pull Test None 0 0.00 0.0 None None 
65 Pull Test Apex 1 2.32 12.9 Gouge Gouge 
66 Pull Test Apex 1 1.70 10.6 Gouge Gouge 
67 Pull Test Apex 1 2.65 4.7 Gouge Gouge 
68 Pull Test Apex 1 2.45 7.8 Gouge Gouge 
69 Pull Test Apex 3 3.55 8.8 Gouge Gouge 
70 Pull Test Apex 1 1.91 21.8 Gouge Gouge 
71 Pull Test Apex 3 2.58 11.9 Gouge Gouge 
72 Pull Test Apex 1 4.46 8.9 Gouge Gouge 
73 Pull Test Apex 2 1.79 6.7 Gouge Gouge 
74 Pull Test None 0 0.00 0.0 None None 
75 Pull Test Apex 1 0.98 7.9 Gouge Gouge 
76 Pull Test Apex 1 1.30 5.9 Gouge Gouge 
77 Pull Test Apex 2 1.22 16.4 Gouge Gouge 
78 Pull Test Apex 1 1.63 7.7 Gouge Gouge 
79 Pull Test Apex 2 1.64 8.4 Gouge Gouge 
80 Pull Test Apex 1 2.07 15.8 Gouge Gouge 
81 Pull Test Shoulder 1 1.28 4.7 Gouge Gouge 
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Anomaly 
ID Segment 

ML Sig 
Location 

ML Sig 
Count 

ML Amp 
Ratio 

ML 
Depth 

(%) 
True Metal 
Loss Type 

Predicted Metal 
Loss Type 

82 Pull Test Apex 1 0.81 3.9 Gouge Gouge 
83 Pull Test Apex 1 2.80 3.9 Gouge Gouge 
84 Pull Test Apex 2 2.62 10.0 Gouge Gouge 
85 Pull Test Apex 3 1.64 7.0 Gouge Gouge 
86 Pull Test Apex 2 1.92 9.7 Gouge Gouge 
87 Pull Test Apex 2 1.32 21.1 Gouge Gouge 
88 Pull Test Apex 2 0.94 9.0 Gouge Gouge 
89 Pull Test Apex 1 1.64 10.0 Gouge Gouge 
90 Pull Test None 0 0.00 0.0 Gouge None 
91 Pull Test Apex 1 0.67 10.0 Gouge Gouge 
92 Pull Test Apex 1 2.11 7.2 Gouge Gouge 
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ATTACHMENT B - DETAILED DATA AND RESULTS FOR SSWC MODEL 
DEVELOPMENT
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Table B1. Anomalies for model development 

Segment Dig ILI Group ID 
ILI Log Distance 

(ft) 
ILI Corrosion 

Depth (%) SSWC? 

SSWC 
Length 

(Inches) 

SSWC 
Depth  
(%) 

"B" 13-1605 40000500 332.78  1 0.70 27.7% 

"B" 13-1605 40000503 333.01  1 1.70 26.6% 

"B" 13-1606 40013090 4028.92  1 2.80 38.3% 

"B" 13-1606 40013056 4018.32 13.0% 0   
"B" 13-1606 40013057 4018.78 13.0% 0   
"B" 13-1611 40031011&12 11513.17  1 2.50 14.9% 

"B" 13-1611 40031015 11513.69  1 1.00 22.2% 

"B" 13-1611 40031031 11516.74 14.0% 0   
"B" 13-1611 40031035 11516.95 18.0% 0   
"B" 13-1617 40065422 30201.89  1 0.40 38.1% 

"B" 13-1617 40065424 30202.45 23.0% 0   
"B" 13-1617 40065492 30225.05  1 0.60 44.2% 

"B" 13-1617 40065506 30225.92 30.0% 0   
"B" 13-1617 40065507 30225.99 12.0% 0   
"B" 13-1617 40065532-35 30228.09 20.0% 0   
"B" 13-1630 40301147 122718.35  1 1.00 31.7% 

"B" 13-1630 40301164 122728.44  1 2.00 39.5% 

"B" 13-1630 40301165 122728.71 18.0% 0   
"B" 13-1630 40301169 122729.55 12.0% 0   
"B" 13-1630 40301174-5 122733.94 10.0% 1 1.50 20.7% 

"B" 13-1630 40301180 122736.51 14.0% 0   
"B" 13-1630 40301191 122741.87 33.0% 0   
"B" 13-1630 40301198 122746.23  1 1.50 35.8% 

"B" 13-1631 40304840 124978.63  1 3.00 41.7% 

"B" 13-1631 40304842 124979.16  1 0.50 23.5% 

"C" 13-1280  3026.95 15.0% 0   
"C" 13-1281 40004225 4731.55 16.0% 0   
"C" 13-1282A 40005395 9254.93 22.0% 0   
"C" 13-1282B 40005396 9255.94 12.0% 0   
"C" 13-1282C 40005397 9257.58 17.0% 0   
"C" 13-1283A 40006669 10278.93 14.0% 0   
"C" 13-1283B 40006678 10277.86 16.0% 0   
"C" 13-1283C 40006686 10278.87 18.0% 0   
"C" 13-1283D 40006752 10295.78 21.0% 0   
"C" 13-1284 40006808 10328.59 24.0% 0   
"C" 13-1285A 40007095 10545.51 19.0% 0   
"C" 13-1285B 40007147 10574.17 30.0% 0   
"C" 13-1286 40007241 10638.59 14.0% 0   
"C" 13-1287 40015549 63545.12 34.0% 0   
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Table B2. Classifier accuracy results: Three false negatives and two false positives. 

ILI Corrosion 
Depth (%) 

Truth: 
SSWC? 

Classifier 
Probability 

of SSWC 

SSWC 
Length 

(Inches) 

SSWC 
Depth  
(%) 

 1 0.532 0.70 27.7% 

 1 0.996 1.70 26.6% 

 1 0.918 2.80 38.3% 

13.0% 0 0.029 
  

13.0% 0 0.321 
  

 1 0.424 2.50 14.9% 

 1 0.229 1.00 22.2% 

14.0% 0 0.011 
  

18.0% 0 0.096 
  

 1 0.975 0.40 38.1% 

23.0% 0 0.164 
  

 1 0.969 0.60 44.2% 

30.0% 0 0.089 
  

12.0% 0 0.010 
  

20.0% 0 0.008 
  

 1 0.871 1.00 31.7% 

 1 0.962 2.00 39.5% 

18.0% 0 0.164 
  

12.0% 0 0.761 
  

10.0% 1 0.212 1.50 20.7% 

14.0% 0 0.059 
  

33.0% 0 0.893 
  

 1 0.923 1.50 35.8% 

 1 0.927 3.00 41.7% 

 1 0.676 0.50 23.5% 

15.0% 0 0.143 
  

16.0% 0 0.069 
  

22.0% 0 0.020 
  

12.0% 0 0.054 
  

17.0% 0 0.015 
  

14.0% 0 0.089 
  

16.0% 0 0.046 
  

18.0% 0 0.008 
  

21.0% 0 0.027 
  

24.0% 0 0.014 
  

19.0% 0 0.084 
  

30.0% 0 0.009 
  

14.0% 0 0.024 
  

34.0% 0 0.178 
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